
HAL Id: hal-04813386
https://hal.science/hal-04813386v1

Submitted on 1 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Change Detection in Polarimetric and Multilook SAR
imagery using Stochastic Distance

Hugo Fauvel, Jean-Christophe Cexus, Abdelmalek Toumi, Ali Khenchaf

To cite this version:
Hugo Fauvel, Jean-Christophe Cexus, Abdelmalek Toumi, Ali Khenchaf. Change Detection in Polari-
metric and Multilook SAR imagery using Stochastic Distance. IEEE INTERNATIONAL CONFER-
ENCE RADAR 2024, Oct 2024, Rennes, France. �hal-04813386�

https://hal.science/hal-04813386v1
https://hal.archives-ouvertes.fr


XXX-X-XXXX-XXXX-X/XX/$XX.00 ©2024 IEEE 

 Change Detection in Polarimetric and Multilook 

SAR imagery using Stochastic Distance 

Hugo Fauvel1, Jean-Christophe Cexus, Abdelmalek Toumi, Ali Khenchaf 

ENSTA Bretagne - Lab-STICC, UMR CNRS 6285  

2, Rue François Verny, 29806 Brest Cedex 9, France.  

Email: {jean-christophe.cexus, abdelmalek.toumi, ali.khenchaf}@ensta-bretagne.fr  
1 hugo.fauvel@ensta.bretagne.org 

 

Abstract— Change detection is useful for monitoring 

environmental evolution or tracking anthropogenic changes 

over time. One of the promotion of satellite monitoring is 

advocated for its ability to  revisit the same sites periodically and 

gives us a growth data from different sensors like Radars. 

Synthetic Aperture Radar (SAR) data is preferred because 

weather conditions (e.g. cloud cover) do not hamper the ability 

to perform soil measurements. However, traditional change 

detection methods are sensitive to speckle noise. We propose to 

compare several statistical change detection methods in order to 

reduce false alarm. 

In this paper, the data used are polarimetric and multilook 

which are simulated by their covariance matrices following a 

complex Wishart law. Change detection methods rely on the 

pixel patches whose size we fix. After estimating the parameters 

of the Wishart law on patches of pixels from the same area but 

acquired on two different dates, we compare these two patches 

of pixels with three stochastic divergences: Kullback-Leibler, 

Bhattacharyya, and Hellinger. The decision threshold is then 

analyzed by comparing two methods, one by the Otsu 

segmentation method, the other by the Chi-square distribution. 

We evaluate these different methods by the number of true 

positives, false positives, and the number of targets identified. 

On simulation data, Bhattacharyya distance with the Chi-

square threshold gives a higher true positive rate and a lower 

false alarm rate than other methods. Moreover, we note that the 

smaller the size of the pixel patches, the more the number of 

detected targets increases, but with a greater number of false 

alarms. Due to the strong influence of speckle, which causes false 

alarms, a post-processing method based on the concentration 

index of Getis and Franklin is proposed.  

Keywords— SAR, change detection, multilook polarimetric 

synthetic aperture radar (PolSAR) data, stochastic distance.  

I. INTRODUCTION 

Change detection methods have a wide range of 

applications in remote sensing [1]. These methods can be 

used to track the evolution a target for a short period or the 

evolution of an area over a longer period. Classically, 

Synthetic Aperture Radar (SAR) imagery is particularly 

valuable for change detection compared to optical imagery 

[2]. SAR images are not affected by weather conditions like 

cloud cover, which can obstruct the study area. Examples of 

applications using change detection methods include 

monitoring forest cover changes, tracking crop development 

in agricultural fields, and detecting algae blooms or 

pollutions in the ocean [3]-[6].  

By contrast, the presence of multiplicative noise in the 

SAR data makes it more difficult to identify changes between 

two images than in optics. This speckle noise leads to a 

significant number of false alarms. Adapted methods are 

employed with SAR imagery to reduce this effect [1], [7], [8]. 

In particular, two methods are commonly used. The first is to 

rely on multi-look data, that is considering several images 

taken at the same date in order to reduce the influence of 

speckle. The second principle is to use the statistical 

information theory, that is to say by modeling the statistical 

distribution of several geographically neighboring data. From 

this modeling, we can apply a stochastic distance between 

pixel patches covering the same area at two different times to 

reduce the effect of noise [8]-[11]. 

SAR data contains rich information consisting of four 

polarizations, 𝑠ℎℎ , 𝑠ℎ𝑣 , 𝑠𝑣ℎ and 𝑠𝑣𝑣  summarized in the 

scattering matrix, named Polarimetric SAR (PolSAR), with 

the assumption that cross-coefficient are equal, so dim(S) =
3. It describes the relationship between the incident electric 

field 𝐸𝑖 and the received electric field 𝐸𝑠: 

𝐸𝑠 = 𝑆 𝐸𝑖  , (1) 

with: 

𝑆 =  (
𝑠ℎℎ 𝑠ℎ𝑣
𝑠𝑣ℎ 𝑠𝑣𝑣

) . (2) 

Change detection is restricted here to the comparison 

between two dates t1 and t2. The objective is to determine if 

a pixel, associate with its scattering matrix S, changes 

between these two dates. In addition, in order to reduce the 

influence of speckle, we use multilook data. Several matrices 

(𝑆𝑖)𝑖 ∈[1,𝐿], where L > dim(S), are acquired for each pixel at 

the same dates t1 and t2. Then, we estimate the correlation 

matrix 𝐶 at these two times in order to compare them: 

𝐶 =
1

𝐿
 ∑𝑆𝑖  𝑆𝑖

𝐻

𝐿

𝑖=1

 , (3) 

where .𝐻 is the Hermitian operator. 

The covariance matrix 𝐿𝐶 is modeled by a complex 

Wishart distribution, 𝐿𝐶 ~𝑊𝐶(𝑛, 𝛴), with 𝑛 is an Equivalent 

Number of Looks (ENL) [10]. In the following, we will 

denote 𝐿𝐶 by 𝐶, neglecting the proportionality term. It is a 

widely used model for multilook full polarimetric SAR data. 

This means that the data are polarimetric since the Wishart 

distribution applies in the theory of random and multilook 

matrices, with at least four acquisitions for one instant, since 

a covariance matrix is estimated. The Wishart complex law 

can be seen as a generalization of the Gamma law, knowing 

that the coefficients of the matrix follow this last stochastic 

distribution. 



In Section II, we provide a comprehensive explanation of 

the methodology. Initially, we detail the data simulation 

process using Wishart's complex law. Subsequently, we delve 

into parameters estimation, focusing mainly on Equivalent 

Number of Looks (ENL) estimators and stochastic distances. 

Section III is dedicated to the discussion of the results 

obtained and the evaluation of the effectiveness of the 

proposed approach. Finally, we conclude with a summary and 

outline potential future directions. 

II. DESCRIPTION OF THE METHODOLOGY 

A. Data Simulation from a Complex Wishart Law 

To evaluate the proposed methods, the simulated data 

from the complex Wishart law are obtained. Several methods 

have been proposed to generate complex Wishart samples. 

One of them proposed by Sawyer [12] is based on the 

generation of two samples following Gaussian and Gamma 

laws. For a matrix following a complex Wishart distribution, 

a matrix 𝑍𝑖, with i in [1, 𝑛], following a Gaussian distribution 

is drawn. Then, a matrix A supposed to follow a Gamma 

distribution is calculated from the Σ matrix. This matrix 𝐴 is 

the Cholesky decomposition of Σ: 

Σ = 𝐴′𝐴 , (4) 

with lower diagonal matrix.  

To avoid redundancy in quadratic operations, it's 

recommended to perform this calculation once to minimize 

computation time. Then, the Eq. (5) is applied to obtain the 

desired matrix for a matrix 𝐶 ~𝑊𝐶(𝑛, 𝛴). 

𝐶 =  ∑(𝐴

𝑛

𝑖=1

𝑍𝑖)(𝐴𝑍𝑖)
′ (5) 

Hagedorn et al. [13] describe that the coefficients of a 

random matrix following a complex Wishart distribution 

follow a Gamma distribution, that is: c. ~Γ(𝜎, ENL). To 

verify that the generated matrix follows a Wishart complex 

law, a Kolmogorov-Smirnov test is applied on these 

coefficients. The test does not allow us to reject that the 

coefficients of the matrix follow a gamma law, with an 

average p-value of 0.8. By extension the matrix does indeed 

follow a complex Wishart distribution. 

 

Fig. 1. Simulation of two images governed by a complex 

Wishart law. Image at date 1 (A), image at date 2 (B) and the 

ground truth change between the two dates (C). 

B. Estimation of Parameters 

For the first parameter of the Wishart complex law, we 
estimate the expectation of the covariance matrix C. We use 
the maximum likelihood estimator given by Eq. (6). 

Σ̂ =  
1

𝐿
 ∑𝐶𝑖 

𝑁

1

 (6) 

The ENL is the second parameter of the random law. 
Several ENL estimators are discussed in the literature [10]. In 
particular, the Conventional Estimator (CV) and the 
Fractional Moment estimator (FM) [11]. They give close 
result with a relatively same and low complexity in 
computation time. However, they have a non-zero bias which 
often overestimates the ENL [10]. This bias remains 
acceptable and has little influence as it will be shown later on 
the sensitivity of stochastic distances. 

We note c. the coefficients of the correlation matrix C, 

For CV estimator, we replace the estimator of the first 

moment and the variance in Eq. (8), giving the estimator (Eq. 

(9)): 

𝐸𝑁𝐿 =  
𝐸(𝑐. )2

𝑉𝑎𝑟(𝑐. )
 , (7) 

𝐸𝑁𝐿(𝐶𝑉)̂ =  
〈𝑐. 〉2

〈𝑐.2 〉 −  〈𝑐. 〉2
 , (8) 

where 〈. 〉 denoted the mean of (.).  

The analytical expression of FM comes from the following 
expression: 

𝐸(𝑐.2 ) =  
Γ (𝐸𝑁𝐿 + 

1
2
)

Γ(𝐸𝑁𝐿)
 √

𝜎

𝐸𝑁𝐿
 (9) 

 The ENL is then estimated by solving the following 
equation: 

Γ (𝐸𝑁𝐿(𝐹𝑀)̂ + 
1
2
)

Γ(𝐸𝑁𝐿(𝐹𝑀)̂ ) √𝐸𝑁𝐿(𝐹𝑀)̂
 √〈𝑐. 〉 −  〈√𝑐. 〉 = 0  (10) 

C. Hypothesis test theory 

The methods of change detection can be divided into two 

families, on the one hand the hypothesis test theory, on the 

other hand by the statistical information theory according to 

N. Bouhlel et al. [9]. Among the first family, the best known 

are the determinant test, the trace test and the Barlett test. 

Each one is based on a ratio between the correlation matrices 

at time t1 and t2 in order to quantify the separation between 

these two matrices. Then, a threshold is applied in order to 

separate the pixels considered as having changed and those 

not having changed between two dates. These methods are 

interesting when there is a need to have a method requiring 

few computational resources. On the other hand, they are not 

very suitable for SAR images because of their strong 

dependence on speckle. The number of false alarms is so 

important that a post-processing step is often necessary. 

D. Statistical information theory 

Stochastic distances are a way to reduce the influence of 

speckle when comparing two data from different dates. 

Indeed, the methods based on these methods use the 

information contained on a set of pixels and not on a single 

pixel.  



The principle is to take a patch with neighboring pixels 

around the analyzed pixel. The histograms of the values taken 

by the coefficients of the covariance matrices is then modeled 

by a scaled complex Wishart law. The larger the patch size, 

the less sensitive the comparison between two instants will be 

to noise. On the other hand, it is more difficult to locate small 

areas that have changed. Many stochastic distances are used: 

Kullback-Leibler, Bhattacharyya and Hellinger. The 

proposed distances do not respect all the conditions to be 

distances, in particular they are not always symmetrical, that 

is why they are rather divergences; by abuse of language, we 

will call them distance.  

Since we model the covariance matrices for each pixel by 

a known stochastic distribution, it is possible to access an 

analytical formulation of these distances [11]. These 

formulas then depend only on the parameters of the Wishart 

complex law, its covariance matrix and the ENL. Three cases 

can be analyzed, they are listed below, with Σ. and ENL are 

the two parameters of the complex Wishart distribution at 

date (.): 

• Case (i): Σ̂1  ≠  Σ̂2, 𝐸𝑁𝐿1  ≠ 𝐸𝑁𝐿2 
• Case (ii): Σ̂1  ≠  Σ̂2, 𝐸𝑁𝐿1 = 𝐸𝑁𝐿2 

• Case (iii): Σ̂1 = Σ̂2, 𝐸𝑁𝐿1  ≠ 𝐸𝑁𝐿2 

E. Change detection threshold 

Calculating a stochastic distance between two patches in 

the same region on two different dates quantifies the observed 

statistical difference. In the absence of change between the 

two dates, this distance is close to zero. On the contrary, in 

the presence of a change, the distance is high. A threshold is 

applied to consider from what value a change is supposed to 

be observed. We use two approaches to determine this 

threshold automatically. The first uses the Otsu algorithm 

[14]. The method estimates a constant threshold for all pixels 

in an image. It is based on the hypothesis that at least one 

pixel of this image is changed between the two dates. 

Based on the theory of hypothesis testing, Salicru et al. 

[15] proposed a method to obtain a local threshold, varying 

from one pixel to another. This threshold comes from the 

following lemma: 

 

Lemma 1: 

 If 
𝑁1

𝑁1+ 𝑁2
 
𝑁1,𝑁1 → +∞ 
→         𝜆 ∈ [0, 1], 𝑎𝑛𝑑 C1 = C2 

Then, 

𝑆ℎ
𝜙
(Σ̂1, Σ̂2) =

2𝑁1𝑁2
𝑁1 + 𝑁2

 
𝑑ℎ
𝜙
(Σ̂1, Σ̂2)

ℎ′(0)𝜙′′(1)
 
𝑁1,𝑁1 → +∞ 
→         𝜒𝑀

2  (11) 

𝑆ℎ
𝜙
(Σ̂1, Σ̂2) converge in distribution toward 𝜒𝑀

2 , with M 

degrees of freedom, 𝑑ℎ
𝜙
(. , . ) is a stochastic distance between 

two matrices, h and 𝜙 are two functions depending on the 

stochastic divergence. 

A.-C. Frery et al. [11] proposes pairs of functions for each 

stochastic distance. This function and their values are given 

in the following tables 1 and 2. 

 

TABLE 1 – FUNCTION ℎ AND  𝜙  ACCORDING TO THE 

STOCHASTIC DISTANCE FROM [11]. 

 

 

 

TABLE 2 – VALUES OF ℎ AND 𝜙. 

 ℎ′(0) 𝜙′′(0) 

Kullback-Leibler 0.5 2 

Bhattacharyya 1 0.25 

Hellinger 0.5 0.5 

 

Lemma 1 allows us to set a threshold by a Chi-square test. 

The calculation of the statistic S for each pixel is compared 

to a threshold α, given by a reference table of the test, for 

example, in the case of the study, M = 2, for a confidence of 

95%, α = 5.991. The null hypothesis 𝐶1 = 𝐶2, that is the pixel 

to change between the dates 𝑡1 and 𝑡2, can be rejected at level 

α if: 

P (𝜒𝑀
2 > 𝑆ℎ

𝜙
(Σ̂1, Σ̂2)) ≤  𝛼 (12) 

From the threshold locally determined by Lemma 1, it is 

possible to visualize the sensitivity of the change detection 

algorithm.  

F. Evaluation of change detection methods 

Two tests are performed. One where the estimate of the 

mean of the covariance matrix is tainted by an error on one of 

its coefficients, the other where the estimate of the ENL is 

incorrect for one of the two dates. 

In the first test, the aim is to predict the behavior of the 

algorithm when the estimation of the mean of the distribution 

is tainted by error,. For this, a reference matrix on the first 

parameter will be fixed for the first time. For the second 

instant, the coefficient in position (1, 1), corresponding to the 

variance of the HH polarization. For the sensitive test, the Σ 

parameters are as follows, with 𝑥 = 360932 for the first date, 

and the ENL is equal to 8. 

 

Σ(𝑥) = ( 
𝑥 11050 + 3759𝑖 63896 + 1581𝑖
 98960 6593 + 6868𝑖
  208843

 ) (13) 

 

In the second test, the number of ENL are considered 

constant for the first date and varies for the second date in 

order to simulate an error in estimation of this parameter. The 

Σ parameters are fixed with 𝑥 = 36093. The mean of the 

covariance matrix will be equal to the two times. 

To compare the stochastic divergences between them, two 

metrics are exploited. One is based on the number of true 

detections and false detections pixel by pixel. The other 

determines the number of targets actually located by these 

methods (figures 4 and 5). These two types of measurements 

are performed in two different tests, the first by varying the 

ENL, the second by varying the size of the analysis window. 



III. RESULTS 

A. Sensitivity of stochastic distance 

In the first test, when 𝑥 moves away from the value of 

the same coefficient at date 𝑡1, the statistic obtained by the 

Kullback-Leibler distance is larger than that obtained by 

Bhattacharyya and close with Hellinger. This suggests that 

the distances Kullback-Leibler and Hellinger have a similar 

behaviour and are more sensitive to a change. On the one 

hand, we therefore expect to better locate small targets by 

these distances, but the risk of false alarm is increased.  

This is also the case for the second test as shown in figure 2, 

when the number of ENLs estimated for the second image 

moves away from the first equal to 8, the statistic is larger for 

Kullback-Leibler. That is, the Bhattacharyya distance will be 

less likely to consider a pixel as having changed for the same 

estimates of the probability law parameters. The Hellinger 

distance has a behavior very close to the Kullback-Leibler 

distance. Moreover, the sensitivity of all distances is greater 

when 𝑥 is smaller than the value at date 𝑡1, as well as when 

the estimated ENL is smaller. Thus, underestimation of the 

parameters results in a greater influence on the decision that 

there has been a change. 

 

Fig. 2. Sensitivity of Kullback-Leibler and Bhattacharyya 

distances with ENL variation. The reference ENL being equal 

to 8. 

B. Performance of the stochastic distance 

A visual comparison of the results obtained by hypothesis 

testing theory, with the determinant, trace and Bartlett tests, 

and statistical information theory, with Kullback-Leibler, 

Bhattacharyya and Hellinger distances, illustrates the 

advantage brought by the latter (figure 3). Indeed, the number 

of false detections is very high in the first techniques because 

of their sensitivity to speckle. We do not find as many of these 

false detections in the case of stochastic distances.  

In figure 4, we plot the metrics of true and false decisions 

as a function of ENL variation and patch size. In the case of 

ENL variation, we notice that increasing ENL causes little 

change in the good decision rate. On the other hand, the ENL 

must be high enough. The best results are obtained for an 

ENL of at least 6.  

 

Fig. 3. Comparison between methods from hypothesis testing 

theory, top, and statistical information theory by stochastic 

distances, bottom, (Kullback-Leibler dist., Hellinger dist., 

and Bhattacharyya dist., respectively). 

Fig. 4. Proportion of correctly classified pixels, left, and not 

correctly classified, right, with methods using stochastic 

distances by varying ENL. 

The metrics are not invariant to the size of the patch as 

illustrated in figure 5. As the patch size increases, the results 

decrease. It could be counterintuitive to have these results 

since the parameter estimates are more accurate as the 

number of pixels increases for a homogeneous area. But since 

the areas are not homogeneous, the probability that a patch 

analyzes a heterogeneous area, consisting of at least two 

targets with different characteristics, the proportion of false 

decision increases. Consequently, the choice of patch size is  

an important parameter to consider. A smaller patch size may 

result in less precise estimates of the parameters of the 

random law, while a larger patch size may lead to , 

interference between the nearby targets and an increase in 

computation time. 

As mentioned in the sensitivity test, the distances of 

Kullback-Leibler and Hellinger have close behaviors relative 

to the distance of Bhattacharyya. This behavior can be seen 

in figure 2, where the first two distances give close results 

whatever the test performed. This results in a significant 

difference between these distances when the patch size is 

small. Indeed, the number of pixels on which the parameters 

are estimated have a high variance and therefore can give rise 

to false alarms. These false alarms are present mainly for the 

more sensitive distances, but not present for the distance of 



Bhattacharyya which is less tolerant of a greater variation of 

the parameters of the complex Wishart law. 

Fig. 5. Proportion of correctly classified pixels, left, and not 

correctly classified, right, with methods using stochastic 

distances by varying patch size. 

However, when using the second metric (figures 6 and 7), 

we see that the advantage of using the more sensitive 

distances is that they locate better the small targets.  

Bhattacharyya distance does not detect changes in a small 

group of pixels. The general trend of this test shows that the 

larger the patch size, the smaller targets are not detected as 

having changed. In the case of close targets, the sensitive 

distances are even more likely to fail to distinguish between 

two targets. Their separating power is weaker than the 

distance of Kullback-Leibler. 

Fig. 6. Number of detected on the nine presents with the 

methods using the stochastic distances by varying ENL. 

 

Fig. 7. Number of detected on the nine presents with the 

methods using the stochastic distances by varying the patch 

size. 

C. Performance of the threshold 

The use of a thresholding by the 𝜒2
2 law allows to obtain 

better results. The reason is that the segmentation of the 

targets is better done. But, the Kullback-Leibler distance 

diverges for a large number of ENL. 

Thresholding by the 𝜒2
2 law also gives slightly better 

results on the number of targets detected. When the patch size 

varies, the results are generally similar than those with the 

Otsu method. When the number of ENL varies, the number 

of false alarms is however more important with the calculated 

statistic. This metric gives the equivalent result to the first one 

that the number of ENL varies little on the results whatever 

the distance. 

IV. DISCUSSION 

A. Toward a more complex stochastic distribution ? 

In the study conducted, only simulated data were used in 

the tests. In the presence of real data, we can expect a 

degradation of the results, without questioning the analysis 

made so far on the behavior of the methods used. On the other 

hand, it may be interesting to review the assumption that the 

covariance matrix follows a complex Wishart distribution. In 

order to take into account the field reality, factorizing of the 

scattering matrix 𝑆 into one term containing the speckle 𝜏 and 

the other the texture information of the target 𝑋 can be done 

[9]. 

𝑆 =  √𝜏 𝑋 (14) 

In particular, by using (14), N. Bouhlel et al. [9] use a 𝒢𝑑
0 

distribution. A comparison with the complex Wishart 

distribution is illustrated on the image of figure 8. On this 

example, two remarks can be made. On the one hand, the 

modeling by the law of 𝒢𝑑
0 detects the target of the middle 

contrary to the complex Wishart distribution. On the other 

hand, the number of false alarms is slightly lower for the first 

distribution. 

Fig 8 - Comparison of the complex Wishart and 𝓖𝒅
𝟎  

distributions as a model of the covariance matrix using a 

Kullback-Leibler distance. 

B. Post-treatment of false alarm 

In some cases, despite the lesser influence of speckle, the 

number of false alarms can be significant. Especially if there 

is no presence of these false alarms, there is a risk of not 

detecting small targets. This is why post-processing to 

remove these errors is to be favored. 

Very often, these false alarms are local, or even isolated, 

iso that. they do not form groups with many pixels, unlike the 

targets. A low pass filter is therefore used to remove these 



errors, like a median filter. We propose a more suitable 

approach using the theory of geostatistics. It consists of 

considering that a pixel has changed between two dates if 

some of its neighboring pixels have changed. A concentration 

of change calculation is used. The estimator  of concentration 

has been proposed by Getis et al. [16] . Such a method has 

been applied to images from a complex Wishart law and a 

law of 𝒢𝑑
0 with a large number of false alarms. The visual 

results are presented on figure 9. 

 

Fig. 9. Application of a filter to remove false alarms by the 

Getis and Franklin estimator. From top to bottom and from 

left to right, thresholding for a distance of 4 pixels (A), for a 

distance of 6 pixels (B), for a distance of 8 pixels (C), image 

without filtering (D). 

V. CONCLUSIONS 

The interest of using stochastic distances to detect 

changes in SAR images between two dates shows its interest 

in its ability to be little affected by speckle. The discussion 

should however focus on the parameters to be used for these 

statistical methods, in particular the choice of the random 

distribution to model the data, the size of the patch as the 

analysis window or the thresholding to be applied on the 

distances. In addition, in this study, only simulated data were 

used to evaluate and compare the methods when using 

multilook and polarimetric data. A similar study on real data 

is to be planned in order to confirm the results obtained. 
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