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In an ideal perfectly straight multimode fiber with a circular core, the symmetry ensures that rotating the
input wave front leads to a corresponding rotation of the output wave front. This invariant property, known
as the rotational memory effect (RME), remains independent of the typically unknown output profile. The
RME thus offers significant potential for imaging and telecommunication applications. However, in real-
life fibers, this effect is degraded by intrinsic imperfections and external perturbations, and is challenging to
observe because of its acute sensitivity to misalignments and aberrations in the optical setup. Building on a
previously established method for precisely estimating fiber transmission properties, we demonstrate an
accurate extraction of RME properties. Additionally, we introduce a comprehensive theoretical framework
for both qualitative and quantitative analysis, which specifically links the angular-dependent correlation of
the RME to the core deformation’s geometrical properties and the fiber’s mode characteristics. Our
theoretical predictions align well with experimental data and simulations for various amounts of fiber
distorsion. Finally, we demonstrate the ability to engineer wave fronts with significantly enhanced
correlation across all rotation angles. This work enables accurate characterization of distributed disorder
from the fabrication process and facilitates calibration-free imaging in multimode fibers.

DOI: 10.1103/PhysRevX.14.031046 Subject Areas: Optics, Photonics

I. INTRODUCTION

Optical fibers present a unique opportunity for mini-
mally invasive imaging deep within the human body. Most
flexible medical endoscopes utilize multicore fibers or fiber
bundles [1]. Comparatively, multimode fibers (MMFs)
offer orders of magnitude higher information density,
allowing, in theory, an increase in image resolution or a
decrease in the endoscope footprint [2]. However,
dispersion distorts the input image, a phenomenon that
is exacerbated by mode coupling introduced by defects or
deformations within the fiber. For this reason, image
reconstruction techniques through multimode fibers hinge
on estimating [3] or measuring the transmission matrix
(TM) [4–8], i.e., the relationship between the input and
output fields of the optical system. Unfortunately, this TM
approach is prone to real-time changes due to dynamic fiber

bending and temperature fluctuations [9], which prevent
the direct use of a previously calibrated system.
Similar challenges are encountered in utilizing MMFs

for telecommunications, where they hold the potential to
significantly boost data rates compared to their single-mode
counterparts. Through mode-division multiplexing, it is in
principle possible to utilize different fiber modes as
independent channels, effectively multiplying data rates
by the number of modes employed, without substantially
increasing cost or footprint. However, the occurrence of
mode coupling, even in fibers with a limited number of
modes, i.e., MMFs with fewer than 10 modes, currently
hinders their application in long-haul communications.
Enhancing fiber design necessitates a deep understanding
of the disorder-induced effects that lead to crosstalk,
including defects arising from the fiber drawing process.
Addressing these challenges remains difficult, and numeri-
cal models frequently used in fiber design often overlook
these crucial factors [10].
Various fabrication techniques are employed based on the

fiber type and manufacturer, including modified chemical
vapor deposition, vapor axial deposition, outside vapor
deposition, and plasma-activated chemical vapor deposition
(PCVD). One well-recognized challenge across these tech-
niques, attributed to their inherent limitations in precision,
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lies in achieving a highly accurate radial index profile,
particularly when dealing with sharp index changes.
Imperfections in the fiber lead to a mixing of the information
carried by the input field. This effect is analogous to the
randomization of information when attempting to recover an
image through a scattering medium [11,12]. To circumvent
the necessity ofmeasuring theTM,which implies an invasive
procedure, an elegant solution for imaging is to exploit the
invariant properties of the medium, specifically, the angular
memory effect [13,14]. For a given illumination, even though
the output random pattern remains unknown, the angular
memory effect facilitates the shifting of this output speckle
pattern in two directions with minimal to no deformation.
Tilting the input wave front then allows scanning the object
plane with the unknown pattern. Recording the reflected or
fluorescent signal provides sufficient information to recon-
struct the image of the hidden object [13].While the range of
such an effect is constrained, strategies have beenproposed to
recover images of objects beyond this limitation [15],making
the memory effect highly attractive for noninvasive imaging
applications.
Building on decades of research in scattering media,

recent interest has surged in the study of coherent
effects in disordered fibers [16,17]. Specifically, the TM
approach [18–21] and random matrix theory [22,23] have
emerged as particularly useful frameworks for these inves-
tigations. In particular, a close analogous effect to the
angular memory effect in scattering media is observed in
the special case of square-core fibers, where a translation of
the input wave front results in a corresponding translation
at the output [24], albeit with the noticeable presence of
artifacts, which can nonetheless be exploited to recover
images [25,26]. In more typical cylindrical-core fibers, a
similar phenomenon, known as the rotational memory
effect (RME), has been recently identified [27,28]. This
effect is characterized by the rotation of an input wave front
along the optical axis of the fiber leading to a corresponding
rotation of the output pattern, even though the latter is
unknown. In principle, this effect could be harnessed for
imaging through a multimode fiber for which the TM has
not been previously measured.
Nevertheless, since its initial observation, no prediction

or quantitative description of the RME has been presented.
Neither the angular range covered by the RME, nor its
dependence on disorder, nor its potential robustness and
modularity have been studied or elucidated. Furthermore,
the manifestation of an angular revival effect, leading to
secondary peaks in the correlation of the output pattern at
the rotation angle π, has been observed but also remains
unexplained. An important consideration is that the meas-
urement of the RME is complicated by its high sensitivity
to misalignments and aberrations in the optical system used
to inject light into the fiber [27]. However, these adverse
effects can be understood and compensated using a
framework that some of us have introduced in Ref. [29].

The procedure involves learning the input and output aberra-
tions by optimizing a model-based numerical model. This
approach enables the retrieval of an accurate TM of the sys-
tem, evenwhen using imperfect measurements. Additionally,
it provides the transformation needed to physically compen-
sate for the input aberrations, which can be directly imple-
mented using a spatial light modulator (SLM). The numerical
compensation for aberrations is a crucial step, as it enables
precise observation of the RME, which would otherwise be
rapidly obscured by aberration effects.
In the present article, we first experimentally extract the

RME properties with high accuracy building on a pre-
viously introduced method for precisely estimating the
transmission matrix of MMFs in the presence of aberrations
and misalignments [29]. We then introduce a theoretical
framework based on precise disorder modeling, which
yields analytical predictions for the shape of the RME
correlation function, supported by numerical simulations of
the microscopic wave equation in MMFs. Specifically, this
framework properly predicts the angular range of the RME
as a function of disorder and elucidates the origin of
secondary peaks in the correlation function. These are
attributed to the subtle interplay between mode symmetry
and disturbance symmetry. The theory and simulations
faithfully reproduce our experimental results obtained on
various commercial MMFs. Finally, based on this analysis,
we propose a method to identify input wave fronts that are
only weakly sensitive to the symmetry breaking introduced
by perturbations, hereby facilitating the exploitation of the
RME for calibration-free imaging applications.

II. MEASURING THE RME

A memory effect is defined in relation to a field trans-
formation. A perfect memory effect exists when the
application of this transformation before or after propaga-
tion through a given optical system produces the same
effect. For RME to occur, the rotation operatorRðθÞ, with θ
the angle of rotation, must commute with the optical
system’s transmission matrix T of the fiber [28]. In this
study, we consider only one polarization of the field. The
matrix T therefore links the input field in a specific circular
polarization channel to the output field in the same
polarization channel.

A. Experimental setup and measurement procedure

In principle, the measurement of the memory effect is
straightforward, as it simply requires rotating the input
wave front and measuring the corresponding output pattern.
However, any factor that disrupts the rotational symmetry
of the system leads to a degradation of the measurement. In
particular, minute misalignments relative to the fiber axis
and aberrations can alter the observed results [3,27]. This
complicates quantitative characterization by making it
impossible to separate the effects of fiber defects from
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those introduced by the optical setup used for measure-
ment. To address this issue, we use the approach we
previously introduced in Ref. [29], which allows us to
numerically estimate the detrimental effects of optical and
experimental imperfections. We then experimentally com-
pensate for these effects by correcting the input wave front
impinging on the fiber. This not only ensures accurate,
interpretable measurements, but also significantly reduces
the time needed to change the sample and carry out the
measurement, in just a few minutes.
We first measure the TM of a 24.5-cm segment of a

straight 50-μm core graded-index fiber (BendBright
OM4 [30]). The choice of fiber studied is guided by the
fact that graded-index fibers are the standard for MMFs in
telecommunications and are appealing for endoscopic
imaging applications due to their relative robustness to
bending [31]. Utilizing a fast digital micromirror modulator
and an InGaAs camera, we follow the procedure detailed in
Ref. [29], which enables us to identify and compensate
for aberrations and misalignments. It also allows us to

accurately generate the input masks on the modulator that
correspond to rotating the field with respect to the optical
axis in the input facet plane of the fiber. The principle of the
experiment is depicted in Fig. 1 and is further detailed in
Appendix A 1.

B. Measurement of the RME

To illustrate the effect of the RME, we first observe its
impact on a focusing operation. We compute the mask that
focuses light at a specific position in the output facet of the
fiber using the TM [32,33]. It is noteworthy that the
knowledge of the TM is not necessary for this step, nor
for any of our measurements, as focusing can be achieved
through methods like sequential optimization [34,35] or
phase conjugation [6]. We then rotate the input wave front.
We show in Fig. 2(a) the sum of the resulting output
amplitude patterns for 10 values of the rotation angle. We
can see that rotating the input masks allows the focusing
spot to be rotated along the optical axis of the fiber, with
limited degradation of focusing quality.
To further characterize the RME, we seek to quantify the

similarity between a transmitted field jψi ¼ Tjψ ini for
a normalized input field jψ ini and the output field
jψθi ¼ Tθjψ ini, where Tθ ¼ Rð−θÞTRðθÞ. The second
field corresponds to a rotation of the input and output
profiles by an angle of θ and −θ, respectively. We define a
correlation function for this purpose as

CðθÞ ¼ jhψ jψθijffiffiffiffiffiffiffiffiffiffiffiffihψ jψip ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihψθjψθi
p : ð1Þ

In practice, we send a set of 100 random input wave
fronts, rotate them in the plane of the input facet, and
measure the output field. We then compute the average
correlation function hCðθÞi. Figure 2(b) shows the exper-
imentally measured hCðθÞi for the unperturbed fiber (solid

(a) (b)

FIG. 2. Experimental measurement of the RME. (a) Rotation of a focal spot. Light is focused at a given output position and the input
phase mask is rotated along the axis of the fiber for 10 values of the rotation angle θ. We sum all the resulting output amplitude patterns
to reveal conservation of the focal spot, albeit with a variation in intensity, the latter being maximal for angle θ ¼ 0 and θ ¼ π.
(b) Experimental measurement of the RME angular correlation Eq. (1) as a function of the level of perturbation Δx. The bright red curve
shows results for the unperturbed fiber (Δx ¼ 0 μm). The red to brown curves correspond to progressively increased disturbances,
obtained by applying a local deformation using a translation stage. Results are obtained by averaging over 100 random inputs. Shaded
areas correspond to the error estimated by the standard deviation of the experimental data.

FIG. 1. The rotational memory effect in MMF.When the fiber is
illuminated by a coherent wave front jψ ini, a seemingly random
transmitted fieldTjψ ini is observed at the output. In an idealMMF
with cylindrical symmetry, rotating the input wave front by an
angle θ (i.e., sending RðθÞjψ ini) and measuring the transmitted
fieldTRðθÞjψ ini is equivalent to rotating the output field resulting
from the propagation of jψ ini and measuringRðθÞTjψ ini. A local
perturbation is then added bymoving a tip in contact with the fiber
over a distance Δx transverse to the fiber axis.
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red line). A first observation is that the correlation deviates
from 1 and that the rotated focal spot is degraded within the
2π range. This indicates the presence of imperfections in
the fiber that break the cylindrical symmetry of the system.
We emphasize that the TM measurement is not used to
characterize the memory effect; only knowledge of input
aberration and misalignment effects is exploited to accu-
rately rotate the input field. Although the results shown
here correspond to field correlations, we demonstrate in
Appendix A 2 that very similar results are obtained for
intensity correlation measurements. The latter can be
expressed as CIðθÞ ≃ CðθÞ2. As a result, the behavior of
the angular correlation shown in Fig. 2(b) is qualitatively
analogous to the result reported in Ref. [27], where the
intensity RME correlation was measured. Furthermore, we
show in Appendix A 3 that when the TM is known, the
RME correlation can be accurately computed without the
need for additional measurements.
To qualitatively observe the effect of perturbations on the

RME, we gradually apply a controlled deformation to the
fiber along an axis orthogonal to the propagation direction.
The fiber is maintained on a V groove and we press locally
on the fiber from the top with a spherical metallic tip using
a motorized translation stage. The correlation hCðθÞi as a
function of the rotation angle θ is presented in Fig. 2(b), for
different values of the displacement Δx of the tip (red to
brown curves).
We first observe that, even without applying a local

perturbation to the fiber, the correlation decreases to
approximately 60%. When the fiber is held straight, this
effect can be attributed to the presence of defects in the
fiber. This correlation curve exhibits a second maximum,
close to 95%, at θ ¼ π, along with small local maxima at
θ ¼ π � π=2. These features are indicative of the geomet-
rical defects within the fiber. Upon applying the deforma-
tion, we observe that the correlation as a function of θ
decreases globally, and the local maxima vanishes.

III. MODELING THE RME FOR DEFECT
CHARACTERIZATION

The design and manufacture of few-mode and multi-
mode fibers with minimal mode coupling for mode division
multiplexing in telecommunications pose significant
challenges [36]. Achieving industry-compatible levels of
crosstalk remains an elusive goal, even for fibers with a low
mode count (<10 modes). The application of mode-
coupling theory to specific types of disorder enables the
prediction of certain adverse effects on telecommunica-
tions, such as mode-dependent losses and power mode
coupling [37,38]. However, the precise characterization of
perturbations in a given fiber is difficult to achieve. The
common approach is to assume coupling solely between
pairs of neighboring modes. Thus, with the goal to
minimize mode-coupling-induced crosstalk, fiber manu-
facturers focus on solely optimizing the difference in

effective refractive index among the fiber modes [39,40].
By overlooking the interplay between the symmetries of the
modes and the perturbations, this method reveals its
limitations when attempting to achieve low levels of
crosstalk [10], thus restricting the performance of current
systems. An accurate disorder model with easily estimable
parameters would be a crucial asset for designing multi-
mode fibers with low mode coupling in the telecommuni-
cations industry.
The acute observed sensitivity of the RME to geomet-

rical deformations, along with its dependence on the fiber’s
symmetry, indicates that one can derive information about
the distributed disorder within MMFs. In this section, we
present a theoretical model whose predictions are compared
with experimental observations. This model proves capable
of predicting all RME behaviors in the presence of the
disturbances just described.

A. Model of disorder

In an ideal MMF, due to the axisymmetry of the system,
perfect RME should be expected; i.e., the rotation of a
given input wave front should result in a corresponding
rotation of the output wave front. This corresponds to
CðθÞ ¼ 1 for all θ. However, real fibers are rarely perfect,
as demonstrated by the result shown in Fig. 2, resulting in
mode coupling that is mainly influenced by the geometrical
defects of the fibers [41]. Two main contributions can be
identified: large radius bends, attributable to the geomet-
rical conformation of the fiber, and minor distortions at
the core-cladding interface, primarily due to fabrication
inaccuracies [42–44].
We propose to model fiber disturbances by a deviation of

the refractive index profile from a perfect axisymmetric
function of the following form:

δnðr;ϕ; zÞ ¼ gðz; rÞ
X
q

Γq cosðqϕþ φqÞ; ð2Þ

where z, r, and ϕ are the cylindrical coordinates corre-
sponding, respectively, to the longitudinal (axis of the
fiber), radial, and azimuthal directions. The longitudinal
variations of gðz; rÞ are characterized by random fluctua-
tions with a correlation length lz, which is typically of the
order of 100 μm [44], while radial variations of gðz; rÞ are
discussed in detail in below. On the other hand, disorder in
the azimuthal direction is decomposed into harmonics with
orbital momentum q and weight Γq [23].
We attribute the radial fluctuations to variations between

neighboring radial layers, stemming from inaccuracies in
the deposition technique or interlayer diffusion of the
doping elements. Specifically, in the case of the fiber
under investigation, these inaccuracies are associated
with the PCVD process. This leads us to approximate
the fiber of length L by a succession of Nz ¼ L=lz
segments, each of length lz, in which the perturbation
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term δn is invariant along z. Specifically, for the pth
segment in the interval z∈ ½plz; ðpþ 1Þlz�, we write
δnpðr;ϕÞ ¼ gpðrÞ

P
q Γq cosðqϕþ φqÞ. We model gpðrÞ

as a Gaussian random variable with zero mean,
characterized by a standard deviation σgðrÞ ¼
dlayerjdn0ðrÞ=drj [45], where n0ðrÞ is the radial profile
of the unperturbed fiber, and dlayer ≃ 10 nm is the typical
thickness of each layer formed in the PCVD process [46].
For a gradient index fiber with a parabolic index profile (see
Appendix B and Ref. [47]), the standard deviation can be
put in the form

σgðrÞ ≃
r
a2

NA2

nmax
dlayerHðr=aÞ; ð3Þ

where NA and a are, respectively, the numerical aperture
and radius of the MMF, nmax is the value of refractive index
n0ðrÞ at the center of the core, and H is the Heaviside
function.
As detailed in Appendix B, the TM of the pth segment of

length lz expressed in the unperturbed fiber mode basis can
be written as

Tp ¼ e−iðH0þVÞlz : ð4Þ

Here, H0 is the propagation operator in the absence of
perturbation; it is a diagonal matrix containing the propa-
gation constants βμ of the modes of the unperturbed fiber,
indexed by μ. On the other hand, V represents the
perturbation due to the index fluctuations, δnpðr;ϕÞ,
projected onto the mode basis (see Appendix B for further
details). The complete TM is obtained by multiplying the
TMs of all the segments.

B. Theoretical predictions for hCðθÞi
In the limit of moderate disorder, we are able to find an

analytical expression of the mean correlation function
hCðθÞi, which involves the geometrical parameters of the
fiber as well as the disorder strength. In Appendix C, we
show that it can be put in the form hCðθÞi ¼ C̃ðθÞ=C̃ð0Þ,
with

C̃ðθÞ ¼ 1þ A
X
q;ν;μ

Γ2
q cosðqθÞBq

νμ: ð5Þ

The prefactor A ¼ NzðklzÞ2=4Nmodes is a coefficient that
combines properties of the radial disorder with the number
of propagating modes supported by the fiber. In addition,
the coefficient Bq

νμ characterizes the energy coupling
between eigenstates ψν and ψμ of the unperturbed propa-
gation operator H0. It is expressed as

Bq
νμ ¼ δmμν;qsinc

�
βμ − βν

2
lz

�
2

Iνμ; ð6Þ

where mμν ¼ jmμ −mνj is the difference between orbital
angular momentum of the eigenstates coupled by the
azimuthal disorder, and

Iνμ ¼ dlayer

Z
∞

0

drjψνðrÞj2jψμðrÞj2σ2gðrÞr2 ð7Þ

is the coupling term induced by disorder along the radial
direction.
The expression (5) is a perturbative result, valid when

photons scatter on average once over the disordered
potential V. As the extent of disorder increases, it becomes
necessary to take higher-order perturbations into account.
This means taking into account multiple interactions
between photons and disorder. For all the results presented
in this work, the single scattering contribution Eq. (5) is
dominant, but we have also calculated the second-order
perturbation contribution to obtain quantitative agreement
with experimental results and simulations. The second-
order contribution takes the following form:

C̃ð2ÞðθÞ ¼ Ã
X
q;q0
ν;κ;μ

Γ2
qΓ2

q0 cos½ðqþ q0Þθ�Cqq0
νκμ; ð8Þ

where Ã ¼ NzðklzÞ4=16Nmodes. Energy coupling is pro-
vided by the term

Cqq0
νκμ ¼ Nz − 1

2
Bq
νκB

q0
κμ þ δmμκ ;qδmκν;q0QμκνIνκIκμ; ð9Þ

where the explicit but lengthy expression of the coefficient
Qμκν in terms of the propagation constants βμ, βκ, and βν is
given in Appendix C.

C. Validation of the model of disorder and theory

To validate the model of disorder as well our theoretical
predictions based on Eqs. (5) and (8), we first find the
values of the coefficients Γq that match best the exper-
imental profile of the mean correlation function hCðθÞi. For
the graded-index fibers used in our experiments, we find
that it is sufficient to use only four nonzero coefficients
corresponding to q∈ ½1; 2; 3; 4�. The experimental results
shown in Fig. 3 (blue solid lines) are virtually indistin-
guishable from the analytical curves (black solid lines).
To assess the physical relevance of these coefficients, we
then perform simulations using the same values of Γq,
without adding any fitting parameter. The simulation
consists in dividing the fiber into segments of length lz.
For each segment, we add to the index profile matching the
specifications of the fiber a perturbation of the form given
by Eq. (2). We then estimate its TM using a custom fiber
solver [48]. Finally, the complete TM of the fiber is
obtained by multiplying the TMs of all segments, each
segment corresponding to a different realization of the radial
disorder (see Appendix B for more details). We calculate
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the RME correlation as a function of angle and average
over 20 realizations of the fiber. The results, presented in
Fig. 3, show good agreement between simulations and
theory, with no adjustment parameters required.

D. Discussion and interpretation

The different values of the angular momenta q of the
deformation have different origins and impacts on the
RME. Global radial index variations, corresponding to
q ¼ 0, alter the shape of the modes but do not break the
axisymmetry of the system. In this case, their effect can
simply be equated to a change in the length of the fiber up
to first order [31] that impacts only the relative phase
between the modes. The TM remains diagonal in the mode
basis and commutes with the rotation operatorRðθÞ for any
angle θ. As a result, the q ¼ 0 component does not impact
the RME.
In the absence of external perturbation (Δx ¼ 0), thanks to

prior compensation for aberrations, the deviation of the
correlation curve from a perfect RME (CðθÞ ¼ 1) is due
to intrinsic fiber defects caused by the fabrication process,
which give rise to nonzero Γq, for q > 0. In this regime, we
find that the correlation function is dominated by the
contributions of even values of q. The contribution q ¼ 2

is responsible for the valleys found at θ ¼ π � π=2, and the
contribution q ¼ 4 for the valleys observed at θ ¼ π=2�
π=4 and θ ¼ 3π=2� π=4. Even contributions have no
impact on the value of the correlation at θ ¼ π, simply
because they correspond to π-symmetric deformations (see
inset of Fig. 4). Consequently, the slight decrease in
correlation at θ ¼ π is entirely controlled by the odd
deformations.
Although all Γq terms are of the same order of magnitude,

we observe that the effect of odd contributions,which couple
modes of different parity to the orbital angular momentum,
is much less pronounced than even contributions, which
couple modes of the same parity. This is explained by the
modal properties of the fiber. Indeed, in ideal graded-index
fibers, modes in quasidegenerate groups, i.e., with similar
propagation constantsβμ, have the sameparity of the angular
orbital momentum. This property is inherited from the
modes of the two-dimensional isotropic harmonic oscillator
which represents the idealized parabolic graded-index fiber
with no boundary [49–52]. Consequently, for pairs ofmodes
forwhichmμν is odd, the difference of propagation constants
βμ − βν is non-negligible, leading to weak contributions of
Bq
νμ appearing in Eq. (5). This effect has the same origin as

the observation that disorder preferentially induces coupling
between degenerate modes [29].
The previous analysis fully explains the robustness of the

correlation observed at θ ¼ π for small deformations. We
note that this correlation revival can equivalently be
interpreted in terms of commutation between the matrix
T and the rotation matrixRðθÞ. At small deformations, T is
block diagonal, with blocks corresponding to quasidegen-
erate modes. Since, within each block, the different angular
momenta mμ share the same parity (corresponding to
constant values of jmμj þ 2pμ, where pμ is the radial
index [38]), the expression of RðθÞ restricted to each
block necessarily satisfies Rðθ ¼ πÞ ¼ �1, where 1 is the
identity matrix. As a result Rðθ ¼ πÞ and T commute,
regardless of the coupling complexity within each group
of modes.

FIG. 3. Comparison between experiment, simulations, and
theory. Mean angular correlation function of the RME, as defined
in Eq. (1), for various levels of deformation. The fiber used is a
typical graded-index fiber (Prysmian BendBright OM4 [30]),
with radius a ¼ 50 μm, NA ¼ 0.2, and Nmodes ¼ 55. The corre-
lation length in the model and simulations is set at lz ¼ 100 μm.
Experimental data (blue lines) are compared with theoretical
predictions based on Eqs. (5) and (8) (black lines, and simulation
results for wave propagation inside disordered MMFs (red lines).
The parameters Γq of the model are found by fitting to the
experimental results, and simulations are obtained with the same
parameters. Error bars represent the standard deviation computed
over 100 random input wave fronts for the simulations and
experiments, as well as 20 disorder realizations for the simu-
lations.

FIG. 4. Influence of deformation on the perturbation contribu-
tions. Values of the normalized deformation parameters Γ̃q ¼
klzσgðr ¼ aÞΓq. The values of Γq are found by fitting the
theoretical model [Eqs. (5) and (8)] to the experimental data
as a function of the deformation. Inset: symmetry corresponding
to the perturbation associated with each value of q.
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When the external mechanical deformation is intro-
duced, we find that the value of Γ1, corresponding to a
flattening of the fiber, gradually increases (see Fig. 4). This
means that modes of different propagation constant become
more and more coupled, and that the TM progressively
loses its block-diagonal structure in the mode basis. This
explains the disappearance of the dominant revival effect at
θ ¼ π, as well as the loss of the local maxima at θ ¼ π=2
and θ ¼ 3π=2. As Δx is further increased, we also observe
that higher harmonics start to play a role (see Γ3 in Fig. 4),
and the width of the correlation function hCðθÞi starts to
decrease. This indicates that the width of the correlation
function at large deformation depends on the disorder
strength and is intimately connected to the loss of the
block-diagonal structure of the TM.
In Appendix D, we present measurements of hCðθÞi

obtained for various graded-index fibers, which exhibit
advertised properties similar to those of the fiber used in
Figs. 3 and 4. Although we obtain qualitatively similar
results, we do find some quantitative reproducible
differences, expressed in terms of different values for the
Γq weights. This demonstrates that RME is a very good
indicator for probing the small variations in disturbances
that occur during the MMF manufacturing process.
The possibility to characterize the distributed perturba-

tion along a fiber using intensity measurements from the
input and output facets represents important prospects for
telecommunication applications. Indeed, once the param-
eters of the perturbations (lz, Γq) are found from a fit of the
measured RME correlation, one has access to a more
accurate model of the fiber. This model can then be
exploited through simulations or mode-coupling theory
computations to predict the crosstalk and losses given the
estimated index profile. This can be used for improving the
design and the characterization of new optical fibers with
desired properties.

IV. IMPROVING THE RME
FOR IMAGING PROSPECTS

The potential application of the RME extends to the
possibility of facilitating blind imaging through an unknown
MMF, in a manner similar to demonstrations in scattering
media [13,14]. For successful image reconstruction, it is
essential to collect information from the output facet, which
necessitates maintaining a high RME correlation throughout
the entire 2π range. As shown in the previous section, the
memory effect is affected by the presence of disorder
stemming from the fabrication process.Notably, this disorder
degrades the RME correlation, particularly reducing the
range over which the correlation remains close to 1.
However, this correlation was obtained by averaging over
random input wave fronts.We now ask whether it is possible
to find specific input wave fronts for which the correlation is
significantly higher than the mean value for one given angle
or for a wide range of angles. As with the approaches to

tailoring the angular memory effect in scattering media [53],
we can build operators whose eigenstates optimize the
memory effect at a given angle. Since losses are low in
the fiber, TM is close to unitary and the lower part of Eq. (1) is
approximately constant. Then, an interesting operator is the
one involved in the upper part of the correlation function:

OðθtÞ ¼ T†RðθtÞ†TRðθtÞ: ð10Þ

This operator can thus be used to improve the RME for a
specific value θt of θ, as shown in Appendix E 1. In order to
improve the correlation over the entire 2π range, we can
also study the operator built using the sum of operators
describing the correlation at different angles:

Osum ¼
X
t

T†RðθtÞ†TRðθtÞ: ð11Þ

To optimize the RME correlation, we construct this
operator using the experimentally measured TMs with
θt ¼ tπ=4, where t∈ ½0; 7�. We then compute the singular
vectors of this operator corresponding to the singular values
with the largest modulus. We present in Fig. 5 the resulting
correlation CðθÞ for the two first eigenvectors in the case of
no deformation and strong deformations (Δx ¼ 60 μm)
and the corresponding output field profiles. Our results
demonstrate that it is possible to find input wave fronts for
which the output profiles remain highly correlated across
the entire 2π range.
Compared to previous works that aim to enhance the

robustness of an input channel against the level of disorder
using a Wigner-Smith operator [29], our approach does not
depend on differentiating the TM, allowing us to study a

FIG. 5. Tailoring the rotational memory effect. The angular
correlation function CðθÞ is constructed using experimentally
measured input channels with improved RME range, for two
values of the deformation (Δx ¼ 0 μm and Δx ¼ 60 μm). The
results for the first two singular vectors of the operator defined in
Eq. (11) are compared with the average results for random input
profiles (dashed line). Insets: output spatial transverse profiles of
the corresponding singular vectors.
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fixed realization of disorder. Furthermore, the projection of
this operator onto a given input wave front directly
represents the targeted quantity, i.e., the correlation of
the RME for this specific wave front.
An interesting application of memory effects is the

ability to retrieve information from the distal side, where
the field for a given input wave front is a priori unknown.
For imaging applications, the range of the memory effect
must be wide enough to cover the size of the object to be
imaged, and the output excitation must have a pronounced
peak autocorrelation function [13]. Indeed, even if the
precise shape of the output pattern is unknown, approxi-
mating its autocorrelation by a Dirac function in space
allows for accessing the autocorrelation of the hidden
object. With this information, the image of the object
can then be estimated using a numerical process.
This condition is guaranteed in multiple scattering media

by the presence of strong disorder that randomizes the field
for any given input wave front. However, this is not the case
in MMFs, where the disorder does not affect all modes in
the same way [33]. A trivial solution for maximizing the
RME range would be to use the fundamental mode, which
is less affected by external perturbations [29]. But, due to
its rotational symmetry, the autocorrelation of this mode
with respect to angular rotation is close to one. So, even
though the field profile remains correlated at the fiber’s
output when the input profile is rotated, this mode cannot
be used to provide information about the distal end of the
fiber. As shown in Fig. 5, the first singular vector of the
operator Eq. (11) is very close to the fundamental mode for
any Δx and is therefore not useful for imaging. However,
the second combines the properties of a large-range RME
and an output pattern with a peaked autocorrelation
function (see Appendix E 2 for details). It is therefore a
good candidate for recovering information about the fiber
distal end.

V. CONCLUSION

In this article, we first perform precise measurements of
the RME properties in MMFs. Accurate estimation of mode
propagation properties is essential, as the RME is extremely
sensitive to the effects of aberrations and misalignments. We
then propose a model of disorder and provide a theoretical
calculation of the RME correlation function, which is shown
to be in good agreement with both experimental data and
realistic wave propagation simulations. In particular, our
analysis makes it possible to estimate geometric perturba-
tions in the fiber, whether due to fabrication imperfections or
mechanical deformations. From a fundamental perspective,
this approach can serve as a powerful tool for the study of
MMF defects resulting from the breaking of fiber symmetry.
Moreover, the unknown parameters of the disorder along the
azimuthal and longitudinal directions can be determined
through simple input-output measurements. This provides
promising opportunities for designing and characterizing

fibers for telecommunications applications, aiming to reduce
modal crosstalk that currently restricts their practical utility.
Finally, we tackle the issue of the robustness of the RME

with respect to the rotation angle for a given disorder. This
is an important issue for the prospect of harnessing the
RME for imaging applications. We demonstrate the pos-
sibility of generating channels that exhibit a drastic
improvement in the RME. In particular, we can create
channels that are more robust to deformations compared to
random inputs or standard fiber modes, and that also exhibit
a random profile with high spatial frequencies.

Raw and processed data, sources to regenerate all the
figures, and sample codes for the treatment preprocessing and
postprocessing are available in the dedicated repository [54].
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APPENDIX A: TM AND RME MEASUREMENTS

1. Aberration compensation and TM measurement

To decouple the effects of the RME and measurement
inaccuracies, we use the approach we developed to learn
and compensate for aberrations and misalignments in
Ref. [29]. The idea is to first measure the TM on a pixel
basis and then project it onto the mode basis. Without
aberrations, this projection into the mode basis should
conserve energy, since all the energy must be conveyed by
those modes. Using a model-based algorithm, constructed
with the deep-learning framework PyTorch [55], we identify
the aberrations and misalignments of the system that
minimize the loss when projecting onto the mode basis.
First, this process enables us to accurately recover the TM
in the mode basis, which contains all the information about
light propagation in the MMF. Second, it facilitates the
identification of the aberrations that need to be corrected in
order to obtain a desired pattern in the input facet plane of
the fiber. The correction can then be implemented onto the
SLM [56,57].

2. Intensity versus field correlation

In the main text, we studied the RME using the field
correlation function Eq. (1). Another way to characterize
the RME amounts to estimating the correlation between the
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output intensity patterns associated to the fields ψðrÞ and
ψθðrÞ involved in Eq. (1) [27]. It corresponds the output
intensity pattern IðrÞ ¼ jψðrÞj2 for a given input, and the
intensity IθðrÞ ¼ jψθðrÞj2 obtained when rotating the input
and output profiles by an angle θ. The intensity correlation
reads

CIðθÞ ¼
R
drIðrÞIθðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

drIðrÞ2 R drIθðrÞ2
q : ðA1Þ

Such correlation function was originally used in
Ref. [27]. To estimate it, we use the same procedure and
apparatus as the ones discussed in Sec. II B, where
intensities can be evaluated from the field measurements.
We then compare the mean field correlation Eq. (1) with the
square root of the mean intensity correlation Eq. (A1). As
illustrated in Fig. 6, the mean values of the two correlation
functions are in excellent agreement. This demonstrates
that the observables hCðθÞi and hCIðθÞi are equivalent.

3. Estimation of the correlation using the measured TM

In the present study, we use the compensation of
aberrations, facilitated by the transmission matrix meas-
urement, but we do not directly employ the knowledge of
the TM itself. However, the TM provides access to the
output field jψouti for any given input field jψ ini. We can
thus use the TM to estimate the output of a rotated wave
front and compute the correlation function defined in
Eq. (1). For each deformation, we compute the mean
correlation for 100 random input wave fronts. We show
in Fig. 7 a good agreement between the estimation based on

the TM and the one based on the explicit measurement of
the output field. This demonstrates that the measurement
of the TM can drastically reduce the time needed for
characterizing the RME, as it does not require any addi-
tional measurement. In comparison, the explicit measure-
ments presented in the main text necessitate, after the initial
calibration, to average over 100 random input wave fronts
for 50 different angles.

APPENDIX B: EFFECTIVE HAMILTONIAN
AND TRANSMISSION MATRIX

In the situation where the coupling between different
polarization channels can be neglected, and in the weakly
guiding approximation [47] (i.e., for variations of the index
of refraction small compared to the average index value),
each polarization of the transverse part of the field at
frequency ω satisfies the scalar wave equation,

½∇2⊥ þ ∂
2
z þ k2nðr; zÞ2�ψðr; zÞ ¼ 0; ðB1Þ

where k ¼ ω=c and r ¼ ðr;ϕÞ labels the position in the
transverse plane. The refractive index is further decom-
posed into an unperturbed axisymmetric component n0 and
a perturbation δn ≪ n0,

nðr; zÞ ¼ n0ðrÞ þ δnðr; zÞ: ðB2Þ

To identify the effective Hamiltonian that controls the
dynamics in the presence of disorder, it is convenient to
rewrite the wave equation in the operator form,

∂
2
z jψðzÞi ¼ −ĤðzÞ2jψðzÞi; ðB3Þ

FIG. 6. Comparison between the field and the intensity corre-
lations as a function of the rotation angle θ. For different values of
the deformation Δx, we show the field correlation as defined in
Eq. (1) (blue curve) and the correlation obtained using the TM
(red curve). Error bars represent the standard deviation computed
over 100 random input wave fronts.

FIG. 7. Comparison between the correlation CðθÞ based on the
measurement of the output fields and the one estimated using the
TM. For different values of the deformationΔx, we show the field
correlation as defined in Eq. (1) (blue curve) and the one obtained
using the TM (red curve). Error bars represent the standard
deviation computed over 100 random input wave fronts.
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where

ĤðzÞ ¼ ½∇̂2⊥ þ k2n̂ðr; zÞ2�1=2
≃ ½Ĥ2

0 þ 2k2n̂0ðrÞδn̂ðr; zÞ�1=2
≃ Ĥ0 þ k2Ĥ−1

0 n̂0ðrÞδn̂ðr; zÞ: ðB4Þ

The Hamitonian of the unperturbed problem reads Ĥ0 ¼
½∇̂2⊥ þ k2n̂0ðrÞ2�1=2. Since in a realistic MMF the relative
variations of n0ðrÞ in the radial direction are small, the
eigenvalues βμ of Ĥ0 are close to kn0, where n0 is the
typical refractive index of the core. Therefore, a good
approximation of Ĥ is

ĤðzÞ ≃ Ĥ0 þ kδn̂ðr; zÞ: ðB5Þ

In the present work, back reflections can be neglected,
and Eq. (B3) is equivalent to

∂zjψðzÞi ¼ −iĤðzÞjψðzÞi: ðB6Þ

This shows that the field transmitted through the fiber of
length L can be expressed in terms of a unitary transmission
matrix T as jψðLÞi ¼ Tjψð0Þi. The matrix T reads

T ¼ T e−i
R

L

0
dz0Ĥðz0Þ; ðB7Þ

where T is the time-ordering operator (z plays the role of
time here). In the following, we model the disorder along
the propagation direction z as a succession of Nz ¼ L=lz
independent segments of length lz, where the refractive
index depends only on the transverse coordinate r. In that
case, the transmission matrix takes the form

T ¼
YNz

p¼1

TðpÞ; ðB8Þ

with

TðpÞ ¼ e−i½Ĥ0þkδn̂pðrÞ�lz : ðB9Þ

The index fluctuations of each sector p are expressed as
the product of a random function along the radial direction
and a random function decomposed on the azimuthal
harmonics:

δnpðr;ϕÞ ¼ gpðrÞ
X
q

Γq cosðqϕþ φqÞ: ðB10Þ

Here, gpðrÞ is a Gaussian random variable with zero mean
and variance hgpðrÞgpðr0Þi ¼ σgðrÞ2dlayerδðr − r0Þ, where
dlayer is the thickness of each layer obtained in the chemical
vapor deposition process. In addition, the phases φq are

random independent variables with uniform distribution,
added to mitigate the effect of the orientation of the
perturbation.
In this work, we focus on the properties of graded-index

fibers, where the refractive index n0ðrÞ takes the form

n0ðrÞ2 ¼ n2max

�
1 − 2Δ

r2

a2

�
ðB11Þ

in the core of the fiber of radius a. Here Δ ¼
ðnmax − nclÞ=nmax, where ncl is the refractive index in the
cladding, i.e., for r > a. In the weakly guiding approxi-
mation (NA ≪ 1), Δ ≃ NA2=2n2max and the refractive
index profile in the core is well approximated by a
parabolic function, n0ðrÞ ≃ nmaxð1 − Δr2=a2Þ. This yields
the explicit expression (3) for the amplitude of the radial
disorder σgðrÞ.
The expressions (B8), (B9), and (B10) are used both in

the theoretical treatment developed in Appendix A 2 and
in the numerical simulations. For simulation purposes, the
modes profiles ψμ and propagation constants βμ of the
unperturbed fiber (which are the eigenstates and eigenval-
ues of Ĥ0) are computed using the pyMMF package [29,48].
The Hamiltonian Eq. (B5) and transmission matrix
Eq. (B9) of each sector p is then computed in the basis
fψμg. Finally, the total TM is found by multiplying
the TMs of all the segments, as in Eq. (B8). Details of
the simulations, performed in Python, are available in the
dedicated repository [54].

APPENDIX C: ANALYTICAL PREDICTIONS
FOR THE RME

In this appendix, we evaluate the mean correlator
hCðθÞi ¼ C̃ðθÞ=C̃ð0Þ, where

C̃ðθÞ ¼ hψ jψθi ¼ hψ injT†Tθjψ ini; ðC1Þ

and � � � ¼ h� � �i stands for the average over different
configurations of the disorder. We first decompose the
input field in the mode basis fψμg of the unperturbed
Hamiltonian Ĥ0,

jψ ini ¼
XN
μ¼1

cμjψμi; ðC2Þ

where
P

N
μ¼1 jcμj2 ¼ 1. In the following, we write the

unperturbed eigenmodes in the form

ψμðr;ϕÞ ¼
1ffiffiffiffiffiffi
2π

p φμðrÞeimμϕ; ðC3Þ

so that the normalization condition hψμjψμi ¼ 1 reads
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Z
∞

0

drrjφμðrÞj2 ¼ 1: ðC4Þ

In addition, we consider random input wave fronts, uni-
formly distributed over the Nmodes modes of the MMF.
Using hcμcμ0 i ¼ δμ;μ0=Nmodes, we express the correlator
Eq. (C1) as

C̃ðθÞ ¼ 1

Nmodes

X
ν;μ

e−iðmν−mμÞθhjTνμj2i: ðC5Þ

We then use the decomposition Eq. (B8), where TMs
TðpÞ are independent of each other, and satisfy hTðpÞi ¼ 0.
This gives

hjTνμj2i ¼
�YNz

p¼1

hTðpÞ ⊗ TðpÞ†i
�

νμ

: ðC6Þ

In the case of weak disorder (NzðklzÞ2hδn2i≲ 1), we can
evaluate the previous correlator using a perturbative
expansion of each matrix TðpÞ. To obtain an explicit form
of the latter, it is more convenient to work with the
interaction representation TIðzÞ ¼ eiĤ0zTðzÞ than directly
using the expansion of Eq. (B9). As the matrix TIðzÞ obeys
the equation ∂zTIðzÞ ¼ −iV̂IðzÞTIðzÞ, where V̂IðzÞ ¼
eiĤ0zV̂e−iĤ0z and V̂ðzÞ ¼ kδn̂ðzÞ, it can be expanded, up
to the second order in V̂I , in the form

TIðzÞ ¼ 1 − i
Z

z

0

dz0V̂Iðz0ÞTIðz0Þ

≃ 1 − i
Z

z

0

dz0V̂Iðz0Þ −
Z

z

0

dz0
Z

z0

0

dz00V̂Iðz0ÞV̂Iðz00Þ:

ðC7Þ

Physically, this expansion corresponds to a situation where
photons interact at most twice with the disordered potential
located in a section of the fiber of length z. Inside each
sector of length lz, the potential V̂ðzÞ is invariant along z, so
that integrals in Eq. (C7) can be evaluated explicitly. This
allows us to find the expression of TðpÞ ¼ e−iĤ0lzTIðlzÞ, up
to second order in V̂ ¼ kδn̂p,

TðpÞ
νμ ≃ e−iβμlzðδνμ þ Tðp;1Þ

νμ þ Tðp;2Þ
νμ Þ; ðC8Þ

where

Tðp;1Þ
νμ ¼ −ilzeiβνμlz=2sincðβνμlz=2ÞVνμ; ðC9Þ

Tðp;2Þ
νμ ¼ −ilz

X
κ

eiβνκ

βνμ
½eiβκμlz=2sincðβκμlz=2Þ

þ e−iβνκlz=2sincðβνκlz=2Þ�VνκVκμ; ðC10Þ

with βνμ ¼ βν − βμ. Inserting the expansion Eq. (C8) into
Eq. (C6) and keeping terms up to second order in V, we
obtain

hjTνμj2i ≃ δνμ þ NzhjTðp;1Þ
νμ j2i þ NzhjTðp;2Þ

νμ j2i

þ NzðNz − 1Þ
2

X
κ

hjTðp;1Þ
νκ j2ihjTðp;1Þ

κμ j2i: ðC11Þ

First-order contributions are of the form

hjTðp;1Þ
νμ j2i ¼ l2zsincðβνμlz=2Þ2hjVνμj2i; ðC12Þ

where Vνμ ¼ khψνjδn̂pjψμi. For the model of disorder
given by Eq. (B10), we find

hjVνμj2i ¼
k2

4
Iνμ

X
q

Γ2
qδq;jmν−mνj; ðC13Þ

where

Iνμ ¼ dlayer

Z
drjψνðrÞj2jψμðrÞj2σgðrÞ2r2: ðC14Þ

Second-order contributions hjTðp;2Þ
νμ j2i involve averages

of the form Cνκ
0μ

νκμ ¼ hVνκVκμV�
νκ0V

�
κ0μi, which we can con-

tract as

Cνκ
0μ

νκμ ¼ hVνκV�
νκ0 ihVκμV�

κ0μi þ hVνκV�
κ0μihVκμV�

νκ0 i
≃ hjVνκj2ihjVκμj2iδκκ0 þ hjVννj2i2δκκ0δνμδνκ: ðC15Þ

Combining the expression (C10) with the previous result,
we obtain

hjTðp;2Þ
νμ j2i ≃ l4z

X
κ

QνκμhjVνκj2ihjVκμj2i; ðC16Þ

where Qνκμ is a coupling weight between different energy
subspaces:

Qνκμ ¼
1

β2νμl2z
½sincðβνκlz=2Þ2 þ sincðβκμlz=2Þ2

−2sincðβνκlz=2Þsincðβκμlz=2Þ cos ðβνμlz=2Þ�

þ 1

4
δνκδκμ: ðC17Þ

Finally, we insert the result Eq. (C11) into the expression
(C5) of the correlator, to get an expansion of the form

C̃ðθÞ ¼ 1þ C̃ð1ÞðθÞ þ C̃ð2ÞðθÞ: ðC18Þ
The first order in V2 reads

C̃ð1ÞðθÞ ¼ A1

X
q;ν;μ

mν−mμ¼�q

Γ2
q cosðqθÞIνμsinc

�
βνμlz
2

�
2

; ðC19Þ
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where A1 ¼ NzðklzÞ2=4Nmodes. On the other hand, the
second order in V2 reads

C̃ð2ÞðθÞ¼A2

X
q;q0 ;ν;κ;μ
mν−mκ¼q

mκ−mμ¼�q0

Γ2
qΓ2

q0 cos½ðq�q0Þθ�IνκIκμQ̃νκμ; ðC20Þ

where A2 ¼ NzðklzÞ4=8Nmodes, and

Q̃νκμ ¼Qνκμþ
Nz−1

2
sinc

�
βνκlz
2

�
2

sinc

�
βκμlz
2

�
2

: ðC21Þ

Equations (C18)–(C20) are equivalent to Eqs. (5) and (8) of
the main text. They are used to generate the theoretical
predictions shown in Figs. 3 and 8.

APPENDIX D: RME CHARACTERIZATION
OF DIFFERENT GRADED-INDEX FIBERS

In this appendix, we report the measurements for differ-
ent fiber segments of the same length (L ¼ 24.5 cm),
and with advertised properties similar to those of the
fiber used in the main text. Specifically, we use samples
from a Thorlabs 50-μm core OM2 graded-index fiber
(GIF50C, NA ¼ 0.2).
Results for different fiber segments of the same spool are

reproducible. We present typical results for one sample in
Fig. 8. We observe different contributions of the Γq terms as
the ones reported in Fig. 3, where a Prysmian BendBright
OM4 fiber was used [30]. In particular, Γ4 is much smaller,
leading to the absence of observed local maxima of the
correlation at π=2 and 3π=2.

APPENDIX E: PROPERTIES OF THE
RME CHANNELS

1. RME Operator for one angle value

We consider here operator OðθtÞ defined in Eq. (10),
which represents the upper part of the correlation function
Eq. (1). Computing the singular values of this operator
enables the identification of input wave fronts that maxi-
mize the angular correlation for a specific value θt of θ. We
present in Fig. 9 the resulting correlation CðθÞ of the first
two singular vectors for θt ¼ π=2, in the cases of no
deformation and strong deformations (Δx ¼ 60 μm), along
with the corresponding output field profiles. As with the
results presented for the sum operator in Fig. 5, the first

(a)

(b)

FIG. 8. RME correlation results for a batch of GIF50C.
(a) Angular correlation function of the RME, as defined in
Eq. (1), for various levels of deformation Δx. Experimental data
(blue) are compared to the theoretical prediction based on Eqs. (5)
and (8) (black) and to simulation results obtained with the same
parameters as those used in the theoretical model (red). Error bars
represent the standard deviation computed over 100 random input
wave fronts for the simulations and experiments, as well as 20
disorder realizations for the simulations. (b) Values of the
normalized deformation parameters Γ̃q ¼ klzσgðr ¼ aÞΓq. The
values of Γq are found by fitting the theoretical model [Eq. (5)] to
the experimental data as a function of the deformation. Inset:
symmetry corresponding to the perturbation associated with each
value of q.

FIG. 9. Tailoring the rotational memory effect. The angular
correlation function CðθÞ is constructed using experimentally
measured input channels with improved RME range, for two
values of the deformation (Δx ¼ 0 μm and Δx ¼ 60 μm). The
results for the first two singular vectors of the operator defined in
Eq. (11) are compared with the average results for random input
profiles (dashed line). Insets: output spatial transverse profiles of
the corresponding singular vectors.
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singular vector of the operator Eq. (10) closely resembles
the fundamental mode for any Δx. The second singular
vector exhibits higher spatial frequencies and achieves a
maximum in the correlation at the target angular value θt.
However, although the correlation curve is consistently
higher than the average correlation, it displays significant
fluctuations over the 2π range.

2. Autocorrelation of the RME channels

As stated in the main text, for efficient information
retrieval from the hidden side of a complex medium, the
output pattern used should possess both a substantial
memory effect range and a narrow autocorrelation function.
This implies that the correlator CðθÞ defined in Eq. (1)
displays a broad width, and that the angular autocorrelation,

C0ðθÞ ¼
jhψ jRðθÞjψij

hψ jψi ; ðE1Þ

of the transmitted field jψi ¼ Tjψ ini is sharply peaked.
We present in Fig. 10 the autocorrelation of the first two

RME eigenchannels of the operator Osum defined in
Eq. (11), under different conditions—absence of external
deformations and presence of strong deformations

(Δx ¼ 60 μm). As anticipated in the main text, the first
singular mode, being less susceptible to perturbations,
exhibits a rotational symmetry with a strong correlation
across the entire angular range, even under significant
deformations. This indicates that this mode, despite its wide
RME range, does not meet the criteria defined in the main
text to be a viable candidate for image or information
retrieval. However, the second singular mode does exhibit a
pronounced RME peak around θ ¼ 0. The combination of
this property with the wide angular range of the RME
makes this mode an excellent candidate for effective use in
discerning the angular properties of an object or signal
obscured at the fiber distal end.
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