
HAL Id: hal-04812977
https://hal.science/hal-04812977v1

Submitted on 1 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Smoothed Graph Contrastive Learning via Seamless
Proximity Integration

Maysam Behmanesh, Maks Ovsjanikov

To cite this version:
Maysam Behmanesh, Maks Ovsjanikov. Smoothed Graph Contrastive Learning via Seamless Proxim-
ity Integration. LoG 2024 - Learning on Graphs Conference, Nov 2024, Virtual, France. �hal-04812977�

https://hal.science/hal-04812977v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Smoothed Graph Contrastive Learning via Seamless Proximity
Integration

Maysam Behmanesh
LIX, École polytechnique, IP Paris

behmanesh@lix.polytechnique.fr

Maks Ovsjanikov
LIX, École polytechnique, IP Paris
maks@lix.polytechnique.fr

Abstract
Graph contrastive learning (GCL) aligns node representations by classifying node
pairs into positives and negatives using a selection process that typically relies on
establishing correspondences within two augmented graphs. The conventional
GCL approaches incorporate negative samples uniformly in the contrastive loss,
resulting in the equal treatment of negative nodes, regardless of their proximity
to the true positive. In this paper, we present a Smoothed Graph Contrastive
Learning model (SGCL), which leverages the geometric structure of augmented
graphs to inject proximity information associated with positive/negative pairs
in the contrastive loss, thus significantly regularizing the learning process. The
proposed SGCL adjusts the penalties associated with node pairs in contrastive
loss by incorporating three distinct smoothing techniques that result in proximity-
aware positives and negatives. To enhance scalability for large-scale graphs, the
proposed framework incorporates a graph batch-generating strategy that parti-
tions the given graphs into multiple subgraphs, facilitating efficient training in
separate batches. Through extensive experimentation in the unsupervised setting
on various benchmarks, particularly those of large scale, we demonstrate the
superiority of our proposed framework against recent baselines. The implemen-
tation is available at https://github.com/maysambehmanesh/SGCL.

1 Introduction
Graph Neural Networks (GNNs) [1–3] have developed rapidly by providing powerful frameworks
for the analysis of graph-structured data. A significant portion of GNNs primarily focus on (semi-)
supervised learning, which requires access to abundant labeled data [2, 4, 5]. However, labeling
graphs is challenging because they often represent specialized concepts within domains like biology.

Graph Contrastive Learning (GCL), as a new paradigm of Self-Supervised Learning (SSL) [6] in the
graph domain, has emerged to address the challenge of learning meaningful representations from
graph-structured data [7, 8]. They leverage the principles of self-supervised learning and contrastive
loss [9] to form a simplified representation of graph-structured data without relying on supervised
data.

In a typical GCL approach, several graph views are generated through stochastic augmentations of
the input graph. Subsequently, representations are learned by comparing congruent representations
of each node, as an anchor instance, with its positive/negative samples from other views [10–12].
More specifically, the GCL approach initially captures the inherent semantics of the graph to identify
the positive and negative nodes. Then, the contrastive loss efficiently pulls the representation of the
positive nodes or subgraphs closer together in the embedding space while simultaneously pushing
negative ones apart.

Conventional GCL methods follow a straightforward principle when distinguishing between positive
and negative pairs: pairs of corresponding points in augmented views are considered positive pairs
(similar), while all other pairs are regarded as negative pairs (dissimilar) [11]. This strategy ensures

M. Behmanesh and M. Ovsjanikov, Smoothed Graph Contrastive Learning via Seamless Proximity Integration.
Proceedings of the Third Learning on Graphs Conference (LoG 2024), PMLR 269, Virtual Event, November
26–29, 2024.

https://github.com/maysambehmanesh/SGCL

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

that for each anchor node in one augmented view, there exists one positive pair, while all remaining
nodes in the second augmented view are paired as negatives.

In contrast to the positive pairs, which are reliably associated with nodes having a similar semantic,
there is a significant number of negative pairs that have the potential for false negatives. With this
strategy, GCL approaches allocate negative pairs between views uniformly, while we intuitively
expect that in contrastive loss, misclassified nodes closer to the positive node should incur a lower
penalty compared to those located farther away. However, conventional GCL approaches lack a
mechanism to differentiate and appropriately penalize misclassified nodes based on proximity.

One early approach for incorporating proximity information in the conventional GCL method can be
computing a dense geodesic distance matrix for the entire graph or using spectral decompositions.
However, these approaches can become expensive when applied in the context of contrastive learning.
To tackle this problem, we introduce a Smooth Graph Contrastive Learning (SGCL) method, which
effectively integrates the geometric structure of graph views into a smoothed contrastive loss function.
This loss function intuitively incorporates proximity information between nodes in positive and
negative pairs through three developed smoothing approaches.

To extend the proposed contrastive loss for large-scale graphs, the GCL framework incorporates a
mini-batch strategy. The integration of the mini-batch strategy significantly improves the efficiency of
the model in handling large-scale graphs, which is a crucial requirement within the vanilla contrastive
loss framework.

Our contributions are summarized as follows:

• We introduce three formulations for integrating proximity information into the contrastive
learning loss, aimed at improving the assignment of positive and negative pairs.

• We devise three novel schemes for a graph contrastive loss function (i.e., SGCL-T, SGCL-B,
and SGCL-D) that seamlessly integrates node proximity information, overcoming the uniform
negative sampling limitations found in conventional GCL methods.

• We extend the model for large-scale graphs by incorporating a mini-batch strategy into the
proposed GCL framework, enhancing model efficiency and computational scalability.

• We perform an analytical study, complemented by extensive empirical evaluations for both node
and graph classification on various benchmarks, demonstrating the consistent improvement of
SGCL over state-of-the-art GCL methods.

A comprehensive and detailed explanation of related work is presented in Appendix A.

2 Background and motivation
2.1 Preliminaries

In the domain of unsupervised graph representation learning, we introduce an undirected graph
G = (V, E), where V constitutes the node set {v1, v2, ..., vN}, and E denotes the edge set, formally
captured as E ⊆ V × V . Within this contextual framework, we establish the definition of two pivotal
matrices: the feature matrix X ∈ RN×F , wherein each xi ∈ RF represents the feature vector
associated with a distinct node vi; and the binary adjacency matrix A ∈ {0, 1}N×N .

The objective is to develop a GNN encoder fθ(X,A) that takes feature representations and graph
structural characteristics of the graph as input and generates reduced-dimensional node embeddings
H = fθ(X,A) ∈ RN×F ′

, where F ′ ≪ F . Ultimately, the reduced-dimensional node embeddings
prove to be invaluable assets in subsequent tasks, particularly in node classification.
Definition 2.1 (Positive and negative set). In the context of the conventional GCL approach with
two graph views G(i) and G(j), considering an anchor node v

(i)
t in view i, the positive set consists

of embeddings v(j)p in view j that correspond to the same node as v(i)t . Formally, this is expressed
as P(v(i)t) = {v(j)p }Pp=1, where P = 1 because there is only one v

(j)
p that corresponds to the v

(i)
t .

Similarly, the negative set for v(i)t includes all embeddings v(j)q in view j that do not correspond to
the same node as v(i)t , formally expressed as Q(v(i)t) = {v(j)q }Qq=1,q ̸=t, where Q = N − 1 and N
denotes the total number of samples in view j.

2

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

2.2 Uniform negative sampling

Considering the ground truth, positive/negative pairs demonstrate semantic congruence/incongruence,
particularly in relation to shared labels with the anchor. These pairs encompass samples affiliated
with either the same class (positive) or different classes (negative). Nevertheless, in the absence of
labeled information, numerous incongruent nodes are inevitably categorized as false negatives, even
when they may share semantic similarities with the anchor node [13].

This misalignment of the negative pairs adversely affects the learning process due to its inadvertent
impact on the loss function. Consider the InfoNCE contrastive loss function [14] for each anchor
node v(i)t . The objective is to minimize the distance between embeddings of positive pair {v(i)t , v

(j)
t }

and simultaneously maximize the distance between embeddings of negative pairs {v(i)t , v
(j)
q }N−1

q=1,q ̸=t:

LInfoNCE(v
(i)
t , V (j)) = − log

(
exp (h

(i)
t .h

(j)
t /τ)

exp (h
(i)
t .h

(j)
t /τ) +

∑N−1
q=1,q ̸=t exp (h

(i)
t .h

(j)
q /τ)

)
(1)

Misalignment in negative pairs {v(i)t , v
(j)
k } detrimentally impacts the learning process by introducing

errors in the loss computation. The misalignment leads to an undesired increase in the loss, hindering
the optimization process. Specifically, the GCL model increases the distance between misaligned
negative pairs, and inadvertently separates semantically similar samples, leading to a degradation of
overall performance.

Essentially, negative pairs in the contrastive loss function are expected to contribute varying signifi-
cance based on their proximity to the true positive node. However, in the conventional contrastive
learning framework, which lacks information about the proximity of these nodes, all N − 1 negative
pairs are handled uniformly. In other words, the conventional contrastive learning approach treats all
misclassified nodes equally regardless of whether the misclassification occurs near the true positive
or at a significant distance from it.

2.3 Motivation and intuition

The motivation behind the proposed method is that the loss could seamlessly incorporate graph
proximity information into the contrastive learning framework. Namely, in standard contrastive
learning, if the network makes an error by declaring a false positive, then this error has an equal
penalty regardless of where the false positive is in relation to the true positive.

A straightforward approach to integrate proximity information into the conventional GCL framework
is through the computation of a dense geodesic distance or the utilization of spectral decompositions
across the entire graph. However, these strategies incur significant computational costs when applied
within the context of contrastive learning.

Our high-level intuition involves a smoothed contrastive learning approach that leverages the inherent
geometric information within a graph to assign lower penalties for the negatives that are in close
proximity to the ground truth positive. As such it promotes predictions that are (similarly to conven-
tional CL) either exactly at the ground truth positive, or (differently from conventional CL) at least
in the geodesic vicinity of the positive. By introducing this information, we strongly regularize the
learning process, thereby improving the overall accuracy. In the following, we will demonstrate how
leveraging the inherent geometric information within a graph can provide additional insights and
enhance the performance of the GCL models.

2.4 Leveraging the advantages of graph geometry

In conventional contrastive learning models, the positive pairs between two views are represented
by a positive matrix Π

(i,j)
pos ∈ {0, 1}N×N , where the diagonal elements are ’1’ and the off-diagonal

elements are ’0’. The corresponding negative matrix is defined as Π(i,j)
neg = 1−Π

(i,j)
pos ∈ {0, 1}N×N ,

with ’0’ on the diagonal and ’1’ in the off-diagonal positions.

We propose a smoothing strategy that goes beyond simple binary categorization of matrices as positive
or negative and applies a form of smoothing to the standard contrastive loss. This strategy allows

3

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

nodes initially categorized as positive or negative to have values ranging from ’0’ to ’1’, indicating
their degree of association with positive or negative samples, respectively.

Definition 2.2 (Smoothing process). The smoothing process S(Π(i,j)
pos ,A(i)) generate a smooth

positive matrix Π̃
(i,j)
pos ∈ [0, 1]

N×N by iteratively updating binary values of Π(i,j)
pos based on the

neighboring nodes values in the graph structure A(i) while preserving the underlying graph structure.
The corresponding smoothed negative matrix Π̃

(i,j)
neg is then computed as 1− Π̃

(i,j)
pos .

In the following, we introduce three formulations for prompting smoothing, including Taubin smooth-
ing [15], Bilateral smoothing [16], and Diffusion-based smoothing [17]. Our first objective is to
enrich both positive and negative pairs by incorporating neighborhood relationships and capturing
the broader context of the nodes. Secondly, we aim to demonstrate how these enriched positive and
negative sets can lead to a more effective contrastive loss.

Taubin smoothing ST (V,L;K,µ, τ) involves iteratively performing two stages of filtering utilized
Laplacian matrix L ∈ RN×N to smooth the binary matrix V ∈ {0, 1}N×D as follows:

V(k+1) = (I+ τL)((I+ µL)V(k)) (2)

This process involves the combined operation of two filters, collaboratively leading to the smoothing
of the input signal V. The first filter, the negative Laplacian filter (µ < 0), smooths the input
signal, while the second, the positive Laplacian filter (I + τL) (τ > 0), prevents oversmoothing
by ensuring µ < −τ . In our approach, we employ symmetrically normalized graph Laplacian
L = I−D−1/2AD−1/2.

Bilateral smoothing SB(V,A;σspa, σint) smooths a binary matrix V by integrating information
from nearby nodes, considering both spatial proximity and intensity similarity. Spatial proximity
dspa(i, j) is measured using shortest path distances, while intensity similarity dint(i, j) is determined
by evaluating the similarity in binary values between two nodes, typically quantified using metrics
like the Hamming distance. The bilateral filter weight w(i, j) is then computed by:

w(i, j) = exp

(
−
dspa(i, j)

2σ2
spa

− dint(i, j)

2σ2
int

)
, (3)

where σ2
spa and σ2

int control the smoothing effects for spatial and intensity components, respectively.
The smoothed value for node vi is computed as a weighted average of its k-hope neighbor nodes:

ṽi =
∑

j∈Nk(i)
w(i, j)vj∑

j∈Nk(i)
w(i, j)

. (4)

Diffusion-based smoothing SD(V,A;K, η) employs the diffusion equation to propagate informa-
tion among nodes within a graph, effectively smoothing binary values. The process starts with the
original matrix V as the initial condition, where each binary value serves as the initial "heat" at its
respective node. The new value for each node is then iteratively updated based on the diffusion equa-
tion and the binary values of its neighbors as v(k+1)

i = v(k)i + ηv̄(k)
i , where v̄(k)

i =
∑

j∈N (vi)
v(k)
j is

the average value of neighboring nodes, and η is the diffusion rate applied to determine how much
the binary value diffuses from one node to another.

Appendix B provides a comprehensive overview of smoothing approaches, including detailed algo-
rithms and a comparative analysis of each method. Figure 1 illustrates an example of the efficacy of
the smoothing approaches. As a simple example, we take a grid graph, and randomly establish a delta
function, centered on specific vertices, resulting in the creation of a binary matrix. Subsequently, we
employ a variety of smoothing techniques on this binary matrix. Given the uniform neighborhood
structure of the grid, the resulting output exhibits a Gaussian-like distribution, which its center aligned
to the initial vertex. However, the varied values in the smoothed matrix are indicative of the distinct
strategies employed in the smoothing process.

2.5 Smoothness promoting in positive and negative sets

In the context of contrastive learning on graphs, the positive matrix Π̃
(i,j)
pos can be considered as

a mapping from G(i) to G(j), with its rows and columns corresponding to nodes in G(i) to G(j),

4

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

Graph 𝒢 = (𝐕, 𝐀) Taubin smoothing

𝒮𝑇(𝐕, 𝐋, 𝜇 = −0.5, τ = 0.3, 𝐾 = 6)
Bilateral smoothing

𝒮𝐵(𝐕, 𝐀, 𝜎𝑠𝑝𝑎 = 0.1, σ𝑖𝑛𝑡 = 2)
Diffusion-based smoothing
𝒮𝐷(𝐕, 𝐀, K = 3, 𝜂 = 0.05)

Graph 𝒢 = (𝐕, 𝐀) Taubin smoothing

𝒮𝑇(𝐕, 𝐋, 𝜇 = −0.5, τ = 0.3, 𝐾 = 6)
Bilateral smoothing

𝒮𝐵(𝐕,𝐀, 𝜎𝑠𝑝𝑎 = 0.1, σ𝑖𝑛𝑡 = 2)
Diffusion-based smoothing
𝒮𝐷(𝐕, 𝐀, K = 3, 𝜂 = 0.05)

Figure 1: An illustrative example of the efficacy of the smoothing approaches on a grid graph G. We
color the grid according to the node value. In the left grid, initial values of 1 are represented in yellow,
whereas nodes with zero values are depicted in dark purple. Each smoothing approach modifies the
values of the zero nodes according to neighboring information.

𝟏

𝟐

𝟒

𝟑

𝟓

𝟔

𝟕
𝟏

𝟐

𝟒

𝟑

𝟓

𝟔

𝟕 𝟏

𝟐

𝟒

𝟑

𝟓

𝟔

𝟕

[0, 0, 0, 1, 0, 0, 0]

[0.4, 0, 0.2, 1, 0.4, 0.6, 0.6]

𝟏

𝟐

𝟒

𝟑

𝟓

𝟔

𝟕

𝓖(𝑗) 𝓖(𝑖) 𝓖(𝑗) 𝓖(𝑖)

Πpos
(𝑖,𝑗)

 Πneg
(𝑖,𝑗)

Π̃pos
(𝑖,𝑗)

 Π̃neg
(𝑖,𝑗)

[1, 1, 1,0, 1,1, 1] [0.6, 1, 0.8, 0, 0.6, 0.4, 0.4]

Figure 2: In the general context of conventional contrastive learning approaches, for every anchor
node v

(i)
4 in G(i), a corresponding positive node v

(j)
4 exists in G(j), with all other node pairs being

negative (left image). Smoothing techniques, which leverages the geometry of graph G(j), effectively
extract neighboring node information of node v(j)4 and generate smoothed positive and negative pairs
matrices Π̃(i,j)

pos and Π̃
(i,j)
neg (right image).

respectively. The goal of the smoothing approach is to extend this mapping to the neighbors of the
paired nodes. In this specific context, since the columns of the positive matrix Π

(i,j)
pos are associated

with nodes in G(j), the smoothing approach utilizes the geometry of graph view G(j). Similarly, for
the positive matrix Π

(j,i)
pos , the smoothing approach utilizes to the geometric properties of the graph

view G(i).
Figure 2 illustrates the differences between positive and negative pairs in the conventional graph
contrastive learning framework and our proposed smoothed contrastive approach. Notably, when
considering a specific anchor node v

(i)
t in G(i) paired with v

(j)
k in G(j), the graph information from

G(j) is employed to generate the smoothed positive and negative pairs matrices Π̃(i,j)
pos and Π̃

(i,j)
neg .

In the following, we analytically analyze the performance of smooth graph contrastive learning, by
defining the following metrics.
Definition 2.3 (Dirichlet energy). The Dirichlet energy of a signal X ∈ RN×F on the vertices of a
graph, defined as E(X) = XTLX = 1

2

∑
i,j ai,j∥xi − xj∥2, measures the smoothness of the signal

X over the graph, where L = D−W is the graph Laplacian matrix.

A lower Dirichlet energy on a graph indicates that the signal X varies smoothly with minimal
differences between adjacent nodes, aligning well with the graph structure as quantified by the graph
Laplacian matrix [18].
Lemma 2.1 (Disparity). For an encoder fθ, the disparity measure of learned features X ∈ RN×F is
defined by the distances of intra-class and inter-class Dirichlet energy as:

Ddisparity(fθ) =
1

| Eintra |
∑

(i,j)∈Eintra

∆ij −
1

| Einter |
∑

(i,j)∈Einter

∆ij

where ∆ij = 1
2aij ∥xi − xj∥2, and Einter and Eintra denote the sets of edges connecting nodes of

different classes and within the same class, respectively. This measure captures the contrast in
smoothness between intra-class and inter-class distances in the feature embedding.

5

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

10 20 30 40 50 60 70 80 90
h (%)

0.30

0.25

0.20

0.15

0.10

0.05

0.00

M
ea

n
Di

sp
ar

ity

GCL
SGCL-T
SGCL-B
SGCL-D

Figure 3: Comparison of mean disparity among graph encoders, illustrating that all SGCL variants
consistently achieve lower values than the conventional GCL approach, which signifies a more
effective self-supervised learning framework.

A lower disparity measure indicates that the encoder produces node representations with greater
similarity within the same class and increased distinction between different classes, reflecting more
effective self-supervised learning.
Proposition 2.1. For two graph encoders fθ and f̃θ learned using the conventional and smoothed
graph contrastive frameworks, respectively, the disparity measure satisfies Ddisparity(f̃θ) <
Ddisparity(fθ).

This proposition indicates that geometry-aware graph contrastive losses enable the learned encoder to
more effectively distinguish node representations.

We empirically validate this proposition by computing the disparity measure between two encoders,
fθ and f̃θ, used in the proposed SGCL and GRACE frameworks, respectively. Both encoders are
applied to the same input graphs across a range of homophily rates. To ensure scale invariance in
this comparison, we normalize the feature embeddings. This process removes the influence of the
scales in the embeddings, allowing us to focus on the relative differences between embeddings rather
than their absolute magnitudes. We use the graphs from [19], comprising 10 graphs with homophily
rates h varying from 0 to 0.9. Each graph contains 5000 nodes divided into two classes, sharing the
same structure but differing in class labels. The results in Figure 3 indicate that the mean disparity
of graph encoders used in all variants of SGCL is consistently lower than the conventional GCL
approach reflecting a more effective self-supervised learning framework. Additionally, as h increases,
disparity measures decrease. This is because of the smoothing strategies that explore positive pairs in
the proximity of each anchor node (and similarly for negative pairs). As the homophily rate increases,
the number of false negatives inreases, and the role of SGCL in effectively contributing both positive
and negative pairs to the contrastive loss becomes more prominent. Further analysis with real-world
graphs can be found in Section E.1.

3 Method: smoothed graph contrastive learning
We introduce Smoothed Graph Contrastive Learning (SGCL), a novel framework that constructs
node embeddings by seamlessly integrating the geometric structure of augmented graphs to ensure a
smooth alignment between positive and negative pairs. The comprehensive architecture is illustrated
in Figure 4. In the following sections, we outline the processing steps of the proposed framework.

Subgraph generating: We leverage the random-walk mini-batches generation approach [20] to
generate subgraphs from a given graph. More specifically, an entire graph G is partitioned into a set
of |B| mini-batches denoted as Ĝ = {Ĝ1, . . . , Ĝb, . . . , Ĝ|B|}, where each Ĝb = (V̂b, Êb) represents
a sampled subgraph. It is essential to note that the construction of subgraphs varies depending on
the specific sampling approach employed. Leveraging the insights gained from the variance analysis
within GraphSAINT [20], it introduces a collection of lightweight and efficient mini-batch generation
approaches, further detailed in Appendix C.

Generating graph views via augmentation: We employ a combination of edge-dropping and node
feature masking strategies to generate two distinct graph views for every mini-batch Ĝb, denoted as
Ĝ(1)b and Ĝ(2)b . More specifically, in each view i, we construct the augmented graph Ĝ(i)b as Ĝ(i)b =

6

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

�̂�𝒃
(𝑖)

= (𝐗𝑏
(𝑖)

, 𝐀𝑏
(𝑖)

)

�̂�𝒃
(𝑗)

= (𝐗𝑏
(𝑗)

, 𝐀𝑏
(𝑗)

)

𝓣𝑥
(𝑗)

(⋅), 𝓣𝐴
(𝑗)(⋅)

𝓣𝑥
(𝑖)(⋅), 𝓣𝐴

(𝑖)(⋅)
�̂�𝑏 = (𝐗𝑏 , 𝐀𝑏)

𝑓𝜃𝑖

𝑓𝜃𝑗

𝐇𝑏
(𝑖)

, 𝐀𝑏
(𝑖)

𝐇𝑏
(𝑗)

, 𝐀𝑏
(𝑗)

Π𝑝𝑜𝑠

(𝑗,𝑖)

Π෩𝑝𝑜𝑠
(𝑖,𝑗)

= 𝒮𝑇(Π𝑝𝑜𝑠
(𝑖,𝑗)

)

Π෩𝑝𝑜𝑠
(𝑗,𝑖)

= 𝒮𝑇(Π𝑝𝑜𝑠
(𝑗,𝑖)

)
𝒥𝑆𝐺𝐶𝐿 Π𝑝𝑜𝑠

(𝑖,𝑗)

�̂�|𝐵|

�̂�1

m
in
i-
b
at
ch

es

Figure 4: Overview of the Proposed SGCL Model. The model first generates |B| subgraphs and
extracts two distinct views for each subgraph, denoted as Ĝ(i)b and Ĝ(j)b . The GCN encoder is then
employed to learn feature embeddings H(i)

b and H
(j)
b , respectively. Finally, the smoothed contrastive

loss LSGCL measures the agreement between these representations by utilizing Π̃
(i,j)
pos and Π̃

(i,j)
neg .

(T (i)
x (Xb), T (i)

A (Ab)), where Tx(X) = X⊙(1−MX) and TA(A) = A⊙(1−MA)+(1−A)⊙MA.
Here, MX ∼ N (0,Σ) masks original values with Gaussian noise, and MA utilizes a Bernoulli
distribution to randomly drop edges from the adjacency matrix.

Encoders: The encoder fθ processes an augmented graph as input, producing reduced-dimensional
feature embeddings. We choose the widely adopted Graph Convolutional Network (GCN) [2]
as the graph encoder. For each view i, we employ a dedicated graph encoder H = fθi(X,A) :

RN×F ×RN×N → RN×F ′
that leverages adjacency and feature matrices as two congruent structural

perspectives of GCN layers 1. The GCN operates across multiple layers, wherein the message-passing
process is recurrently applied at each layer. The node representations are updated in a layer-wise
manner: H(l+1) = σ

(
D̃−1/2ÃD̃−1/2H(l)W(l)

)
, where Ã denotes the symmetrically normalized

adjacency matrix, calculated as Ã = A + I with diagonal matrix I ∈ RN×N , D̃ii =
∑

j Ãij ∈
RN×N is the degree matrix, W(l) ∈ RFl×Fl+1 is the learned weight matrix for layer l, σ is activation
function, and H(l) ∈ RN×Fl is the node representation in layer l.

Smoothed contrastive loss function: To end-to-end training of the encoders and promote node
representations, we introduce an innovative contrastive loss function. This loss function utilizes a
smoothed positive pairs matrix Π̃

(i,j)
pos to encourage the agreement between encoded embeddings of

two nodes, namely, v(i)t and v
(j)
p , in two different views with degree π̂(i,j)

pos (t, p), while also distinguish
their embeddings with a degree of π̂(i,j)

neg (t, p) = 1− π̂
(i,j)
pos (t, p). The loss function is defined as:

L(i,j)
SGCL =∥ Π̃(i,j)

pos ⊙ (1−C(i,j)) ∥2F +λ ∥ Π̃(i,j)
neg ⊙C(i,j) ∥2F (5)

where 1 is a matrix of the same size as C(i,j) with all elements set to 1 and C(i,j) is the normalized
cosine similarity matrix between the normalized embeddings Ĥ(i) and Ĥ(j) of identical networks:

C(i,j) =
1

2

(
Ĥ(i)Ĥ(j)T

∥ Ĥ(i) ∥∥ Ĥ(j) ∥
+ 1

)
(6)

Our objective is to maximize C(i,j) for positive pairs and minimize C(i,j) for negative pairs. This is
equivalent to simultaneously minimizing 1−C(i,j) for positive pairs and C(i,j) for negative pairs.

In the proposed contrastive loss function, the first term enforces the stability of the preservation in the
embeddings of positive pairs by minimizing the discrepancy between 1 and each element of C(i,j).
This alignment is achieved with the values in the smoothed positive pairs matrix Π̃

(i,j)
pos , effectively

equivalent to maximizing C(i,j) for positive pairs. Conversely, the second term actively promotes
a substantial diversity in the embeddings of negative pairs by minimizing each element of C(i,j)

concerning the values in the smoothed negative pairs matrix Π̃
(i,j)
neg .

1For the sake of simplicity, we omit the view index in superscript and the batch index in subscript.

7

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

At each training epoch, the smoothed positive pairs matrix Π̃
(i,j)
pos is computed by applying one

of the smoothing approaches outlined in Section 2.4. For example, we apply Taubin smoothing,
resulting in the smoothed positive pairs matrix Π̃

(i,j)
pos = ST (Π(i,j)

pos ,L(i);µ, τ), and the corresponding
smoothed negative pairs matrix Π̃

(i,j)
neg = 1− Π̃

(i,j)
pos . Ultimately, we learn the model parameters by

considering all |B| batches within the given graph concerning the overall innovated contrastive loss
JSGCL = 1

2|B|
∑|B|

b=1(L
(i,j)
SGCL + L(j,i)

SGCL).

In Equation (5), the hyperparameter λ > 0 determines the trade-off between two terms during
optimization. A comprehensive ablation study on the hyperparameters can be found in Appendix F.

4 Experiments
We conduct empirical evaluations of our proposed SGCL model through node and graph classification
tasks, using a variety of publicly available benchmark datasets. The proposed models are derived
by incorporating three distinct smoothing techniques in the proposed models: SGCL-T (Taubin
smoothing), SGCL-B (Bilateral smoothing), and SGCL-D (Diffusion-based smoothing).

We train ’2-layer’ GCN encoders using the SGCL framework for 200 iterations with the Adam
optimizer (learning rate 1e− 3). In the downstream task, we perform node and graph classification
with l2-regularized logistic regression, reporting accuracy and standard deviation after 5000 runs. For
mini-batch generation, we employ the random-walk approach with a batch size of 2000, a random
walk length of 4, and 3 starting root nodes. Appendix D provides comprehensive details of the
experiments. A comprehensive computational complexity analysis is also provided in Appendix E.3.

4.1 Node classification
In the first experiment, we evaluate the SGCL model on six small to medium-scale benchmark datasets:
Cora, Citeseer, Pubmed, CoauthorCS, Computers, and Photo. Table 1 presents the performance
results in comparison with baseline models. To generate mini-batches in this experiment, we utilize
a random-walk sampling, as outlined in Appendix C. A summary of the results derived from other
mini-batching approaches is reported in Table 11.

The results indicate that the SGCL model outperforms the state-of-the-art on most benchmarks,
validating the effectiveness of our learning framework. On the "Computers" graph, which has a
notably high average node degree but lower homophily (Table 4), the influence of neighboring nodes
in the smoothing approaches is reduced, leading to performance degradation compared to CGRA.

Table 1: Comparison of node classification accuracies of proposed models vs. baselines on small
and medium-scaled graphs (mean ± std).

Model Cora Citeseer Pubmed CoauthorCS Computers Photo

DGI [10] 82.3±0.6 71.8±0.7 76.8±0.6 92.15±0.63 83.95±0.47 91.61±0.22
GRACE [11] 83.3±0.4 72.1±0.5 73.63±0.20 91.12±0.20 89.53±0.35 92.78±0.45
MVGRL [12] 83.11±0.12 73.3±0.5 84.27±0.04 92.11±0.12 87.52±0.11 91.74±0.07
BGRL [21] 83.77± 0.57 73.07±0.06 84.62±0.35 93.31±0.13 90.34±0.19 93.17±0.3
G-BT [22] 83.63±0.44 72.95±0.17 84.52±0.12 92.95±0.17 88.14±0.33 92.63±0.44
CGRA [23] 83.8±0.4 69.23±1.19 82.8±0.4 92.8±0.5 90.5±0.4 92.4±0.2
GRLC [24] 83.5±0.5 72.6±0.6 82.1±0.4 90.36±0.27 88.54±0.23 92.3±0.5
ProGCL-weight [25] 81.91±0.12 69.24±0.21 84.89±0.04 93.51±0.06 89.28±0.15 93.30±0.09
ProGCL-mix [25] 83.71±0.04 68.38±0.3 84.64±0.03 93.67±0.12 89.55±0.16 93.64±0.13
GraphMAE2 [26] 84.5±.0.6 73.4±0.3 81.4±0.5 – – –
AUGCL [27] – – – – 88.94±0.44 93.43±0.32
GREET [28] 83.81±0.87 73.08±0.84 80.29±1.00 94.65±0.18 87.94±0.35 92.85±0.31
SGCL-T 84.33±0.45 74.94±0.79 84.25±0.35 92.25±0.15 87.21±0.42 93.12±0.7
SGCL-B 84.78±0.3 74.30±1.4 84.1±0.25 92.33±0.4 89.75±0.8 93.72±0.12
SGCL-D 84.17±0.43 75.72±0.59 85.12±0.3 92.14±0.26 86.11±0.3 92.87±0.6

The observed performance verifies the enhanced capacity achieved through the utilization of the
geometric structure inherent in graphs, enabling improved exploration of positive and negative pairs
within the conventional contrastive learning framework. More evaluation on heterophilic graphs can
be found in Appendix E.2.

Furthermore, we evaluate the proposed framework on three large-scale graphs: ogbn-arxiv, ogbn-
products, and ogbn-proteins. Here, the importance of the mini-batch generation step becomes more

8

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

prominent, as full-batch processing of large-scale graphs can impose considerable demands on GPU
memory by requiring all node embeddings to be loaded onto the GPU. We employ a random-walk
sampling approach to generate mini-batches.

Table 2: Comparison of node classification accu-
racies of proposed models vs. baselines on large-
scaled graphs (mean ± std).

Model ogbn-arxiv ogbn-products ogbn-proteins

DGI [10] 67.07±0.5 68.68±0.6 94.11±0.1
GRACE [11] 67.92±0.4 72.10±0.7 94.11±0.2
MVGRL [12] 60.68±0.5 69.90±0.9 93.87±0.3
BGRL [21] 63.88±0.2 66.23±0.5 92.94±0.3
GBT [22] 69.05±0.3 65.74±0.4 94.07±0.3
GraphMAE2 [26] 68.95±0.4 74.32±0.5 –
SGCL-T 70.89±0.2 75.97±0.1 94.64±0.2
SGCL-B 70.34±0.4 74.33±0.4 93.55±0.2
SGCL-D 70.52±0.3 74.15±0.2 93.19±0.1

The results presented in Table 2, demonstrate
that the SGCL consistently outperforms other
contrastive learning methods on large-scale
graphs. Rssults for GraphMAE2 have been re-
produced using the standard data split to ensure
fair comparisons. It’s worth noting that ogbn-
products serves as a valuable benchmark for
our proposed models providing two key advan-
tages. Firstly, its high homophily rate increases
the likelihood of identifying neighboring nodes
of positive pairs as new positive pairs, thereby
enhancing the performance of the model. Sec-
ondly, by using mini-batch graphs instead of the
full-batch graph with numerous connected com-
ponents, we can effectively bypass the extremely
small components. This approach offers richer neighboring information, leading to the generation of
more effective augmented graphs and enhancing the performance of the contrastive loss framework.

4.2 Graph classification
Graph classification is another important downstream task, employed to reflect the effectiveness
of the learned graph representation. In this experiment, we follow the InfoGraph [29] setting
for graph classification and compare the accuracy with self-supervised state-of-the-art methods.
The results reported in Table 3 indicate that, in comparison to the best-performing state-of-the-art
methods, the proposed model demonstrates enhanced accuracy for IMDB-BINARY, PROTEINS, and
ENZYMES, while maintaining comparable accuracy on other benchmarks. It’s worth mentioning
that the accuracies of all models are reported from their respective published papers, except for the
BGRL results, which we reproduced under the same experimental setting.

Table 3: Comparison of graph classification accuracies of proposed models vs. baselines.

Model IMDB-Binary PTC-MR MUTAG PROTEINS ENZYMES

InfoGraph [29] 73.0±0.9 61.7±1.4 89.0±1.1 74.4±0.3 50.2±1.4
GraphCL [30] 71.1±0.4 63.6±1.8 86.8±1.3 74.4±0.5 55.1±1.6
MVGRL [12] 74.2±0.7 62.5±1.7 89.7±1.1 71.5±0.3 48.3±1.2
AD-GCL [31] 71.5±1.0 61.2±1.4 86.8±1.3 75.0±0.5 42.6±1.1
BGRL [21] 72.8±0.5 57.4±0.9 86.0±1.8 77.4±2.4 50.7±9.0
LaGraph [32] 73.7±0.9 60.8±1.1 90.2±1.1 75.2±0.4 40.9±1.7
ProGCL-mix [25] 71.6±0.6 – 88.7±1.4 74.5±0.4 –
CGRA [23] 75.6±0.5 65.7±1.8 91.1±2.5 76.2±0.6 61.1±0.9
AUGCL [27] 72.4±0.8 – 89.2±1.0 75.7±0.4 –
SGCL-T 75.2±2.8 64.0±1.6 89.0±2.3 79.4±1.9 65.3±3.6
SGCL-B 73.2±3.7 62.5±1.8 87.0±2.8 81.6±2.3 63.7±1.6
SGCL-D 75.8±1.9 62.6±1.4 86.0±2.6 81.5±2.3 64.3±2.2

5 Conclusion

Conventional Graph Contrastive Learning (GCL) methods use a straightforward approach for distin-
guishing positive and negative pairs, often leading to challenges in uniformly identifying negative
pairs regardless of their proximity. In this paper, we introduced a Smooth Graph Contrastive Learning
(SGCL) method, which incorporates the geometric structure of graph views into a smoothed con-
trastive loss function. SGCL offers an intuitive way that employs three smoothing approaches to
consider proximity information when assigning positive and negative pairs. The GCL framework is
enhanced for large-scale graphs by incorporating a mini-batch strategy, leading to improved model
efficiency and computational scalability. The evaluations, conducted on graphs of varying scales,
consistently show that SGCL outperforms state-of-the-art GCL approaches in node and graph classifi-
cation tasks. This emphasizes the effectiveness of the smoothed contrastive loss function in capturing
and utilizing proximity information, ultimately improving the performance of the SGCL.

9

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

Acknowledgements
The authors acknowledge the anonymous reviewers for their valuable suggestions and Johannes
Lutzeyer for insightful discussions. Parts of this work were supported by the ERC Consolidator Grant
101087347 (VEGA) and the ANR AI Chair AIGRETTE.

References
[1] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.

Neural message passing for quantum chemistry. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine Learning, volume 70 of Pro-
ceedings of Machine Learning Research, pages 1263–1272. PMLR, 06–11 Aug 2017. URL
https://proceedings.mlr.press/v70/gilmer17a.html. 1

[2] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl. 1, 7, 14

[3] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km. 1

[4] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ. 1, 14

[5] Maysam Behmanesh, Maximilian Krahn, and Maks Ovsjanikov. TIDE: Time derivative diffusion
for deep learning on graphs. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pages 2015–2030. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/
behmanesh23a.html. 1, 14

[6] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang.
Self-supervised learning: Generative or contrastive. IEEE Transactions on Knowledge and
Data Engineering, 35(1):857–876, 2023. doi: 10.1109/TKDE.2021.3090866. 1

[7] Lirong Wu, Haitao Lin, Cheng Tan, Zhangyang Gao, and Stan Z. Li. Self-supervised learning
on graphs: Contrastive, generative, or predictive. IEEE Transactions on Knowledge and Data
Engineering, 35(4):4216–4235, 2023. doi: 10.1109/TKDE.2021.3131584. 1, 14

[8] Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji. Self-supervised
learning of graph neural networks: A unified review. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(2):2412–2429, 2023. doi: 10.1109/TPAMI.2022.3170559. 1, 14

[9] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching
networks for learning the similarity of graph structured objects. In Kamalika Chaudhuri and
Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pages 3835–3845. PMLR,
09–15 Jun 2019. URL https://proceedings.mlr.press/v97/li19d.html. 1

[10] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep Graph Infomax. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=rklz9iAcKQ. 1, 8, 9, 14, 15, 19

[11] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep Graph
Contrastive Representation Learning. In ICML Workshop on Graph Representation Learning
and Beyond, 2020. URL http://arxiv.org/abs/2006.04131. 1, 8, 9, 15, 19

[12] Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning
on graphs. In Proceedings of International Conference on Machine Learning, pages 3451–3461,
2020. 1, 8, 9, 14, 19, 20

[13] Jun Xia, Lirong Wu, Ge Wang, Jintao Chen, and Stan Z. Li. Progcl: Rethinking hard negative
mining in graph contrastive learning. In International Conference on Machine Learning, 2021.
URL https://api.semanticscholar.org/CorpusID:249282506. 3

10

https://proceedings.mlr.press/v70/gilmer17a.html
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=rJXMpikCZ
https://proceedings.mlr.press/v202/behmanesh23a.html
https://proceedings.mlr.press/v202/behmanesh23a.html
https://proceedings.mlr.press/v97/li19d.html
https://openreview.net/forum?id=rklz9iAcKQ
http://arxiv.org/abs/2006.04131
https://api.semanticscholar.org/CorpusID:249282506

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

[14] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding, 2019. URL https://arxiv.org/abs/1807.03748. 3

[15] Gabriel Taubin. A signal processing approach to fair surface design. In Proceedings of the 22nd
Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’95, page
351–358, New York, NY, USA, 1995. Association for Computing Machinery. ISBN 0897917014.
doi: 10.1145/218380.218473. URL https://doi.org/10.1145/218380.218473. 4

[16] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In Proceedings of the
Sixth International Conference on Computer Vision, ICCV ’98, page 839, USA, 1998. IEEE
Computer Society. ISBN 8173192219. 4

[17] G. Gerig, O. Kubler, R. Kikinis, and F.A. Jolesz. Nonlinear anisotropic filtering of mri data.
IEEE Transactions on Medical Imaging, 11(2):221–232, 1992. doi: 10.1109/42.141646. 4

[18] David I Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst.
The emerging field of signal processing on graphs: Extending high-dimensional data analysis to
networks and other irregular domains. IEEE Signal Processing Magazine, 30(3):83–98, 2013.
doi: 10.1109/MSP.2012.2235192. 5

[19] Fariba Karimi, Mathieu Génois, Claudia Wagner, Philipp Singer, and Markus Strohmaier.
Homophily influences ranking of minorities in social networks. Scientific Reports, 8:1–12, 2018.
ISSN 2045-2322. doi: https://doi.org/10.1038/s41598-018-29405-7. 6

[20] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.
Graphsaint: Graph sampling based inductive learning method. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. URL https://openreview.net/forum?id=BJe8pkHFwS. 6, 18

[21] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L Dyer,
Remi Munos, Petar Veličković, and Michal Valko. Large-scale representation learning on
graphs via bootstrapping. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=0UXT6PpRpW. 8, 9, 15, 19

[22] Piotr Bielak, Tomasz Kajdanowicz, and Nitesh V. Chawla. Graph barlow twins: A self-
supervised representation learning framework for graphs. Knowledge-Based Systems, 256:
109631, 2022. ISSN 0950-7051. doi: https://doi.org/10.1016/j.knosys.2022.109631. URL
https://www.sciencedirect.com/science/article/pii/S095070512200822X. 8, 9,
15, 19

[23] Haoran Duan, Cheng Xie, Bin Li, and Peng Tang. Self-supervised contrastive graph representa-
tion with node and graph augmentation. Neural Networks, 167:223–232, 2023. ISSN 0893-6080.
doi: https://doi.org/10.1016/j.neunet.2023.08.039. URL https://www.sciencedirect.
com/science/article/pii/S0893608023004598. 8, 9, 19

[24] Liang Peng, Yujie Mo, Jie Xu, Jialie Shen, Xiaoshuang Shi, Xiaoxiao Li, Heng Tao Shen, and
Xiaofeng Zhu. Grlc: Graph representation learning with constraints. IEEE Transactions on
Neural Networks and Learning Systems, pages 1–14, 2023. doi: 10.1109/TNNLS.2022.3230979.
8, 19

[25] Jun Xia, Lirong Wu, Ge Wang, and Stan Z. Li. Progcl: Rethinking hard negative mining in
graph contrastive learning. In International conference on machine learning. PMLR, 2022. 8,
9, 15

[26] Zhenyu Hou, Yufei He, Yukuo Cen, Xiao Liu, Yuxiao Dong, Evgeny Kharlamov, and Jie Tang.
Graphmae2: A decoding-enhanced masked self-supervised graph learner. In Proceedings of the
ACM Web Conference 2023, WWW ’23, page 737–746, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9781450394161. doi: 10.1145/3543507.3583379. URL
https://doi.org/10.1145/3543507.3583379. 8, 9

[27] Chaoxi Niu, Guansong Pang, and Ling Chen. Affinity uncertainty-based hard negative mining
in graph contrastive learning. IEEE Transactions on Neural Networks and Learning Systems,
pages 1–11, 2024. doi: 10.1109/TNNLS.2023.3339770. 8, 9, 15

[28] Yixin Liu, Yizhen Zheng, Daokun Zhang, Vincent Lee, and Shirui Pan. Beyond smoothing:
Unsupervised graph representation learning with edge heterophily discriminating. In AAAI,
2023. 8

11

https://arxiv.org/abs/1807.03748
https://doi.org/10.1145/218380.218473
https://openreview.net/forum?id=BJe8pkHFwS
https://openreview.net/forum?id=0UXT6PpRpW
https://www.sciencedirect.com/science/article/pii/S095070512200822X
https://www.sciencedirect.com/science/article/pii/S0893608023004598
https://www.sciencedirect.com/science/article/pii/S0893608023004598
https://doi.org/10.1145/3543507.3583379

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

[29] Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information maximization. In
International Conference on Learning Representations, 2019. 9, 14, 19

[30] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 5812–
5823. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_
files/paper/2020/file/3fe230348e9a12c13120749e3f9fa4cd-Paper.pdf. 9, 15, 19

[31] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to
improve graph contrastive learning. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=ioyq7NsR1KJ. 9, 19

[32] Yaochen Xie, Zhao Xu, and Shuiwang Ji. Self-supervised representation learning via latent
graph prediction. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang
Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pages 24460–24477.
PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/xie22e.html. 9,
19

[33] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4–24, 2021. doi: 10.1109/TNNLS.2020.2978386. 14

[34] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: Going beyond euclidean data. IEEE Signal Processing Magazine, 34
(4):18–42, 2017. doi: 10.1109/MSP.2017.2693418. 14

[35] Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Graph neural
networks with convolutional arma filters. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021. 14

[36] Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, and Xueqi Cheng. Graph wavelet neural
network. In International Conference on Learning Representations, 2019. 14

[37] Maysam Behmanesh, Peyman Adibi, Sayyed Mohammad Saeed Ehsani, and Jocelyn Chanussot.
Geometric multimodal deep learning with multiscaled graph wavelet convolutional network.
IEEE Transactions on Neural Networks and Learning Systems, pages 1–15, 2022. doi: 10.1109/
TNNLS.2022.3213589. 14

[38] Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and
Emanuele Rossi. GRAND: graph neural diffusion. In International Conference on Machine
Learning, pages 1407–1418. PMLR, 2021. 14

[39] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2014. 14

[40] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2016. 14

[41] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-
scale information network embedding. In Proceedings of the 24th International Conference on
World Wide Web, 2015. 14

[42] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems, 2017. 14

[43] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric transitivity pre-
serving graph embedding. In Proceedings of the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 1105–1114. ACM, 2016. 14

[44] Jiaqi Zeng and Pengtao Xie. Contrastive self-supervised learning for graph classification.
Proceedings of the AAAI Conference on Artificial Intelligence, 35(12):10824–10832, May
2021. doi: 10.1609/aaai.v35i12.17293. URL https://ojs.aaai.org/index.php/AAAI/
article/view/17293. 15

12

https://proceedings.neurips.cc/paper_files/paper/2020/file/3fe230348e9a12c13120749e3f9fa4cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3fe230348e9a12c13120749e3f9fa4cd-Paper.pdf
https://openreview.net/forum?id=ioyq7NsR1KJ
https://openreview.net/forum?id=ioyq7NsR1KJ
https://proceedings.mlr.press/v162/xie22e.html
https://ojs.aaai.org/index.php/AAAI/article/view/17293
https://ojs.aaai.org/index.php/AAAI/article/view/17293

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

[45] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast
for unsupervised visual representation learning. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 9726–9735, 2020. doi: 10.1109/CVPR42600.
2020.00975. 15

[46] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own
latent a new approach to self-supervised learning. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020.
Curran Associates Inc. ISBN 9781713829546. 15

[47] Zhiyuan Ning, P. Wang, Pengyang Wang, Ziyue Qiao, Wei Fan, Denghui Zhang, Yi Du,
and Yuanchun Zhou. Graph soft-contrastive learning via neighborhood ranking. ArXiv,
abs/2209.13964, 2022. URL https://api.semanticscholar.org/CorpusID:252568115.
15

[48] Qi Zhu, Carl Yang, Yidan Xu, Haonan Wang, Chao Zhang, and Jiawei Han. Transfer learning
of graph neural networks with ego-graph information maximization. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, 2021. URL https://openreview.net/forum?id=CzVPfeqPOBu. 18

[49] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI Magazine, 29(3):93, Sep. 2008. doi: 10.1609/
aimag.v29i3.2157. URL https://ojs.aaai.org/aimagazine/index.php/aimagazine/
article/view/2157. 18

[50] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June (Paul) Hsu, and Kuansan
Wang. An overview of microsoft academic service (mas) and applications. In Proceedings of
the 24th International Conference on World Wide Web, WWW ’15 Companion, page 243–246,
New York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450334730. doi:
10.1145/2740908.2742839. URL https://doi.org/10.1145/2740908.2742839. 18

[51] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel. Image-based
recommendations on styles and substitutes. In Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’15, page 43–52,
New York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450336215. doi:
10.1145/2766462.2767755. URL https://doi.org/10.1145/2766462.2767755. 18

[52] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
In Proceedings of the 34th International Conference on Neural Information Processing Systems,
NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546. 18

[53] Nils Kriege and Petra Mutzel. Subgraph matching kernels for attributed graphs. In Proceed-
ings of the 29th International Coference on International Conference on Machine Learning,
ICML’12, page 291–298, Madison, WI, USA, 2012. Omnipress. ISBN 9781450312851. 18

[54] Pinar Yanardag and S.V.N. Vishwanathan. Deep graph kernels. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’15, page 1365–1374, New York, NY, USA, 2015. Association for Computing Machinery.
ISBN 9781450336642. doi: 10.1145/2783258.2783417. URL https://doi.org/10.1145/
2783258.2783417. 18

[55] Nikil Wale, Ian A. Watson, and George Karypis. Comparison of descriptor spaces for chem-
ical compound retrieval and classification. Knowl. Inf. Syst., 14(3):347–375, mar 2008.
ISSN 0219-1377. doi: 10.1007/s10115-007-0103-5. URL https://doi.org/10.1007/
s10115-007-0103-5. 18

[56] Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan, Alex J.
Smola, and Hans-Peter Kriegel. Protein function prediction via graph kernels. In Bioinformatics,
volume 21, pages i47–i56, 06 2005. doi: 10.1093/bioinformatics/bti1007. URL https:
//doi.org/10.1093/bioinformatics/bti1007. 18

[57] Yanqiao Zhu, Yichen Xu, Qiang Liu, and Shu Wu. An Empirical Study of Graph Contrastive
Learning. arXiv.org, September 2021. 19

13

https://api.semanticscholar.org/CorpusID:252568115
https://openreview.net/forum?id=CzVPfeqPOBu
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2157
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2157
https://doi.org/10.1145/2740908.2742839
https://doi.org/10.1145/2766462.2767755
https://doi.org/10.1145/2783258.2783417
https://doi.org/10.1145/2783258.2783417
https://doi.org/10.1007/s10115-007-0103-5
https://doi.org/10.1007/s10115-007-0103-5
https://doi.org/10.1093/bioinformatics/bti1007
https://doi.org/10.1093/bioinformatics/bti1007

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

A Related work
A.1 Graph representation learning

In recent years, graph neural networks (GNNs) have made significant progress, by the emergence of
a multitude of methods dedicated to enhancing graph representation learning. These methods have
been designed to address various aspects of network embeddings, including proximity, structure,
attributes, learning paradigms, and scalability [33, 34]. Among the notable GNN approaches,
Graph Convolutional Networks (GCN) [2] is one of the foundational GNNs that uses convolutional
operations to capture local and global information from neighboring nodes, making them effective
for tasks like node classification. To overcome the constraints associated with conventional graph
convolutions and their approximations, the Graph Attention Network (GAT) [4] introduces the notion
of masked self-attentional layers, thereby enhancing its capacity to capture crucial node relationships.
By integrating an autoregressive moving average (ARMA) filter, GNN-ARMA [35] extends the
functionality of GNNs to adeptly capture global graph structures. GWCN, as proposed in [36, 37],
utilizes graph wavelets as spectral bases for convolution. This innovative approach enables the
modeling of both local and global structural patterns within graphs. GRAND [38] presents an
interesting perspective on graph convolution networks (GCNs) by interpreting them as a solution to
the heat diffusion equation. TIDE [5] introduces an innovative approach to tackle the oversmoothing
challenge in the message-passing-based approaches by leveraging the diffusion equation to enable
efficient and accurate long-distance communication between nodes in a graph.

However, it’s essential to emphasize that the majority of these methods depend on supervised data,
and this can be a significant limitation in real-world applications due to the difficulties associated with
acquiring labeled datasets. Several traditional unsupervised graph representation learning methods
are designed to learn meaningful representations of nodes in a graph without the need for labeled
data or explicit supervision. DeepWalk [39] employs random walks and skip-gram modeling to
capture local graph structure, while node2vec [40] extends this approach with a versatile biased
random walk strategy encompassing breadth-first and depth-first exploration. LINE[41] focuses
on preserving both first-order and second-order proximity information in large-scale networks, and
GraphSAGE [42] combines random walk sampling and aggregation to capture both local and global
graph structure. HOPE [43] leverages higher-order proximity information to capture structural
patterns beyond pairwise node relationships in graphs.

A.2 Graph contrastive learning

Self-supervised learning (SSL) has emerged as a powerful paradigm for mitigating the challenges
posed by expensive, limited, and imbalanced labels. It enables deep learning models to train on
unlabeled data, reducing the reliance on annotated labels [8].

Contrastive Learning (CL) is a popular SSL technique known for its simplicity and strong empirical
performance. Its fundamental objective is to create meaningful representations by pushing dissimilar
pairs apart and pulling similar pairs closer together. Graph Contrastive Learning (GCL) extends
the concept of CL to the domain of graphs. However, dealing with the irregular structure of graph
data presents more complex challenges in designing strategies for constructing positive and negative
samples compared to CL applied to visual or natural language data [7].

Numerous papers have emerged to address the challenges associated with GCL. These papers
primarily focus on sharing valuable insights and practical approaches for three key elements of
contrastive learning: data augmentation, pretext tasks, and contrastive objective [7].

Deep Graph Infomax (DGI) [10] and InfoGraph [29] are two fundamental contrastive learning models
that train a node encoder by maximizing mutual information between the node representation and the
global graph representation. DGI is designed for node representation learning, whereas InfoGraph
focuses on graph-level representations.

MVGRL [12] is one of the recent GCL approaches that accomplishes the learning of both node
and graph-level representations by considering two matrices, namely adjacency and diffusion, as
congruent views of a standard contrastive framework.

The fundamental of the aforementioned GCL approaches is the maximization of local-global mutual
information within a framework. However, they all rely on a readout function to generate the global
graph embedding which this function can be overly restrictive and may not always be achievable.

14

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

Moreover, for approaches like DGI [10], there is no guarantee that the resulting graph embedding
can effectively capture valuable information from the nodes, as it may not adequately preserve the
distinctive features found in node-level embeddings.

Several GCL approaches, including GRACE [11], GraphCL [30], and CSSL [44], deviate from the
conventional approach of contrasting local-global mutual information. Notably, these methods do
not rely on making assumptions about the use of injective readout functions to generate the graph
embedding.

The effectiveness of the GCL models depends on comparing each item with many negative points
[45]. However, relying on these negative examples is problematic, especially for graphs, where
defining negative samples in a meaningful manner is particularly difficult.

Various models have explored different strategies to address the issue of negative pairs. For instance,
BGRL applies the BYOL method [46] to graphs as a GCL approach that does not rely on negative
pairs [21]. Similarly, Graph Barlow Twins (GBT) avoids the necessity for explicit negative pairs by
utilizing a cross-correlation-based loss function [22].

Several studies focus on more informative negative samples, often referred to as hard negative
samples. These samples closely resemble the anchor but have semantic differences. Intuitively,
negative samples with different labels from the anchor, yet embedded nearby, are highly beneficial
for providing significant gradient information during training. It’s preferable to choose negative
pairs with very similar representations, as this makes it challenging for the current embedding to
differentiate between them effectively. ProGCL [25] incorporates hard negative nodes into the
contrastive loss to enhance performance. It applies a beta mixture model (BMM) to the pairwise
similarities between the negatives and the anchor, estimating the probability of a negative being
a true one. It subsequently integrates the estimated probability with the pairwise similarity to
measure the hardness of the negative samples. AUGCL [27] is another hard negative mining GCL
model that uses an affinity-based uncertainty estimator to evaluate the hardness of negative nodes
relative to each anchor node. It constructs a discriminative model using pairwise affinities between
negative nodes and the anchor, identifying nodes with higher uncertainty as hard negatives. Graph
Soft-Contrastive Learning (GSCL) [47] is a novel approach aimed at overcoming the limitations
of conventional graph contrastive learning by eliminating the need for graph augmentations and
negative sampling. Instead, it leverages neighborhood ranking to ensure that closer nodes are more
similar to a given anchor node than those farther away, in line with the inherent structure of the
graph. The key limitation of GSCL is that it employs a specialized loss function for preserving the
similarity ranking which requires computing a dense geodesic distance matrix for the entire graph.
This process becomes increasingly challenging as the number of hops grows, leading to significantly
higher computational costs, especially in large-scale graphs. Therefore, the relative similarity concept
in GSCL is particularly well-suited to homophilic graphs, where label consistency decreases with
distance.

In our approach, we neither treat negative pairs the same way as in GRACE nor ignore them like
in BGRL or GSCL. Instead, we make use of negative pairs within the contrastive loss, but with a
unique approach, we use the geometric structure of graphs to effectively consider proximity among
negative pairs in contrastive learning, rather than treating them all the same. Integrating the proximity
information to graph contrastive loss is still highly significant and to the best of our knowledge, our
approach is the first work that addresses this limitation by promoting the geometric structure of data
without encountering the limitations reported in hard negative mining methods. Specifically, our
method overcomes the necessity of computing probability distributions and does not rely on prior
assumptions, such as the bimodal similarity distribution of negatives with respect to positives as
observed in ProGCL.

B Comprehensive overview of smoothing approaches

B.1 Taubin smoothing

Taubin smoothing is an iterative method that employs two distinct filters—positive and negative
Laplacian filters—to enhance the smoothness of input data using the graph Laplacian matrix L.
Algorithm 1 outlines this process step-by-step.

15

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

The combination of positive and negative filters allows Taubin smoothing to balance effectively
between smoothing and preserving features. It avoids excessive diffusion and oversmoothing by
counteracting the smoothing effect with a corrective filter. Additionally, the parameters τ and µ enable
fine control over the amount of smoothing and correction, making it adaptable to different graphs.
However, it also has its limitations. Firstly, the method requires complex parameter tuning; balancing
τ and µ effectively demands careful adjustment of hyperparameters, which can be challenging.
Secondly, Taubin smoothing is sensitive to the underlying graph structure, heavily relying on the
quality of the graph Laplacian. If the graph structure is irregular or contains noisy edges, the results
may be adversely affected.

Algorithm 1 Taubin Smoothing ST (V,L;K,µ, τ)

1: Input: Binary matrix V ∈ {0, 1}N×D, symmetric normalized graph Laplacian matrix L ∈
RN×N , number of iterations K, negative Laplacian filter constant µ(< 0), positive Laplacian
filter constant τ(> 0) and µ < −τ

2: Output: Smoothed matrix Ṽ
3: Initialize: Set V(0) ← V
4: Iterative Filtering:
5: for k ← 1 to K do
6: Negative Laplacian Filter:
7: Compute intermediate matrix V

(k)
temp:

8: V
(k)
temp ← (I+ µL)V(k−1)

9: Positive Laplacian Filter:
10: Compute the updated matrix V(k):
11: V(k) ← (I+ τL)V

(k)
temp

12: end for
13: for each node i in {1, 2, . . . , N}
14: If the original value vi = 1, then
15: Set ṽi ← 1
16: Return Ṽ

B.2 Bilateral smoothing

This approach smooths input data by integrating spatial proximity and intensity similarity. This
method considers both the distance between nodes in the graph and the similarity of their values
to achieve effective smoothing. The intensity similarity dint(i, j) quantifies how similar two nodes
are based on their intensity or binary values, with higher similarity indicating closer values. On the
other hand, spatial proximity dspa(i, j) refers to the distance between two nodes i and j in the graph,
measured by the shortest path. Algorithm 2 presents a step-by-step outline of the process.

Bilateral smoothing provides adaptive smoothing by responding to local differences in node values
and spatial distances, enhancing its robustness in graphs with strong contrasts or noise. However, this
approach can be computationally expensive on large graphs, as it requires calculating weights for
each pair of nodes based on both spatial and intensity distances. Additionally, bilateral smoothing is
sensitive to hyperparameters; the parameters σspa and σint must be carefully tuned, as improper values
can lead to under- or over-smoothing.

B.3 Diffusion-based smoothing

Diffusion-based smoothing simulates the diffusion process (similar to heat diffusion) to propagate
information across the graph. The value of each node diffuses into its neighbors, gradually smoothing
the graph over time. Algorithm 3 presents a step-by-step outline of the process.

Diffusion-based smoothing is simple and efficient; the diffusion equation is relatively straightforward
and computationally efficient to implement, making the method scalable for large graphs. Addition-
ally, its iterative nature promotes smooth global effects, allowing values to propagate throughout the
graph in a stable manner. However, there are notable disadvantages. One significant drawback is the
potential loss of details; if not carefully controlled, the method can oversmooth the input, leading
to the loss of sharp features or edges. Additionally, diffusion-based smoothing applies uniform

16

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

Algorithm 2 Bilateral Smoothing SB(V,A;σspa, σint)

1: Input: Binary matrix V ∈ {0, 1}N×D, adjacency matrix A ∈ RN×N , spatial smoothing
parameter σspa, intensity smoothing parameter σint

2: Output: Smoothed matrix Ṽ
3: for each pair of nodes (i, j) in {1, 2, . . . , N} where j ∈ Nk(i) :
4: Compute weight w(i, j):
5: w(i, j)← exp

(
−dspa(i,j)

2σ2
spa
− dint(i,j)

2σ2
int

)
6: for each node i in {1, 2, . . . , N}
7: Compute the smoothed value ṽi:
8: ṽi ←

∑
j∈Nk(i) w(i,j)vj∑
j∈Nk(i) w(i,j)

9: for each node i in {1, 2, . . . , N}
10: If the original value vi = 1, then
11: Set ṽi ← 1
12: Return Ṽ

smoothing; since it relies on averaging over neighboring nodes, it does not account for intensity
similarity, which may result in the blurring of sharp changes in node values.

Algorithm 3 Diffusion-based Smoothing SD(V,A;K, η)

1: Input: Binary matrix V ∈ {0, 1}N×D, adjacency matrix A ∈ RN×N , number of iterations K,
diffusion rate η

2: Output: Smoothed matrix Ṽ
3: Initialize V(0) ← V
4: for k = 0 to K − 1 do
5: for each node i in {1, 2, . . . , N}
6: Compute the average value of neighboring nodes:
7: v̄(k)i ←

∑
j∈N (vi)

v(k)j

8: Update the value of node i:
9: v(k+1)

i ← v(k)
i + ηv̄(k)i

10: end for
11: for each node i in {1, 2, . . . , N}
12: If the original value v

(0)
i = 1, then

13: Set v(K)
i ← 1

14: Return Ṽ← V(K)

In general, each smoothing approach has its unique strengths, making it appropriate for specific types
of graph and smoothing requirements, allowing for tailored applications depending on the context.
Taubin smoothing is ideal for graphs where connectivity is balanced and the local structure is not too
irregular or noisy. Additionally, it is more efficient for large graphs as its computational complexity
is lower compared to other methods in practice. Bilateral smoothing works well on graphs with
heterogeneous or highly varying node values, such as those representing social networks, where
sharp changes in node features are significant. Finally, Diffusion-based smoothing is best suited
for large graphs with uniform or gradual changes, such as temperature distributions or geographical
information, where computational efficiency is essential and the focus is on achieving smooth
transitions without sharp features.

C Mini-batch generating approaches
Random node sampler approach randomly selects a subset of nodes from a given graph G = (V, E)
according to a probability distribution P (v), where v represents individual nodes in the graph. The
distribution P (v) assigns a probability to each node, indicating the likelihood of that node being
included in the sampled subset.

17

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

Random edge sampler approach randomly selects edges from a given graph G = (V, E) based on a
predefined probability distribution. For each edge e in the set of edges E , an independent decision is
made to determine whether it should be included in the subgraph Gs. This decision is guided by a
probability value P (e) assigned to each edge. The sampler incorporates a budget parameter m to
constrain the expected number of sampled edges, ensuring that

∑
P (e) = m, as described in [20].

Random walk sampler approach begins by randomly selecting r root nodes as starting points on the
entire graph G = (V, E). From each of these starting nodes, random walks of length L are conducted
to generate subgraphs [20]. To manage the potential issue of generating excessively large subgraphs,
a batch size parameter m is commonly employed, ensuring the approximate number of samples per
batch.

Ego graph sampler approach generates subgraphs centered around a specific "ego" node in a graph
G = (V, E). This mini-batch generation approach provides a localized perspective on the graph
by constructing a k-hop ego-graph centered at node vi, where "k-hop" indicates that the subgraph
includes nodes that can be reached within k steps from vi. Importantly, the sampler ensures that the
maximum distance between vi and any other nodes within the ego-graph is limited to k, as expressed
mathematically by ∀vj ∈ V, | d(vi, vj) |< k [48].

D Experimental setup

D.1 Properties and statistics of the benchmarks

For node classification, the benchmarks encompass a wide range of graph sizes, including smaller to
medium-scaled ones such as Cora, Citeseer, Pubmed [49], CoauthorCs [50], Computers, and Photos
[51], as well as larger datasets like ogbn-arxiv, ogbn-products, ogbn-proteins, and all of which are
sourced from the Open Graph Benchmark [52]. For graph classification, we employ MUTAG [53],
PTC [53], IMDB-Binary [54], PROTEINS [55], and ENZYMES [56] benchmarks.

The properties of different graph datasets used in the node and graph classification experiments are
provided in Table 4 and 5, respectively. The homophily rate h denotes the degree to which nodes in
the graph connect with similar nodes (homophily) versus nodes with dissimilar nodes (heterophily).
The diameter of large-scaled graphs is performed using Breadth-First Search (BFS) from a sample of
1,000 nodes selected at random.

Table 4: The statistics of the datasets for node classification evaluation

Scale Dataset #Nodes #Edges #Feature #Class #CC h% Avg. N.D. Diameter

Small Cora 2,708 5,429 1,433 7 78 80.4 4.08 19
Citeseer 3,327 4,732 3,703 6 438 73.5 3.47 28

Medium

PubMed 19,717 44,324 500 3 1 80.2 4.5 18
CoauthorCs 18,333 81,894 6,805 15 1 80 8.93 24
Computers 13,381 245,778 767 10 314 77.7 36.74 10
Photos 7,487 119,043 745 8 136 82.7 31.8 11

Large
ogbn-arxiv 169,343 1,166,243 128 40 1 65.4 13.67 23
ogbn-products 2,449,029 61,859,140 100 47 52,658 80.8 51.54 27
ogbn-proteins 132,534 39,561,252 8 94 1 91 597 9

#CC: Number of connected components, h%: Homophily rate, Avg. N.D: Average node degrees

Table 5: The statistics of the datasets for graph classification evaluation

Dataset #Graph Avg. node Avg. edge #Features #Class

MUTAG 188 17.9 39.6 7 2
PTC-MR 344 14.29 14.69 19 2
IMDB-Binary 1,000 19.8 193.1 1 2
PROTEINS 1,113 39.1 145.6 3 2
ENZYMES 600 32.63 124.3 3 6

18

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

D.2 Hyperparameters

In all experiments, we follow the linear evaluation scheme outlined in [10]. Initially, we start by
training the ’2-layer’ GCN encoders using the proposed SGCL framework in an unsupervised manner.
The training process consists of 200 iterations, and we utilize the Adam optimizer with a learning rate
of 1e− 3. Subsequently, the obtained embeddings are used to perform node or graph classification on
a downstream task, employing a l2− regularized logistic regression classifier. The mean classification
accuracy, along with the standard deviation, is then reported on the test nodes after conducting 5000
training runs.

In the mini-batch scenario of the node classification task, we employ a random-walk batch generation
approach to create subgraphs from the input graph. We set the batch size to 2000 with a random walk
length of 4 and 3 starting root nodes for all benchmark datasets. However, for the ogbn-products
benchmark, we use a batch size of 500 with a random walk length of 20.

In the smoothing techniques, we set the parameters as follows: for Taubin smoothing, we set
µ = −0.4, τ = 0.3, and K = 2; in the case of Bilateral smoothing, we employ σspa = 0.1 and
σinit = 2; and for Diffusion-based smoothing, we utilize η = 0.03 and K = 2.

To ensure a fair comparison with state-of-the-art models in both node and graph classification tasks,
we adopt the widely used data split method from the Open Graph Benchmark, which is commonly
employed in self-supervised learning. We also report values based on the respective papers. For
benchmarks where experiments weren’t performed in the relevant papers, we accurately reproduced
their values using available code resources. It’s worth mentioning that the results on the Cora in
MVGRL [12] are reported across benchmarks with varying numbers of nodes and edges (refer to
Table 1 in the respective paper). Therefore, the values are reproduced and reported using the standard
Cora benchmark.

To implement the proposed model, we leveraged the extensive capabilities offered by the PyGCL
library, as introduced in [57]. For the graph augmentation, we employ the augmentor base class
provided by PyGCL, which includes Edge Removing (ER) and Node Feature Masking (FM), both
with a drop probability of 0.5. For a comprehensive comparison, we reported values based on the
respective papers.

To ensure a fair comparison with state-of-the-art, we followed the publicly available data split of
citation networks and replicated all experiments accordingly. For benchmarks where experiments
weren’t performed in the relevant papers, we accurately reproduced their values using available
code resources. Additionally, for large-scale graphs, we conducted experiments on most of the
baselines using the PyGCL library since there was a lack of extensive baseline experimentation. The
implementation is available at https://github.com/maysambehmanesh/SGCL.

All experiments are implemented using PyTorch 1.13.1 and PyTorch Geometric 2.2.0 and conducted
on NVIDIA A100 GPUs with 40GB of memory.

D.3 Baselines

In our empirical study, we incorporate a variety of models for comparison. For node classification,
these models encompass representative node classification models, as well as recently-introduced
graph contrastive learning models, such as DGI [10], GRACE [11], MVGRL [12], GBT [22], BGRL
[21], CGRA [23], and GRLC [24] serving as our baseline models. For graph classification, we employ
seven state-of-the-art methods for graph contrastive learning, including InfoGraph [29], GraphCL
[30], MVGRL [12], BGRL [21], AD-GCL [31], LaGraph [32], and CGRA [23].

E Supplementary experiments
E.1 An empirical analysis of the feature space

In this section, we conduct the empirical analysis, introduced by Proposition 2.1, to validate the
impact of the feature space on real-world graphs by calculating the disparity measure using two
encoders within the proposed SGCL and conventional GCL (GRACE) frameworks. For a meaningful
comparison of the disparity measures across all graphs, we normalized the values using Min-Max
scaling, rescaling the measure to a range between 0 and 1. The results presented in Table 6 indicate
that the mean disparity of the graph encoders across all variants of SGCL is consistently lower than

19

https://github.com/maysambehmanesh/SGCL

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

the conventional GCL approach. This suggests that the SGCL encoder produces node representations
with greater similarity within the same class and increased distinction between different classes,
reflecting more effective self-supervised learning.

Table 6: Comparison of mean disparity measures for learned features of SGCL and GCL on real-
world graph benchmarks.

Model Cora Citeseer Pubmed CoauthorCS Computers Photo ogbn-arxiv

GCL (GRACE) 0.66±0.05 0.63±0.02 0.51±0.03 0.58±0.02 0.64±0.03 0.65±0.03 0.56±0.03
SGCL-T 0.49±0.05 0.58±0.05 0.50±0.01 0.53±0.03 0.56±0.01 0.60±0.05 0.51±0.02
SGCL-B 0.63±0.03 0.51±0.05 0.49±0.02 0.52±0.01 0.52±0.05 0.59±0.02 0.48±0.05
SGCL-D 0.47±0.02 0.54±0.03 0.49±0.01 0.46±0.05 0.55±0.05 0.43±0.03 0.45±0.04

E.2 More evaluation on heterophilic graphs

To perform a more comprehensive analysis, we conduct experiments on graphs with varying ho-
mophily rates, utilizing different real-world graphs, as detailed in Table 7.

Table 7: Different real-world graphs. The parameter h[0, 1] is the edge homophily ratio for homophily
graphsh→ 1 and for heterophily graphs h→ 0.

Graph #Nodes #Edges #Features #Classe Class types h

Chameleon 2,277 36,101 2,325 5 Wiki pages 0.23
Actor 7,600 29,926 931 5 Actors in movies 0.22
Cornell 183 295 1,703 5 Web pages 0.3
Texas 183 309 1,703 5 Web pages 0.11
Wisconsin 251 499 1,703 5 Web pages 0.21
Genius 421,961 984,979 12 2 marked act. 0.618
Twitch-gamers 168,114 6,797,557 7 2 mature content 0.545

We evlauate the performance of SGCL on these graphs and compare the results with conventional
GCL approaches like the GRACE model. Results in Table 8 indicate that the proposed models still
outperform conventional GCL on heterophilic graphs. However, the advantage of smoothing methods
in homophilic graphs becomes more pronounced. As the homophily rate increases, the number of
false negatives also increases, emphasizing the critical role of SGCL in effectively contributing both
positive and negative pairs to the contrastive loss.

Table 8: Comparison of the accuracy of proposed SGCL models on heterophilic graphs with GCL.

Model Chameleon Actor Cornell Texas Wisconsin Genius Twitch-gamers

GCL (GRACE) 45.3±0.7 28.55±0.28 52.21±1.3 53.07±2.4 51.60±2.4 81.48±0.15 58.21±0.51
SGCL-T 46.32±1.3 29.29±0.47 54.45±0.6 54.56±1.8 52.50±2.3 82.58±0.33 59.37±0.47
SGCL-B 45.52±0.3 29.15±0.28 55.79±1.2 54.97±2.3 50.23±2.2 82.47±0.17 59.38±0.88
SGCL-D 45.91±2.5 28.74±0.76 53.12±5.4 55.48±2.7 53.62±2.1 81.86±0.2 58.60±0.48

E.3 Computational analysis

The computational cost of graph contrastive learning models is analyzed through two distinct compo-
nents: pre-training and downstream task evaluation. The pre-training phase consists of mini-batch
generation, augmentation generation, encoder computation, and computations of the smoothing
strategy. In the downstream task phase, the model learns two input/output MLP layers and evaluates
the model for tasks such as node classification.

For a graph G = (V, E), with N nodes and E edges, the encoder computation using a message-
passing-based GNN encoder fθ efficiently computes embeddings with the complexity of O(N + E).
The computation cost of graph augmentation consists of applying the feature mask (O(N)) and the
edge removal mask (O(E)). The overall complexity is O(N + E), with the edge removal mask
being the dominant factor (O(E)). Notably, this cost is lower than that of MVGRL [12], as it utilizes
a Personalized PageRank-based graph diffusion approach for structural augmentations, which entails
a complexity of O(I.E), where I represents the number of iterations required for convergence.

20

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

The proposed model imposes additional computational overhead compared to the standard GCL.
This includes the computation associated with the mini-batch strategy and integrating the smoothing
strategy into the conventional contrastive loss.

The computation of mini-batch strategies can be disregarded in the overall complexity analysis, as
it is performed offline during preprocessing. However, the complexities of mini-batch strategies to
generate k subgraphs with a batch size m from a given graph areO(km+ kE) for the Random Node
Sampler, O(km + kE) for the Random Edge Sampler, O(k(r × hd +m)) for the Random Walk
Sampler with r roots, walk length h and average node degree d, and O(k(sd +m)) for the s-hop
Ego-graph sampler.

The main computational overhead is associated with the smoothing strategy. Taubin smoothing, which
utilizes Laplacian matrices, has a computational complexity ofO(N +E) constructing the Laplacian
matrix and O(N) per iteration for matrix multiplication. The overall complexity, influenced by the
number of iterations, ranges from linear to quadratic concerning the number of nodes N and edges E.

The computational complexity of bilateral smoothing, which considers both spatial proximity and
intensity similarity for each node, is predominantly influenced by the node degrees and the total
number of edges, typically in the order O(N + E).

The computational complexity of diffusion-based smoothing primarily depends on the number of
nodes N and the number of iterations K. Each iteration involves summing the values of neighboring
nodes, which can be considered O(deg(i)) for each node i, where deg(i) is the degree of node i.
Therefore, the overall computational complexity can be expressed as O(KN +E), where K is the
number of iterations, N is the number of nodes, and E is the total number of edges in the graph.

Table 9: Runtime performance comparison of the proposed model and baselines across graphs of
different scales (each value denotes the running time of individual epochs, measured in seconds).

Model Phase Small
(Cora)

Medium
(CoauthorCS)

Large
(ogbn-arxiv)

DGI pre-training 0.0391 0.0916 0.0732
downstream 0.0024 0.0148 0.0837

GRACE pre-training 0.0713 0.3186 0.4233
downstream 0.0024 0.0148 0.0845

MVGRL pre-training 0.2266 0.7824 0.9407
downstream 0.0024 0.0148 0.0833

BGRL pre-training 0.0927 0.1849 0.1755
downstream 0.0024 0.0149 0.0846

GBT pre-training 0.0343 0.1387 0.5388
downstream 0.0024 0.0148 0.0844

GRLC pre-training 0.1193 0.3249 0.5747
downstream 0.0682 0.2685 0.4325

ProGCL-weight pre-training 0.0929 0.3428 –
downstream 0.0032 0.0152 –

ProGCL-mix pre-training 0.1192 0.4993 –
downstream 0.0029 0.0152 –

GREET pre-training 0.1793 2.5811 –
downstream 0.0031 0.0125 –

SGCL-T pre-training 0.1133 0.9723 1.3921
downstream 0.0025 0.0149 0.0841

SGCL-B pre-training 0.9374 2.5303 3.0016
downstream 0.0025 0.0151 0.0848

SGCL-D pre-training 1.0073 2.6681 3.1296
downstream 0.0024 0.0151 0.0841

21

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

For numerical evaluation, we conduct the computational analysis to evaluate the runtime performances
of three variants of the SGCL model, comparing them with several baseline methods across graphs of
varying scales. The results of these experiments are summarized in Table 9. For this analysis, we
included the majority of baselines for which implemented code was accessible; benchmarks with
unreasonable runtimes are marked with a dash (–) in the table.

These results indicate that during pre-training, SGCL-T on the small-scale graph outperforms MV-
GRL, GRLC, ProGCL-mix, and GREET in running time. For medium-scale and large-scale graphs,
the computational costs are approximately 18% and 40% higher than those of MVGRL, respectively.
The computational cost of the other variants of the model is increased compared to the baselines.
This observed computational overhead is associated with the expectations, as SGCL integrates sup-
plementary information into the conventional contrastive loss function, and the smoothing strategies
require the exploration of the graph to identify proximity information.

Notably, the run-time performances in the downstream evaluation phase across baselines implemented
in the PyGCL library, which follows a framework similar to SGCL, are nearly identical on each
benchmark. This implies that, despite the more computation time in the pre-training phase, our model
performs effectively in the downstream evaluation phase.

Additionally, we have conducted memory consumption comparisons for these baselines across graphs
of different sizes, employing various graph batch generation methodds: Random Walk Sampler
(RWS), Ego Graph Sampler (EGS), Random Node Sampler (RNS), and Random Edge Sampler
(RES). The reported values reflect the GPU memory required (in MB) to train the models.

Table 10 indicate that the proposed SGCL models utilizing NSP and ESP demonstrate better memory
efficiency, outperforming most baselines, particularly on medium and large-scale graphs. The EGS
strategy tends to be more memory-intensive than other sampling methods. This becomes a crucial
consideration when working with small and medium-scale graphs, particularly when comparing our
approach to more memory-efficient baselines such as DGI, BGRL, and GBT.

Table 10: Memory consumption comparison between the proposed model and baselines on graphs of
varying scales (MB).

Model Small
(Cora)

Medium
(CoauthorCS)

Large
(ogbn-arxiv)

DGI 711 3023 15993

GRACE 1447 34255 34907

MVGRL 2753 33641 35191

BGRL 901 9931 26691

GBT 971 5093 26943

GRLC 1139 11533 35263

ProGCL-weight 1113 14129 –

ProGCL-mix 1647 28239 –

GREET 1655 33167 –

SGCL-T

RWS 1957 11629 11639
EGS 2097 32782 38641
NSP 1075 2001 1489
ESP 1481 4249 3605

SGCL-B

RWS 1973 9113 11293
EGS 2529 32137 38759
NSP 1075 1999 1473
ESP 1481 4321 4497

SGCL-D

RWS 1973 11409 12051
EGS 2119 32871 35725
NSP 1977 2033 1477
ESP 1477 4715 3163

22

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

F Ablation study

F.1 Evaluating with other mini-batching generation methods

We conduct node classification experiments employing other mini-batching generation methods,
including random node-sampling, random edge-sampling, and Ego-graph. A summary of the results
derived from these mini-batching approaches is reported in Table 11.

Table 11: Accuracy comparison of proposed models with various mini-batching generation ap-
proaches (mean ± std).

Model Sampling method Cora Citeseer Pubmed CoauthorCS Computers Photo

SGCL-T

RW-sampler 84.33±0.4 74.94±0.8 84.25±0.3 92.25±0.1 87.21±0.4 93.12±0.7
Ego-graph 84.21±0.3 73.88±1.6 84.47±0.7 92.12±0.3 86.7±0.6 93.05±0.7
Node-sampler 84.12±0.8 74.12±1.3 84.14±0.4 92.17±0.7 87.08±0.4 92.84±1.2
Edge-sampler 84.53±.5 73.54±1.7 83.76±0.6 91.83±0.8 86.88±1.5 93.33±0.8

SGCL-B

RW-sampler 84.78±0.3 74.30±1.4 84.1±0.2 92.33±0.4 89.75±0.8 93.72±0.1
Ego-graph 84.63±0.7 73.26±0.7 84.16±0.5 91.68±0.7 89.07±1.6 93.13±0.4
Node-sampler 84.39±0.8 73.74±1.4 83.84±1.1 92.18±0.3 88.25±0.8 92.22±0.6
Edge-sampler 84.11±1.6 74.22±1.5 83.79±0.5 92.22±0.6 88.84±0.2 92.16±1.2

SGCL-D

RW-sampler 84.17±0.4 75.72±0.8 85.12±0.3 92.14±0.2 86.11±0.3 92.87±0.6
Ego-graph 84.15±1.5 73.87±0.6 84.73±0.2 92.17±0.6 84.24±0.5 92.26±0.5
Node-sampler 84.23±1.3 74.43±1.3 84.68±1.3 92.05±0.3 85.38±0.4 91.63±1.4
Edge-sampler 84.75±1.4 73.55±0.8 85.17±0.6 92.21±0.1 85.3±0.7 93.76±0.2

F.2 Influence of different terms in contrastive loss function

Since the number of non-zero values in Π̃
(i,j)
neg exceeds those in Π̃

(i,j)
pos , we initially assign λ as 1/2N .

This adjustment aims to achieve a trade-off between positive and negative pairs within the loss
function 5. However, in the experiments, we determined its optimal value through grid search. For
instance, on the Photo dataset, the optimal value for λ was found to be around 2.3e− 4. This value
aligns with our first initialization when considering the batch size of N = 2000 in the experiments.

To perform an ablation study on the contrastive loss function, we evaluate the significance of each
term of Equation 5 and subsequently combine them with hyperparameter λ. Table 12 provides the
accuracies of different variants of SGCL achieved by different components of the contrastive loss
function on three benchmarks of varying scales: small (Cora), medium (CoauthorCS), and large
(ogbn-arxiv). Initially, we observe that the exclusion of any term from the loss function results in
deteriorated or collapsed solutions, aligning with our expectations. Subsequently, we investigated the
influence of the combination of two individual terms using an optimal value of λ.

Table 12: Accuracies of different SGCL variants influenced by individual components of the
contrastive loss function Equation 5.

Model Benchmark (A) (B) L(i,j)
SGCL (λ)

small (Cora) 84.12±0.7 83.24±1.2 84.33±0.4 (4e-4)
SGCL-T medium (CoauthorCS) 92.15±0.3 91.74±0.4 92.25±0.1 (1e-4)

large (ogbn-arxiv) 68.92±0.0 67.05±0.0 69.30±0.5 (1e-4)

small (Cora) 84.27±0.8 83.84±0.7 84.78±0.3 (4e-4)
SGCL-B medium (CoauthorCS) 91.73±0.4 91.66±0.7 92.33±0.4 (1e-4)

large (ogbn-arxiv) 68.73±0.3 68.29±0.4 69.24±0.3 (1e-4)

small (Cora) 83.9±1.3 83.82±1.4 84.17±0.4 (4e-4)
SGCL-D medium (CoauthorCS) 91.63±0.4 91.32±0.6 92.14±0.2 (1e-4)

large (ogbn-arxiv) 68.40±0.3 68.29±0.3 69.03±0.4 (1e-4)

(A): ∥ Π̃
(i,j)
pos ⊙ (1−C(i,j)) ∥2F

(B): ∥ (1− Π̃
(i,j)
pos)⊙C(i,j) ∥2F

23

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

F.3 Ablation analysis of hyperparameters in smoothing approaches

F.3.1 Taubin smoothing

Taubin smoothing is a combined process that alternates between negative and positive Laplacian
filters to smooth the signal. The negative Laplacian filter, with hyperparameter µ < 0, smooths the
input matrix V, while the positive Laplacian filter, with hyperparameter τ > 0 (where µ < −τ),
prevents oversmoothing by restoring some of the original values. The smoothing process alternates
K times between these two filters. The values of τ , µ, and K are carefully chosen to balance the
smoothing process with the positive correction, ensuring a stable result that avoids both excessive
noise and oversmoothing.

For the ablation study, we begin by fixing K = 2 and evaluate the impact of varying the hyperpa-
rameters τ (where 0 < τ < 1) and µ (with µ < −τ). For a more detailed evaluation, we focus
on the interaction between the parameters τ and µ, both of which are varied over finer increments.
Specifically, we evaluate the performance of the model on the Cora and Pubmed by adjusting τ in
the range of 0.1 to 0.5 and µ between −0.2 and −0.6 (µ < −τ). Table 13 highlights the results for
different combinations of τ and µ.

Table 13: Performance of SGCL-T with fixed K = 2 and different combinations of µ and τ .

Cora Pubmed

µ -0.2 -0.3 -0.4 -0.5 -0.6 -0.2 -0.3 -0.4 -0.5 -0.6

τ

0.1 84.87 84.31 84.06 84.21 83.71 83.9 83.22 83.54 82.56 81.82
0.2 - 83.55 84.31 84.37 84.03 - 83.36 84.32 82.22 82.06
0.3 - - 84.33 83.25 83.81 - - 84.25 84.4 82.83
0.4 - - - 83.86 83.81 - - - 83.38 82.76
0.5 - - - - 84.11 - - - - 82.26

Similarly, we evaluate the performance of SGCL-T by varying the number of iteration K, while
keeping τ = 0.3 and µ = −0.4 fixed. The evaluation is performed on both the Cora and Pubmed
datasets, with the corresponding accuracy and runtime for different values of K. The results are
summarized in Table 14.

Table 14: Performance of SGCL-T with fixed τ = 0.3 and µ = −0.4 and different numbers of
iteration K.

K 1 2 3 4 5 6 7

Cora Accuracy 84.25 84.47 83.55 84.37 84.11 84.26 84.11
Time (s) 0.0849 0.1242 0.1727 0.2183 0.2758 0.3211 0.3734

Pubmed Accuracy 84.34 84.25 84.1 83.42 83.35 83.76 83.76
Time (s) 0.6179 1.0517 1.4551 1.9107 2.2914 2.6974 3.1376

From the ablation study, we observe that the highest accuracy across different benchmarks is achieved
with varying hyperparameter values. However, for consistency, we set τ = 0.3, µ = −0.4, and
K = 2 for all experiments. It’s also worth noting that as K increases, computation time per epoch
significantly rises for both datasets, highlighting a trade-off between accuracy and efficiency.

F.3.2 Bilateral smoothing

In the bilateral smoothing approach, the σint parameter controls how sensitive the bilateral filter is
to intensity differences. In this context, it determines how sharply the filter distinguishes between
different intensities. When σint increases, the sensitivity of the filter to differences in intensity
decreases, causing it to treat all intensity values more similarly. This makes the bilateral filter
act more like a standard Gaussian filter, which smooths uniformly without considering intensity
differences. Similarily, the σspa parameter determines the extent to which spatial proximity affects
the bilateral smoothing process. It controls how much weight is given to neighboring nodes based
on their distance in the graph. When σspa is small, only nodes that are very close to each other have
a strong influence on each other during smoothing. This preserves fine details and small features.

24

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

As σspa increases, the filter begins to smooth over larger distances, meaning that larger features in
the graph get smoothed out. In this case, even nodes that are farther apart will start influencing each
other more, resulting in a broader, more generalized smoothing effect.

For SGCL-B, we conduct an ablation study on two key hyperparameters: σinit and σspa. The study is
carried out on two datasets, Cora and Pubmed, with varying values for both hyperparameters. The
results are presented in Table 15, where we evaluate model performance for different combinations
of σinit and σspa.

Table 15: Performance of SGCL-B with different combinations of σinit and σspa.

Cora Pubmed

σspa 0.01 0.05 0.1 0.15 0.2 0.01 0.05 0.1 0.15 0.2

σinit

1 84.48 84.72 84.87 83.96 84.26 83.08 84.11 84.25 83.12 82.14
2 84.37 84.16 84.78 84.16 83.4 83.25 84.23 84.1 82.49 83.96
3 84.47 82.99 84.21 84.21 84.47 84.22 84.26 84.17 83.26 83.28
4 84.47 84.37 83.96 83.91 83.15 83.86 83.92 84.09 83.56 83.87
5 84.26 83.86 85.28 84.01 83.35 83.63 83.89 83.82 83.24 83.8

These results indicate that the choice of hyperparameters impacts the performance of the model, and
optimal settings vary across different datasets. Additionally, smaller values of σspa tend to preserve
local graph features better, while larger values induce more smoothing, which affects accuracy
differently across datasets.

F.3.3 Diffusion-based smoothing

In this approach, the diffusion rate parameter η controls the speed of smoothing. Larger values lead
to faster diffusion and more aggressive smoothing, while smaller values retain more of the original
structure. The parameter K controls how long the smoothing process continues. More iterations
lead to a more globally smooth result, while fewer iterations keep the smoothing more localized.
Essentially, diffusion-based smoothing gradually spreads information from each node to its neighbors,
helping to equalize values across the graph. The choice of η and K allows for fine control over
how quickly and broadly this smoothing occurs, making it a flexible approach for graph-based data
processing.

In the ablation study for SGCL-D, we examine the impact of two key hyperparameters: η (diffusion
rate) and K (number of iterations) on the Cora and Pubmed datasets. The results are summarized in
Table 16.

Table 16: Performance of SGCL-D with different combinations of η and K.

Cora Pubmed

η 0.01 0.03 0.1 0.2 0.5 0.01 0.03 0.1 0.2 0.5

K

1 84.26 84.67 84.12 84.22 84.11 84.23 84.29 84.17 83.17 83.46
2 84.52 84.47 84.53 84.11 84.23 84.11 85.12 83.65 84.12 83.25
3 84.33 84.17 84.23 83.9 83.87 84.63 85.17 84.27 83.63 84.04
4 84.85 84.52 83.86 83.27 83.66 84.55 84.29 83.66 83.26 83.28
5 84.97 84.28 83.54 83.64 83.78 84.57 83.88 83.46 83.7 83.68

On Cora, the highest accuracy (84.97%) is achieved with η = 0.01 and K = 5, indicating that slower
diffusion and more iterations tend to yield better results. For Pubmed, the best accuracy (85.17%) is
achieved with η = 0.03 and K = 3, showing that moderate diffusion rates paired with a balanced
number of iterations deliver optimal results. These results highlight a trade-off between diffusion
speed and the number of iterations: smaller η values combined with more iterations generally retain
more local details, while larger η values spread smoothing effects faster but may reduce accuracy due
to over-smoothing.

25

Smoothed Graph Contrastive Learning via Seamless Proximity Integration

G Limitations and future directions
As discussed, contrasting with true hard negatives—nodes with different labels from the anchor but
located nearby—can improve model performance by providing strong gradient signals and enhancing
contrast. However, in many benchmarks, particularly in homophilic graphs, these nearby nodes are
likely to share the same label as the anchor, making them potential false negatives. This issue can
undesirably push away semantically similar samples, resulting in performance degradation. The
proposed SGCL methods effectively mitigate the harmful impact of false negative nodes. However,
this also inevitably reduces the influence of potential true hard negative nodes. Despite this trade-off,
the overall reduction in false negatives is expected to have a more significant positive effect than the
reduced influence of true hard negatives, as supported by our analytical analysis.

As the first to introduce smoothed positive/negative pairs for graph contrastive learning, we explored
the development of a stable and effective learnable smoothing objective. However, we found that
a straightforward learnable solution is challenging to train since a learnable smoothing objective
can make the overall loss unstable. Consequently, the basic version did not yield performance
improvements. Nonetheless, we recognize this as a crucial direction for future enhancement and view
it as an exciting avenue for further research.

26

	1 Introduction
	2 Background and motivation
	2.1 Preliminaries
	2.2 Uniform negative sampling
	2.3 Motivation and intuition
	2.4 Leveraging the advantages of graph geometry
	2.5 Smoothness promoting in positive and negative sets

	3 Method: smoothed graph contrastive learning
	4 Experiments
	4.1 Node classification
	4.2 Graph classification

	5 Conclusion
	A Related work
	A.1 Graph representation learning
	A.2 Graph contrastive learning

	B Comprehensive overview of smoothing approaches
	B.1 Taubin smoothing
	B.2 Bilateral smoothing
	B.3 Diffusion-based smoothing

	C Mini-batch generating approaches
	D Experimental setup
	D.1 Properties and statistics of the benchmarks
	D.2 Hyperparameters
	D.3 Baselines

	E Supplementary experiments
	E.1 An empirical analysis of the feature space
	E.2 More evaluation on heterophilic graphs
	E.3 Computational analysis

	F Ablation study
	F.1 Evaluating with other mini-batching generation methods
	F.2 Influence of different terms in contrastive loss function
	F.3 Ablation analysis of hyperparameters in smoothing approaches
	F.3.1 Taubin smoothing
	F.3.2 Bilateral smoothing
	F.3.3 Diffusion-based smoothing

	G Limitations and future directions

