
HAL Id: hal-04812905
https://hal.science/hal-04812905v1

Submitted on 1 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Investigating parallel execution of quantum Machine
Learning circuits on superconducting hardware

Julien Rauch, Brice Chichereau, Stéphane Vialle, Patrick Carribault, Damien
Rontani

To cite this version:
Julien Rauch, Brice Chichereau, Stéphane Vialle, Patrick Carribault, Damien Rontani. Investigating
parallel execution of quantum Machine Learning circuits on superconducting hardware. QSET 2024 -
4th International Workshop on Quantum Software Engineering and Technology IEEE Quantum Week
2024 (QCE’24), Sep 2024, Montréal, Canada. �hal-04812905�

https://hal.science/hal-04812905v1
https://hal.archives-ouvertes.fr

Investigating parallel execution of quantum Machine
Learning circuits on superconducting hardware

1st Julien Rauch
LISN UMR-9015, CNRS,
Université Paris-Saclay
F-91405 Orsay, France

julien.rauch@lisn.fr
0009-0009-4778-7692

2nd Brice Chichereau
CEA, DAM, DIF

F-91297 Arpajon, France
LIHPC, Université Paris-Saclay, CEA

Bruyères-le-Châtel, France
brice.chichereau@cea.fr

3rd Stéphane Vialle
LISN UMR-9015, CNRS,
Université Paris-Saclay,

CentraleSupélec
F-91405 Orsay, France

stephane.vialle@centralesupelec.fr
0000-0001-6336-2269

4th Patrick Carribault
CEA, DAM, DIF

F-91297 Arpajon, France
LIHPC, Université Paris-Saclay, CEA

Bruyères-le-Châtel, France
patrick.carribault@cea.fr

5th Damien Rontani
LMOPS EA-4423, Université de Lorraine,

CentraleSupélec
F-57070 Metz, France

Chair in Photonics, CentraleSupélec, Metz, France
damien.rontani@centralesupelec.fr

0000-0002-8549-4040

Abstract—Quantum Machine Learning algorithms generally
rely on hybrid implementation with a classical learning loop
running on a CPU and small quantum circuits running on
a Quantum Processing Unit (QPU) for serialized processing
batches of data. Considering the scarcity of quantum resources,
parallelizing the execution of multiple instances of small quantum
circuits instead of allocating a single circuit would better use
quantum hardware resources. However, exploiting all available
qubits in QPUs could result in a noisier operating condition and
disrupt or slow the learning mechanism.

This paper investigates the parallelization of QML algorithms
on QPU for data clustering based on trainable generative models.
We design a parallel macro-circuit with the Qiskit framework and
measure their performance on an IBM superconducting quantum
computer. A theoretical performance model is then proposed to
determine the expected level of acceleration. Finally, we measure
the impact of the QPU’s occupancy on the loss functions of our
QML algorithm, enabling us to identify the most reliable and
exploitable acceleration range.

Index Terms—Parallel Quantum Circuits, Qiskit, Experimental
Performance, Speedup, Quantum Machine Learning

I. MOTIVATIONS AND OBJECTIVES

Today’s QPUs are available, but they remain rare and are
shared by many users and many applications. Of course, the
number of QPUs is increasing, but so is their user community.
Execution time on a QPU is therefore precious, and this
situation is set to continue for some years yet. Access to a
QPU in the cloud is quite expensive once you exceed a small
quota of free access time. It is therefore advisable not to waste
runtime on a QPU.

This work was supported by the French government under the France 2030
program (QuanTEdu-France) under reference ANR-22-CMAS-0001.
The authors acknowledge also the financial support of the Chair in Photonics
and the Région Grand-Est, France.

On the other hand, QPU manufacturers are increasing the
size of QPUs to support more qubits and deeper circuits, im-
proving QPU connectivity to facilitate the entanglement of any
qubits, and attempting to reduce quantum noise inside QPUs.
But many machine learning (ML) algorithms are iterative, and
must apply the same calculations to different subsets of data.
At each iteration, they have to run small quantum circuits of
fixed depth several times on independent sets of qubits. They
must then take measurements at the output of the QPU and
send them back to the CPU to decide on the nature of the next
iteration.

It therefore seems interesting to load onto the QPU a
macro-circuit containing several independent small circuits,
or even k times the same small circuit, until all the available
qubits are used. So, instead of executing N times a small
circuit, we would only execute N/k times a macro-circuit
comprising k small circuits. However the following issues
must be investigated:

• Will the execution time of an iteration on the QPU be
divided by k (leading to an acceleration of k on the
QPU)?

• Will quantum noise increase if more qubits are used to
simultaneously execute more small independent circuits,
disrupting the convergence of the ML algorithm and
leading to more iterations being executed?

• Is there an optimal macro-circuit size to reduce the
total execution time on the QPU (for the whole learning
algorithm)?

This paper summarizes our design of macro-circuits simul-
taneously executing many small circuits, in order to accelerate
a data clustering algorithm on a hybrid CPU-QPU architecture.

mailto:julien.rauch@lisn.fr
https://orcid.org/0009-0009-4778-7692
mailto:brice.chichereau@cea.fr
mailto:stephane.vialle@centralesupelec.fr
https://orcid.org/0000-0001-6336-2269
mailto:patrick.carribault@cea.fr
mailto:damien.rontani@centralesupelec.fr
https://orcid.org/0000-0002-8549-4040

Fig. 1. Continuous QCBM circuit for 2 dimension data

We used generative networks, the Qiskit+Pytorch development
environment and conducted our experiments both with Qiskit
simulations and on real IBM quantum machines.

II. RELATED WORK AND POSITIONING

A. Benchmarking methodology

In [1], the authors propose a precise definition of a bench-
mark program. Our ML applications don’t correspond to this
definition, and we don’t have this objective. However, their
article offers pertinent recommendations on the type of opti-
mizations to apply or avoid when measuring the performance
of quantum codes: (1) apply optimizations with constant time
cost (e.g. : generate final circuits with quantum gates adapted
to the target hardware), (2) beware of optimizations that
could exponentially increase the number of quantum gates
and limit scalability (which could occur when generating error
mitigation to increase output quality), and (3) never perform
optimizations based on knowledge of the circuit’s expected
output.

We have adopted rules 1 and 2 by checking the configuration
of the qiskit environment. As for rule 3, we are conducting
quantum ML experiments and, of course, adjusting our system
hyperparameters and learning algorithm to improve our circuit
result. But we do not change the topology of our quantum
circuit or the nature of our quantum gates to favor the exact
result we need.

B. Performance modeling and metrics

The evaluation of the performance of quantum algorithms
is a very hot topic as the search of an advantage over classical
computers is ongoing. One part of this lies in the development
of interesting metrics to evaluate quantum devices. There has
been some work in this direction, notably the ”CLOPS” metric
developed by IBM [2] aiming at providing an overview of the
speed of a QPU.

As real QPUs are being installed into more labs and
computing centers, there is a growing interest in benchmarks
for quantum computing. These provide insights into the real-
world performance of QPUs and thus are of real scientific
and industrial interest. In particular, comprehensive applicative
benchmarks that give an overview of real workflows on QPUS
are of interest [3].

A final major part of the evaluation of the performance of
quantum computing lies in performance models. These allow
projections and predictions for the performance of current
and future QPUs and better interpretation of benchmarks and
experiments. Some simple execution time models are starting
to appear for the execution of classes of quantum circuits [4].
There is however little information regarding the evolution of
execution time based on QPU occupancy. We’ll assume in this

work that the execution time of a quantum circuit is constant
regardless of the number k of parallel executions of this circuit
on a QPU.

C. Quantum multi-programming

Filling a QPU with independent circuits to be executed in
parallel is widely exploited in multi-programming approaches
and tools, such as palloq [5], QuMC [6] and QuCloud+
[7]. Their approach consists firstly in gathering independent
circuits to be executed (located in a task queue, for example)
and grouping them into a single macro-circuit. Next, these
tools look for the best mapping of qubits on the QPU archi-
tecture, so as to execute them in parallel while minimizing the
noise generated and undesirable interference between qubits
on NISQ processors (crosstalk).

Our research focuses on QML algorithms based on neural
networks or generative networks, with the characteristic of
executing the same circuit (one size, one depth) over and over
again on different data, within a VQA-type iterative algorithm.
So, to meet the needs of the same application and the same
algorithm, we fill the QPU with identical circuits in order to
make the best use of the QPU and, above all, to speed up
learning calculations.

III. PARALLEL QUANTUM ML APPLICATION

A. VQA and generative models for data clustering

To achieve data clustering on a CPU-QPU hybrid archi-
tecture, we use a Variational Quantum Algorithm (VQA)
illustrated on Fig. 2. It is composed of:

1) a quantum circuit Born machines (QCBM) [8]: a quan-
tum circuit implementing a generative neural network
that takes advantage of the probabilistic nature of quan-
tum physics and can run on a QPU (see Fig. 1),

2) an Expectation-Maximisation (EM) iterative algorithm
[9], tailored to the training of probabilistic models for
clustering applications.

See [10] for more details on this hybrid algorithm.

B. Design of quantum macro-circuits with qiskit

To merge elementary circuits in a macro circuit we follow
the principles of Algorithm 1. First, we create an empty macro
circuit of the desired size, and an empty list of parameter
sets. Next, we add each n elementary parametric circuit to the
macro circuit and its parameter set to the global parameter list.

However, implementing this algorithm in Qiskit requires
a few technical adaptations, described in the listing 1. As
there was no qiskit module capable of automatically paral-
lelizing multiple machine learning circuits, we modified the
BackendSampler class for this purpose. The quantum model

Fig. 2. VQA to control generative networks for data clustering

communicates circuits to the BackendSampler, which pre-
pares them for the backend before sending them. This includes
transpiling and mapping virtual qubits onto real qubits.

To parallelize our original elementary circuits, we create
macro-circuits the size of our backend (listing 1, line 12) and
place our elementary circuits in them as soon as they are
transmitted to the BackendSampler (lines 16-30). We then
let the BackendSampler take care of these circuits until the
post-processing operation, during which we recover the result
of the original circuits using a marginal counting function.

1 d e f f u s i o n c i r c (
2 s e l f ,
3 c i r c u i t s : t u p l e [Quan tumCi rcu i t , . . .] ,
4 p a r a m e t e r v a l u e s : t u p l e [t u p l e [f l o a t , . . .] , . . .]) :
5 # Number o f q u b i t s t o u s e s
6 N = s e l f . n b q u b i t s
7 # Number o f q u b i t s o f o r i g i n a l e l e m e n t a r y c i r c u i t s
8 n = c i r c u i t s [0] . num qubi t s
9 # Number o f p a r a m e t e r s o f o r i g i n a l c i r c u i t s

10 nb param = l e n (p a r a m e t e r v a l u e s [0])
11 # New q i s k i t c i r c u i t c r e a t i o n (macro − c i r c u i t)
12 qc = Q u a n t u m C i r c u i t (N,N)
13 param = [] # t u p l e f o r new p a r a m e t e r s
14 i =0
15 # Add each e l e m e n t a r y c i r c u i t i n t o a macro − c i r c u i t
16 f o r c i r c u i t i n c i r c u i t s :
17 c i r c u i t a u x = c i r c u i t . copy ()
18 # remove measurement
19 c i r c u i t a u x . r e m o v e f i n a l m e a s u r e m e n t s ()
20 # c r e a t new s e t o f q i s k i t p a r a m e t e r s
21 new p = P a r a m e t e r V e c t o r (” p ”+ s t r (i) , nb param)
22 # add t h e p a r a m e t e r s t o our c i r c u i t
23 c i r c u i t a u x = c i r c u i t a u x . a s s i g n p a r a m e t e r s (new p)
24 # add o r i g i n a l c i r c u i t t o f i n a l macro − c i r c u i t
25 qc = qc . compose (c i r c u i t a u x , [i *n , (i +1) *n − 1])
26 # add measure
27 qc . measure ([i *n , (i +1) *n − 1] , [i *n , (i +1) *n − 1])
28 # add p a r a m e t e r s t o our l i s t
29 param += p a r a m e t e r v a l u e s [i]
30 i +=1
31 r e t u r n qc , param

Listing 1. function to fusion qiskit parametric circuits in BackendSampler

IV. TEST BED CONFIGURATION

A. Quantum hardware

IBM offers the possibility of launching quantum code
thanks to our jobs on real hardware: 10 minutes per month
are available free of charge on a 127 qubits computer. In

Algorithm 1 Principle of elementary circuit fusion
Require: N ▷ size of macro-circuit
circuits ▷ list of n identical elementary-circuits
parametres ▷ list of elementary-circuits’s parameters

Ensure: macroCircuit ▷ macro-circuit
macroParameters ▷ list of macro-circuits’s parameters
macroCircuit← newQuantumCircuit(N)
macroParameters← []
for i← 1, . . . , n do

macroCircuit.compose(circuits[i])
macroParameters.insert(parametres[i])

end for

our case, among the different hardware available in May-June
2024 we choose the ibm brisbane, Eagle r3 processor. We
also experimented on two others IBM machines with the same
architecture: ibm kyoto and ibm sherbrook.

B. Qiskit configuration

In order to send our circuits to the backend, qiskit has to
go through several steps1 during the transpilation process. In
our case, all we need to do is configure the backend so that
our circuits can be adapted by the transpiler with the correct
default parameters (see listing 2).

1 # A d a p t a t i o n t o t h e backend (quantum hardware)
2 backend = s e r v i c e . g e t b a c k e n d (’ i b m b r i s b a n e ’)
3 s a m p l e r = BackendSampler (backend)
4 #Quantum n e u r a l ne twork d e f i n i t i o n
5 qnn = SamplerQNN (c i r c u i t =qc , s a m p l e r = sample r , . . .)
6 # C o n n e c t i o n t o p y t o r c h framework
7 mode l py to rch = TorchConnec to r (qnn , . . .)

Listing 2. from quantum backend to neural netowork to pytorch

The entire list of default transpiler parameters is
available in qiskit online documentation2. By default,
resilience_level = 1, which means Minimal mitigation
costs: Mitigate error associated with readout errors3.

V. EXPERIMENTS AND MODELING

A. Experimental measurement of execution times

The solid lines in figure 3 show the experimental execution
times of forward computations on the QPU of one of our gen-
erative models (there is one per cluster), using macro-circuits
of 8 elementary circuits (16 qubits) up to 63 elementary
circuits (126 qubits) and for three different numbers of shots.
We measured only the time spent in forward computations of
one E-step (for one model), running 2016 elementary circuits
(to generate a distribution of 2016 data). We have not measured
the execution time of an M step (backwards calculations),
as this requires the same elementary circuit to be executed
many times over. We would therefore have obtained the same
curve profiles, and ultimately the same accelerations, but we

1https://docs.quantum.ibm.com/api/qiskit/transpiler
2https://github.com/Qiskit/qiskit/blob/stable/1.1/qiskit/compiler/transpiler.py
3https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit ibm runtime.

options.Options

https://docs.quantum.ibm.com/api/qiskit/transpiler
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.options.Options
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.options.Options

Fig. 3. QPU execution time of parallel macro-circuits performing E-step
forward computations: measurement vs model

wouldn’t have been able to carry out these experiments with
a QPU free time quota of 10 minutes per month.

We can observe significant and regular reductions in exe-
cution time (in logarithmic scales) when using macro-circuits,
and dashed black lines are curves deduced from our execution
model of macro-circuits, see section V-B. Parallel execution of
several elementary circuits looks very interesting, even when
the QPU is fully utilized and we need to compute the speedup
reached, see section V-D.

Nevertheless, we need to investigate whether the data
clustering is affected by this total use of the QPU, or at
least whether the distribution of points generated by forward
calculations in an E-step is not degraded, see section V-C.

B. Modeling performances with only elementary circuits

To compute the speedup we would need to measure exe-
cution time using only elementary circuits (i.e.: with macro-
circuits including only one elementary circuit on 2 qubits).
However, the total execution time would be too long. These
experiments are out of our reach and would preclude using the
QPU for other, more useful calculations. Instead, we decided
to establish a model of execution times using only 2 qubit
elementary circuits, compatible with our measurements on 16
to 126 qubits and with the operation of qiskit described in the
IBM documentation.

We come up with a model to predict the execution time
of the quantum jobs with different levels of space parallelism
for the elementary circuits. As a reminder, during a job are
executed a certain number Ncirc of circuits, each sampled
Nshot times. We take two hypothesis here: shot durations
are constant and there is a fixed overhead to running a job4.

4https://docs.quantum.ibm.com/run/execution-modes#best-practices

Fig. 4. Extended execution time of parallel macro-circuits performing E-step
forward computations

This leads to the simple execution time model for 1 job (with
numerical values compatible with IBM documentation):

Tjob = Tover (4s) +Ncirc ·Nshot · Tshot (270µs) (1)

Moreover, the number of executed circuits Ncirc depends
on the chosen parallelism –ie how many elementary circuits
we pack on the QPU– as well as the number of qubits per
elementary circuit. We define Nelem

circ the number of elementary
circuits to run requiring Nelem

qubits qubits each, and Nmacro
circ the

number of macro-circuits to run requiring Nmacro
qubits qubits each.

The total number of used qubits remains unchanged:

Nmacro
circ ·Nmacro

qubits = Nelem
circ ·Nelem

qubits (2)

By replacing Ncirc with Nmacro
circ we finally have:

Tjob = Tover +
(Nelem

circ ·Nshot · Tshot)

(Nmacro
qubit /Nelem

qubit)
(3)

This looks very similar to the execution time on a parallel pro-
cessor following Amdahl’s law [11] which has the following
form:

T = Tserial + Tparallelizable/Nthread (4)

The experimental curves in Fig 3 are superimposed with
dotted lines calculated from our model. Experimental and
model-based curves fit and tends to validate our model. So
we used this model to deduce the execution time with macro-
circuits including only one elementary circuit (2 qubits) that
appear well in line with the experimental curves on Fig 4.
Again these curves tend to validate our model based on IBM
documentation, and allow us to compute the speedup reached
by macro-circuits (see next section).

Fig. 5. Losses measured on a real QPU for different number of shots during
E-step forward computations

C. Experimental sensitivity of the loss

To measure the impact of noise, we calculate the Maximum
Mean Discrepancy (MMD) loss [12] between the distribution
generated by a perfect simulation and that of our overloaded
QPU. This loss tells us the deformation between these two
distributions, and thus helps us understand the impact of noise.
Of our two generative models, one generates a trivial distribu-
tion (analyzed by loss 2) and the other a more complex one
(analysed by loss 1), which explains the significant difference
of the experimental loss curves on Fig. 5.

Experimental loss values of Fig. 5, deduced from results of
forward computations of E-steps on a real QPU, show that:

• losses of the two generative models fluctuate not only
with the number of qubits used, but also with the number
of shots,

• up to 96 qubits (48 elementary circuits executed in
parallel), the range of loss variation is limited and does
not increase too much,

• but this range of loss variation increases further between
96 and 126 qubits.

Overall, Fig. 5 shows us that overloading the QPU has an
impact on losses, which increase moderately but steadily.
Consequently, overloading the QPU to parallelize elementary
circuits may have an impact on the overall training of our
model. The learning mechanism, and therefore the data clus-
tering, could thus take longer to achieve the same result.

Further investigations remain difficult in the absence of
longer access to QPUs. Nevertheless, we are studying in
simulation the impact of greater loss on the distributions of
our generative models, which then tend to disperse. To do
this, we take the points of the perfect distribution, normalize
them and center them at 0. We then multiply them by a
spreading coefficient, and calculate the loss induced by this

Fig. 6. Losses under Spread: when the loss is less than 0.02, the spreading
factor is less than 18.5%

spreading. We have then linked the spread of our distributions
with the loss, as illustrated in Fig. 6, and conducted a set of
experiments mixing simulations and real experiments function
of the execution time required:

• We managed to train our models in 2 qubit noisy simula-
tions (with only one elementary circuit per macro-circuit).
We measured a loss of 0.008 corresponding to a range
spread of 11% (see Fig. 6)

• We conducted also short experiments on a real QPU using
many qubits. On 96 qubits we measured a loss of 0.020
corresponding to a range spread of 18.5% (see Fig. 6).

However, it remains difficult to precisely link noise, losses
and distribution distortions, and to set thresholds that must
be respected to prevent too many losses and distortions from
slowing down or blocking the learning process.

Unexpectedly, a study on noise injection [13] encourages
us to pursue a more comprehensive use of QPUs. Noise
injection is a technique used to improve the learning of
generative models. However, the use of this technique with
quantum generative models has not yielded any results [14]!
We can therefore assume that small variations in noise have
no significant impact on generative models.

So, for the time being, based on our current experience and
observations, we assume that a dispersion of less than 20%
does not significantly impact the learning of our generative
models. But more comprehensive and time-consuming exper-
iments on different QPUs are required.

D. Speedup reached using macro-circuits

Considering the execution time with a single elementary cir-
cuit per macro-circuit, deduced from our time model presented
in section V-B and illustrated in figure 4, and the different
execution times measured on the IBM ’brisbane’ quantum
machine, we can estimate a speedup as a function of the

Fig. 7. Speedup achieved on a QPU with macro-circuits vs a single elementary
circuit, during forward computation of an E-step

number of elementary circuits included in each macro-circuit.
Figure 7 shows the acceleration curve obtained during forward
computation of an E-step on a real QPU.

As we explained in section V-A, we limited our experiments
and time measurement to the forward computation of E-steps
to respect our time quota on QPU (10 minutes per month).
However, the longer M-steps launch the same quantum circuits
on the QPU and would reach the same speedup. Consequently,
figure 7 shows the accelerations achieved on the IBM ’bris-
bane’ QPU for the whole quantum part of our data clustering
hybrid application.

As explained in section V-C, based on our current analysis
of the impact of noise on our generative models, we consider
these accelerations to be reliable up to 48 elementary circuits
(96 qubits) executed in parallel in each macro-circuit. We
should therefore be able to achieve accelerations of up to
[35− 45] by parallelizing the execution of elementary circuits
within a QPU, as in a multi-core processor in conventional
computing. Depending on the noise generated, this acceler-
ation could then reach [45 − 55] on this Machine Learning
application.

VI. RECOMMENDATION AND PERSPECTIVE

As QPUs are currently scarce resources, following the
significant speed-ups obtained in this study ([35 − 45]), we
recommend exploiting replication parallelism within the QPU
whenever possible in Machine Learning applications without
disrupting their computations. This would enable a greater
number of learnings to be performed on the same QPU. The
code for the Qiskit extension is easy to develop (see Listing 1).

However, from a technical point of view, we’ve only exper-
imented with 2-qubit quantum circuits, and it’s easy to find 2
qubits close together and capable of supporting entanglement
in a QPU. It therefore seems quite straightforward to install

a multitude of totally independent 2-qubit elementary circuits
in a QPU. We now plan to reproduce our experiments with
4-qubit QCBMs (to work on 4-dimensional data) and evaluate
the feasibility, speed-up and quality of results of calculations
up to 126 qubits.

From a machine learning point of view, a recent study
[14] showed that other generative networks, the Quantum
Generative Adversarial Networks (qGAN), could be trained
successfully in the presence of noise. They could therefore
support more intensive parallelism within the QPU. However,
the authors of this study also highlighted the sensitivity of
hyperparameters and the need to mitigate them when training
on NISQ. We are currently studying qGAN parallelization and
comparing it with QCBM.

REFERENCES

[1] M. Amico, H. Zhang, P. Jurcevic, L. S. Bishop, P. Nation, A. Wack,
and D. C. McKay, “Defining best practices for quantum benchmarks,”
in 2023 IEEE International Conference on Quantum Computing and
Engineering (QCE), Bellevue, WA, USA, sep 2023, pp. 692–702.

[2] A. Wack, H. Paik, A. Javadi-Abhari, P. Jurcevic, I. Faro, J. M. Gambetta,
and B. R. Johnson, “Quality, Speed, and Scale: Three key attributes to
measure the performance of near-term quantum computers,” Oct. 2021.

[3] T. Lubinski, S. Johri, P. Varosy, J. Coleman, L. Zhao, J. Necaise, C. H.
Baldwin, K. Mayer, and T. Proctor, “Application-Oriented Performance
Benchmarks for Quantum Computing,” IEEE Transactions on Quantum
Engineering, vol. 4, pp. 1–32, 2023.

[4] J. Weidenfeller, L. C. Valor, J. Gacon, C. Tornow, L. Bello, S. Woerner,
and D. J. Egger, “Scaling of the quantum approximate optimization
algorithm on superconducting qubit based hardware,” Quantum, vol. 6,
2022.

[5] Y. Ohkura, T. Satoh, and R. Van Meter, “Simultaneous execution of
quantum circuits on current and near-future NISQ systems,” IEEE
Transactions on Quantum Engineering, vol. 3, 2022.

[6] S. Niu and A. Todri-Sanial, “Enabling Multi-programming Mechanism
for Quantum Computing in the NISQ Era,” Quantum, vol. 7, 2023.

[7] L. Liu and X. Dou, “QuCloud+: A holistic qubit mapping scheme for
single/multi-programming on 2D/3D NISQ quantum computers,” ACM
Transactions on Architecture and Code Optimization, vol. 21, 2024.

[8] C. Riofrı́o, O. Mitevski, C. Jones, F. Krellner, A. Vučković, J. Doetsch,
J. Klepsch, T. Ehmer, and A. Luckow, “A performance characterization
of quantum generative models,” 01 2023, ArXiv.

[9] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” Journal of the royal
statistical society: series B (methodological), vol. 39, no. 1, 1977.

[10] J. Rauch, D. Rontani, and S. Vialle, “Generative-based algorithm for
data clustering on hybrid classical-quantum nisq architecture,” in 37th
GI/ITG International Conference on Architecture of Computing Systems,
Postdam, Germany, May 2024, to appear.

[11] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20,
1967, spring joint computer conference, 1967, pp. 483–485.

[12] S. Paik, M. Celentano, A. Green, and R. J. Tibshirani, “Maximum mean
discrepancy meets neural networks: The radon-kolmogorov-smirnov
test,” 2023. [Online]. Available: https://arxiv.org/abs/2309.02422

[13] R. Feng, D. Zhao, and Z.-J. Zha, “Understanding noise injection in
gans,” in Proceedings of the 38th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, M. Meila
and T. Zhang, Eds., vol. 139. PMLR, 18–24 Jul 2021, pp. 3284–3293.
[Online]. Available: https://proceedings.mlr.press/v139/feng21g.html

[14] K. Borras, S. Y. Chang, L. Funcke, M. Grossi, T. Hartung, K. Jansen,
D. Kruecker, S. Kühn, F. Rehm, C. Tüysüz, and S. Vallecorsa, “Impact
of quantum noise on the training of quantum generative adversarial
networks,” Journal of Physics: Conference Series, vol. 2438, no. 1, 2023.

https://arxiv.org/abs/2309.02422
https://proceedings.mlr.press/v139/feng21g.html

	Motivations and objectives
	Related work and positioning
	Benchmarking methodology
	Performance modeling and metrics
	Quantum multi-programming

	Parallel Quantum ML application
	VQA and generative models for data clustering
	Design of quantum macro-circuits with qiskit

	Test bed configuration
	Quantum hardware
	Qiskit configuration

	Experiments and modeling
	Experimental measurement of execution times
	Modeling performances with only elementary circuits
	Experimental sensitivity of the loss
	Speedup reached using macro-circuits

	Recommendation and perspective
	References

