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Versatile Curve Design by Level Set with Quadratic Convergence

Xiaohu Zhang , Shuang Wu , Jiong Chen , Yao Jin , Hujun Bao , and Jin Huang

Abstract— Many 3D mesh processing tasks revolve around generating and manipulating curves on surface meshes. While it is
intuitive to explicitly model these curves using mesh edges or parametric curves in the ambient space, these methods often suffer
from numerical instability or inaccuracy due to the projection operation. Another natural strategy is to adapt spline based tools,
these methods are quite fast but are hard to be extended to more versatile constraints and need heavy manual interactions. In this
paper, we present an efficient and versatile approach to curve design based on an implicit representation known as the level set.
While previous works have explored the use of the level set to generate curves with minimal length, they typically have limitations
in accommodating additional conditions for rich and robust control. To address these challenges, we formulate curve editing with
constraints like smoothness, interpolation, tangent control, etc., via a level set based variational problem by constraining the values
or derivatives of the level set function. However, the widely used gradient flow strategy converges very slowly for this complicated
variational problem compared to the classical geodesic one. Thus, we propose to solve it via Newton’s method enhanced by local
Hessian correction and a trust-region strategy. As a result, our method not only enables versatile control, but also excels in terms
of performance due to nearly quadratic convergence and almost linear complexity in each iteration via narrow band acceleration. In
practice, these advantages effectively benefit various applications, such as interactive curve manipulation, boundary smoothing for
surface segmentation and path planning with obstacles as demonstrated.

Index Terms—Level Set, Curve, Mesh, Interactive Editing

1 INTRODUCTION

Drawing curves on a discrete surface plays an important role in many
geometry processing tasks, particularly when it is necessary to parti-
tion an object into several components for further analysis. However,
generating an ideal curve tailored to a specific task can pose consid-
erable technical challenges. These challenges often arise from strong
constraints imposed on curve geometry, which can be hard to pre-
cisely fulfill due to the choice of curve representation and associated
numerical algorithms.

Non-variational methods( [45, 46, 53]) can construct curves on mesh
easily without solving complicated optimization problems, but they
are not friendly to automatically impose various constraints(e.g. cus-
tomized smoothness, avoiding obstacles, etc.) and require heavy user
interactions. Thus, like many existing techniques [27, 32, 68], we resort
to a variational framework which solves an optimization problem to get
the curve fulfilling special constraints automatically.

The representation of the curve on the mesh has strong influences on
the resulting optimization problem. Explicit representations, whether
intrinsic (line segments exactly on mesh) [39] or extrinsic [32] (project-
ing a 3D curve to the target mesh), are intuitive and common choices.
However, such representations often introduce numerical instability,
inaccuracy and potential numerical failure because of frequent node
adapting, tiny line segments or risky projection around concave re-
gions for complicated optimization problems. In contrast, implicit
representations naturally keep the curve on the surface by construc-
tion. One specific implicit representation, known as the “level set”
method [52], adopts a dynamic or evolving view of curves or interfaces
via a Hamilton-Jacobi-based flow, i.e., the gradient of the objective
function. This technique has been widely used for computing geodesic
lines/loops [65, 69], but has never been applied to curve editing with

• Xiaohu Zhang, Shuang Wu, Hujun Bao, and Jin Huang are with Zhejiang
University. Email: xiaohuzhang@zju.edu.cn, shuangwu2002@foxmail.com,
{bao|hj}@cad.zju.edu.cn

• Jiong Chen is with INRIA. Email: jiong.chen@inria.fr.
• Yao Jin is with Zhejiang Sci-Tech University. Email: jinyao@zstu.edu.cn.
• Xiaohu Zhang and Shuang Wu are co-first authors.
• Jin Huang is the corresponding author.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

various controls.
In this paper, we show the efficiency of using level set functions

for some curve editing tasks. We first propose a level set based varia-
tional method which incorporates interpolation, tangent control, etc.,
and then apply Willmore energy [5, 56] based smoothness term along
with a signed distance regularization [36]. By virtue of the variational
framework, we can even control the shape of the curve by introduc-
ing constraints that are not on the curve itself (e.g., avoiding some
obstacles).

The versatility rooted in the flexible formulation comes with the chal-
lenge of numerical optimization. Conventional gradient-flow (i.e., a
first order optimization strategy) leads to slow convergence, and renders
the method impractical. Though a specifically designed gradient-flow
method ( [41,65,69]) can be efficient for geodesic lines associated with
the vanilla minimal length energy, applying it to such a complicated
optimization problem is not a trivial task. Thus, we explore a Newton-
based method (i.e., a second-order optimization strategy) to evolve the
curve. To make it possible, we give detailed derivatives on triangular
meshes. By applying the local Hessian correction and trust-region
strategy, the Newton’s method results in much better convergence and
stability than gradient flow. Along with a carefully designed narrow
band scheme, the complexity of each iteration scales nearly linearly
in the length of the current curve. The overall numerical approach
proposed in this paper improves the efficiency of level set based curved
design for interactive curve editing tasks and various applications in-
volving high-resolution meshes.

The contributions of the work can be summarized as:
• the first level set based curve design on mesh with various controls,

e.g., interpolation, smoothness, tangent, obstacles etc.,

• the discretization and derivatives of the terms on triangular mesh,

• and a reliable and efficient numerical method for practical usage.

1.1 Related work
In the following parts, we first introduce curve design on analytical
Riemannian surface, and followed by polygonal (triangular) meshes,
either explicit (i.e., a polyline in 3D space) or implicit (i.e., zero-contour
of a scalar field).

Curve on Analytical Surface Curve design on parametric surface
is a long-standing topic in CAGD with much work published. They
mainly focused on interpolating/fitting time-labeled landmarks on an-
alytical Riemannian surface, such as Euclidean plane(for validation),
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2-sphere, rotation group and shape manifold. Gousenbourger et al. [23]
first propose a framework to interpolate a C1 continuous splines on Rie-
mannian manifold by minimizing their mean squared acceleration; then,
the suboptimal of its velocity(even for Euclidean case) was improved
by [2]. In [22], they proposed a blended cubic spline method to extend
the interpolation problem to fitting a C1 curve by using a parameter λ to
control the trade-off between "straight enough" and "closely enough".
For ease of use, the only knowledge required from the manifold is
Riemannian exponentials and logarithms. Bergmann et al. [4] proposed
a variational scheme by approximating the acceleration using discrete
squared second order derivative along the curve to fit a smooth spline; a
closed-form, numerically stable and efficient algorithm to compute the
gradient is derived, and this method struck a balance between a data
proximity constraint and a smoothing regularization constraint.

In brief, although these methods are efficient and robust, they are
not directly applicable and hard to be extended to discrete polygon
meshes, which are widely used in geometry processing applications.
Our work also use a variational framework with smoothness, interpola-
tion/fitting constraints, but we extend it to more general polygon cases
and introduce versatile controls, e.g., tangent and obstacles etc. We also
provide a reliable and efficient discretization and numerical method for
practical usage.

Explicit Curve Design These methods represent a curve by a
sequence of points in 3D space, and the key difficulty is to maintain
such a curve lying on the surface mesh, while satisfying some other
user controls, e.g., smoothness, interpolation, etc.

An attractive and practical way to design curves on mesh is to extend
Bézier curves on Euclidean space to manifold. The key idea is how to
construct weighted Riemannian mass center (RCM) of control points
properly. One possible way is to embed the mesh to higher-dimensional
Euclidean space where the Euclidean distance can be computed in a
closed-form, and the approximated RCM is projected back to the mesh
surface [53]. The approximation in this method improves the efficiency
but leads to artifacts from the embedding and projection. To achieve
better accuracy, Mancinelli et al. [46] optimized the Riemannian mass
center by tracing the Newton direction of geodesic distance field pre-
computed from a set of source control points. They get more accurate
results than [53] with slightly lower speed. For both RCM based meth-
ods [46, 53], they share the same risk of failure when control points
are too sparse. To avoid this robustness issue, Mancinelli et al. [45]
proposed robust subdivision based methods. When interpolation curve
is desired, rational splines can be used to fulfil it [46]. In general, these
Bézier based methods are widely used for its excellent performance
and convenience. However, if the curve is required to satisfy more
constraints at the same time, e.g., interpolation, smoothness, tangent
control and avoiding certain obstacles etc., it is hard to be achieved by
these methods automatically.

Variational methods provide the opportunity to impose various con-
straints. Some of them adopt the intrinsic strategy, which discretizes the
curve on mesh as a sequence of points on mesh edges. Some intrinsic
methods iteratively evolve an initial curve composed of a sequence of
points on mesh edges by certain objective functional measuring smooth-
ness [31, 34] or shortness [39]. The nodes will be added or removed
adaptively, so that the edges in the polyline could be very short, which
would bring difficulties in designing an efficient and robust numerical
method for flexible optimization problem, e.g., reliably computing the
derivatives along the polyline when segments are nearly degenerate [39].
Other intrinsic methods like [35] simplify the problem into a 2D one
through parameterization. They usually involve the reprocessing of
parameterization, and it is hard to avoid the influence coming from the
distortion of the parameterization.

Another kind of strategy is extrinsic, which relaxes the manifold
constraint and solves the optimization problem in the ambient space
of the mesh. Such a setting can flexibly control the curve properties
through augmenting various energy terms, but it needs extra effort to
snap the curve to the mesh surface by a certain projection operator.
Some of them directly project the curve nodes to the mesh surface
during the iterations [27, 54, 68], which may lead to robustness and
efficiency issues. Jin et al. [32] used a surrounding shell space to assist

fast and robust projection, but the construction of high-quality shell is
difficult. Xu et al. [67] recently designed B-spline curves on mesh with
the similar framework [32]. It adopts the simplified shell that can be
built robustly, but is not efficient for designing complicated curves. In
contrast, our method designs curve implicitly and can overcome the
mentioned disadvantages of these explicit methods while still being
efficient.

Implicit Curve Design In contrast to explicit methods, implicit
methods usually construct a special scalar field on the mesh and extract
the certain level set (i.e., a contour) as the curve to be designed. Level
set method proposed in [52] is one of such methods, and it has been
widely used in many applications such as fluid simulations [38, 71],
mesh fairing [16], Willmore flow [5, 56], image segmentation [11, 37,
50], surface reconstruction [57,64,72], shape modeling [6,44,49], path
planning [42, 43] and optimal design [17, 63] etc. Many of the methods
apply the idea of level set to 2D or 3D flat Euclidean space and polygon
meshes [65]. Comprehensive surveys about level set can be found
in [8, 21, 51]. Here we only review the most related ones, especially
focusing on curve design on meshes.

To the best of our knowledge, most methods optimize the curves
on a surface by level set target on shortest curve under a prescribed
and constant length weight. The weights can be uniform over the
whole surface or non-uniform [33], but it does not change during
the optimization. It should be noticed that the problem of minimal
surface [14,62] shares the similarity in using constant weight. Evolving
the curve by conventional gradient-flow, which is derived from the
gradient of objective function, converges slowly and is often stuck
at poor local minima. Using the semi-implicit integrator [65] can
significantly improve the convergence. However, it is hard to extend this
technique to dynamically weighted objective functions like Willmore
flow involved in [5,56,60], which can be viewed as weighting the length
(area in 3D) by square of dynamically changed mean curvature. For
dynamic weight, simple gradient flow is even more difficult to converge.
Some methods involving dynamic weighted problem (e.g., [58, 73])
can be efficient, but their objective function includes a regularization
of small (weighted) area bounded by the curve based on the prior of
input images. It makes sense for applications like image segmentation
or contouring a background signal. However, such a regularization is
not a general purpose of curve design, and cannot be used in our tasks
without introducing undesired side effects. Methods like [12,12,59,60]
also utilize such prior in gradient-descent, but the paper [3] shows that
the convergence of gradient-descent is still poor.

Thus, we turn the eyes to second-order numerical methods, i.e.
Newton-based methods. Indeed, such methods have been explored
in [3,7,25,26] for active contour of images. Though they show superior
convergence than gradient flow, the Newton’s method is still rarely used
in many level set related techniques, possibly because the Hessian is
hard to derive, even for images. In this paper, we give the derivatives
on triangular meshes. We noticed that [3] modified classic Newton’s
method by replacing the inner product with a smoothed version (convo-
lution with a Gaussian) in second order Taylor expansion. This usually
helps to get a better Hessian (smaller condition number or turning an
indefinite Hessian into the positive-definite one). Smoothing the gradi-
ent helps on noisy images, but brings the risk of smoothing a non-zero
gradient into a nearly zero one. This may slow down the convergence
or lead to a solution different from the true one. Instead of smoothing
the gradient, we use element-wise symmetric positive projection to
keep the total Hessian positive definite without introducing the above
issue.

2 LEVEL SET ON SURFACE

Before introducing our method, we briefly recap the method of level
set, and the most related work in this section.

In the level set method, one of the key components is to turn the
interface integration into the volumetric one by the co-area formula [20].
As an example, the length of a curve Γ = φ−1(0) on a surface M can
be transformed into a surface integration:∫

Γ

dΓ =
∫

M
δ (φ)|∇φ |dM. (1)
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The Dirac Delta function δ plays an important role here that weighs
all the point with nonzero φ by zero, and the co-area term |∇φ | comes
from integration by substitution. For relatively simple objectives, the
gradient can be computed without much difficulty. Evolving the field
φ along the gradient brings a lot of gradient flow methods [36, 49, 65].
Possibly, the most famous one is geodesic curvature flow (GCF) [65],
which minimizes the level set length Eq. (1) by the gradient flow:

dφ

dt
=−|∇φ |∇ ·

(
∇φ

|∇φ |

)
. (2)

Evolving φ according to this flow (a particular form of Hamilton-Jacobi
equation) contributes a large body of literature.

2.1 Regularization

To prevent the scalar field from being too steep or too flat, people usually
enforce |∇φ |= 1 by re-initialization [9,10,44], penalty of regularization
terms [15, 24, 36, 37], augmented/projection Lagrangian [19, 40] and
auxiliary variable [18]. For instance, the following eikonal penalty
function is used in [24, 36]:∫

M

1
2
(|∇φ |−1)2dM. (3)

This basically asks that φ to be a signed distance field (SDF) w.r.t. the
level set φ−1(0). We adopt a similar strategy in Sec. 3.1.

3 CURVE DESIGN BY OPTIMIZING LEVEL SET

Different from seeking the shortest curve, the goal of our work is to
efficiently design a closed curve without self-intersection with flexible
controls via the following optimization problem:

Etotal(φ) = Eshape(φ)+wsdfEsdf(φ), (4)

where Eshape controls the shape of the curve, accounting for the smooth-
ness, interpolation, tangent etc., and Esdf is the regularization term.
Below, we list the most important terms and introduce the others along
with the experiments. The discretization and derivatives of them can be
found in Appendices A and B.

3.1 SDF regularization

To penalize the deviation from SDF, the most common technique is to
incorporate the eikonal term Eq. (3) [15, 24, 36]. However, as pointed
out in [37], such a formulation has serious stability issue because
its derivatives become ∞ when |∇φ | approaches 0, which happens
frequently when the field is locally flat. Therefore, we use the following
modified formulation for regularizing SDF function:

Esdf(φ) =
∫

M

1
2
(|∇φ |2 −1)2dM. (5)

Taking the square erases the infinity in its derivative as shown in Ap-
pendix B.

3.2 Shape control

The shape of the level set can be controlled in different ways by con-
straining its values or derivatives. Here, we consider some commonly
used terms including

Eshape(φ) = winterpEinterp(φ)+wobsEobs(φ)

+wsmoothEsmooth(φ)+wtanEtan(φ)+ · · · .
(6)

Users can also design their own energy terms regarding their specific
requirements.

3.2.1 Interpolation
Enforcing interpolation condition is very simple, which just needs the
value of φ to be 0 at the specific points Q = {qi} through a penalty
function:

Einterp(φ) =
|Q|

∑
i=1

1
2

φ(qi)
2, ∀qi ∈ Q. (7)

For the sake of brevity, we use uniform weight for each landmark point
in this paper, and assume qi is always a mesh vertex. Our method can
be simply extended to support non-uniform weights and take any point
on the mesh as the landmark point qi represented by their barycentric
coordinates.

3.2.2 Obstacle
In addition to interpolation condition, we can also make the curve avoid
some regions. This can be achieved by adding a penalty term to the
energy function:

Eobs(φ) =
∫

Γ

cdΓ =
∫

M
δ (φ)c|∇φ |dM ≈

∫
M

cδ (φ)dM. (8)

The weight c is set to be a large value near obstacles while 0 for valid
regions. We empirically make it 1 in the obstacle center and smoothly
decrease it to 0 in a narrow support by a Gaussian kernel. The co-area
term |∇φ | is ignored because we strongly penalize the SDF term Eq. (5).

3.2.3 Smoothness
We measure the smoothness by Willmore energy [56]:

E(φ) =
∫

Γ

1
2

κ
2dl, (9)

where κ = div(∇φ/|∇φ |) is the geodesic curvature of the level set.
The original Willmore energy is too complex to be optimized directly,

so we use the approximation:

Esmooth(φ) =
∫

Γ

1
2

κ
2dl =

∫
M

1
2
(∆φ)2

δ (φ)dM. (10)

Because of the SDF term Eq. (5), we approximate geodesic curvature
κ(p) ≈ div(∇φ(p)) = ∆φ(p), i.e. Laplacian of φ . The co-area term
|∇φ | is ignored here because of the same reason.

3.2.4 Tangent
To control the tangent at landmarks, there are two possible ways. One
is to make the gradient ∇φ(p j) perpendicular to a specified direction
τ j on the tangent plane Tp j (M) of an interpolation point p j:

Etan,t(φ) = ∑
j

1
2
〈
∇φ(p j),τ j

〉2
. (11)

Aligning the gradient ∇φ(p j) to a tangent direction n j ∈
Tp j (M),∥n j∥ = 1 can even specify the exterior side of the curve at
point p (when appointing the region with positive φ as exterior). In
other words, the following term can control the outward normal direc-
tion of the curve at p j:

Etan,n(φ) = ∑
j

1
2
(〈

∇φ(p j)/|∇φ(p j)|,n j
〉
−1
)2

. (12)

As shown in the inset,
one can specify the orienta-
tion of n j to choose the left
or the right result. Rotating
n j to τ j in Tp j (M) by ±90
degree, the term Etan,t au-
tomatically gives the one
with lower energy.
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Noticing that |∇φ | ≈ 1 because of the SDF term Eq. (5), we experi-
mentally approximate Eq. (12) by Eq. (13) to eliminate the numerical
complication from the normalization:

Etan,n(φ) = ∑
j

1
2
(〈

∇φ(p j),n j
〉
−Cn

)2
. (13)

If Cn is set to 1 in the above equation, this term can be minimized
undesirably by enlarging the gradient ∇φ(p j) (though still close to 1)
to compensate the direction misalignment. Setting the constant Cn > 1
can alleviate this issue, and Cn = 2 works well in all our experiments.

4 NUMERICAL METHOD

For the unconstrained smooth optimization problem above, we adopt
Newton’s method.

4.1 Smooth approximation of Dirac Delta
First, the singularity of Dirac function has to be smoothed out for
efficient and stable numerical optimization. Thus, the Dirac Delta is
usually replaced by smooth approximations [70], here we simply use
the Gaussian kernel Gσ (φ):

Gσ (φ) =
1√

2πσ
e−

φ2

2σ2 , (14)

where σ is used to control the “support” of smooth Dirac Delta. Obvi-
ously, smaller σ gives a more accurate approximation to the “ground
truth” problem (i.e. using idea Dirac Delta) at the cost of numerical
instability, while larger σ works in an opposite way. The discussion
about σ can be found in Sec. 5.1.

4.2 Hessian correction
One major challenge comes from the non-convex nature of the prob-
lem, which results in indefinite Hessian. Like [28, 61], we simply
project each small Hessian matrix Hv j = ∇2Ev j at mesh vertex v j into
the closest symmetric semi-positive matrix H̃v j by clamping negative
eigenvalues into zero.

The total Hessian assembled from the Hessian matrices at each
vertex may still be ill-conditioned and cause instability when solving
the Newton step. We apply Levenberg-Marquardt method [47] to
address this issue (see Appendix C for details). Our method yields a
nearly quadratic convergence rate in most cases, and a comparison to
gradient descent is shown in Fig. 1.
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Fig. 1: We compare our numerical method with a simple gradient descent
on the same problem, and plot the curves of total energy with iterations
for the first 64 steps. Our method yields a much faster convergence rate
and much lower total energy.

4.3 Narrow band acceleration
The method described above assembles and solves the linear system
over the entire mesh. However, it is only necessary to update the
function values in the band region near the current curve, which is
usually named as narrow band technique [1,55]. Some methods [41,69]
also skip the region with nearly zero gradient.

To construct the narrow band, we first extract faces with opposite φ

signs at vertices. Then we run BFS to expand the narrow band inside a
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Fig. 2: Statistics about bandwidth. We generate a relatively long curve
on a mesh with its length being around 330l̄. By setting wB = k ·3σ/l̄,k =
2,3, · · · ,8 and recording the corresponding active DOFs and time per
iteration, we can see the linear relationship between wB and DOFs.
Actually, if the length of the curve is ml̄, the number of DOFs can be
estimated by mwB. We can also notice that the time cost grows super-
linearly with wB.

Fig. 3: Our energy function is not convex, so different initial values (left
ones) may lead to different results (right ones). Though this behavior
is undesired in some scenarios, it helps to keep the interactive curve
design procedure more intuitive and controllable.

bandwidth wB. To achieve better performance, we only update it when
there is a significant change in the φ values near level set. Specifically,
we trigger the update only if both conditions are satisfied:

• for all the faces that the current curve lies on, at least one value on
these faces has changed greater than a preset threshold (possibly
l̄) compared with the previous iteration;

• |Fk∆Fk−1| > 0.05|Fk|, where Fk is the set of faces the current
curve lies on, and Fk−1 is that of the previous round, ∆ denoting
the symmetric difference between sets.

As long as the narrow band is not modified, the cost of Hessian re-
factorization is avoided.

Now the number of active DOFs, i.e. the dimension of the sparse lin-
ear system, is only the number of vertices in the narrow band. It is easy
to see that the DOFs are almost linearly proportional to the bandwidth.
Fig. 2 shows some statistics of the algorithms under different narrow
band width. In our experiments, we set wB = 6σ/l̄ by default.

4.4 Initialization
The initial value of the iterative optimization can be constructed in vari-
ous ways. For interactive curve editing, after the user picks a sequence
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(a) σ = l̄,2l̄,3l̄ (b) wsdf = 0.1,1,10 (c) wsmooth = 102,103,104

Fig. 4: The results achieved by varying one of the parameters (σ ,wsdf,wsmooth) around the recommended values (2l̄,1,103) and keeping the remaining
ones fixed. The three parameter values under each image are for blue, green, red curves respectively. Note that the difference is slight, which means
that our method is insensitive to these parameters.

of vertices q1,q2 · · ·qn as interpolation landmarks, we sequentially com-
pute the shortest paths connecting qk,q(k+1)modn along the mesh edges
to form a closed loop without self-intersection. Among this procedure,
edge splitting may be required to guarantee self-intersection free. It
is also possible to use other mature Bézier-based methods [45, 46] to
generate the initial curve. Then, we compute a distance field w.r.t to
the initial loop in the narrow band by fast matching, and flip the sign at
its one side as the initial value.

It should be noticed that the converged result may depend on the
initial value due to its non-convex nature. Like many mesh deformation
methods with non-convex energy [29], it may be a desired property
in an interactive session, which prevents the shape of the curve from
jumping to a very different one (see the supplementary video), but it
may also bring trouble in some scenarios like the ones in Fig. 3 though
adjusting the support of smooth kernel can alleviate this issue.

5 RESULTS

We implemented the algorithm with C++ and executed it on a PC
equipped with i5-13500HX CPU with full parallelization without the
help of GPU. The resulting curve (i.e. the level set) is rendered by a
fragment shader in GUI. If a polyline in ambient space is required, we
trace the zero-contour of φ by the method in [30].

5.1 Parameter discussion

There are several parameters in the algorithm. σ in Eq. (14) is empiri-
cally set as 2l̄ in default, where l̄ is average edge length of the mesh. σ

balances the precision and numerical stability, a possible strategy is to
use larger σ during the initial rounds of iterations and then decrease it
when close to convergence according to the applications.

The energy weights in Eqs. (4) and (6) balance the influences of
different energy terms. For commonly used ones, recommended values
are as follows: wsdf = 1, wsmooth = 103, winterp = 103, wtan = 1, wobs =
1. Because the interpolation, obstacle and tangent terms usually serve
like hard constraints, we usually fix them as the default value. For other
terms, we make an ablation study in Fig. 4. We can see the results are
nearly the same given different wsdf and wsmooth, which indicates that
our method is insensitive to these parameters.

Of course, wsmooth does not need to be uniform everywhere. We
are able to control the sharpness of the curve by applying non-uniform
wsmooth at different landmarks, e.g., we can make the curve sharper at
the landmark by decreasing the surrounding weights, see Fig. 5.

Fig. 5: Applying non-uniform wsmooth at different landmarks. The curve on
the right is achieved by decreasing wsmooth at the red landmark. Tangent
control for both sides of the sharp corner can be achieved by simply
adding two extra landmarks(blue) near the corner.

5.2 Comparison with spline methods

Spline based curve editing methods [45, 46, 53] are widely used in the
surface curve editing. They allow users to edit the curve at interactive
rates, while our method does not provide such a real-time performance.
However, a quantitative comparison about time and smoothness with
them is still hard. Firstly, there is no optimal spline interpolation
curve, user can always adjust the control tangents to get curve with
different smoothness. Secondly, during the construction of splines, user
typically add and adjust control points progressively, the pure time cost
of algorithm is hard to measure. In Fig. 6, we show that our method
can achieve similar results to the Bézier-based method [45] without
manual adjustment.

By adding landmarks for interpolation and obstacles, our method
can search reasonable smooth results automatically. When it comes
to complicated constrained occasions in Fig. 7, the user using spline
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(a) (b)

Fig. 6: (a) is a curve generated by the Bézier-based method [45], which
uses piecewise Bézier curves to interpolate the landmarks and can be
made smooth by empirically aligning the tangents at the seams. (b) we
optimize the curve generated in (a) under our energy function. We can
see the results are visually similar.

(a) (b) (c)

Fig. 7: (a) shows our result under landmark points (black) and weighted
obstacle region (red). (b) is the splines generated by [46] under manually
chosen control points (cyan) to “interpolate” the same landmark points
in (a). (c) gives our solution under much more constraints, which is
cumbersome to be drawn manually by spline methods.

methods needs to carefully design proper control points and tangents
to satisfy the constraints, while our method can handle it automatically.

5.3 Comparison to explicit methods

Among variational approaches, we choose [32] here because it shares
similar functions with ours, and it is free of projection issue and proba-
bly the fastest one due to the assistance of shell surrounding the input
mesh.

We ran the two algorithms under the same set of landmarks. And
the resulting curves are shown in Fig. 8. In general, the results of our
implicit method are visually smoother than those of the explicit method
[32]. We further conducted quantitative comparison analysis on the
aspects of smoothness and timings.

5.3.1 Geodesic curvature of the resulting curve

Geodesic curvature κg is a common measurement of smoothness for
curves on manifold. We compute and compare it between the curves
generated by the two methods. We first extract the implicit curves into
polylines, and then compute discrete geodesic curvature at each vertex
using the following formula.

We denote the 3 adjacent vertices on the curve by ri−1,ri,ri+1, their
projections onto the tangent plane at ri being r̂i−1, r̂i, r̂i+1. Letting θi
be the angle between r̂i − r̂i−1 and r̂i+1 − r̂i, we have

κg =
2sinθi

|r̂i+1 − r̂i−1|
. (15)

We plot the distributions of κg in Fig. 8. It can be seen that our
implicit method has lower or comparable geodesic curvature along the

Fig. 8: The curves produced by our implicit method (green), and the
explicit method (orange). We first extract the implicit curves into polylines,
and then compute the geodesic curvature at each vertex using Eq. (15)
for both implicit and explicit curves. The distributions of κg are plotted
as histograms weighted by segment lengths. Our method generally
produces lower or similar geodesic curvature distributions compared to
the explicit one.

curve in general since our method better characterizes the geodesic cur-
vature of the curve on mesh instead of simply measuring the Laplacian
of each node in a 3D polygon.

5.3.2 Timing

During each iteration, both the explicit and the implicit methods require
solving a sparse linear system (by Cholesky factorization). In our
implicit method, the dimension is the number of vertices in the narrow
band (σ = 2l̄,wB = 12), while in the explicit method, the dimension of
the linear system is 3 times the number of segments on the curve. The
sparse matrices in both methods are close to be a banded structure (if the
bandwidth is relatively small w.r.t the curve length), so the complexity
is around O(n), n being the dimension of the linear system. Here we
adjust the proportion of the segment length to the edge length of the
mesh to around 0.2, so that the Hessian matrices of the two algorithms
have similar dimensions.

Our method is about 7 times slower than the explicit one in each
iteration (see the last column in Tab. 1) though we can still achieve
over 50 frames per second even for a mesh (bumpy sphere in Fig. 8)
with 147K triangles. Please refer to the supplementary video for a
demonstration of interactive curve editing.

One major reason of the performance difference is that our sparse
linear system has around 17 (average size of two-ring neighborhood of
vertices) non-zero entries in each row, but it is only 7 for the explicit
method. Furthermore, in the explicit method, the symbolic factorization
is only executed once due to the consistent sparsity pattern. However,
in the implicit method, re-factorization becomes necessary whenever
the narrow band is updated.

The explicit method [32] solves a different optimization problem
consisting of the Laplacian and squares of segment length of the 3D
polygon. So, it is not surprising that the explicit method converges
faster, but the resulting curve has larger maximum curvature, i.e. the
curve is less smooth.

Besides the advantage of curve smoothness, our method can be
easily applied to an input mesh, while [32] needs to generate a high
quality shell space, which is time-consuming and not robust. The
other projection-based explicit methods (e.g., [27]) not paying such
a pre-computation cost may involve the cost of constructing spatial
acceleration structure for projection and face the risk of wrong projec-
tion at concave region. In other words, besides the benefit of smoother
resulting curve, our method will show much more advantages if the
mesh needs to be updated frequently.
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Model Method DOFs Total
cost (ms)

# of
Iters

Cost per
iter (ms)

Bumpy Implicit 3139 389 52 7.3
sphere Explicit 3039 82 67 1.2

Venus Implicit 668 60 38 1.5
Explicit 645 3 15 0.2

Retinal Implicit 780 129 80 1.6
Explicit 720 13 55 0.2

Nefertiti Implicit 1245 230 86 2.6
Explicit 1302 7 16 0.4

Table 1: Comparison with explicit method [32]. The result curves are
displayed in Figure 8.

5.4 Applications
Our algorithm can be used in various applications, such as interactive
curve editing, curve smoothing, and path planning.

Interactive curve editing We develop a simple graphical user
interface to design and edit curves on meshes interactively. An example
is shown in Fig. 9. More details can be found in the supplementary
video. By virtue of the implicit representation, it is easy to provide
Boolean operations of the regions bounded by the curves though we
did not provide such an implementation.

Fig. 9: Drawing a gingerbread man on the bunny. Starting from a rough
shape from the left, we refine it by adding landmarks and achieve the
desired shape on the right.

Boundary smoothing Many mesh segmentation methods, e.g.,
[13, 48], classify all the faces on a mesh by assigning a class index to
each of them. One problem is that the boundary of each patch can only
follow the edges of the original mesh, and thus maybe zigzag (Fig. 10
left). One way to deal with it is to extract a nearby geodesic loop [66],
but if the boundary is locally convex instead of concave, geodesic loop
is obviously not a good choice.

To process the boundary curves with our method, we can convert
the class index representation to our initial scalar field using a simple
strategy. We first specify a class index i, and for the vertex v j , we check
the faces in its one-ring neighborhood, then

φ j =


1, all the faces are in class i,

−1, all the faces are not in class i,
0, otherwise.

(16)

This is clearly not an SDF, but is enough for our algorithm to work.
Then, one can specify a few landmarks to make the curve closely stay
on its original position and keep some features. Obviously, the more
landmarks are specified, the curve will be less smoothed out. There are
plenty of possible ways to specify the landmarks, either manually or
automatically (e.g., evenly distributing). Here, we manually select a
few for the results shown in Fig. 10.

Path planning In path planning tasks, we sometimes need to
confine the curve to only pass through certain areas, which can be
easily achieved by adding interpolation and obstacles constraints to
our optimization problem. We can see in Fig. 11 that our method can
automatically generate a smooth interpolation curve that avoids the
obstacles.

Fig. 10: By adding landmarks and running our algorithm on the zigzag
boundaries on the left, we are able to get smoother curves while pre-
serving the main features (right). The right figure also shows how our
method works for multiple curves with the narrow band strategy. The
segmentation results are from [13].

Fig. 11: We generate an E-shaped path under the given landmarks, and
we do not want the curve to hit the walls colored in orange.

6 CONCLUSION

We propose the first implicit curve editing method on triangular mesh
with various controls (interpolation, sharpness, tangent and obstacle
control). The method can generate curves with smaller geodesic curva-
ture, and has no risk of wrong projection and is efficient.

The major limitation is the lack of precise control over the curve
topology. For a given set of interpolation points and the initial value
from the expected connectivity among the points, the output of our
method may have different connectivity (shown in Fig. 12 middle).
To remedy this issue, one can add more interpolation points (Fig. 12
right). Obviously, our method cannot handle intersected curves as well.
Finding ways to characterize and control the connectivity could be an
interesting future work.

Fig. 12: Given the initial curve on the left, our method will result in the two
separate circles in the middle, which is undesired. However, by adding
the two red landmarks on the right, we are able to get the expected
curve.

Another limitation is about the quality of input mesh. Though our
method can handle non-regular and non-uniform meshes (see Fig. 13),
meshes with nearly degenerated elements still bring numerical issues,
which is similar to most of the algorithms based on field derivatives of
a mesh [46].

What’s more, the non-convex nature of the energy function will lead
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to different results given different initial value. Though this behavior
is undesired in some scenarios, it helps to keep the interactive curve
design procedure more intuitive and controllable. The time cost of our
method is also limited by the non-convexity even if we use Newton’s
method and narrow band acceleration.
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Fig. 13: Curves generated on meshes with different resolutions and noise. The distortion is slight, illustrating the robustness of our method.
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A DISCRETIZATION

We discretize the surface by a triangular mesh, and represent the field
φ piece-wise linearly by a scalar φi for each mesh vertex vi. For an
integration

∫
M f dM over the surface, we approximate it as∫

M
f dM ≈ ∑

tk∈M
|tk| f (ck), (17)

where ck is the barycenter of the triangle tk. For instance, Eq. (5) is
approximated into

Esdf(φ) = ∑
tk∈M

|tk|
2
(|∇φ(ck)|2 −1)2. (18)

A simple way to discretize Eq. (10) is:

Esmooth(φ) = ∑
tk∈M

|tk|
2
(∆φ(ck))

2Gσ (φ(ck)), (19)

where the Laplacian at the barycenter is interpolated from the common
cotangent form Laplacian ∆vk, j on three vertices vk, j in triangle tk,
i.e. ∆φ(ck) =

1
3 ∑

3
j=1 ∆vk, j . But this strategy will lead to relative large

stencil for each quadrature point ck. Thus, we discretize all the integrals
on the dual cell of each mesh vertex.

Specifically, the dual cell of a mesh vertex is the star shape that se-
quentially connects the barycenters of its neighboring triangles through
middle of the adjacent edges. Using the face based discretization
will bring larger stencil
(left). Using the dual-cell
based discretization (right),
the stencil is just one-ring
of a mesh vertex. Under
this discretization, the sum
of smooth and SDF ener-
gies contributed from ver-
tex v j is:

Ev j
smooth,SDF(φ) = ∑

tk∈N (v j)

|tk|
6

(
wsmooth∆φ(v j)

2Gσ (φ(v j))

+wsdf(|∇φ(ck)|2 −1)2
)
,

(20)

where N (v j) is the one-ring neighborhood of vertex v j.

B DERIVATIVES

Interpolation term
The derivatives of the interpolation term in Eq. (7) is simple:

∂Einterp

∂φ j
=

{
φ j, v j ∈ Q,

0, otherwise,

∂ 2Einterp

∂φ j∂φk
=

{
1, v j ∈ Q∧ j = k,
0, otherwise.

(21)

Smoothness term
The smoothness energy part of Eq. (20) can be rewritten as,

Ev j
smooth(φ) =

|v j|
2

∆φ(v j)
2Gσ (φ(v j)), (22)

because ∑tk∈N (v j) |tk|= 3|v j|.
Here we denote the vertices in the one-ring neighborhood of v j

as u1,u2, · · · ,um, and the value of φ on them are φ0 = φ(v j),φ1 =
φ(u1),φ2 = φ(u2), · · · ,φm = φ(um). The Laplacian at v j can be written
as

∆φ(v j) =
m

∑
i=1

ci(φi −φ0) =
m

∑
i=0

ciφi. (23)

The coefficients c0,c1, · · · ,cm are in widely used cotangent-form:

ci =
cotαi + cotβi

2
, i = 1,2, · · · ,m, and c0 =−

m

∑
i=1

ci, (24)

where αi,βi are the two angles bounding the edge v j,ui.
Then we have its derivatives as follows

∂Ev j
smooth
∂φs

=|v j|∆φcsGσ (φ0)+
|v j|
2

(∆φ)2G′
σ (φ0)δ0s,

∂ 2Ev j
smooth

∂φs∂φt
=|v j|csctGσ (φ0)

+ |v j|∆φG′
σ (φ0)(csδ0t + ctδ0s)

+
|v j|
2

(∆φ)2G′′
σ (φ0)δ0sδ0t .

(25)

Tangent term

Following the definition in Fig. 15, we have the expressions

s = ∑
tk∈N (p j)

|tk|,

gi =
ni2 × ei2 −ni1 × ei1

2s
, i = 1,2, · · · ,m,

g0 =
m

∑
i=1

ni × ei

2s
.

(26)

v0 vi

ei1

ei2

ni1

ni2

v0

ei

ni

Fig. 15: Some symbols used to define the gradient operator, n∗ being
the normalized normals of the corresponding triangles and e∗ being the
edge vectors.

Let φ0,φ1, · · · ,φm be defined as before. Then we can compute the
gradient ∇φ in the one-ring neighborhood of p j by

∇φ(p j) =
m

∑
i=0

giφi, (27)

and the tangent term and its derivatives have the following expression:

E p j
tan,t =

1
2
〈
∇φ(p j),τ j

〉2
=

1
2

(
m

∑
i=0

〈
gi,τ j

〉
φi

)2

,

∂E p j
tan,t

∂φs
=
〈
gs,τ j

〉〈
∇φ ,τ j

〉
,

∂ 2E p j
tan,t

∂φs∂φt
=
〈
gs,τ j

〉〈
gt ,τ j

〉
.

(28)

The derivatives of Eq. (13) are almost the same.

SDF term

We define the gradient operator of tk by

Gk =
1

2|tk|
[
nk × e1,nk × e2,nk × e3

]
, (29)
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where nk is the normal of tk, and e1,e2,e3 are the opposite edge of each
vertex. Then the SDF energy in tk with respect to the values of φ at its
3 vertices Φk is

Etk
sdf =

|tk|
2
(Φ⊤

k QkΦk −1)2, (30)

where Qk = G⊤
k Gk.

Finally, the derivatives of the SDF energy become:

∇Etk
sdf =|tk|(Φ⊤

k QkΦk −1)QkΦk,

∇
2Etk

sdf =|tk|
(

2QkΦkΦ
⊤
k Qk +(Φ⊤

k QkΦk −1)Qk

)
.

(31)

Even if φ is locally flat, the derivatives will not cause infinity.

C LEVENBERG-MARQUARDT METHOD

In Levenberg-Marquardt method, the step d(k) is obtained by solving
the linear system:

(Ĥ(k)+µkI)d(k)
N = H(k)

µ d(k)
N =−g(k), (32)

where I is the identity matrix, and the scalar µk is adjusted adaptively
following the idea of trust-region method.

To be more specific, we maintain the sequences of the trust-region
radius ∆k and the shift µk. At each iteration, a step d(k) is generated
using Powell’s dog leg method based on the gradient g(k), the Newton
step d(k)

N , and the radius ∆k. Then the ratio between the actual energy
reduction and the predicted one is evaluated as [47]

ρk =
E(φ (k+1))−E(φ (k))

g(k)⊤d(k)+d(k)⊤H(k)
µ d(k)/2

, (33)

according to which ∆k and µk are updated.
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