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We prove a structural theorem for unit-disk graphs, which (roughly) states that given a set D of 𝑛 unit disks

inducing a unit-disk graph 𝐺D and a number 𝑝 ∈ [𝑛], one can partition D into 𝑝 subsets D1, . . . ,D𝑝 such

that for every 𝑖 ∈ [𝑝] and every D′ ⊆ D𝑖 , the graph obtained from 𝐺D by contracting all edges between

the vertices in D𝑖\D′ admits a tree decomposition in which each bag consists of 𝑂 (𝑝 + |D′ |) cliques. Our
theorem can be viewed as an analog for unit-disk graphs of the structural theorems for planar graphs and

almost-embeddable graphs proved recently by Marx et al. [SODA’22] and Bandyapadhyay et al. [SODA’22].

By applying our structural theorem, we give several new combinatorial and algorithmic results for unit-disk

graphs. On the combinatorial side, we obtain the first Contraction Decomposition Theorem (CDT) for unit-disk

graphs, resolving an open question in the work by Panolan et al. [SODA’19]. On the algorithmic side, we

obtain a new algorithm for bipartization (also known as odd cycle transversal) on unit-disk graphs, which

runs in 2
𝑂 (
√
𝑘 log𝑘 ) · 𝑛𝑂 (1) time, where 𝑘 denotes the solution size. Our algorithm significantly improves

the previous slightly subexponential-time algorithm given by Lokshtanov et al. [SODA’22] which runs in

2
𝑂 (𝑘27/28 ) · 𝑛𝑂 (1) time. We also show that the problem cannot be solved in 2

𝑜 (
√
𝑘 ) · 𝑛𝑂 (1) time assuming the

ETH, which implies that our algorithm is almost optimal.

CCS Concepts: • Theory of computation→ Computational geometry; Design and analysis of algo-
rithms.

Additional Key Words and Phrases: Unit-disk graphs, Contraction decomposition, Bipartization

ACM Reference Format:
Sayan Bandyapadhyay, William Lochet, Daniel Lokshtanov, Saket Saurabh, and Jie Xue. 2024. True Contraction

Decomposition and Almost ETH-Tight Bipartization for Unit-Disk Graphs. 1, 1 (November 2024), 26 pages.

https://doi.org/10.1145/3656042

1 INTRODUCTION
For a setD of unit disks in the plane, the unit-disk graph𝐺D induced byD has the unit disks inD
as its vertices, where two vertices are connected by an edge whenever the two corresponding unit

disks intersect. As one of the simplest but most important classes of geometric intersection graphs,

unit-disk graphs have been extensively studied in various areas (e.g., computational geometry, graph

theory, algorithms) and find applications such as modeling the topology of ad-hoc communication
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2 Bandyapadhyay et al.

networks [30, 53]. The research on unit-disk graphs focused on both combinatorial aspects and

algorithmic aspects.

In this paper, we establish a structural theorem for unit-disk graphs, which leads to interesting

new results in both combinatorial and algorithmic aspects. Our theorem can be viewed as a unit-

disk-graph analog of the very recent theorems proved for planar graphs [42] and more generally

for the so-called “almost-embeddable” graphs [6]. Thus, before introducing our theorem, let us first

briefly review their results. Specifically, it was shown in [6, 42] that for a planar graph 𝐺 = (𝑉 , 𝐸)
and a number 𝑝 ∈ [𝑛] where 𝑛 = |𝑉 |, one can partition𝑉 into𝑉1, . . . ,𝑉𝑝 such that for every 𝑖 ∈ [𝑝]
and 𝑉 ′ ⊆ 𝑉𝑖 , the graph obtained from 𝐺 by contracting all edges between the vertices in 𝑉𝑖\𝑉 ′
has treewidth 𝑂 (𝑝 + |𝑉 ′ |). Unfortunately, one can easily see that such a statement cannot hold for

unit-disk graphs
1
. However, if we use the number of cliques (instead of vertices) in the bags of the

tree decomposition to define its width, this statement is actually true for unit-disk graphs!

Let D be a set of 𝑛 unit disks and 𝑝 ∈ [𝑛] be any number. Our theorem (roughly) states that

one can partition D into 𝑝 subsets D1, . . . ,D𝑝 such that for every 𝑖 ∈ [𝑝] and every D′ ⊆ D𝑖 ,
the graph obtained from the unit-disk graph 𝐺D by contracting all edges between the vertices in

D𝑖\D′ admits a tree decomposition in which each bag consists of𝑂 (𝑝 + |D′ |) cliques. Furthermore,

this partition can be computed in polynomial time. The formal statement of our theorem is more

technical, and will be presented in Theorem 3.1 after we introduce some preliminaries in Section 2.

Note that the notion of tree decomposition with bags consisting of cliques is not new. In fact,

this kind of tree decomposition has been widely applied on unit-disk graphs and other geometric

intersection graphs to design efficient algorithms; see for example [13, 22, 47]. In what follows, we

discuss the new combinatorial and algorithmic results derived from our main theorem.

Combinatorial application: the first CDT on unit-disk graphs. In graph theory, a Contraction
Decomposition Theorem (CDT) is a statement of the following form: given a graph 𝐺 = (𝑉 , 𝐸) from
some graph class, for any 𝑝 ∈ N, one can partition 𝐸 into 𝐸1, . . . , 𝐸𝑝 such that contracting the edges

in each 𝐸𝑖 in 𝐺 yields a graph of treewidth at most 𝑓 (𝑝), for some function 𝑓 : N → N. CDT is

classical tool useful in designing efficient approximation and parameterized algorithms in certain

classes of graphs. Graph classes for which CDTs are known include planar graphs [34, 35], graphs

of bounded genus [16], and 𝐻 -minor free graphs [15]. However, little was known about CDTs on

geometric intersection graphs. Recently, Panolan et al. [48] made the first progress towards proving

a CDT for unit-disk graphs. Specifically, they gave a weak version of CDT (which they call a relaxed
CDT), in which the edge sets 𝐸1, . . . , 𝐸𝑝 need not to be disjoint; instead, it is required that each

edge 𝑒 ∈ 𝐸 is contained in𝑂 (1) sets in 𝐸1, . . . , 𝐸𝑝 . It remained open whether unit-disk graphs admit

a “true” CDT (where 𝐸1, . . . , 𝐸𝑝 is a partition of 𝐸). In this paper, by applying our main theorem,

we give the first CDT for unit-disk graphs and hence resolve an open question of [48] (and also

Hajiaghayi [29]). The function 𝑓 in our CDT is quadratic, i.e., 𝑓 (𝑝) = 𝑂 (𝑝2), matching the bound

in the weak CDT of [48].

Algorithmic application: almost ETH-tight bipartization on unit-disk graphs. Designing efficient

algorithms on unit-disk graphs is a central topic in the study of unit-disk graphs. Many classical

algorithmic problems have been studied on unit-disk graphs. Polynomial-time solvable problems

include shortest paths [8, 9, 51], diameter computing [10, 25], maximum clique [11], etc. Compared

to these problems, NP-hard problems received more attention on unit-disk graphs. In particular,

studying parametrized algorithms [12] for these hard problems on unit-disk graphs (or other

geometric intersection graphs) is one of the most active themes in recent years [2, 3, 21–24, 47]

1
Indeed, the clique 𝐾𝑛 is a unit-disk graph, and if we partition the vertices of 𝐾𝑛 into 𝑝 parts for 𝑝 ≥ 2, after contracting

the smallest part, we get a clique of size at least 𝑛/2 which has treewidth Ω (𝑛) .
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True Contraction Decomposition and Almost ETH-Tight Bipartization for Unit-Disk Graphs 3

(also see the survey [48]). A well-known fact about parametrized complexity on planar graphs

(or more generally, bounded-genus graphs and 𝐻 -minor-free graphs) is the so-called “square root

phenomenon”: many problems on planar graphs admit algorithms with running time 2
𝑂 (
√
𝑘 )𝑛𝑂 (1)

or 𝑛𝑂 (
√
𝑘 )
, where 𝑘 is the parameter (usually the solution size), and also admit (almost) matching

lower bounds [7, 14, 17, 19, 20, 36, 37, 43, 45, 50]. Recently, it was shown that such a “square root

phenomenon” also appears in many problems on unit disk graphs. Specifically, algorithms with

running time 2
𝑂 (
√
𝑘 )𝑛𝑂 (1) or 𝑛𝑂 (

√
𝑘 )

were obtained on unit-disk graphs for Vertex Cover [13],

Independent Set [3, 44], Feedback Vertex Set [4, 21], 𝑘-Path/Cycle [21, 23], etc. and (almost)

matching lower bounds were also known [13]. In this paper, we apply our main theorem to add

another classical problem to this family, namely, Bipartization.

In the Bipartization problem, one aims to make a graph bipartite by deleting as few vertices as

possible. Formally, the input of Bipartization is a graph𝐺 = (𝑉 , 𝐸) and a number 𝑘 , and the goal is

to determinewhether there exists𝑋 ⊆ 𝑉 of size at most𝑘 such that𝐺−𝑋 is bipartite. In the literature,
Bipartization is also called Odd Cycle Transversal, as making a graph bipartite is equivalent to

removing a set of vertices that hit all its odd cycles. As one of the most fundamental NP-complete

problems in graph theory [52], Bipartization has been studied extensively over years [1, 18, 26, 31–

33, 38, 49]. The best existing algorithm for Bipartization on general graphs runs in 2.3146𝑘𝑛𝑂 (1)

time [39]. On planar graphs, a randomized algorithm with running time 2
𝑂 (
√
𝑘 log𝑘 )𝑛𝑂 (1) was

known [41, 42], and the same running time was achieved also for bounded-genus graphs and 𝐻 -

minor-free graphs very recently [6]. However, little was known about Bipartization on geometric

intersection graphs. In fact, even achieving slightly subexponential-time parameterized algorithm

for Bipartization on unit-disk graphs was a long-standing open problem, prior to the very recent

work by Lokshtanov et al. [40]. The authors of [40] gave a randomized algorithm running in

2
𝑂 (𝑘

27

28 log𝑘 )𝑛𝑂 (1) time for Bipartization on disk graphs (and thus unit-disk graphs), achieving the

first 2
𝑜 (𝑘 )

bound for the problem. This result, however, is still far away from showing the “square

root phenomenon” for Bipartization on unit-disk graphs.

By applying our main theorem, we solve Bipartization on unit-disk graphs with a randomized

algorithm running in 2
𝑂 (
√
𝑘 log𝑘 )𝑛𝑂 (1) time, significantly improving the 2

𝑂 (𝑘
27

28 log𝑘 )𝑛𝑂 (1) bound
given by [40]. On the other hand, we establish an almost matching lower bound, showing that

the problem cannot be solved in in 2
𝑜 (
√
𝑘 )𝑛𝑂 (1) time, assuming the Exponential Time Hypothesis

(ETH). Our results thus add Bipartization to the “square root” family of problems on unit-disk

graphs. In terms of techniques, our algorithm solves the problem by first constructing the partition

{D1, . . . ,D𝑝 } of the unit-disk set D in our main theorem for 𝑝 =
√
𝑘 and then applying the well-

known Baker’s technique on D1, . . . ,D𝑝 together with a DP procedure similar to the one in [6]

on tree decomposition. Such a scheme based on our theorem can possibly also be applied to solve

other problems on unit-disk graphs. To give an example, we extend our algorithm to the problem

of Group Feedback Vertex Set with non-identity labels, with the same running time.

Organization. The rest of the paper is organized as follows. In Section 2, we introduce the basic

notions and preliminaries used throughout the paper. Our main theorem and its proof is given in

Section 3, followed by its applications in Section 4. Finally, in Section 5, we conclude the paper and

raise some open questions for future study.

2 PRELIMINARIES
The canonical grid. Consider the grid formed by vertical lines {𝑥 = 𝑖 : 𝑖 ∈ N} and horizontal lines
{𝑦 = 𝑖 : 𝑖 ∈ N}. We shall use it as the canonical grid throughout this paper (in the rest of the paper,

, Vol. 1, No. 1, Article . Publication date: November 2024.



4 Bandyapadhyay et al.

we shall refer it as “the grid”). Each cell in the grid is a unit square, and we usually use the notation

□ to denote a cell. For a unit disk 𝐷 , we denote by □𝐷 the grid cell that contains the center of 𝐷 .

(For convenience, throughout the paper, we always assume that the centers of the unit disks do not
lie on the grid lines, and thus each center lies in exactly one cell of the grid. If this is not the case

for the input unit disks, we can easily shift the grid or the unit disks to make the centers not lie

on the grid lines.) For a set D of unit disks and a cell □, we denote by D ⋒ □ the subset of unit

disks in D whose centers lie in □. We say a subset D′ ⊆ D is grid-respecting if for any cell □ such

that D′ ⋒ □ ≠ ∅, we have D′ ⋒ □ = D ⋒ □. A partition {D1, . . . ,D𝑝 } of D is grid-respecting if

D1, . . . ,D𝑝 are all grid-respecting subsets of D.

Basic graph notions. Let 𝐺 = (𝑉 , 𝐸) be a graph. For a subset 𝑉 ′ ⊆ 𝑉 , the subgraph of 𝐺 induced
by𝑉 ′ is the graph consisting of the vertices in𝑉 ′ and the edges in 𝐸 with both endpoints in𝑉 ′. An
induced subgraph of 𝐺 is a subgraph of 𝐺 induced by a subset of 𝑉 . A vertex 𝑣 ∈ 𝑉 is neighboring
to a subset 𝑉 ′ ⊆ 𝑉 in 𝐺 if there exists 𝑣 ′ ∈ 𝑉 ′ such that (𝑣, 𝑣 ′) ∈ 𝐸. A subset 𝑉 ′ ⊆ 𝑉 is neighboring
to another subset 𝑉 ′′ ⊆ 𝑉 if there exist 𝑣 ′ ∈ 𝑉 ′ and 𝑣 ′′ ∈ 𝑉 ′′ such that (𝑣 ′, 𝑣 ′′) ∈ 𝐸.

Unit disks and unit-disk graphs. Let D be a set of unit disks in the plane, which are in general

position in the sense that no two unit disks contact each other (i.e., intersect at a single point). For

𝐷 ∈ D, we denote by ctr(𝐷) the center of the unit disk𝐷 . The union𝑈 =
⋃
𝐷∈D 𝐷 is a closed region

in the plane, whose boundary consists of a set of disjoint closed curves. The outer boundary of𝑈 is

defined as the part of the boundary of𝑈 that is incident to the unbounded connected component

of R2\𝑈 ; see Figure 1 for an illustration. The exposed unit disks in D refers to the unit disks in D
that intersect the outer boundary of𝑈 . In Figure 1, all unit disks in D are exposed. We denote by

Exp(D) the set of exposed unit disks in D. The unit-disk graph induced by D, denoted by𝐺D , has
the unit disks in D as its vertices, where two vertices are connected by an edge whenever the two

corresponding unit disks intersect
2
. We use 𝐸D to denote the edge set of 𝐺D . Note that for a cell

□, the unit disks in D ⋒ □ pairwise intersect and hence form a clique in 𝐺D , which we call a cell
clique. We denote by 𝐸∗D ⊆ 𝐸D the set of edges in all cell cliques in 𝐺D . For a subset D′ ⊆ D, the

unit-disk graph 𝐺D′ is canonically isomorphic to the subgraph of 𝐺D induced by D′. Thus, for
convenience, we shall not distinguish between them: we shall also use 𝐺D′ to denote the induced

subgraph of 𝐺D and use 𝐸D′ to denote the set of edges in 𝐺D between the vertices in D′.

Tree decomposition and treewidth. With a bit abuse of notation, for a tree 𝑇 , we also use 𝑇 to

denote the set of its nodes. A tree decomposition of a graph 𝐺 = (𝑉 , 𝐸) is a pair (𝑇, 𝛽) where 𝑇 is

a tree and 𝛽 : 𝑇 → 2
𝑉
maps the nodes of 𝑇 to subsets of 𝑉 such that (i)

⋃
𝑡 ∈𝑇 𝛽 (𝑡) = 𝑉 , (ii) for

each edge (𝑢, 𝑣) ∈ 𝐸, there exists 𝑡 ∈ 𝑇 with 𝑢, 𝑣 ∈ 𝛽 (𝑡), and (iii) for each vertex 𝑣 ∈ 𝑉 , the nodes
𝑡 ∈ 𝑇 with 𝑣 ∈ 𝛽 (𝑡) form a connected subset in 𝑇 . Conventionally, we call 𝛽 (𝑡) the bag of the node

𝑡 ∈ 𝑇 . The width of the tree decomposition (𝑇, 𝛽) is max𝑡 ∈𝑇 |𝛽 (𝑡) | − 1. The treewidth of a graph

𝐺 , denoted by tw(𝐺) is the minimum width of a tree decomposition of 𝐺 . It is sometimes more

convenient to consider rooted trees. Thus, throughout this paper, we always view the tree in a tree

decomposition as a rooted tree. A tree decomposition (𝑇, 𝛽) is binary if 𝑇 is binary.

Lemma 2.1 (Chapter 7 in [12]). Given an 𝑛-vertex graph 𝐺 with tw(𝐺) = 𝑤 , a binary tree
decomposition of 𝐺 of width 𝑂 (𝑤) can be computed in 2

𝑂 (𝑤 )𝑛𝑂 (1) time.

2
Without loss of generality, we can always assume that the unit disks defining a unit-disk graph are in general position.

Indeed, one can convert a given set D0 of unit disks to another set D of unit disks in general position such that𝐺D = 𝐺D0
.

This is done as follows. First, we enlarge every unit disk in D0 to a disk of radius 1 + 𝜀 , where 𝜀 is sufficiently small so

that two disjoint unit disks in D0 are still disjoint after the enlargement. After this, we obtain a set D1 of congruent disks

representing the same intersection graph as D0. Note that no two disks in D1 contact each other. Then by scaling we can

further convert D1 to the desired set D of unit disks in general position.

, Vol. 1, No. 1, Article . Publication date: November 2024.
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U

D

Fig. 1. The boundary and outer boundary of𝑈 (the heavier curve is the outer boundary).

Edge contraction. From a graph 𝐺 = (𝑉 , 𝐸), one can obtain a new graph via a so-called edge
contraction operation. Specifically, by contracting an edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, we merge 𝑢 and 𝑣 into

one vertex with edges connecting to both the neighbors of 𝑢 and the neighbors of 𝑣 in 𝑉 \{𝑢, 𝑣}.
More generally, we can contract a subset 𝐸0 ⊆ 𝐸 of edges simply by contracting these edges

“one-by-one”. Formally, the resulting graph by contracting 𝐸0 in𝐺 , which we denote by𝐺/𝐸0, is
defined as follows. The vertices of𝐺/𝐸0 one-to-one corresponds to the connected components of the

graph𝐺0 = (𝑉 , 𝐸0), and two vertices have an edge connecting them whenever the corresponding

two connected components of 𝐺0 are neighboring in 𝐺 (i.e., there exists an edge in 𝐺 whose two

endpoints lie in the two components respectively). Let𝑉0 denote the vertex set of𝐺/𝐸0. Associated
to this edge contraction, there is a natural map 𝜋 : 𝑉 → 𝑉0 which maps each vertex 𝑣 ∈ 𝑉 to

the vertex of 𝐺/𝐸0 corresponding to the connected component of 𝐺0 that contains 𝑣 . We call

𝜋 the quotient map of the edge contraction. Following is a well-known relation between tree

decompositions of the graph after edge contraction and the original graph.

Fact 2.2. Let𝐺 = (𝑉 , 𝐸) be a graph obtained from another graph𝐺 ′ = (𝑉 ′, 𝐸′) via edge contraction
with quotient map 𝜋 : 𝑉 ′ → 𝑉 . The following statements are true.

(i) If (𝑇, 𝛽) is a tree decomposition of 𝐺 , then (𝑇, 𝛽 ′) is a tree decomposition of 𝐺 ′ where 𝛽 ′ (𝑡) =
𝜋−1 (𝛽 (𝑡)) for all nodes 𝑡 ∈ 𝑇 .

(ii) If (𝑇 ′, 𝛽 ′) is a tree decomposition of𝐺 ′, then (𝑇 ′, 𝛽) is a tree decomposition of𝐺 where 𝛽 (𝑡) =
𝜋 (𝛽 ′ (𝑡)) for all nodes 𝑡 ∈ 𝑇 ′.

Proof. To see (i), suppose (𝑇, 𝛽) is a tree decomposition of 𝐺 . As
⋃
𝑡 ∈𝑇 𝛽 (𝑡) = 𝑉 , we have⋃

𝑡 ∈𝑇 𝛽
′ (𝑡) = ⋃

𝑡 ∈𝑇 𝜋
−1 (𝛽 (𝑡)) = 𝑉 ′. Consider an edge (𝑢′, 𝑣 ′) ∈ 𝐸′. If 𝜋 (𝑢′) = 𝜋 (𝑣 ′) = 𝑣 , then

any node 𝑡 ∈ 𝑇 such that 𝑣 ∈ 𝛽 (𝑡) satisfies 𝑢′, 𝑣 ′ ∈ 𝛽 ′ (𝑡); such a node exists as (𝑇, 𝛽) is a tree

decomposition of 𝐺 . If 𝜋 (𝑢′) ≠ 𝜋 (𝑣 ′), then (𝜋 (𝑢′), 𝜋 (𝑣 ′)) ∈ 𝐸. In this case, there exists 𝑡 ∈ 𝑇 such

that 𝜋 (𝑢′), 𝜋 (𝑣 ′) ∈ 𝛽 (𝑡), which implies 𝑢′, 𝑣 ′ ∈ 𝛽 ′ (𝑡). Finally, consider a vertex 𝑣 ′ ∈ 𝑉 ′. The nodes
𝑡 ∈ 𝑇 satisfying 𝜋 (𝑣 ′) ∈ 𝛽 (𝑡) are connected in 𝑇 . These are exactly the nodes 𝑡 ∈ 𝑇 satisfying

𝑣 ′ ∈ 𝛽 ′ (𝑡), and therefore they are connected in 𝑇 . So (𝑇, 𝛽 ′) is a tree decomposition of 𝐺 ′.
To see (ii), suppose (𝑇 ′, 𝛽 ′) is a tree decomposition of𝐺 ′. As 𝜋 is surjective and

⋃
𝑡 ∈𝑇 ′ 𝛽

′ (𝑡) = 𝑉 ′,
we have

⋃
𝑡 ∈𝑇 ′ 𝛽 (𝑡) =

⋃
𝑡 ∈𝑇 ′ 𝜋 (𝛽 ′ (𝑡)) = 𝑉 . For an edge (𝑢, 𝑣) ∈ 𝐸, there exist 𝑢′ ∈ 𝜋−1 ({𝑢})

and 𝑣 ′ ∈ 𝜋−1 ({𝑣}) such that (𝑢′, 𝑣 ′) ∈ 𝐸′. Thus, 𝑢′, 𝑣 ′ ∈ 𝛽 ′ (𝑡) for some node 𝑡 ∈ 𝑇 ′. It follows
that 𝑢, 𝑣 ∈ 𝛽 (𝑡). Finally, consider a vertex 𝑣 ∈ 𝑉 . For any node 𝑡 ∈ 𝑇 ′, 𝑣 ∈ 𝛽 (𝑡) if and only if

𝜋−1 ({𝑣}) ∩ 𝛽 ′ (𝑡) ≠ ∅. Note that 𝐺 ′ [𝜋−1 ({𝑣})] is a connected subgraph of 𝐺 ′. It is well-known
that in a tree decomposition of a graph, the nodes whose bags intersect a connected subgraph

are connected in the tree. This implies that the nodes 𝑡 ∈ 𝑇 ′ such that 𝜋−1 ({𝑣}) ∩ 𝛽 ′ (𝑡) ≠ ∅ are
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connected in 𝑇 ′. Therefore, the nodes 𝑡 ∈ 𝑇 ′ satisfying 𝑣 ∈ 𝛽 (𝑡) are connected in 𝑇 ′. So (𝑇 ′, 𝛽) is a
tree decomposition of 𝐺 . □

3 THE MAIN THEOREM
In this section, we present the main theorem of this paper, which establishes a structural property

of unit-disk graphs. Formally, the theorem is the following.

Theorem 3.1 (main theorem). Given a set D of 𝑛 unit disks and an integer 𝑝 ∈ [𝑛], one can
compute in polynomial time a grid-respecting partition {D1, . . . ,D𝑝 } ofD such that for every 𝑖 ∈ [𝑝]
and every D′ ⊆ D𝑖 , tw(𝐺D/(𝐸∗D ∪ 𝐸D𝑖\D′ )) = 𝑂 (𝑝 + |D′ |).

Recall that in Section 1, we gave an informal version of the above theorem, which states that

𝐺D/𝐸D𝑖\D′ admits a tree decomposition in which each bag contains 𝑂 (𝑝 + |D′ |) cliques. One
may ask how Theorem 3.1 implies this statement. To see this, observe that 𝐺D/(𝐸∗D ∪ 𝐸D𝑖\D′ )
can be viewed as a graph obtained from 𝐺D/𝐸D𝑖\D′ via edge contraction. Thus, if we start from
a tree decomposition of 𝐺D/(𝐸∗D ∪ 𝐸D𝑖\D′ ) of width 𝑂 (𝑝 + |D′ |) and apply Fact 2.2 to obtain a

tree decomposition of 𝐺D/𝐸D𝑖\D′ , one can check that each bag of the latter tree decomposition

consists of𝑂 (𝑝 + |D′ |) cliques. We omit the details of this argument as it is not important. The rest

of this section is dedicated to proving Theorem 3.1.

3.1 A layering for the unit disks
The first step of proving Theorem 3.1 is to compute a layering for the unit disks in D, that is, a

decomposition of D into layers. We shall use a function ℓ : D → N to represent the layering: the

unit disks which are mapped to 𝑖 by ℓ form the 𝑖-th layer of D. This layering ℓ respects the grid
partition of D in the sense that ℓ−1 ({𝑖}) is a grid-respecting subset of D for all 𝑖 ∈ N. Besides, ℓ
possesses some nice properties which will be used later to prove Theorem 3.1. Algorithm 1 presents

the procedure for computing ℓ . In words, it iteratively finds the exposed unit disks in D (line 4)

and removes fromD the unit disks whose centers lie in the same cells as the centers of the exposed

ones (line 5 and 7), and finally combines the unit disks removed in every 100 iterations into one

layer (line 8). Here the number 100 is arbitrarily chosen (any sufficiently large constant works).

Algorithm 1 Layering(D) ⊲ Output a layering ℓ : D → N
1: 𝑞 ← 0

2: while D ≠ ∅ do
3: 𝑞 ← 𝑞 + 1
4: X ← Exp(D)
5: X+ = ⋃

𝑋 ∈X (D ⋒ □𝑋 )
6: Tag𝑋 ← 𝑞 for all 𝑋 ∈ X+
7: D ← D\X+
8: return ℓ : 𝐷 ↦→ ⌈Tag𝐷/100⌉

It is clear that the layering ℓ returned by Algorithm 1 respects the cell partition of D, because

in line 6 we always assign the same tag to all unit disks with centers in the cells □𝐷 . We write

L𝑖 = ℓ−1 ({𝑖}) and call it the 𝑖-th layer of D. Suppose there are in total 𝑚 layers. We define

L>𝑖 =
⋃𝑚
𝑗=𝑖+1 L 𝑗 , L≥𝑖 =

⋃𝑚
𝑗=𝑖 L 𝑗 , L<𝑖 =

⋃𝑖−1
𝑗=1 L 𝑗 , L≤𝑖 =

⋃𝑖
𝑗=1 L 𝑗 , and L[𝑖,𝑖′ ] =

⋃𝑖′
𝑗=𝑖 L 𝑗 . Next, we

establish some nice properties of the layering ℓ .

Lemma 3.2. The layering ℓ and the layers L1, . . . ,L𝑚 satisfy the following three properties.
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(i) For any 𝐷, 𝐷 ′ ∈ D such that 𝐷 ∩ 𝐷 ′ ≠ ∅, we have |ℓ (𝐷) − ℓ (𝐷 ′) | ≤ 1.
(ii) For a connected component of 𝐺L>𝑖

with vertex set C ⊆ L>𝑖 , the unit disks in L𝑖 neighboring
to C lie in the same connected component of 𝐺L𝑖

.

(iii) For any 𝑖, 𝑖′ ∈ [𝑚] with 𝑖 ≤ 𝑖′, tw
(
𝐺L [𝑖,𝑖′ ]

/
𝐸∗L [𝑖,𝑖′ ]

)
= 𝑂 (𝑖′ − 𝑖 + 1).

We remark that the construction of our layering ℓ on unit-disk graphs is analogous to (and also

inspired by) the outerplanarity layering on planar graphs (which is obtained by iteratively removing

the vertices on the boundary of the outer face of the planar graph). While for the outerplanarity

layering the three properties in Lemma 3.2 follow easily, it requires considerably more work to

show them for our layering on unit-disk graphs.

In the rest of this section, we prove Lemma 3.2. We begin with introducing some notations

for ease of exposition. Since D changes during Algorithm 1, we denote by D (𝑞) the set D at the

beginning of the 𝑞-th iteration of the while-loop (line 2-7). Define X (𝑞) = Exp(D (𝑞) ) and𝑈 (𝑞) as
the union of the unit disks in D (𝑞) .

Verifying property (i). Let 𝐷,𝐷 ′ ∈ D such that 𝐷 ∩𝐷 ′ ≠ ∅. To show |ℓ (𝐷) − ℓ (𝐷 ′) | ≤ 1, it suffices

to show |Tag𝐷 − Tag𝐷 ′ | ≤ 100. Let 𝑞 = Tag𝐷 and 𝑞′ = Tag𝐷 ′ . If 𝑞 = 𝑞′, we are done. If 𝑞 ≠ 𝑞′, we
may assume 𝑞 < 𝑞′ without loss of generality. Since Tag𝐷 = 𝑞, 𝐷 ∈ D ⋒ □𝑋 for some 𝑋 ∈ X (𝑞) . By
the definition of X (𝑞) , 𝑋 intersects the outer boundary of𝑈 (𝑞) and thus there exists a point 𝑥 ∈ 𝑋
that is on the outer boundary of𝑈 (𝑞) . Let 𝜎 be the segment connecting 𝑥 and 𝑑 ′ = ctr(𝐷 ′). We say

a cell □ is relevant if there exists a unit disk in D ⋒ □ that intersects 𝜎 . The following observation

shows that the number of relevant cells is at least 𝑞′ − 𝑞 + 1.

Observation 3.3. For each 𝑖 ∈ {𝑞, . . . , 𝑞′}, there exists a unit disk 𝐷𝑖 ∈ D with Tag𝐷𝑖
= 𝑖 that

intersects 𝜎 . Thus, the number of relevant cells is at least 𝑞′ − 𝑞 + 1.

Proof. Let 𝑖 ∈ {𝑞, . . . , 𝑞′}. Note that 𝑑 ′ ∈ 𝑈 (𝑖 ) as 𝐷 ′ ∈ D (𝑖 ) . On the other hand, 𝑥 is either on

or outside the outer boundary of 𝑈 (𝑖 ) (i.e., in the unbounded connected component of R2\𝑈 (𝑖 ) ),
because 𝑥 is on the outer boundary of𝑈 (𝑞) and𝑈 (𝑖 ) ⊆ 𝑈 (𝑞) . As such, the segment 𝜎 should intersect

the outer boundary of𝑈 (𝑖 ) . Consider the point 𝑎 in the intersection of 𝜎 and the outer boundary of

𝑈 (𝑖 ) . Since 𝑎 is on the outer boundary of𝑈 (𝑖 ) , there exists a unit disk 𝐷𝑖 ∈ X (𝑖 ) that contains 𝑎 on
its boundary. We have Tag𝐷𝑖

= 𝑖 . Also, 𝐷𝑖 intersects 𝜎 as 𝑎 ∈ 𝐷𝑖 . To bound the number of relevant

cells, we notice that the cells □𝐷𝑞
, . . . ,□𝐷𝑞′ are distinct, because the tags of 𝐷𝑞, . . . , 𝐷𝑞′ are distinct.

Furthermore, □𝐷𝑞
, . . . ,□𝐷𝑞′ are all relevant cells, since 𝐷𝑞, . . . , 𝐷𝑞′ intersect 𝜎 . So there are at least

𝑞′ − 𝑞 + 1 relevant cells. □

Note that the length of 𝜎 is at most 3 because 𝐷 ∩ 𝐷 ′ ≠ ∅ and 𝐷 ∩ 𝑋 ≠ ∅. As such, there can be

no more than 100 relevant cells (actually much fewer), because each relevant cell must contain a

point with distance at most 1 from 𝜎 . Thus, 𝑞′ − 𝑞 + 1 ≤ 100 and |ℓ (𝐷) − ℓ (𝐷 ′) | ≤ 1. Property (i) in

Lemma 3.2 holds.

Verifying property (ii). Consider a connected component of𝐺L>𝑖
with vertex set C ⊆ L>𝑖 . Define

𝑄 = {𝑞 : ⌈𝑞/100⌉ = 𝑖}. For a fixed 𝑞 ∈ 𝑄 , the outer boundary of D (𝑞) consists of some closed

curves in the plane, each of which encloses a region that is topologically homeomorphic to a disk.

These regions are clearly disjoint; we call the union of these regions the domain of D (𝑞) . We claim

that one of these regions should contain all unit disks in C. First, observe that the domain of D (𝑞)
contains all unit disks inD (𝑞) , and hence contains all disks in C since C ⊆ L>𝑖 = D (100𝑖+1) ⊆ D (𝑞) .
Furthermore, because the regions are disjoint but 𝐺C is connected, all unit disks in C must lie in

the same region. We denote by 𝑅𝑞 the region that contains the unit disks in C. We do this for all

𝑞 ∈ 𝑄 , and thus obtain a set {𝑅𝑞}𝑞∈𝑄 of regions. We observe that these regions are nested.
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Observation 3.4. 𝑅𝑞 ⊇ 𝑅𝑞′ for all 𝑞, 𝑞′ ∈ 𝑄 with 𝑞 ≤ 𝑞′.

Proof. Since 𝑞 ≤ 𝑞′, the domain ofD (𝑞) contains the domain ofD (𝑞′ ) and in particular contains

𝑅𝑞′ . Because 𝑅𝑞′ is connected, it is either contained in 𝑅𝑞 or disjoint from 𝑅𝑞 . As the unit disks in C
are contained in both 𝑅𝑞 and 𝑅𝑞′ , we have 𝑅𝑞 ∩ 𝑅′𝑞 ≠ ∅ and thus 𝑅𝑞 ⊇ 𝑅𝑞′ . □

To prove property (ii), consider two unit disks𝐷, 𝐷 ′ ∈ L𝑖 that are neighboring to C. Let 𝑞 = Tag𝐷
(resp., 𝑞′ = Tag𝐷 ′ ), then the tag of any unit disk in D ⋒ □𝐷 (resp., D ⋒ □𝐷 ′ ) is 𝑞 (resp., 𝑞′). As
𝐷, 𝐷 ′ ∈ L𝑖 , we have 𝑞, 𝑞′ ∈ 𝑄 and we assume 𝑞 ≥ 𝑞′ without loss of generality. Since 𝐷 is

neighboring to C and Tag𝐷 = 𝑞, 𝐷 must be contained in 𝑅𝑞 and thus all unit disks in D ⋒ □𝐷 are

contained in 𝑅𝑞 . Furthermore, there exists a unit disk 𝑋 ∈ D ⋒ □𝐷 which is exposed in D (𝑞) , i.e.,
𝑋 ∈ X (𝑞) . Note that 𝑋 must intersect the boundary of 𝑅𝑞 , because 𝑋 intersects the outer boundary

of𝑈 (𝑞) and is contained in 𝑅𝑞 . Similarly, there exists a unit disk 𝑋 ′ ∈ D ⋒ □𝐷 ′ exposed in D (𝑞′ )
which intersects the boundary of 𝑅𝑞′ .

Observation 3.5. 𝐷 ′ ∪ 𝑋 ′ intersects the boundary of 𝑅𝑞 .

Proof. As 𝑋 ′ intersects the boundary of 𝑅𝑞′ , there exists a point 𝑥
′ ∈ 𝑋 ′ on the boundary of

𝑅𝑞′ . Then either 𝑥 ′ ∉ 𝑅𝑞 or 𝑥 ′ is on the boundary of 𝑅𝑞 , because 𝑅𝑞 ⊆ 𝑅𝑞′ by Observation 3.4. In

the latter case, we are done, as 𝑋 ′ intersects the boundary of 𝑅𝑞 . So assume 𝑥 ′ ∉ 𝑅𝑞 . Since 𝐷 ′ is
neighboring to C and the unit disks in C are all contained in 𝑅𝑞 , we have 𝐷

′ ∩𝑅𝑞 ≠ ∅. Now 𝐷 ′ ∪𝑋 ′
intersects 𝑅𝑞 and contains a point 𝑥 ′ that is outside 𝑅𝑞 . Note that 𝐷 ′ ∪ 𝑋 ′ is connected, because
𝑋 ′ ∈ D ⋒ □𝐷 ′ . Therefore, 𝐷 ′ ∪ 𝑋 ′ intersects the boundary of 𝑅𝑞 . □

Now both 𝐷 ∪ 𝑋 and 𝐷 ′ ∪ 𝑋 ′ are connected and intersect the boundary of 𝑅𝑞 . Note that the

unit disks in D (𝑞) that intersect the boundary of 𝑅𝑞 form a connected unit-disk graph. Thus, the

unit-disk graph induced by these unit disks together with 𝐷,𝑋, 𝐷 ′, 𝑋 ′ is also connected. All these

unit disks belong to L𝑖 , and are hence in the same connected component of 𝐺L𝑖
. In particular, 𝐷

and 𝐷 ′ are in the same connected component of 𝐺L𝑖
. Property (ii) in Lemma 3.2 holds.

Verifying property (iii). We notice that, in order to verify property (iii), it suffices to show that

tw(𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 ) = 𝑂 ( 𝑗) for all 𝑗 ∈ [𝑚], because L[𝑖,𝑖′ ] is nothing but the first 𝑗 = 𝑖
′ − 𝑖 + 1 layers

of the unit-disk set L≥𝑖 . To this end, we first construct a drawing of the graph 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 on the

plane (possibly with edge crossings). The vertices of𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 one-to-one correspond to the cells

□ for which L≤ 𝑗 ⋒ □ ≠ ∅, and we denote by 𝑣 (□) the vertex corresponding to the cell □. We draw

each vertex 𝑣 (□) at an arbitrary point inside the cell □ that lies in the intersection of all unit disks

in D ⋒ □ (such a point always exists, e.g., the center of □). For simplicity, we also use 𝑣 (□) to
denote the point in the plane where we draw the vertex 𝑣 (□). For each edge 𝑒 = (𝑣 (□), 𝑣 (□′))
of 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 , we draw it as a polyline (or polygonal chain) in the plane connecting 𝑣 (□) and
𝑣 (□′) as follows. Since 𝑣 (□) and 𝑣 (□′) are connected by an edge in 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 , there exist unit
disks 𝐷 ∈ L≤ 𝑗 ⋒ □ and 𝐷 ′ ∈ L≤ 𝑗 ⋒ □′ such that 𝐷 ∩ 𝐷 ′ ≠ ∅. We choose an arbitrary point

𝑥 ∈ 𝐷 ∩ 𝐷 ′ and let 𝜎 be the segment connecting 𝑥 and 𝑣 (□), and 𝜎 ′ be the segment connecting 𝑥

and 𝑣 (□′). We then draw the edge 𝑒 as the two-piece polyline consisting of the segments 𝜎 and

𝜎 ′, and denote this polyline by 𝛾𝑒 . See the left part of Figure 2 for an illustration. Note that 𝛾𝑒 is

contained in 𝐷 ∪ 𝐷 ′. In this way, we obtain a plane drawing of 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 (possibly with edge

crossings), and denote this drawing by 𝜂. For convenience, we call the polylines 𝛾𝑒 edge curves. By
carefully choosing the middle points of the edge curves, we can guarantee that all segments of the

edge curves have different slopes (and thus two edge curves can only intersect at finitely many

points) and no three edge curves intersect at a common point. It is easy to see that each edge curve
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Fig. 2. Illustrating the drawing 𝜂. The left part is the construction of one edge curve 𝛾𝑒 and the right part is
an example of how the drawing 𝜂 finally looks like.

only intersects a constant number of other edge curves, and thus 𝜂 embeds𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 in the plane

with 𝑂 (1) crossings per edge. Grigoriev and Bodlaender [27] showed that the treewidth of such

a graph is linear in its diameter. Unfortunately, we cannot directly apply this result to bound the

treewidth of 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 , because the diameter of 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 might be unbounded. However, the

ideas in the proof of [27] turn out to be useful in our setting as well. We shall use an argument

similar to that in [27]: constructing a planar graph 𝑃 from the drawing 𝛾 by adding vertices to the

edge-crossing points and then bounding tw(𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 ) by considering tw(𝑃). In order to do this,

we first observe some basic properties of the drawing 𝜂.

Let 𝛤 be the image of 𝜂 in the plane, which is equal to the union of all edge curves and all 𝑣 (□);
see the right part of Figure 2. By our construction, 𝛤 is contained in the union of all unit disks in

D. Next, we establish some properties of 𝛤 , which will be used later for bounding tw(𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 ).
For two points 𝑎, 𝑏 ∈ R2, a path from 𝑎 to 𝑏 is a continuous map 𝑓 : [0, 1] → R2 with 𝑓 (0) = 𝑎 and
𝑓 (1) = 𝑏. We write Δ(𝑓 , 𝛤 ) = |{𝑥 ∈ [0, 1] : 𝑓 (𝑥) ∈ 𝛤 }|; if {𝑥 ∈ [0, 1] : 𝑓 (𝑥) ∈ 𝛤 } is not finite, we
simply set Δ(𝑓 , 𝛤 ) = ∞.

Observation 3.6. For any two points 𝑎, 𝑏 ∈ R2 with distance 𝑑 , there exists a path 𝑓 : [0, 1] → R2
from 𝑎 to 𝑏 such that Δ(𝑓 , 𝛤 ) = 𝑂 (𝑑).

Proof. Pick an arbitrary point 𝑐 which has distance at most 𝑑 to both 𝑎 and 𝑏 and satisfies that

the slopes of the segments 𝑎𝑐 and 𝑐𝑏 are different from the slopes of all segments in the edge curves.

Define 𝑓 : [0, 1] → R2 as the path from 𝑎 to 𝑏 which first goes from 𝑎 to 𝑐 along with the segment

𝑎𝑐 and then goes from 𝑐 to 𝑏 along with the segment 𝑐𝑏. Since the slope of 𝑎𝑐 (resp., 𝑐𝑏) is different

from the slopes of the segments in the edge curves, each edge curve can intersect 𝑎𝑐 (resp., 𝑐𝑏) at

(at most) two points. Therefore, Δ(𝑓 , 𝛤 ) is finite. To show Δ(𝑓 , 𝛤 ) = 𝑂 (𝑑), it suffices to show that

the segment 𝑎𝑐 (resp., 𝑐𝑏) only intersects 𝑂 (𝑑) edge curves. Without loss of generality, we only

consider the segment 𝑎𝑐 . Let 𝑒 = (𝑣 (□), 𝑣 (□′)) be an edge whose edge curve 𝛾𝑒 intersects 𝑎𝑐 . We

claim that the distance from any point in □ (resp., □′) to 𝑎𝑐 is 𝑂 (1). Indeed, by our construction,

the edge curve 𝛾𝑒 consists of two segments of length at most 2, and the two endpoints of 𝛾𝑒 lie in □
and □′, respectively. Thus, the distance between a point in □ (resp., □′) and an intersection point of

𝛾𝑒 and 𝑎𝑐 cannot be larger than 4+
√
2, where

√
2 is the maximum distance between two points in □

(resp., □′). It follows that the distance from any point in □ (resp., □′) to 𝑎𝑐 is at most 4 +
√
2. Based
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on this observation, we see that the edges of 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 whose edge curves intersect 𝑎𝑐 must be

between the cells with constant distance from 𝑎𝑐 . Since the length of 𝑎𝑐 is at most 𝑑 , there can be

only 𝑂 (𝑑) cells with constant distance from 𝑎𝑐 . Thus, 𝑎𝑐 intersects 𝑂 (𝑑) edge curves. □

Observation 3.7. For any point 𝑎 ∈ R2, there exists a point 𝑏 in the unbounded connected
component of R2\𝛤 and a path 𝑓 : [0, 1] → R2 from 𝑎 to 𝑏 such that Δ(𝑓 , 𝛤 ) = 𝑂 ( 𝑗).

Proof. We first consider a special case where 𝑎 = 𝑣 (□) for some vertex 𝑣 (□) of 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 . We

show that if the unit disks in D ⋒ □ have tag 𝑞, then there exists a point 𝑏 in the unbounded

connected component of R2\𝛤 and a path 𝑓 : [0, 1] → R2 from 𝑣 (□) to 𝑏 such that Δ(𝑓 , 𝛤 ) = 𝑂 (𝑞).
We use induction on 𝑞. The base case is 𝑞 = 1. If the tag of the unit disks in D ⋒ □ is 1, then there

exists a unit disk inD ⋒□ that is exposed inD. This implies that □ is “close” to the outer boundary
of𝑈 =

⋃
𝐷∈D 𝐷 ; more precisely, one can find a point 𝑏 in the unbounded connected component of

R2\𝑈 such that the distance between 𝑣 (□) and 𝑏 is 𝑂 (1). Recall that 𝛤 ⊆ 𝑈 , and so 𝑏 lies in the

unbounded connected component of R2\𝛤 . By Observation 3.6, there exists a path 𝑓 from 𝑣 (□) to
𝑏 such that Δ(𝑓 , 𝛤 ) = 𝑂 (1). Now assume the statement holds for all 𝑞 ∈ {1, . . . , 𝑘 − 1}. Consider
the case 𝑞 = 𝑘 , i.e. the tag of the unit disks in D ⋒ □ is 𝑘 . There exists a unit disk in D ⋒ □ which

is exposed in D (𝑘 ) , which implies the existence of a point on the outer boundary of 𝑈 (𝑘 ) with
distance 𝑂 (1) from 𝑣 (□). As such, there also exists a point 𝑏1 with distance 𝑂 (1) from 𝑣 (□) that is
outside the outer boundary of 𝑈 (𝑘 ) , i.e., in the unbounded connected component of R2\𝑈 (𝑘 ) . We

distinguish two cases: 𝑏1 ∈ 𝑈 and 𝑏1 ∉ 𝑈 .

If 𝑏1 ∈ 𝑈 , then 𝑏1 ∈ 𝑈 \𝑈 (𝑘 ) . Thus, there must exist a unit disk 𝐷 ∈ D\D (𝑘 ) that contains 𝑏1. Let
□′ = □𝐷 . The distance between 𝑣 (□) and 𝑣 (□′) is𝑂 (1), because 𝑏1 is with distance𝑂 (1) from 𝑣 (□)
and 𝑏1 lies in 𝐷 ∈ D ⋒ □′. By Observation 3.6, there exists a path 𝑓1 from 𝑣 (□) to 𝑣 (□′) such that

Δ(𝑓1, 𝛤 ) = 𝑂 (1). On the other hand, the tag of the unit disks inD ⋒ □′ is 𝑞 = Tag𝐷 ∈ {1, . . . , 𝑘 − 1}.
So by our induction hypothesis, there exists a path 𝑓2 from 𝑣 (□′) to a point 𝑏 in the unbounded

connected component of R2\𝛤 such that Δ(𝑓2, 𝛤 ) = 𝑂 (𝑞). By concatenating 𝑓1 and 𝑓2, we obtain a

path 𝑓 : [0, 1] → R2 from 𝑣 (□) to 𝑏 such that Δ(𝑓 , 𝛤 ) = Δ(𝑓1, 𝛤 ) + Δ(𝑓2, 𝛤 ) = 𝑂 (𝑘).
Now consider the other case where 𝑏1 ∉ 𝑈 . If 𝑏1 is in the unbounded connected component

of R2\𝑈 , then 𝑏1 is in the unbounded connected component of R2\𝛤 . In this case, we can simply

set 𝑏 = 𝑏1 and by Observation 3.6 there exists a path 𝑓 : [0, 1] → R2 from 𝑣 (□) to 𝑏 such that

Δ(𝑓 , 𝛤 ) = 𝑂 (1). So it suffices to consider the case where 𝑏1 ∈ 𝐶 for some bounded connected

component 𝐶 of R2\𝑈 . We have 𝑈 (𝑘 ) ⊆ 𝑈 and thus 𝐶 ⊆ R2\𝑈 (𝑘 ) . Also, because 𝑏1 lies in the

unbounded connected component of R2\𝑈 (𝑘 ) , 𝐶 is also contained in the unbounded connected

component of R2\𝑈 (𝑘 ) . It follows that the boundary of the closure of 𝐶 is contained in 𝑈 but not

contained in 𝑈 (𝑘 ) . In particular, we can find a point 𝑏2 on the boundary of the closure of 𝐶 such

that 𝑏2 ∈ 𝑈 \𝑈 (𝑘 ) . Then there exists a unit disk 𝐷 ∈ D\D (𝑘 ) that contains 𝑏2. Let □′ = □𝐷 . Note
that the distance between 𝑣 (□) and 𝑏1 is 𝑂 (1), and the distance between 𝑏2 and 𝑣 (□′) is also 𝑂 (1).
Thus, by Observation 3.6, there exist a path 𝑔1 from 𝑣 (□) to 𝑏1 and a path 𝑔2 from 𝑏2 to 𝑣 (□′) such
that Δ(𝑔1, 𝛤 ) = 𝑂 (1) and Δ(𝑔2, 𝛤 ) = 𝑂 (1). Furthermore, there exists a path 𝑔 : [0, 1] → R2 from 𝑏1
to 𝑏2 such that 𝑔(𝑥) ∈ 𝐶 for all 0 ≤ 𝑥 < 1, because 𝑏1 ∈ 𝐶 , 𝑏2 is on the boundary of the closure of

𝐶 , and 𝐶 is connected. Since 𝛤 is contained in 𝑈 , we have 𝛤 ∩𝐶 = ∅, which implies Δ(𝑔, 𝛤 ) ≤ 1.

By concatenating 𝑔1, 𝑔, 𝑔2, we obtain a path 𝑓1 from 𝑣 (□) to 𝑣 (□′) such that Δ(𝑓1, 𝛤 ) = 𝑂 (1). On
the other hand, the tag of □′ is 𝑞 = Tag𝐷 ∈ {1, . . . , 𝑘 − 1}. By our induction hypothesis, there

exists a path 𝑓2 from 𝑣 (□′) to a point 𝑏 in the unbounded connected component of R2\𝛤 such that

Δ(𝑓2, 𝛤 ) = 𝑂 (𝑞). Finally, by concatenating 𝑓1 and 𝑓2, we obtain a path 𝑓 : [0, 1] → R2 from 𝑣 (□)
to 𝑏 such that Δ(𝑓 , 𝛤 ) = Δ(𝑓1, 𝛤 ) + Δ(𝑓2, 𝛤 ) = 𝑂 (𝑘). This completes our induction argument and

shows that for a vertex 𝑣 (□) of 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 , there exists a point 𝑏 in the unbounded connected
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η (P, η0)

Fig. 3. Illustrating the planar graph 𝑃 obtained by adding vertices to the crossings of 𝜂.

component of R2\𝛤 and a path 𝑓 from 𝑣 (□) to 𝑏 such that Δ(𝑓 , 𝛤 ) = 𝑂 (𝑞), where 𝑞 is the tag of

the unit disks in D ⋒ □.
Note that for any vertex 𝑣 (□) of 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 , the tag of the unit disks in D ⋒ □ is at most 100 𝑗 ,

and is hence 𝑂 ( 𝑗). Thus, so far we have proved the statement in the observation for the special

case where 𝑎 = 𝑣 (□) for some vertex 𝑣 (□) of 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 . To prove for the general case where 𝑎 is

an arbitrary point in R2, we observe that there always exists a path 𝑔 from 𝑎 to some vertex 𝑣 (□)
of 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 such that Δ(𝑔, 𝛤 ) = 𝑂 (1). If 𝑎 ∈ 𝛤 , then 𝑎 is on some edge curve 𝛾𝑒 . In this case, 𝑎 is

within distance 𝑂 (1) from an endpoint 𝑣 (□) of 𝑒 and thus by Observation 3.6, there exists a path 𝑔

from 𝑎 to 𝑣 (□) such that Δ(𝑔, 𝛤 ) = 𝑂 (1). If 𝑎 ∉ 𝛤 , then 𝑎 lies in some connected component 𝐶 of

R2\𝛤 . Pick a point 𝑎′ on the boundary of the closure of 𝐶 . Then 𝑎′ is on some edge curve 𝛾𝑒 and

thus there exists a path 𝑔2 from 𝑎′ to some vertex 𝑣 (□) of 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 such that Δ(𝑔2, 𝛤 ) = 𝑂 (1).
Also, because of the choice of 𝑎′, there exists a path 𝑔1 from 𝑎 to 𝑎′ such that 𝑔1 (𝑥) ∈ 𝐶 for all

0 ≤ 𝑥 < 1 and thus Δ(𝑔1, 𝛤 ) = 1. By concatenating 𝑔1 and 𝑔2, we obtain a path 𝑔 from 𝑎 to 𝑣 (□)
such that Δ(𝑔, 𝛤 ) = 𝑂 (1). This directly completes the proof. Indeed, for any 𝑎 ∈ R2, there exists a
path 𝑔 from 𝑎 to some vertex 𝑣 (□) of 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 such that Δ(𝑔, 𝛤 ) = 𝑂 (1), and as argued before

there exists a path 𝑔′ from 𝑣 (□) to some point 𝑏 in the unbounded connected component of R2\𝛤
such that Δ(𝑔′, 𝛤 ) = 𝑂 ( 𝑗). By concatenating 𝑔 and 𝑔′, we obtain a path 𝑓 from 𝑎 to 𝑏 such that

Δ(𝑓 , 𝛤 ) = 𝑂 ( 𝑗). □

The plane drawing 𝜂 of𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 naturally induces a planar graph 𝑃 as follows. The vertex set

of 𝑃 consists of the vertices of 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 and the edge-crossing points in the drawing 𝜂 (called

crossings for short). Two vertices of 𝑃 are connected by an edge if they are “adjacent” on some

edge curve 𝛾𝑒 . Formally, consider an edge 𝑒 = (𝑣 (□), 𝑣 (□′)) of 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 . Suppose the crossings
on 𝛾𝑒 are 𝑐1, . . . , 𝑐𝑟 , ordered from the 𝑣 (□) end to the 𝑣 (□′) end. Then we include in 𝑃 the edges

(𝑣 (□), 𝑐1), (𝑐1, 𝑐2), . . . , (𝑐𝑟−1, 𝑐𝑟 ), (𝑐𝑟 , 𝑣 (□′)). After considering all edges of𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 , we complete

the construction of 𝑃 . Note that 𝜂 naturally induces a planar drawing of 𝑃 (thus 𝑃 is planar), which

we denote by 𝜂0. Clearly, the image of 𝜂0 is equal to the image of 𝜂, which is 𝛤 . See Figure 3 for

an illustration of the construction of 𝑃 . The following observation gives a relation between the

treewidths of 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 and 𝑃 .

Observation 3.8. tw(𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 ) ≤ 𝑂 (tw(𝑃)).
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Proof. For each vertex 𝑣 of 𝑃 , we define its witness set wit(𝑣) as a set of vertices of 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗
as follows. If 𝑣 itself is a vertex of𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 , we simply define wit(𝑣) = {𝑣}. If 𝑣 is a crossing of the
drawing 𝜂, then it is contributed by two edges of 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 , and we let wit(𝑣) consist of the four
vertices of 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 incident to these two edges. Now consider a tree decomposition (𝑇, 𝛽) of 𝑃 .
Define 𝛽∗ (𝑡) = ⋃

𝑣∈𝛽 (𝑡 ) wit(𝑣) for all nodes 𝑡 ∈ 𝑇 . We claim that (𝑇, 𝛽∗) is a tree decomposition of

𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 of width 𝑂 (tw(𝑃)). Note that |𝛽
∗ (𝑡) | ≤ 4|𝛽 (𝑡) | for all 𝑡 ∈ 𝑇 as the witness set of every

vertex of 𝑃 is of size at most 4. Thus, the width of (𝑇, 𝛽∗) is 𝑂 (tw(𝑃)) and it suffices to show that

(𝑇, 𝛽∗) is a tree decomposition of 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 . First, each vertex 𝑣 of 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 is also a vertex of

𝑃 , so there exists a node 𝑡 ∈ 𝑇 with 𝑣 ∈ 𝛽 (𝑡), which implies 𝑣 ∈ 𝛽∗ (𝑡). Second, we show that for

each edge (𝑢, 𝑣) of 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 , there exists 𝑡 ∈ 𝑇 such that 𝑢, 𝑣 ∈ 𝛽∗ (𝑡). If there is no crossing on

the image of (𝑢, 𝑣) under 𝜂, then (𝑢, 𝑣) is also an edge in 𝑃 . Since (𝑇, 𝛽) is a tree decomposition

of 𝑃 , there exists 𝑡 ∈ 𝑇 such that 𝑢, 𝑣 ∈ 𝛽 (𝑡) and hence 𝑢, 𝑣 ∈ 𝛽∗ (𝑡). If there is a crossing 𝑥 on the

image of (𝑢, 𝑣), then 𝑢, 𝑣 ∈ wit(𝑥). In this case, we have 𝑢, 𝑣 ∈ 𝛽∗ (𝑡) for any node 𝑡 ∈ 𝑇 such that

𝑥 ∈ 𝛽 (𝑡). Finally, it suffices to verify that for each vertex 𝑣 of 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 the nodes 𝑡 ∈ 𝑇 with

𝑣 ∈ 𝛽∗ (𝑡) are connected in 𝑇 . Let 𝐸𝑣 be the set of edges of 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 incident to 𝑣 , and 𝑋𝑣 be
the set of vertices of 𝑃 whose witness sets contain 𝑣 . Observe that 𝑋𝑣 consists of 𝑣 itself and all

crossings on the images of the edges in 𝐸𝑣 under 𝜂. Also, 𝑋𝑣 is connected in 𝑃 . It is well-known

that in a tree decomposition of a graph, the nodes whose bags intersect a connected subgraph are

connected in the tree. Therefore, the nodes 𝑡 ∈ 𝑇 satisfying 𝑋𝑣 ∩ 𝛽 (𝑡) ≠ ∅ are connected in 𝑇 . Note

that 𝑣 ∈ 𝛽∗ (𝑡) if and only if 𝑋𝑣 ∩ 𝛽 (𝑡) ≠ ∅ for all 𝑡 ∈ 𝑇 . So the nodes 𝑡 ∈ 𝑇 satisfying 𝑣 ∈ 𝛽∗ (𝑡) are
connected in 𝑇 . It follows that (𝑇, 𝛽∗) is a tree decomposition of 𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 of width 𝑂 (tw(𝑃)),
and thus tw(𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 ) ≤ 𝑂 (tw(𝑃)). □

Based on the above observation, it now suffices to show that tw(𝑃) = 𝑂 ( 𝑗). To this end, we need
to introduce a notion called vertex-face incidence graph. We consider the plane-embedded graph

(𝑃, 𝜂0). The vertex-face incidence graph 𝑃+ of (𝑃, 𝜂0) is a bipartite graph defined as follows. One

part of 𝑃+ consists of the vertices of (𝑃, 𝜂0), while the other part consists of the faces of (𝑃, 𝜂0). A
vertex 𝑣 of (𝑃, 𝜂0) and a face 𝐹 of (𝑃, 𝜂0) are connected by an edge in 𝑃+ if 𝑣 is incident to 𝐹 . Let
𝑜 be the outer face of (𝑃, 𝜂0), which is a vertex of 𝑃+. The depth of a vertex 𝑣 in (𝑃, 𝜂0) is defined
as the shortest-path distance between 𝑜 and 𝑣 in 𝑃+. It is well-known that tw(𝑃) is linear in the

maximum depth of a vertex in (𝑃, 𝜂0); see for example [6] (Lemma 11 in the arxiv version). So we

only need to show the depth of each vertex in (𝑃, 𝜂0) is 𝑂 ( 𝑗).
Consider a vertex 𝑣 of (𝑃, 𝜂0). By Observation 3.7, there exists a point 𝑏 in the unbounded

connected component of R2\𝛤 and a path 𝑓 : [0, 1] → R2 from 𝑣 to 𝑏 such that Δ(𝑓 , 𝛤 ) = 𝑂 ( 𝑗).
Suppose {𝑥 ∈ [0, 1] : 𝑓 (𝑥) ∈ 𝛤 } = {𝑥1, . . . , 𝑥𝑘 } where 𝑘 = 𝑂 ( 𝑗) and 𝑥1 < · · · < 𝑥𝑘 . We have 𝑥1 = 0

because 𝑓 (0) = 𝑣 ∈ 𝛤 . Let 𝐼𝑖 = {𝑥 : 𝑥𝑖 < 𝑥 < 𝑥𝑖+1} for 𝑖 ∈ [𝑘 − 1] and 𝐼𝑘 = {𝑥 : 𝑥𝑘 < 𝑥 ≤ 1}. Since 𝑓
is continuous, the image of each 𝐼𝑖 under 𝑓 is connected and disjoint from 𝛤 , and hence lies in one

face of (𝑃, 𝜂0), which we denote by 𝐹𝑖 . We say two faces of (𝑃, 𝜂0) are adjacent if they are incident to
a common vertex of (𝑃, 𝜂0). Clearly, the shortest-path distance between two adjacent faces of (𝑃, 𝜂0)
in 𝑃+ is 2. Note that for each 𝑖 ∈ [𝑘 − 1], 𝐹𝑖 and 𝐹𝑖+1 are adjacent, as they are both incident to the

point 𝑓 (𝑥𝑖+1) ∈ 𝛤 , which is either a vertex of (𝑃, 𝜂0) or on an edge 𝑒 of (𝑃, 𝜂0); in the latter case, 𝐹𝑖
and 𝐹𝑖+1 are both incident to the two endpoints of 𝑒 . Therefore, the shortest-path distance between

𝐹1 and 𝐹𝑘 in 𝑃
+
is at most 2𝑘 − 2, which is 𝑂 ( 𝑗). Now 𝐹1 is incident to 𝑓 (𝑥1) = 𝑓 (0) = 𝑣 and 𝐹𝑘 is

the outer face 𝑜 of (𝑃, 𝜂0) since 𝑏 ∈ 𝐹𝑘 . It follows that the shortest-path distance between 𝑣 and 𝑜 is

𝑂 ( 𝑗), and thus the depth of 𝑣 is𝑂 ( 𝑗). This implies tw(𝑃) = 𝑂 ( 𝑗) and hence tw(𝐺L≤ 𝑗 /𝐸∗L≤ 𝑗 ) = 𝑂 ( 𝑗)
by Observation 3.8. Property (iii) in Lemma 3.2 holds.
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3.2 Constructing the partition {D1, . . . ,D𝑝 }
Given the layering ℓ of D presented in the previous section, we are able to construct the partition

{D1, . . . ,D𝑝 } of D in Theorem 3.1. The basic idea is similar to that used in Baker’s technique:

combining the congruent layers modulo 𝑝 . Recall that L1, . . . ,L𝑚 are the layers of D. We de-

fine D𝑖 =
⋃⌊ (𝑚−𝑖 )/𝑝 ⌋
𝑗=0

L 𝑗𝑝+𝑖 , i.e., D𝑖 consists of all layers whose index is congruent to 𝑖 modulo

𝑝 . Clearly, D1, . . . ,D𝑝 can be computed in polynomial time. As {L1, . . . ,L𝑚} is a partition of

D, {D1, . . . ,D𝑝 } is also a partition of D. Also, since each L𝑖 is a grid-respecting subset of D,

the partition {D1, . . . ,D𝑝 } of D is grid-respecting. To prove Theorem 3.1, it suffices to show

tw(𝐺D/(𝐸∗D ∪ 𝐸D𝑖\D′ )) = 𝑂 (𝑝 + |D′ |) for any 𝑖 ∈ [𝑝] and D′ ⊆ D𝑖 .

3.3 Bounding the treewidth when D′ = ∅
In this section, we prove a special case of the treewidth bound in Theorem 3.1 where D′ = ∅. In
other words, we show tw(𝐺D/(𝐸∗D ∪ 𝐸D𝑖

)) = 𝑂 (𝑝) for any 𝑖 ∈ [𝑝]. If 𝑝 = 1, we are done, as in

this caseD1 = D and𝐺D/(𝐸∗D ∪ 𝐸D1
) is a graph without edges, which has treewidth 0. So assume

𝑝 ≥ 2. Our proof for all 𝑖 ∈ [𝑝] is identical, so we only consider the case where 𝑖 = 𝑝 , i.e., we

show tw(𝐺D/(𝐸∗D ∪ 𝐸D𝑝
)) = 𝑂 (𝑝). For convenience, we set L𝑖 = ∅ for all 𝑖 ≤ 0 and 𝑖 > 𝑚. Define

𝑟 = ⌊𝑚/𝑝⌋ + 1 and 𝑖 𝑗 = ( 𝑗 − 1) · 𝑝 for 𝑗 ∈ N. So we have D𝑝 =
⋃𝑟
𝑗=1 L𝑖 𝑗 .

To bound the treewidth of𝐺D/(𝐸∗D∪𝐸D𝑝
), we first define a support tree𝑇supp as follows. Roughly

speaking,𝑇supp is a tree that interprets the containment relation between the connected components

of 𝐺L>𝑖
1

, . . . ,𝐺L>𝑖𝑟
. The depth of 𝑇supp is 𝑟 . The root (i.e., the node at the 0-th level) of 𝑇supp is a

dummy node. For all 𝑗 ∈ [𝑟 ], the nodes at the 𝑗-th level of 𝑇supp are one-to-one corresponding

to the connected components of 𝐺L>𝑖 𝑗
. The parent of the nodes at the first level is just the root.

The parents of the nodes at the lower levels are defined as follows. Consider a node 𝑡 ∈ 𝑇supp at
the 𝑗-th level for 𝑗 ≥ 2. Since 𝐺L>𝑖 𝑗

is a subgraph of 𝐺L>𝑖 𝑗−1
, the connected component of 𝐺L>𝑖 𝑗

corresponding to 𝑡 is contained in a unique connected component of𝐺L>𝑖 𝑗−1
, which corresponds

to a node 𝑡 ′ at the ( 𝑗 − 1)-th level of 𝑇supp. We then define the parent of 𝑡 as 𝑡 ′. For each node

𝑡 ∈ 𝑇supp, we associate to 𝑡 a set A𝑡 ⊆ D defined as follows. If 𝑡 is the root, A𝑡 = ∅. Suppose 𝑡 is at
the 𝑗-th level for 𝑗 ∈ [𝑟 ] and let C𝑡 ⊆ L>𝑖 𝑗 be the vertex set of the connected component of 𝐺L>𝑖 𝑗

corresponding to 𝑡 . Then we define A𝑡 = {𝐷 ∈ C𝑡 : 𝑖 𝑗 < ℓ (𝐷) ≤ 𝑖 𝑗+1}, i.e., A𝑡 consists of all unit
disks in C𝑡 which lie in the layers L𝑖 𝑗+1, . . . ,L𝑖 𝑗+1 .

Observation 3.9. {A𝑡 }𝑡 ∈𝑇supp is a grid-respecting partition of D. Furthermore, the vertices of each
connected component of 𝐺D𝑝

are contained in the same A𝑡 .
Proof. We first observe that every 𝐷 ∈ D belongs to A𝑡 for some 𝑡 ∈ 𝑇supp. Indeed, there exists

some 𝑗 ∈ [𝑟 ] such that 𝑖 𝑗 < ℓ (𝐷) ≤ 𝑖 𝑗+1. Then 𝐷 ∈ L>𝑖 𝑗 and thus 𝐷 is contained in some connected

component of 𝐺L>𝑖 𝑗
, which corresponds to a node 𝑡 ∈ 𝑇supp at the 𝑗-th level of 𝑇supp. By definition,

we have 𝐷 ∈ A𝑡 . Next, we observe that A𝑡 ∩ A𝑡 ′ = ∅ for different nodes 𝑡, 𝑡 ′ ∈ 𝑇supp. Suppose 𝑡
(resp., 𝑡 ′) is at the 𝑗-th (resp., 𝑗 ′-th) level. If 𝑗 < 𝑗 ′, thenA𝑡 ∩A𝑡 ′ = ∅, as ℓ (𝐷) ≤ 𝑖 𝑗+1 ≤ 𝑖 𝑗 ′ < ℓ (𝐷 ′)
for all 𝐷 ∈ A𝑡 and 𝐷 ′ ∈ A𝑡 ′ . Similarly, we have A𝑡 ∩ A𝑡 ′ = ∅ if 𝑗 > 𝑗 ′. So it suffices to consider

the case 𝑗 = 𝑗 ′. In this case, since 𝑡 ≠ 𝑡 ′, 𝑡 and 𝑡 ′ correspond to different connected components of

𝐺L>𝑖 𝑗
which contain the vertices in A𝑡 and A𝑡 ′ respectively. Hence, A𝑡 ∩ A𝑡 ′ = ∅. This shows

that {A𝑡 }𝑡 ∈𝑇supp is a partition ofD. To see that this partition is grid-respecting, consider a unit disk

𝐷 ∈ D. Suppose 𝐷 ∈ A𝑡 for a node 𝑡 ∈ 𝑇supp at the 𝑗-th level. Then all unit disks in D ⋒ □𝐷 are

contained in A𝑡 because they are in the same layer and belong to the same connected component

of 𝐺L>𝑖 𝑗
.

To show the second statement, recall that D𝑝 =
⋃𝑟
𝑗=1 L𝑖 𝑗 . As we assumed 𝑝 ≥ 2, by property

(i) of Lemma 3.2, the layers L𝑖1 , . . . ,L𝑖𝑟 are pairwise non-adjacent. Therefore, the vertices of a
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connected component of 𝐺D𝑝
must lie in the same layer L𝑖 𝑗 for some 𝑗 ∈ [𝑟 ]. These vertices are

thus contained in the same connected component of 𝐺L>𝑖 𝑗−1
(as their corresponding unit disks

form a connected unit-disk graph), and hence contained in the same A𝑡 for some 𝑡 ∈ 𝑇supp at the
( 𝑗 − 1)-th level. □

Observation 3.10. Let 𝐷 ∈ A𝑡 and 𝐷 ′ ∈ A𝑡 ′ for different nodes 𝑡, 𝑡 ′ ∈ 𝑇supp. If 𝐷 ∩ 𝐷 ′ ≠ ∅, then
either 𝑡 is the parent of 𝑡 ′ or 𝑡 ′ is the parent of 𝑡 .

Proof. Suppose 𝑡 (resp., 𝑡 ′) is at the 𝑗-th (resp., 𝑗 ′-th) level. By property (i) of Lemma 3.2, we

have |ℓ (𝐷) − ℓ (𝐷 ′) | ≤ 1, which implies | 𝑗 − 𝑗 ′ | ≤ 1. If 𝑗 = 𝑗 ′, then A𝑡 and A𝑡 ′ belong to different

connected components of𝐺L>𝑖 𝑗
, which contradicts the fact 𝐷 ∩𝐷 ′ ≠ ∅. So we have either 𝑗 = 𝑗 ′ + 1

or 𝑗 ′ = 𝑗 + 1. Without loss of generality, assume 𝑗 = 𝑗 ′ + 1. Let 𝑡∗ ∈ 𝑇supp be the parent of 𝑡 , and
we claim that 𝑡∗ = 𝑡 ′. Indeed, both 𝑡∗ and 𝑡 ′ are at the 𝑗 ′-th level of 𝑇supp. If 𝑡

∗ ≠ 𝑡 ′, then 𝑡∗ and 𝑡 ′

correspond to two different connected components of 𝐺L>𝑖 𝑗 ′
, which contain 𝐷 and 𝐷 ′ respectively.

This contradicts the fact 𝐷 ∩ 𝐷 ′ ≠ ∅. Thus 𝑡∗ = 𝑡 ′. □

For each 𝑡 ∈ 𝑇supp, we define a graph 𝐽𝑡 = 𝐺A𝑡
/(𝐸∗A𝑡

∪ 𝐸A𝑡∩D𝑝
). Using Observation 3.9, one can

easily verify that the edges in 𝐸∗D ∪ 𝐸D𝑝
that are incident to A𝑡 (i.e., have at least one endpoint

in A𝑡 ) are all exactly those in 𝐸∗A𝑡
∪ 𝐸A𝑡∩D𝑝

. It follows that each 𝐽𝑡 is an induced subgraph of

𝐺D/(𝐸∗D ∪ 𝐸D𝑝
), and these induced subgraphs are disjoint and cover all vertices of 𝐺D/(𝐸∗D ∪

𝐸D𝑝
). Therefore, in what follows, we do not distinguish between the vertices of each 𝐽𝑡 and their

corresponding vertices in 𝐺D/(𝐸∗D ∪ 𝐸D𝑝
). Our next plan is to construct a tree decomposition for

𝐺D/(𝐸∗D ∪ 𝐸D𝑝
) of width 𝑂 (𝑝) by properly gluing tree decompositions of the induced subgraphs

𝐽𝑡 . To this end, we first observe that tw(𝐽𝑡 ) = 𝑂 (𝑝) for all 𝑡 ∈ 𝑇supp. Consider a node 𝑡 ∈ 𝑇supp at
the 𝑗-th level. SinceA𝑡 ⊆ L[𝑖 𝑗+1,𝑖 𝑗+1 ] ,𝐺A𝑡

/𝐸∗A𝑡
is a subgraph of𝐺L [𝑖 𝑗 +1,𝑖 𝑗+1 ]/𝐸

∗
L [𝑖 𝑗 +1,𝑖 𝑗+1 ]

. By property

(iii) of Lemma 3.2, we have the inequality

tw(𝐽𝑡 ) ≤ tw(𝐺A𝑡
/𝐸∗A𝑡

) ≤ tw
(
𝐺L [𝑖 𝑗 +1,𝑖 𝑗+1 ]

/
𝐸∗L [𝑖 𝑗 +1,𝑖 𝑗+1 ]

)
= 𝑂 (𝑝).

Therefore, for each 𝑡 ∈ 𝑇supp, there exists a tree decomposition (𝑇 ∗𝑡 , 𝛽∗𝑡 ) for 𝐽𝑡 of width 𝑂 (𝑝)3. By
Observation 3.10, 𝐺A𝑡

and 𝐺A𝑡 ′ are adjacent in 𝐺D (i.e., there exists an edge of 𝐺D with one

endpoint in 𝐺A𝑡
and the other endpoint in 𝐺A𝑡 ′ ) only if 𝑡 and 𝑡 ′ are adjacent nodes in 𝑇supp. It

follows that two induced subgraphs 𝐽𝑡 and 𝐽𝑡 ′ of 𝐺D/(𝐸∗D ∪ 𝐸D𝑝
) are adjacent only if 𝑡 and 𝑡 ′ are

adjacent nodes in 𝑇supp. Furthermore, we notice the following fact.

Observation 3.11. For two nodes 𝑡, 𝑠 ∈ 𝑇supp where 𝑡 is the parent of 𝑠 , there exists at most one
vertex in 𝐽𝑡 that is neighboring to 𝐽𝑠 in 𝐺D/(𝐸∗D ∪ 𝐸D𝑝

).

Proof. Suppose 𝑠 is at the 𝑗-th level of𝑇supp, and thus 𝑡 is at the ( 𝑗−1)-th level. By construction, all
unit disks inA𝑠 lie in the same connected component of𝐺L>𝑖 𝑗

. Thus, by property (ii) of Lemma 3.2,

the unit disks in L𝑖 𝑗 that are neighboring to𝐺A𝑠
lie in the same connected component of𝐺L𝑖 𝑗

, and

hence the same connected component of 𝐺D𝑝
. Note that all vertices of 𝐺A𝑡

that are neighboring

to 𝐺A𝑠
must lie in L𝑖 𝑗 , by property (i) of Lemma 3.2. Therefore, the vertices in 𝐺A𝑡

neighboring

to 𝐺A𝑠
(if any) are contained in the same connected component of 𝐺D𝑝

. By Observation 3.9, the

vertices of this connected component are all contained in A𝑡 , and thus are contracted into one

vertex in 𝐽𝑡 , which is the only vertex in 𝐽𝑡 that can be neighboring to 𝐽𝑠 in 𝐺D/(𝐸∗D ∪ 𝐸D𝑝
). □

3
If 𝑡 is the root of𝑇supp, then 𝐽𝑡 is an empty graph. In this case, we simply let𝑇 ∗𝑡 be the tree with a single node 𝑥 and set

𝛽∗𝑡 (𝑥 ) = ∅.
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Based on the above observation, we glue the tree decompositions (𝑇 ∗𝑡 , 𝛽∗𝑡 ) along the edges of𝑇supp
to obtain a tree decomposition (𝑇 ∗, 𝛽∗) for 𝐺D/(𝐸∗D ∪ 𝐸D𝑝

) as follows. Consider a non-root node
𝑠 ∈ 𝑇supp with parent 𝑡 . By Observation 3.11, there is at most one vertex 𝑣 of 𝐽𝑡 that is neighboring

to 𝐽𝑠 in𝐺D/(𝐸∗D ∪ 𝐸D𝑝
). We pick a node 𝑡∗ ∈ 𝑇 ∗𝑡 whose bag 𝛽∗𝑡 (𝑡∗) contains 𝑣 , and call 𝑡∗ the portal

of 𝑠 . (If no vertex of 𝐽𝑡 is neighboring to 𝐽𝑠 , we simply pick an arbitrary node 𝑡∗ ∈ 𝑇 ∗𝑡 as the portal

of 𝑠 .) We then add an edge to connect the root of 𝑇 ∗𝑠 and the portal 𝑡∗. We do this for all non-root

nodes of 𝑇supp. After that, we glue all trees in {𝑇 ∗𝑡 }𝑡 ∈𝑇supp together and obtain the new tree 𝑇 ∗. Next,
we associate to each node 𝑠∗ ∈ 𝑇 ∗ a bag 𝛽∗ (𝑠∗) as follows. Consider a node 𝑠∗ ∈ 𝑇 ∗ and suppose

𝑠∗ originally belongs to 𝑇 ∗𝑠 for 𝑠 ∈ 𝑇supp. If 𝑠 is the root, we simply define 𝛽∗ (𝑠∗) = 𝛽∗𝑠 (𝑠∗) = ∅. If
𝑠 is not the root, let 𝑡 be the parent of 𝑠 in 𝑇supp and 𝑡∗ ∈ 𝑇 ∗𝑡 be the portal of 𝑠 . We then define

𝛽∗ (𝑠∗) = 𝛽∗𝑠 (𝑠∗) ∪ 𝛽∗𝑡 (𝑡∗).

Observation 3.12. (𝑇 ∗, 𝛽∗) is a tree decomposition of 𝐺D/(𝐸∗D ∪ 𝐸D𝑝
) of width 𝑂 (𝑝).

Proof. Since the widths of the tree decompositions (𝑇 ∗𝑡 , 𝛽∗𝑡 ) are all 𝑂 (𝑝), the size of each bag

of (𝑇 ∗, 𝛽∗) is bounded by 𝑂 (𝑝) by our construction. So it suffices to show that (𝑇 ∗, 𝛽∗) is a tree
decomposition of 𝐺D/(𝐸∗D ∪ 𝐸D𝑝

). First, every vertex 𝑣 of 𝐺D/(𝐸∗D ∪ 𝐸D𝑝
) is contained in some

bag of (𝑇 ∗𝑡 , 𝛽∗𝑡 ), for some 𝑡 ∈ 𝑇supp. Indeed, 𝑣 belongs to 𝐽𝑡 for some 𝑡 ∈ 𝑇supp and hence there exists a
node 𝑡∗ ∈ 𝑇 ∗𝑡 such that 𝑣 ∈ 𝛽∗𝑡 (𝑡∗), because (𝑇 ∗𝑡 , 𝛽∗𝑡 ) is a tree decomposition of 𝐽𝑡 . By our construction,

𝑡∗ is also a node of 𝑇 ∗, and we have 𝑣 ∈ 𝛽∗ (𝑡∗). Second, we show that for every edge (𝑢, 𝑣) of
𝐺D/(𝐸∗D ∪ 𝐸D𝑝

), there exists some node of𝑇 ∗ whose bag contains both 𝑢 and 𝑣 . If (𝑢, 𝑣) is an edge

in some 𝐽𝑡 , then there exists 𝑡∗ ∈ 𝑇 ∗𝑡 such that 𝑢, 𝑣 ∈ 𝛽∗𝑡 (𝑡∗), as (𝑇 ∗𝑡 , 𝛽∗𝑡 ) is a tree decomposition of 𝐽𝑡 .

In this case, we have 𝑢, 𝑣 ∈ 𝛽∗ (𝑡∗). The other case is that (𝑢, 𝑣) is an edge between two induced

subgraphs 𝐽𝑠 and 𝐽𝑡 of 𝐺D/(𝐸∗D ∪ 𝐸D𝑝
). As we noticed before Observation 3.11, in this case, 𝑠 and

𝑡 are adjacent nodes in 𝑇supp. Without loss of generality, assume 𝑡 is the parent of 𝑠 in 𝑇supp and 𝑢

(resp., 𝑣) lies in 𝐽𝑠 (resp., 𝐽𝑡 ). By Observation 3.11, 𝑣 is the only vertex in 𝐽𝑡 that is neighboring to

𝐽𝑠 . Let 𝑡
∗ ∈ 𝑇 ∗𝑡 be the portal of 𝑠 . According to our choice of the portals, we have 𝑣 ∈ 𝛽∗𝑡 (𝑡∗). Now

pick any node 𝑠∗ ∈ 𝑇 ∗𝑠 such that 𝑢 ∈ 𝛽∗𝑠 (𝑠∗). By construction, we have 𝛽∗ (𝑠∗) = 𝛽∗𝑠 (𝑠∗) ∩ 𝛽∗𝑡 (𝑡∗) and
hence 𝑢, 𝑣 ∈ 𝛽∗ (𝑠∗). Finally, we show that for any vertex 𝑣 of 𝐺D/(𝐸∗D ∪ 𝐸D𝑝

), the nodes of 𝑇 ∗
whose bag contains 𝑣 are connected in 𝑇 ∗. Suppose 𝑣 is in 𝐽𝑡 for some 𝑡 ∈ 𝑇supp. Observe that 𝑣 is
contained in the bags of two types of nodes in 𝑇 ∗. The first type are the nodes which originally

belong to 𝑇 ∗𝑡 and whose bags in T ∗𝑡 contain 𝑣 ; this type of nodes are connected in 𝑇 ∗ as they are

connected in 𝑇 ∗𝑡 . The second type are all nodes which originally belong to 𝑇 ∗𝑠 for some child 𝑠 of 𝑡

such that the bag of the portal of 𝑠 contains 𝑣 . Note that 𝑇 ∗𝑠 is connected in 𝑇 ∗ and the portal of 𝑠 is

a node of the first type as its bag contains 𝑣 . Therefore, the nodes of the second type form some

connected parts in 𝑇 ∗ each of which is adjacent to a node of the first type. It follows that the nodes

of 𝑇 ∗ whose bags contain 𝑣 are connected in 𝑇 ∗. As a result, (𝑇 ∗, 𝛽∗) is a tree decomposition of

𝐺D/(𝐸∗D ∪ 𝐸D𝑝
). □

3.4 Handling the general case
In the previous section, we have proved that the partition {D1, . . . ,D𝑝 } satisfies the condition in

Theorem 3.1 for the special case where D′ = ∅. In this section, we shall consider the general case

and complete the proof for Theorem 3.1. Let 𝑖 ∈ [𝑝]. Our goal is to show tw(𝐺D/(𝐸∗D ∪𝐸D𝑖\D′ )) =
𝑂 (𝑝 + |D′ |) for every D′ ⊆ D𝑖 , knowing tw(𝐺D/(𝐸∗D ∪ 𝐸D𝑖

)) = 𝑂 (𝑝).
For convenience, we denote by 𝑉 the vertex set of 𝐺D/(𝐸∗D ∪ 𝐸D𝑖

) and 𝑉 ′ the vertex set of

𝐺D/(𝐸∗D ∪ 𝐸D𝑖\D′ ). Since 𝐺D/(𝐸∗D ∪ 𝐸D𝑖
) is obtained from 𝐺D via edge contraction, there is

a corresponding quotient map 𝜋 : D → 𝑉 . Similarly, there is a quotient map 𝜋 ′ : D → 𝑉 ′

corresponding to the edge contraction for obtaining𝐺D/(𝐸∗D ∪ 𝐸D𝑖\D′ ). Note that 𝐸∗D ∪ 𝐸D𝑖\D′ ⊆
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D D

RR\{D}

Fig. 4. The three components of 𝐺R\{𝐷 } hit by 𝐷 are merged into one connected component in 𝐺R , while
the others remain the same.

𝐸∗D ∪ 𝐸D𝑖
. So there exists a unique map 𝜌 : 𝑉 ′ → 𝑉 such that 𝜋 = 𝜌 ◦ 𝜋 ′, and𝐺D/(𝐸∗D ∪ 𝐸D𝑖

) can
be viewed as a graph obtained from 𝐺D/(𝐸∗D ∪ 𝐸D𝑖\D′ ) via edge contraction with quotient map 𝜌 .

As tw(𝐺D/(𝐸∗D ∪ 𝐸D𝑖
)) = 𝑂 (𝑝), there exists a tree decomposition (𝑇, 𝛽) of 𝐺D/(𝐸∗D ∪ 𝐸D𝑖

) of
width 𝑂 (𝑝). We define a map 𝛽 ′ : 𝑇 → 2

𝑉 ′
as 𝛽 ′ (𝑡) = 𝜌−1 (𝛽 (𝑡)) for all nodes 𝑡 ∈ 𝑇 . By Fact 2.2,

(𝑇, 𝛽 ′) is a tree decomposition of𝐺D/(𝐸∗D ∪𝐸D𝑖\D′ ). Now it suffices to show that the width of this

tree decomposition is 𝑂 (𝑝 + |D′ |). To this end, we establish a basic property of unit-disk graphs.

For a graph 𝐺 , we use the notation ∥𝐺 ∥ to denote the number of connected components of 𝐺 . We

have the following lemma.

Lemma 3.13. For a set R of unit disks and R′ ⊆ R, ∥𝐺R\R′ ∥ − ∥𝐺R ∥ = 𝑂 ( |R′ |).
Proof. We show that ∥𝐺R\{𝐷 } ∥ − ∥𝐺R ∥ = 𝑂 (1) for any unit disk 𝐷 ∈ R. Then the lemma can

be proved via a simple induction argument. We say 𝐷 hits a connected component of 𝐺R\{𝐷 } if
𝐷 intersects some unit disk in this connected component. Note that all connected components of

𝐺R\{𝐷 } hit by 𝐷 are merged into one connected component in 𝐺R , and all the other connected

components of 𝐺R\{𝐷 } remain the same in 𝐺R . See Figure 4 for an example. Thus, the quantity

∥𝐺R\{𝐷 } ∥ − ∥𝐺R ∥ is equal to the number of connected components of 𝐺R\{𝐷 } hit by 𝐷 minus 1.

So it suffices to show that 𝐷 only hits 𝑂 (1) connected components of 𝐺R\{𝐷 } . Suppose 𝐷 hits 𝑘

connected components of 𝐺R\{𝐷 } . Pick a unit disk from each such connected component, and let

𝐷1, . . . , 𝐷𝑘 be these unit disks. Note that 𝐷1, . . . , 𝐷𝑘 are disjoint as they are from different connected

components of𝐺R\{𝐷 } . Thus, 𝐷,𝐷1, . . . , 𝐷𝑘 form an induced biclique 𝐾1,𝑘 in𝐺R . It was known that

unit-disk graphs exclude 𝐾1,6 as an induced subgraph [5]. So we have 𝑘 ≤ 5 = 𝑂 (1). □

Using the above lemma, we show that |𝜌−1 (𝑈 ) | = 𝑂 ( |𝑈 | + |D′ |) for any 𝑈 ⊆ 𝑉 . Since D𝑖 is a
grid-respecting subset of D, for each 𝑣 ∈ 𝑉 , 𝜋−1 ({𝑣}) is either (the vertex set of) a cell clique of
𝐺D that is disjoint from D𝑖 or (the vertex set of) a connected component of 𝐺D𝑖

; we say 𝑣 is a

type-1 vertex in the former case and a type-2 vertex in the latter case. Let𝑈1 (resp.,𝑈2) be the type-1

(resp., type-2) vertices in 𝑈 . For each 𝑢 ∈ 𝑈1, we have |𝜌−1 ({𝑢}) | = |𝜋 ′ (𝜋−1 ({𝑢})) | = 1, as every

cell clique of 𝐺D is contracted into one vertex in 𝐺D/(𝐸∗D ∪ 𝐸D𝑖\D′ ). Thus, |𝜌−1 (𝑈1) | = |𝑈1 |. To
bound |𝜌−1 (𝑈2) |, we consider 𝜋−1 (𝑈2) ⊆ D. By definition, 𝜋−1 ({𝑢}) is a connected component of

𝐺D𝑖
for each 𝑢 ∈ 𝑈2, and thus ∥𝐺𝜋−1 (𝑈2 ) ∥ = |𝑈2 |. Set I = 𝜋−1 (𝑈2) ∩ D′. By Lemma 3.13, we have

∥𝐺𝜋−1 (𝑈2 )\D′ ∥ − ∥𝐺𝜋−1 (𝑈2 ) ∥ = ∥𝐺𝜋−1 (𝑈2 )\I ∥ − ∥𝐺𝜋−1 (𝑈2 ) ∥ = 𝑂 ( |I|),
which implies ∥𝐺𝜋−1 (𝑈2 )\D′ ∥ = 𝑂 ( |𝑈2 | + |D′ |) because |I | ≤ |D′ |. Since 𝜋−1 (𝑈2)\D′ ⊆ D𝑖\D′, 𝜋 ′
maps the vertices in each connected component of 𝐺𝜋−1 (𝑈2 )\D′ to the same vertex in 𝑉 ′. Therefore,
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|𝜋 ′ (𝜋−1 (𝑈2)\D′) | ≤ ∥𝐺𝜋−1 (𝑈2 )\D′ ∥ = 𝑂 ( |𝑈2 | + |D′ |). Now we have the inequality

|𝜋 ′ (𝜋−1 (𝑈2)) | ≤ |𝜋 ′ (𝜋−1 (𝑈2)\D′) | + |𝜋 ′ (D′) | = 𝑂 ( |𝑈2 | + |D′ |).
It follows that |𝜌−1 (𝑈2) | = 𝑂 ( |𝑈2 | + |D′ |), and thus |𝜌−1 (𝑈 ) | = 𝑂 ( |𝑈 | + |D′ |). As a result, for all
𝑡 ∈ 𝑇 , |𝛽 ′ (𝑡) | = |𝜌−1 (𝛽 (𝑡)) | = 𝑂 ( |𝛽 (𝑡) | + |D′ |) = 𝑂 (𝑝 + |𝐷 ′ |). So (𝑇, 𝛽 ′) is a tree decomposition of

𝐺D/(𝐸∗D ∪ 𝐸D𝑖\D′ ) of width 𝑂 (𝑝 + |𝐷 ′ |), completing the proof of Theorem 3.1.

4 APPLICATIONS
4.1 Contraction decomposition for unit-disk graphs
In this section, we use Theorem 3.1 to prove the first Contraction Decomposition Theorem (CDT)

for unit-disk graphs, which is shown below.

Theorem 4.1 (Contraction Decomposition Theorem). Given a set D of 𝑛 unit disks and an
integer 𝑝 ∈ [𝑛], one can compute in polynomial time a partition {𝐸1, . . . , 𝐸𝑝 } of 𝐸D such that for
every 𝑖 ∈ [𝑝], tw(𝐺D/𝐸𝑖 ) = 𝑂 (𝑝2).

Observe that to prove the above theorem, it suffices to compute in polynomial time 𝑝 disjoint
subsets 𝐸1, . . . , 𝐸𝑝 of edges of 𝐺D such that tw(𝐺D/𝐸𝑖 ) = 𝑂 (𝑝2) for every 𝑖 ∈ [𝑝] (that is, we do
not require {𝐸1, . . . , 𝐸𝑝 } to be a partition of the edge set 𝐸D ). Indeed, we can arbitrarily assign the

remaining edges 𝐸D\
⋃𝑝

𝑖=1
𝐸𝑖 to the 𝑝 subsets to obtain a partition {𝐸′

1
, . . . , 𝐸′𝑝 } such that 𝐸𝑖 ⊆ 𝐸′𝑖

for all 𝑖 ∈ [𝑝], and then tw(𝐺D/𝐸′𝑖 ) ≤ tw(𝐺D/𝐸𝑖 ) = 𝑂 (𝑝2).
We start by applying the algorithm of Theorem 3.1 on D to obtain in polynomial time a grid-

respecting partition {D1, . . . ,D𝑝 } ofD. Consider any 𝑖 ∈ [𝑝]. SettingD′ = ∅ in Theorem 3.1 gives

us tw(𝐺D/(𝐸∗D ∪ 𝐸D𝑖
)) = 𝑂 (𝑝). We are going to use this fact later in our analysis. Next, we state a

lemma which will be used in our construction of the edge sets 𝐸1, . . . , 𝐸𝑝 .

Lemma 4.2. The edge set of a clique 𝐾 of size larger than 4𝑝 can be partitioned in polynomial time
into 𝑝 parts such that each part contains a spanning tree of 𝐾 .

Proof. It is well-known [46] that there exists a polynomial-time algorithm to compute a Hamil-

tonian path in a graph 𝐺 where the degree of each vertex is at least half of the total number of

vertices. We shall use this algorithm to prove the lemma, and call it Palmer’s algorithm for ease of

reference.

Let 𝑞 > 4𝑝 be the size of 𝐾 . We first compute 𝑝 edge-disjoint Hamiltonian paths in 𝐾 over 𝑝

iterations. Set 𝐾1 = 𝐾 . In iteration 𝑖 ∈ [𝑝], we compute a Hamiltonian path 𝐻𝑖 in 𝐾𝑖 by applying

Palmer’s algorithm on 𝐾𝑖 . We then remove the edges of 𝐻𝑖 from 𝐾𝑖 to obtain the graph 𝐾𝑖+1. To
see that the condition for applying Palmer’s algorithm on 𝐾𝑖 is always satisfied for every 𝑖 ∈ [𝑝],
note that through the first 𝑖 − 1 iterations, the degree of a vertex decreases by at most 2(𝑖 − 1).
Indeed, in each iteration we remove a Hamiltonian path from the current graph and thus the

degree of a vertex decreases by at most 2. Thus, in iteration 𝑖 , the degree of any vertex is at least

(𝑞 − 1) − 2(𝑖 − 1) = 𝑞 + 1 − 2𝑖 ≥ 𝑞 + 1 − 2𝑝 > 𝑞/2. The last inequality follows as 𝑞 > 4𝑝 . Finally, we

add all the edges of 𝐾𝑝+1 to 𝐻𝑝 so that {𝐻1, . . . , 𝐻𝑝 } form a partition of the edges of 𝐾 and each

𝐻𝑖 contains a spanning tree of 𝐾 as it contains a Hamiltonian path in 𝐾 . Our algorithm runs in

polynomial time as Palmer’s algorithm does. □

We construct the edge sets 𝐸1, . . . , 𝐸𝑝 in the following way. Consider any edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸D .
If 𝑢 ∈ D𝑖 and 𝑣 ∈ D𝑗 for 𝑖 ≠ 𝑗 , then we totally ignore 𝑒 (i.e., do not add it to any of 𝐸1, . . . , 𝐸𝑝 ).

Otherwise, let 𝑢, 𝑣 ∈ D𝑖 for some 𝑖 ∈ [𝑝]. If 𝑒 is not a part of any cell clique, we add 𝑒 to the part

𝐸𝑖 . If 𝑒 is a part of a cell clique of size at most 4𝑝 , we also add 𝑒 to the part 𝐸𝑖 . The only remaining

edges are those in the cell cliques of size larger than 4𝑝 . Consider any such cell clique 𝐾 . Using
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the algorithm in Lemma 4.2, we partition the edge set of 𝐾 into exactly 𝑝 parts 𝐻1, . . . , 𝐻𝑝 each of

which contains a spanning tree of 𝐾 , and then add the edges in 𝐻𝑖 to 𝐸𝑖 for 𝑖 ∈ [𝑝]. This completes

the construction of 𝐸1, . . . , 𝐸𝑝 ⊆ 𝐸D . It is clear that 𝐸1, . . . , 𝐸𝑝 are disjoint. Now it suffices to bound

tw(𝐺D/𝐸𝑖 ) for every 𝑖 ∈ [𝑝].

Lemma 4.3. For all 𝑖 ∈ [𝑝], tw(𝐺D/𝐸𝑖 ) = 𝑂 (𝑝2).

Proof. Let 𝑉 ∗ be the vertex set of 𝐺D/(𝐸∗D ∪ 𝐸D𝑖
) and 𝑉 be the vertex set of 𝐺D/𝐸𝑖 . By our

construction, we have 𝐸𝑖 ⊆ 𝐸∗D ∪𝐸D𝑖
. Thus,𝐺D/(𝐸∗D ∪𝐸D𝑖

) can be obtained from𝐺D/𝐸𝑖 via edge
contraction, and let 𝜌 : 𝑉 → 𝑉 ∗ be the corresponding quotient map. Recall that tw(𝐺D/(𝐸∗D ∪
𝐸D𝑖
)) = 𝑂 (𝑝). So there exists a tree decomposition (𝑇 ∗, 𝛽∗) of 𝐺D/(𝐸∗D ∪ 𝐸D𝑖

) of width 𝑂 (𝑝).
By Fact 2.2, (𝑇 ∗, 𝛽) is a tree decomposition of 𝐺D/𝐸𝑖 where 𝛽 : 𝑇 ∗ → 2

𝑉
is defined as 𝛽 (𝑡∗) =

𝜌−1 (𝛽∗ (𝑡∗)) for 𝑡∗ ∈ 𝑇 ∗. We show that |𝜌−1 ({𝑣∗}) | = 𝑂 (𝑝) for every 𝑣∗ ∈ 𝑉 ∗, which implies

|𝛽 (𝑡∗) | = |𝜌−1 (𝛽∗ (𝑡∗)) | = 𝑂 (𝑝 · |𝛽∗ (𝑡∗) |) = 𝑂 (𝑝2),

and hence completes the proof.

Let 𝜋1 : D → 𝑉 ∗ (resp., 𝜋2 : D → 𝑉 ) be the quotient map corresponding to the edge contraction

for obtaining𝐺D/(𝐸∗D ∪𝐸D𝑖
) (resp.,𝐺D/𝐸𝑖 ). We have 𝜋1 = 𝜌 ◦𝜋2. Consider a vertex 𝑣∗ ∈ 𝑉 ∗. Since

D𝑖 is grid-respecting, for each vertex 𝑣∗ ∈ 𝑉 ∗, 𝜋−1
1
({𝑣∗}) is either (the vertex set of) a cell clique in

𝐺D that is disjoint from D𝑖 or (the vertex set) a connected component of 𝐺D𝑖
. In the former case,

if |𝜋−1
1
({𝑣∗}) | ≤ 4𝑝 , then |𝜌−1 ({𝑣∗}) | = |𝜋2 (𝜋−11

({𝑣∗})) | ≤ |𝜋−1
1
({𝑣∗}) | ≤ 4𝑝 . If |𝜋−1

1
({𝑣∗}) | > 4𝑝 ,

then we have |𝜌−1 ({𝑣∗}) | = |𝜋2 (𝜋−11
({𝑣∗})) | = 1, since 𝐸𝑖 contains a spanning tree of any cell clique

in 𝐺D of size larger than 4𝑝 . In the latter case, 𝜋−1
1
({𝑣∗}) is a connected component of 𝐺D𝑖

, and

we claim |𝜌−1 ({𝑣∗}) | = 1. Indeed, 𝐸𝑖 contains all edges in a connected component of 𝐺D𝑖
except

some edges in cell cliques of size larger than 4𝑝 . But for each of these large cell cliques, 𝐸𝑖 contains

at least one of its spanning trees (which connects all vertices in the clique). Therefore, a connected

component of 𝐺D𝑖
is contracted into a single vertex in 𝐺D/𝐸𝑖 , which implies |𝜌−1 ({𝑣∗}) | = 1. It

follows that |𝜌−1 ({𝑣∗}) | = 𝑂 (𝑝) for every 𝑣∗ ∈ 𝑉 ∗. □

4.2 Near-optimal bipartization for unit-disk graphs
In the Bipartization problem, we are given a graph 𝐺 = (𝑉 , 𝐸) as well as a parameter 𝑘 , and the

goal is to decide whether there exists a subset 𝑋 ⊆ 𝑉 of size at most 𝑘 such that 𝐺 − 𝑋 is bipartite.

We will sometime use the term left part or right part to denote the two parts of the bipartite graph

𝐺 − 𝑋 . This problem is sometimes referred to as Odd Cycle Transversal, and 𝑋 is called an OCT
of𝐺 as bipartite graphs are exactly graphs without odd cycles. Equivalently, we can also formulate

Bipartization in the following way. Consider a map 𝜆 : 𝑉 → {0, 1, 2}. We say 𝜆 is bipartite if
for every edge (𝑢, 𝑣) ∈ 𝐸, neither 𝜆(𝑢) = 𝜆(𝑣) = 1 nor 𝜆(𝑢) = 𝜆(𝑣) = 2. The cost of 𝜆, denoted by

cost(𝜆) is, the number of vertices in 𝑉 that are mapped to 0, i.e., cost(𝜆) = |𝜆−1 ({0}) |. Then the

Bipartization problem is equivalent to finding a bipartite map 𝜆 : 𝑉 → {0, 1, 2} of cost at most

𝑘 . Indeed, the OCT 𝑋 ⊆ 𝑉 is nothing but 𝜆−1 ({0}), while 𝜆−1 ({1}) and 𝜆−1 ({2}) are the left and
right parts of the graph 𝐺 − 𝑋 , respectively.

The map 𝜆 defined above can be directly generalized to any subset of𝑉 . Formally, a configuration
on a subset𝑉 ′ ⊆ 𝑉 is a map 𝜆 : 𝑉 ′ → {0, 1, 2}. A configuration is bipartite if for every (𝑢, 𝑣) ∈ 𝐸 with
𝑢, 𝑣 ∈ 𝑉 ′, neither 𝜆(𝑢) = 𝜆(𝑣) = 1 nor 𝜆(𝑢) = 𝜆(𝑣) = 2. Two configurations 𝜆1 : 𝑉1 → {0, 1, 2} and
𝜆2 : 𝑉2 → {0, 1, 2} are compatible if 𝜆1 (𝑣) = 𝜆2 (𝑣) for all 𝑣 ∈ 𝑉1 ∩𝑉2. If 𝜆1, . . . , 𝜆𝑚 are configurations

on 𝑉1, . . . ,𝑉𝑚 ⊆ 𝑉 that are pairwise compatible, one can “glue” them to obtain a configuration

𝜆 :

⋃𝑚
𝑖=1𝑉𝑖 → {0, 1, 2} satisfying 𝜆 |𝑉𝑖 = 𝜆𝑖 for all 𝑖 ∈ [𝑘]. With these notions defined, let us consider

the problem in hand. Let D be a set of 𝑛 unit disks, and we want to solve Bipartization on 𝐺D .
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An easy but crucial remark is that, for every clique 𝐾 in 𝐺D , the OCT contains all vertices of 𝐾

except at most two. The algorithm starts by checking if there is some cell clique with size at least

𝑘 +3, in which case it trivially answers NO. From now on, we may assume all cell cliques have size at

most 𝑘 + 2. The first step of our algorithm is to apply the following randomized algorithm to obtain

a small candidate set Cand ⊆ D for OCT. This can be done via the technique of representative sets,

see Lemma 5 in [6] for more details.

Lemma 4.4. Given a graph 𝐺 = (𝑉 , 𝐸) and a number 𝑘 , one can compute Cand ⊆ 𝑉 of size 𝑘𝑂 (1)

such that 𝐺 has an OCT of size 𝑘 if and only if 𝐺 has an OCT of size 𝑘 that is a subset of Cand, using
a polynomial-time randomized algorithm with success probability 1 − 1/2 |𝑉 | .
By the above lemma, |Cand| = 𝑘𝑂 (1) and it suffices to find an OCT of 𝐺D in Cand of size at

most 𝑘 . Suppose there exists an (unknown) OCT X ⊆ Cand of size at most 𝑘 . Next, we apply the

algorithm of Theorem 3.1 with 𝑝 = ⌊
√
𝑘⌋ to obtain the grid-respecting partition {D1, . . . ,D𝑝 } of

D in polynomial time. As the OCT X we are looking for is of size at most 𝑘 and {D1, . . . ,D𝑝 } is a
partition of D, there exists an index 𝑖 ∈ [𝑝] such that |D𝑖 ∩ X| ≤ 𝑘/𝑝 . By trying all indices in [𝑝],
we can assume that the algorithm knows the index 𝑖 . Moreover, we know thatD𝑖 ∩X ⊆ D𝑖 ∩Cand
as X ⊆ Cand. Thus, by trying all the subsets of D𝑖 ∩ Cand of size at most 𝑘/𝑝 , we can assume

that the algorithm knows S = D𝑖 ∩ X; note that the number of such subsets is bounded by

|Cand|𝑂 (𝑘/𝑝 ) = 2
𝑂 (
√
𝑘 log𝑘 )

.

Now it suffices to find an OCT of size at most 𝑘 which intersects D𝑖 at S, i.e., contains S but

is disjoint from D𝑖\S. We now use the language of configuration to formulate this task. We say

a configuration 𝜆 : D′ → {0, 1, 2} on D′ ⊆ D is valid if it is bipartite and 𝜆(𝐷) = 0 (resp.,

𝜆(𝐷) ≠ 0) for all 𝐷 ∈ D′ ∩ S (resp., 𝐷 ∈ D′ ∩ (D𝑖\S)). Then our goal is nothing but finding a

valid configuration on D of cost at most 𝑘 . Alternatively, our algorithm finds a minimum-cost valid
configuration 𝜆∗ : D → {0, 1, 2}.

The idea for efficiently finding 𝜆∗ is to use the fact tw(𝐺D/(𝐸∗D ∪𝐸D𝑖\S)) = 𝑂 (𝑝 + |S|) = 𝑂 (
√
𝑘),

which follows from Theorem 3.1, together with a widely-used technique - dynamic programming on

tree decomposition. In order to apply this idea, however, there is one difficulty to be overcome: we

need to do DP on a tree decomposition of𝐺D , but the graph of𝑂 (
√
𝑘) treewidth is𝐺D/(𝐸∗D∪𝐸D𝑖\S)

instead of 𝐺D .
Let 𝑉 ∗ be the vertex set of 𝐺D/(𝐸∗D ∪ 𝐸D𝑖\S) and 𝜋 : D → 𝑉 ∗ be the quotient map of the edge

contraction for obtaining𝐺D/(𝐸∗D ∪𝐸D𝑖\S). Since tw(𝐺D/(𝐸∗D ∪𝐸D𝑖\S)) = 𝑂 (
√
𝑘), by Lemma 2.1,

we can compute in 2
𝑂 (
√
𝑘 )𝑛𝑂 (1) time a binary tree decomposition (𝑇, 𝛽∗) of 𝐺D/(𝐸∗D ∪ 𝐸D𝑖\S) of

width𝑂 (
√
𝑘). By Fact 2.2, (𝑇, 𝛽) is a binary tree decomposition of𝐺D , where 𝛽 (𝑡) = 𝜋−1 (𝛽∗ (𝑡)) for

𝑡 ∈ 𝑇 . We shall do DP on (𝑇, 𝛽). Note that the bags 𝛽 (𝑡) of (𝑇, 𝛽) can be large. The key trick here is

to argue that the number of valid configurations on each bag 𝛽 (𝑡) is small, specifically bounded by

2
𝑂 (
√
𝑘 log𝑘 )

, by using the 𝑂 (
√
𝑘) width of (𝑇, 𝛽∗). We first observe the following simple fact.

Observation 4.5. For each vertex 𝑣∗ ∈ 𝑉 ∗, 𝜋−1 ({𝑣∗}) is either a cell clique of 𝐺D or a connected
component of 𝐺D𝑖\S together with some elements in S.
Proof. Let 𝑣∗ ∈ 𝑉 ∗ and 𝐷 ∈ D such that 𝜋 (𝐷) = 𝑣∗. If (D𝑖\S) ⋒ □𝐷 = ∅, then the only edges in

𝐸∗D ∪ 𝐸D𝑖\S incident to the vertices in the cell clique of □𝐷 are those in the cell clique. In this case,

𝜋−1 ({𝑣∗}) is the cell clique of □𝐷 . The remaining case is that (D𝑖\S) ⋒ □𝐷 contains at least one

unit disk 𝐷 ′. Consider the connected component of 𝐺D𝑖\S containing 𝐷 ′ and let C ⊆ D𝑖\S be the

vertex set of this connected component. Define C+ = ⋃
𝐶∈C (D ⋒ □𝐶 ). We claim that 𝜋−1 (𝑣∗) = C+.

First, it is clear that C+ ⊆ 𝜋−1 (𝑣∗), because the unit disks in C+ are connected by the edges in

𝐸∗D ∪ 𝐸C ⊆ 𝐸
∗
D ∪ 𝐸D𝑖\S . On the other hand, since C forms a connected component of 𝐺D𝑖\S , all
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edges in 𝐸∗D ∪ 𝐸D𝑖\S incident to C+ are actually in 𝐸C+ . Thus, 𝜋−1 (𝑣∗) = C+. Finally, note that
C+\C ⊆ S, because D𝑖 is grid-respecting (hence C+ ⊆ D𝑖 ) and a unit disk in C+\C cannot be

in D𝑖\S (as C forms a connected component of 𝐺D𝑖\S). Therefore, in this case, 𝜋−1 ({𝑣∗}) is a
connected component of 𝐺D𝑖\S together with some elements in S. □

Lemma 4.6. For every 𝑡 ∈ 𝑇 , the number of valid configurations on 𝛽 (𝑡) is 2𝑂 (
√
𝑘 log𝑘 ) . Furthermore,

these valid configurations can be constructed in 2
𝑂 (
√
𝑘 log𝑘 )𝑛𝑂 (1) time.

Proof. Observe that if 𝜆 : 𝛽 (𝑡) → {0, 1, 2} is a valid configuration on 𝛽 (𝑡), then for any subset

A ⊆ 𝛽 (𝑡), 𝜆 |A is a valid configuration on A. Therefore, if we use 𝜉 (A) to denote the number

of valid configurations on a subset A ⊆ 𝛽 (𝑡), then we have 𝜉 (𝛽 (𝑡)) ≤ ∏
𝑣∗∈𝛽∗ (𝑡 ) 𝜉 (𝜋−1 ({𝑣∗})),

because {𝜋−1 ({𝑣∗}) : 𝑣∗ ∈ 𝛽∗ (𝑡)} is a partition of 𝛽 (𝑡) = 𝜋−1 (𝛽∗ (𝑡)). By Observation 4.5, for every

𝑣∗ ∈ 𝛽∗ (𝑡), 𝜋−1 ({𝑣∗}) is either a cell clique of𝐺D or a connected component of𝐺D𝑖\S together with
some elements in S. In the former case, recall our assumption that all cell cliques have size at most

𝑘 + 2. Also, a valid configuration on a cell clique must map all but at most two vertices to 0. Thus,

𝜉 (𝜋−1 ({𝑣∗})) = 𝑂 (𝑘2) in this case. In the latter case, observe that a valid configuration must map

all vertices in the connected component of 𝐺D𝑖\S to {1, 2} and map all vertices in 𝜋−1 ({𝑣∗}) ∩ S
to 0. Furthermore, there are only two ways a valid configuration can map the vertices in the

connected component to {1, 2}, under the bipartite restriction, i.e., two adjacent vertices cannot
be both mapped to 1 or 2 (once we fix the label of one vertex in the connected component, the

labels of the other vertices are uniquely determined). Thus, 𝜉 (𝜋−1 ({𝑣∗})) = 2 in this case. Finally, as

|𝛽∗ (𝑡) | = 𝑂 (
√
𝑘), we have 𝜉 (𝛽 (𝑡)) ≤ ∏

𝑣∗∈𝛽∗ (𝑡 ) 𝜉 (𝜋−1 ({𝑣∗})) = 𝑘𝑂 (
√
𝑘 ) = 2

𝑂 (
√
𝑘 log𝑘 )

. To construct

the valid configurations on 𝛽 (𝑡), we can construct the valid configurations on each 𝜋−1 ({𝑣∗}) and
then glue them, which can be done in 2

𝑂 (
√
𝑘 log𝑘 )𝑛𝑂 (1) time. □

With Lemma 4.6 in hand, the remaining part of our algorithm just follows the standard DP on

(𝑇, 𝛽). For each 𝑡 ∈ 𝑇 , let 𝛾 (𝑡) be the union of the bags of all nodes in the subtree 𝑇𝑡 of 𝑇 rooted

at 𝑡 . We compute a DP table at 𝑡 , in which each entry corresponds to a valid configuration 𝜆𝑡 :

𝛽 (𝑡) → {0, 1, 2} on 𝛽 (𝑡). The entry corresponding to 𝜆𝑡 stores a minimum-cost valid configuration

on 𝛾 (𝑡) that is compatible with 𝜆𝑡 . By Lemma 4.6, the size of the DP table is 2
𝑂 (
√
𝑘 log𝑘 )

and the valid

configurations on 𝛽 (𝑡) corresponding to the table entries can be computed in 2
𝑂 (
√
𝑘 log𝑘 )𝑛𝑂 (1) time.

As usual, we fill out the DP tables at the nodes in𝑇 in a bottom-up fashion. The tables at the leaves

of 𝑇 can be filled out in a trivial way, since 𝛾 (𝑡) = 𝛽 (𝑡) for a leaf 𝑡 ∈ 𝑇 . Consider a non-leaf node
𝑡 ∈ 𝑇 with left child 𝑙 and right child 𝑟 . Suppose we already have the DP tables at 𝑙 and 𝑟 , and we

are going to fill out the DP table at 𝑡 . Specifically, for each valid configuration 𝜆𝑡 : 𝛽 (𝑡) → {0, 1, 2},
we want to find a minimum-cost valid configuration 𝜆′𝑡 : 𝛾 (𝑡) → {0, 1, 2} compatible with 𝜆𝑡 .

Observation 4.7. Let 𝐵 = 𝛽 (𝑡) ∪ 𝛽 (𝑙) ∪ 𝛽 (𝑟 ) and 𝜆 : 𝐵 → {0, 1, 2} be a valid configuration on 𝐵.
If 𝜆′

𝑙
: 𝛾 (𝑙) → {0, 1, 2} and 𝜆′𝑟 : 𝛾 (𝑟 ) → {0, 1, 2} are valid configurations both compatible with 𝜆, then

𝜆′
𝑙
and 𝜆′𝑟 are compatible, and furthermore the configuration 𝜆′𝑡 : 𝛾 (𝑡) → {0, 1, 2} obtained by gluing

𝜆, 𝜆′
𝑙
, 𝜆′𝑟 is valid and satisfies

cost(𝜆′𝑡 ) = cost(𝜆′
𝑙
) + cost(𝜆′𝑟 ) + Δ𝜆,

where Δ𝜆 = cost(𝜆 |𝛽 (𝑡 ) ) − cost(𝜆 |𝛽 (𝑡 )∩𝛽 (𝑙 ) ) − cost(𝜆 |𝛽 (𝑡 )∩𝛽 (𝑟 ) ). In particular, if 𝜆′
𝑙
: 𝛾 (𝑙) → {0, 1, 2}

(resp., 𝜆′𝑟 : 𝛾 (𝑟 ) → {0, 1, 2}) is a minimum-cost valid configuration of 𝛾 (𝑙) (resp., 𝛾 (𝑟 )) that is
compatible with 𝜆, then the configuration 𝜆′𝑡 : 𝛾 (𝑡) → {0, 1, 2} obtained by gluing 𝜆, 𝜆′

𝑙
, 𝜆′𝑟 is a

minimum-cost valid configuration of 𝛾 (𝑡) that is compatible with 𝜆.
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Proof. To see 𝜆′
𝑙
and 𝜆′𝑟 are compatible, we notice that 𝛾 (𝑙) ∩ 𝛾 (𝑟 ) ⊆ 𝛽 (𝑡). Indeed, if a unit disk

𝐷 ∈ D is contained in both 𝛾 (𝑙) and 𝛾 (𝑟 ), then we must have 𝐷 ∈ 𝛽 (𝑡) as the nodes in 𝑇 whose

bag contains 𝐷 are connected. As such, 𝛾 (𝑙) ∩ 𝛾 (𝑟 ) ⊆ 𝐵. Since 𝜆′
𝑙
and 𝜆′𝑟 are both compatible with

𝜆, for any 𝐷 ∈ 𝛾 (𝑙) ∩ 𝛾 (𝑟 ), we have 𝜆′
𝑙
(𝐷) = 𝜆(𝐷) = 𝜆′𝑟 (𝐷). Thus, 𝜆′𝑙 and 𝜆

′
𝑟 are compatible. Let

𝜆′𝑡 : 𝛾 (𝑡) → {0, 1, 2} be obtained by gluing 𝜆, 𝜆′
𝑙
, 𝜆′𝑟 . Clearly, 𝜆

′
𝑡 (𝐷) = 0 for any 𝐷 ∈ 𝛾 (𝑡) ∩ S and

𝜆′𝑡 (𝐷) ≠ 0 for any 𝐷 ∈ 𝛾 (𝑡) ∩ (D𝑖\S), because all of 𝜆, 𝜆′𝑙 , 𝜆
′
𝑟 are valid. So it suffices to show that 𝜆′𝑡

is bipartite. Consider an edge (𝐷,𝐷 ′) ∈ 𝐸D with 𝐷, 𝐷 ′ ∈ 𝛾 (𝑡). If 𝐷,𝐷 ′ ∈ 𝛽 (𝑡), then we cannot have

𝜆′𝑡 (𝐷) = 𝜆′𝑡 (𝐷 ′) ∈ {1, 2} as 𝜆 is bipartite. Otherwise, assume 𝐷 ∉ 𝛽 (𝑡) without loss of generality.
Then either 𝐷 ∈ 𝛾 (𝑙) or 𝐷 ∈ 𝛾 (𝑟 ); assume 𝐷 ∈ 𝛾 (𝑙) without loss of generality. As the nodes in 𝑇
whose bags containing 𝐷 are connected, we know that 𝐷 is only contained in the bags of the nodes

in the subtree 𝑇𝑙 rooted at 𝑙 . Since (𝐷,𝐷 ′) ∈ 𝐸D , there exists a node 𝑠 ∈ 𝑇 such that 𝐷, 𝐷 ′ ∈ 𝛽 (𝑠).
We must have 𝑠 ∈ 𝑇𝑙 for 𝐷 ∈ 𝛽 (𝑠). This implies 𝐷,𝐷 ′ ∈ 𝛾 (𝑙). Because 𝜆′

𝑙
is bipartite, we cannot

have 𝜆′𝑡 (𝐷) = 𝜆′𝑡 (𝐷 ′) ∈ {1, 2}. Therefore, 𝜆′𝑡 is bipartite. The formula for cost(𝜆′𝑡 ) follows easily
from inclusion-exclusion principle.

Now suppose that 𝜆′
𝑙
: 𝛾 (𝑙) → {0, 1, 2} (resp., 𝜆′𝑟 : 𝛾 (𝑟 ) → {0, 1, 2}) is a minimum-cost valid

configuration of 𝛾 (𝑙) (resp., 𝛾 (𝑟 )) that is compatible with 𝜆. Let 𝜆′𝑡 : 𝛾 (𝑡) → {0, 1, 2} obtained by

gluing 𝜆, 𝜆′
𝑙
, 𝜆′𝑟 be the configuration obtained by gluing 𝜆, 𝜆′

𝑙
, 𝜆′𝑟 . As argued above, 𝜆′𝑡 is valid and

compatible with 𝜆. Consider another valid configuration 𝜆′′𝑡 : 𝛾 (𝑡) → {0, 1, 2} that is compatible with

𝜆. Let 𝜆′′
𝑙
= 𝜆′′𝑡 |𝛾 (𝑙 ) and 𝜆

′′
𝑙
= 𝜆′′𝑡 |𝛾 (𝑟 ) . Clearly, 𝜆

′′
𝑙
and 𝜆′′𝑟 are valid configurations of 𝛾 (𝑙) and 𝛾 (𝑟 ),

and both of them are compatible with 𝜆. Thus, cost(𝜆′′
𝑙
) ≥ cost(𝜆′

𝑙
) and cost(𝜆′′𝑟 ) ≥ cost(𝜆′𝑟 ). □

By the above observation, to find a minimum-cost valid configuration 𝜆′𝑡 : 𝛾 (𝑡) → {0, 1, 2}
compatible with a given valid configuration 𝜆 : 𝐵 → {0, 1, 2} on 𝐵 = 𝛽 (𝑡) ∪ 𝛽 (𝑙) ∪ 𝛽 (𝑟 ), it suffices

to find a minimum-cost valid configuration 𝜆′
𝑙
: 𝛾 (𝑙) → {0, 1, 2} (resp., 𝜆′𝑟 : 𝛾 (𝑟 ) → {0, 1, 2}) on

𝛾 (𝑙) (resp., 𝛾 (𝑟 )) that is compatible with 𝜆 and then glue 𝜆, 𝜆′
𝑙
, 𝜆′𝑟 . Note that 𝛾 (𝑙) ∩ 𝐵 = 𝛽 (𝑙) and

𝛾 (𝑟 ) ∩ 𝐵 = 𝛽 (𝑟 ), since the nodes in 𝑇 whose bags contain a unit disk in D must be connected.

Therefore, a minimum-cost valid configuration on 𝛾 (𝑙) (resp., 𝛾 (𝑟 )) compatible with 𝜆 is nothing

but a minimum-cost valid configuration on 𝛾 (𝑙) (resp., 𝛾 (𝑟 )) compatible with 𝜆 |𝛽 (𝑙 ) (resp., 𝜆 |𝛽 (𝑟 ) ),
which is stored in the DP table at 𝑙 (resp., 𝑟 ). As such, a minimum-cost valid configuration on 𝛾 (𝑡)
compatible with 𝜆 can be directly computed.

Recall that to fill out the DP table at 𝑡 , what wewant is a minimum-cost valid configuration on𝛾 (𝑡)
compatible with a valid configuration on 𝛽 (𝑡) instead of 𝐵. However, we have 𝛽 (𝑡) ⊆ 𝐵 ⊆ 𝛾 (𝑡). So a
valid configuration 𝜆′𝑡 : 𝛾 (𝑡) → {0, 1, 2} is compatible with a valid configuration 𝜆𝑡 : 𝛽 (𝑡) → {0, 1, 2}
if and only if there exists a valid configuration 𝜆 : 𝐵 → {0, 1, 2} compatible with both 𝜆𝑡 and 𝜆

′
𝑡 .

Thus, given 𝜆𝑡 , we can construct all valid configurations 𝜆 : 𝐵 → {0, 1, 2} compatible with 𝜆𝑡 , and

for each 𝜆 compute a minimum-cost valid configuration on 𝛾 (𝑡) compatible with 𝜆. By taking the

minimum-cost one among the configurations on 𝛾 (𝑡) we compute, we obtain the desired minimum-

cost valid configuration on 𝛾 (𝑡) compatible with 𝜆𝑡 . Note that the number of valid configurations

on 𝐵 is 2
𝑂 (
√
𝑘 log𝑘 )

, as the numbers of valid configurations on 𝛽 (𝑡), 𝛽 (𝑙), 𝛽 (𝑟 ) are all 2𝑂 (
√
𝑘 log𝑘 )

by

Lemma 4.6. Therefore, each entry of the DP table at 𝑡 can be computed in 2
𝑂 (
√
𝑘 log𝑘 )

time. Then

the entire DP table can be filled out in 2
𝑂 (
√
𝑘 log𝑘 )

time, as the size of the DP table is 2
𝑂 (
√
𝑘 log𝑘 )

. In

2
𝑂 (
√
𝑘 log𝑘 )𝑛𝑂 (1) time, we can finally complete the DP procedure. In order to find a minimum-cost

valid configuration 𝜆∗ : D → {0, 1, 2}, we check the DP table at the root rt ∈ 𝑇 . Note that 𝛾 (rt) = D.

Therefore, the minimum-cost one among the configurations stored in all entries of the DP table at

rt is just the desired 𝜆∗. This completes the discussion of our algorithm. The overall running time is

2
𝑂 (
√
𝑘 log𝑘 )𝑛𝑂 (1) , and the success probability is at least 1 − 1/2 |D | . So we conclude the following.
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Theorem 4.8. There exists a randomized algorithm that solves Bipartization on unit-disk graphs
in 2

𝑂 (
√
𝑘 log𝑘 )𝑛𝑂 (1) time, where 𝑛 is the number of vertices and 𝑘 is the solution size.

We show that the algorithm in the above theorem is near optimal. Specifically, we cannot hope

for a 2
𝑜 (
√
𝑘 )𝑛𝑂 (1) running time, assuming ETH.

Theorem 4.9. Assuming the ETH,Bipartization on unit-disk graphs cannot be solved in 2𝑜 (
√
𝑘 )𝑛𝑂 (1)

time, where 𝑛 is the number of vertices and 𝑘 is the solution size.

Proof. To show the desired lower bound, we give a reduction from Vertex Cover on unit-disk

graphs to our problem. From the lower bound framework of de Berg et al. [13], it follows that

Vertex Cover on unit-disk graphs cannot be solved in 2
𝑜 (
√
𝑘 )𝑛𝑂 (1) time, unless ETH is false.

Hence, it is sufficient to give a polynomial time parameter preserving reduction. Let I be any given

instance of Vertex Cover on unit-disk graphs consisting of a set of 𝑛 disks D in the plane, the

corresponding unit-disk graph𝐺 = (𝑉 , 𝐸), and a parameter 𝑘 . First, we make a copy of all the disks

in D. Let us call this set D′. Let 𝐺 ′ be the unit-disk graph induced by the 2𝑛 disks in D ∪D′. As
the disks in D are given to us,𝐺 ′ = (𝑉 ′, 𝐸′) can be constructed in polynomial time. We will prove

that 𝐺 has a vertex cover of size at most 𝑘 if and only if 𝐺 ′ has a solution to Bipartization of size

at most 2𝑘 .

First, suppose 𝐺 has a vertex cover 𝑆 of size 𝑘1 ≤ 𝑘 . Note that 𝐼 = 𝑉 \ 𝑆 is an independent set of

size 𝑛 − 𝑘1 in 𝐺 . Thus, 𝐼 corresponds to a subset D1 ⊆ D of disjoint disks in the plane. Let D′
1
be

the set of copies of the disks in D1. Thus, the unit-disk graph induced by D1 ∪D′1 is a matching of

size 𝑛 − 𝑘1, and hence is an induced bipartite subgraph of 𝐺 ′ having 2(𝑛 − 𝑘1) vertices. Hence, 𝐺 ′
has a solution to Bipartization of size 2𝑘1 ≤ 2𝑘 .

Now, suppose𝐺 ′ has a solution 𝑆 ′ to Bipartization of size 𝑘 ′ ≤ 2𝑘 . Thus, the induced subgraph

𝐺 ′′ of 𝐺 ′ with 𝑉 ′ \ 𝑆 ′ as the set of vertices, is bipartite. Note that |𝑉 ′ \ 𝑆 ′ | = 2𝑛 − 𝑘 ′. Hence, 𝐺 ′′
contains an independent set 𝐼 ′′ of size at least (2𝑛 − 𝑘 ′)/2 ≥ (2𝑛 − 2𝑘)/2 ≥ 𝑛 − 𝑘 . However, 𝐼 ′′ can
be corresponding to a set D′′ of disks from both D and D′. But the disks in D′′ are disjoint, and
thus one can find another set of disjoint disksD′′

1
⊆ D of size exactly |𝐼 ′′ | by replacing the disks of

D′ in D′′ by the corresponding original copies in D. As the disks in D′′
1
are disjoint, 𝐺 contains

an independent set of size |𝐼 ′′ | ≥ 𝑛 − 𝑘 , and hence a vertex cover of size at most 𝑘 . □

4.2.1 Generalization to GFVS with non-identity labels. In fact, the previous algorithm can be

generalized to the Group Feedback Vertex Set (GFVS) problem with non-identity labels on unit-

disk graphs. For a (undirected) graph 𝐺 , we define a set 𝑃𝐺 that consists of all (ordered) pairs

(𝑢, 𝑣) ∈ 𝑉 (𝐺) ×𝑉 (𝐺) where 𝑢, 𝑣 are connected by an edge of 𝐺 . For a finite group Σ, a Σ-labeled
graph is a pair (𝐺,Λ) where𝐺 is graph and Λ : 𝑃𝐺 → Σ is a function satisfying that Λ(𝑢, 𝑣) ×Λ(𝑣,𝑢)
is equal to the identity of Σ for all (𝑢, 𝑣) ∈ 𝑃𝐺 . A non-null cycle in (𝐺,Λ) is a cycle (𝑣0, 𝑣1, . . . , 𝑣𝑚 = 𝑣0)
in𝐺 satisfying that

∏𝑚
𝑖=1 Λ(𝑣𝑖−1, 𝑣𝑖 ) is a non-identity element of Σ. In the GFVS problem, the input

is a Σ-labeled graph (𝐺,Λ) for a finite group Σ and an integer 𝑘 , and the goal is to determine

whether there exists 𝑋 ⊆ 𝑉 of size at most 𝑘 such that (𝐺 −𝑋,Λ |𝑃𝐺−𝑋 ) contains no non-null cycles.
We say a GFVS instance is with non-identity labels if Λ is required to satisfy Λ(𝑢, 𝑣) ≠ 1 for all 𝑢 ≠ 𝑣 .

A consistent labeling of a Σ-labeled graph (𝐺,Λ) is a map 𝜇 : 𝑉 → Σ such that 𝜇 (𝑣) = 𝜇 (𝑢) · Λ(𝑢, 𝑣)
or equivalently 𝜇 (𝑢) = 𝜇 (𝑣) · Λ(𝑣,𝑢) for every edge (𝑢, 𝑣) ∈ 𝐸 (𝐺). It was known that containing no

non-null cycle is equivalent to having a consistent labeling.

Lemma 4.10 ([28]). A Σ-labeled graph has a consistent labeling if and only if it does not contain
any non-null cycle.

Note that the bipartization problem is a special case of the GFVS problem with non-identity

labels when Σ = Z2 and Λ(𝑢, 𝑣) is the non-identity element in Z2 for all (𝑢, 𝑣) ∈ 𝑃𝐺 . In this case, the
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consistent labeling simply corresponds to the assignment to the left or right part of the bipartition.

Now we show how to generalize our bipartization algorithm to the GFVS problem with non-

identity labels. Suppose |Σ| = 𝑔. We can naturally associate every element of Σ to an index of [𝑔]
by some bijection 𝜎 : [𝑔] → Σ. In this way, we can interpret, very similarly to what we did for

bipartization, a solution to a GFVS instance (𝐺 = (𝑉 , 𝐸),Λ) as a map 𝜆 : 𝑉 → {0, 1, . . . , 𝑔}, where
𝜆−1 (0) is the set 𝑋 ⊆ 𝑉 of vertices to be removed and 𝜆−1 (𝑖) for 𝑖 ∈ [𝑔] corresponds to the set of

vertices mapped to 𝜎 (𝑖) in a consistent labeling of 𝐺 − 𝑋 . Thus, we cam generalize the notion of

configurations defined in the previous section. For a subset 𝑉 ′ ⊆ 𝑉 , a configuration of 𝑉 ′ is a map

𝜆 : 𝑉 ′ → {0, 1, . . . , 𝑔}. The configuration is Λ-good if for every (𝑢, 𝑣) ∈ 𝐸 with 𝑢, 𝑣 ∈ 𝑉 ′\𝜆−1 (0), we
have 𝜆(𝑣) = 𝜆(𝑢) · Λ(𝑢, 𝑣) or equivalently 𝜆(𝑢) = 𝜆(𝑣) · Λ(𝑣,𝑢). We say that two configurations

𝜆1 : 𝑉1 → {0, 1, . . . , 𝑔} and 𝜆2 : 𝑉2 → {0, 1, . . . , 𝑔} are compatible if they agree on 𝑉1 ∩𝑉2.
Let (𝐺D,Λ) be the input Σ-labeled unit-disk graph where 𝐺D is defined by a set D of 𝑛 unit

disks. By Lemma 4.10, our goal is to compute a subset X ⊆ D of size at most 𝑘 such that 𝐺D − X
admits a consistent labeling. In order to adapt the algorithm, we need several things. First, like

bipartization, GFVS also admits a small candidate set: it is possible to find in polynomial time a

set Cand ⊆ D of size 𝑘𝑂 (𝑔) such that the potential solution X can be searched in Cand (see Lemma

5 of [6]). Second, we have to remark that a Σ-labeled graph with non-identity labels cannot admit

a consistent labeling if it contains a clique of size 𝑔 + 1. Indeed it would mean that two adjacent

vertices would be assigned to the same element of Σ which is only possible if the edge between

these vertices is label with the identity.

With the two previous remarks, we can straightforwardly adapt the algorithm to this setting. The

algorithm starts by applying Theorem 3.1 with 𝑝 = ⌊
√
𝑘⌋ to obtain {D1, . . . ,D𝑝 } a grid-respecting

partition in polynomial time. Then it produces a set Cand ⊆ D of size 𝑘𝑂 (𝑔) which contains the

potential solutionX. Once again, it is possible to guess an index 𝑖 satifying |D𝑖∩X| ≤ 𝑘/𝑝 as well as
the setS = D𝑖∩X in at most 𝑘𝑂 (

√
𝑘 )

tries. Once this is done, we use a tree decomposition T of width

𝑂 (
√
𝑘) of𝐺D/(𝐸∗D ∪𝐸D𝑖\S) guaranteed by Theorem 3.1 to solve the problem in (𝑘 +𝑔)𝑂 (𝑔·

√
𝑘 )𝑛𝑂 (1)

time as follows.

Let 𝑉 ∗ be the vertex set of 𝐺D/(𝐸∗D ∪ 𝐸D𝑖\S) and 𝜋 : D → 𝑉 ∗ be the quotient map of the edge

contraction for obtaining 𝐺D/(𝐸∗D ∪ 𝐸D𝑖\S). The DP will store for every node 𝑡 ∈ T and every

Λ-good configuration 𝛼𝑡 of 𝜋
−1 (𝛽 (𝑡)) the value of the minimum-cost Λ-good configuration of 𝛾 (𝑡)

compatible with 𝛼𝑡 . Again, every element 𝑥 of 𝛽 (𝑡) corresponds to either cell clique in 𝐺D or a

connected component ofD𝑖\S. In the first case, there are only𝑂 (𝑔 +𝑘)𝑂 (𝑔) Λ-good configurations
for 𝜋−1 (𝑥), since at most 𝑔 vertices in 𝜋−1 (𝑥) can have non-zero values in a Λ-good configuration

of 𝜋−1 (𝑥). In the second case, there are only 𝑔 Λ-good configurations for 𝜋−1 (𝑥) as it suffices to fix

the value of one element to fix the rest by connectivity. Overall, since the size of 𝛽 (𝑡) is 𝑂 (
√
𝑘),

there is at most (𝑘 + 𝑔)𝑂 (𝑔·
√
𝑘 )

possible Λ-good configurations and thus we have the following

result.

Theorem 4.11. There exists a randomized algorithm that solves the GFVS problem with non-identity
labels on unit-disk graphs in (𝑘 + 𝑔)𝑂 (𝑔·

√
𝑘 )𝑛𝑂 (1) time, where 𝑛 is the number of vertices, 𝑘 is the

solution size, and 𝑔 is the size of the group.

5 CONCLUSION AND FUTUREWORK
We prove a structural theorem for unit-disk graphs, which states that one can partition the vertices

of a unit-disk graph 𝐺D into 𝑝 subsets D1, . . . ,D𝑝 such that for any 𝑖 ∈ [𝑝] and any D′ ⊆ D𝑖 ,
the graph 𝐺D/(D𝑖\D′) admits a tree decomposition in which each bag consists of 𝑂 (𝑝 + |D′ |)
cliques. This result can be viewed as an analog for unit-disk graphs of the “robust contraction
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decomposition” theorems for planar graphs and almost-embeddable graphs proved very recently by

Marx et al. [42] and Bandyapadhyay et al. [6]. Our theorem finds both combinatorial and algorithmic

applications. On the combinatorial side, we obtain the first Contraction Decomposition Theorem

(CDT) for unit-disk graphs, resolving an open question in the work by [48]. On the algorithmic

side, our theorem yields a new FPT algorithm for bipartization on unit-disk graphs, which runs in

2
𝑂 (
√
𝑘 log𝑘 ) ·𝑛𝑂 (1) time, where 𝑘 denotes the solution size. Our algorithm significantly improves the

previous slightly subexponential-time FPT algorithm given by [40] which runs in 2
𝑂 (𝑘27/28 ) · 𝑛𝑂 (1)

time. We also give a 2
Ω (
√
𝑘 ) · 𝑛𝑂 (1) -time lower bound for the problem based on the ETH, which

implies that our algorithm is almost optimal.

Next, we raise some open questions for future study. The first question is whether we can extend

our structural theorem to more general graph classes. An interesting case is the class of (general)

disk graphs, which generalizes both planar graphs and unit-disk graphs. As this type of structural

theorem holds for both planar graphs and unit-disk graphs, it is natural to ask whether one can

obtain similar results for disk graphs. The second question is to improve our CDT for unit-disk

graphs. In Theorem 4.1, the treewidth bound we have is 𝑂 (𝑝2), while a bound of 𝑂 (𝑝) was known
for planar graphs. Therefore, it is interesting to ask whether one can prove a CDT for unit-disk

graphs with a subquadratic (or even linear) treewidth bound, or prove a quadratic lower bound for

the treewidth. Finally, we want to ask whether one can solve the general GFVS problem (possibly

with identity labels) in subexponential FPT time.
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