N

N

Extensions and Scalability Experiments of a Generic
Model-Driven Architecture for Variability Model
Reasoning

Camilo Correa Restrepo, Jacques Robin, Raul Mazo

» To cite this version:

Camilo Correa Restrepo, Jacques Robin, Raul Mazo. Extensions and Scalability Experiments of a
Generic Model-Driven Architecture for Variability Model Reasoning. ACM/IEEE 27th International
Conference on Model Driven Engineering Languages and Systems, Sep 2024, Linz, Austria. pp.126 -
137, 10.1145/3640310.3674090 . hal-04812406

HAL Id: hal-04812406
https://hal.science/hal-04812406v1
Submitted on 6 Dec 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Public Domain

https://hal.science/hal-04812406v1
https://hal.archives-ouvertes.fr

Extensions and Scalability Experiments of a Generic
Model-Driven Architecture for Variability Model Reasoning

Camilo Correa Restrepo®
camilo.correa-restrepo@univ-
paris1.fr
Université Paris 1 Panthéon-Sorbonne
Paris, France

ABSTRACT

Until recently, the state-of-the-art of Software Product Line (SPL)
configuration and verification automation consisted of a collection
of ad-hoc approaches tightly coupling a single input Variability
Modeling Language (VML) with a single constraint solver. To remedy
this situation, a novel generic model-driven architecture was then
proposed that enables using a variety of VMLSs and solvers. The
key ideas of this proposal were (a) the use of a standard logical
language (CLIF) as a pivot between VMLs and solvers, and (b)
the use of a standard data exchange format (JSON) to explicilty
and declaratively specify the abstract syntax and semantics of the
VMLs to be used in an SPL engineering project and the automated
reasoning task to be performed by the solvers.

In this article, we overcome the limitations of this initial proposal
in three key ways: (1) we add the ability to reason on textual or
hybrid VMLs, rather than only on diagrammatic VMLs, enhancing
the versatility of the architecture on the input side; (2) we enable
the use of solvers from a third paradigm, enhancing the versatility
of the architecture on the output side; and, (3) we present the results
of scalability performance experiments of an implementation of
this architecture. These results have been achieved without signifi-
cantly altering the architecture, demonstrating its agnosticism with
respect to specific VMLs and solvers. It also shows that it can under-
lie the implementation of practical variability reasoning tools that
scale up to real sized variability model analysis and configuration
needs.

CCS CONCEPTS

« Software and its engineering — Software product lines;
Software architectures; - Computing methodologies — Model
verification and validation.

*Also with Ecole Supérieure d’Informatique Electronique Automatique.
* Also with Université Paris 1 Panthéon-Sorbonne.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MODELS ’24, September 22-27, 2024, Linz, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0504-5/24/09

https://doi.org/10.1145/3640310.3674090

Jacques Robin®
jacques.robin@esiea.fr
Ecole Supérieure d’'Informatique
Electronique Automatique
Paris, France

Raul Mazo
raul. mazo@ensta-bretagne.fr
Lab-STICC, ENSTA-Bretagne
Brest, France

KEYWORDS

Software Product Lines, Automated Reasoning, Generic Architec-
ture, Configuration Automation

ACM Reference Format:

Camilo Correa Restrepo, Jacques Robin, and Raul Mazo. 2024. Extensions
and Scalability Experiments of a Generic Model-Driven Architecture for
Variability Model Reasoning. In ACM/IEEE 27th International Conference on
Model Driven Engineering Languages and Systems (MODELS °24), September
22-27, 2024, Linz, Austria. ACM, New York, NY, USA, 12 pages. https://doi.
org/10.1145/3640310.3674090

1 INTRODUCTION

Software Product Line Engineering (SPLE) is a method to manage
the development and evolution of large sets of software products
that partially share requirements and reusable software assets im-
plementing them [58]. Each software product in such a set is called
a variant. Taken together, all of these variants form the epony-
mous Software Product Line (SPL). The set of requirements and
reusable assets included in a variant is termed a configuration. The
systematic and disciplined management of the variability in the
inclusion and exclusion of requirements and reusable assets across
all variants is what makes SPLE unique.

For such management tasks, SPLE introduces a novel software
artifact, named a variability model. It encodes the relationships and
constraints among the requirements and reusable software assets.
It must capture all the necessary business, technical and regulatory
constraints that apply to the SPL. This artifact must be verified
to ensure its consistency and minimality. A consistent variability
model can then support the semi-automated derivation of all and
only of valid variants by assembling reusable software assets in a
way that respects all the constraints in the model.

Despite considerable efforts by the SPLE community [35, 61,
64], there is no standard language to express variability models.
Consequently, every SPLE automation tool has its own tool-specific
VML. Although they differ syntactically, the majority of VMLs used
in SPLE semantically define coherent sets of requirements, usually
called features. The first such VML, that remains the baseline
reference in SPLE research, is the “Simple Feature Model (SFM)”
[40]. This modeling language, like most subsequent VMLs, has
several key expressive capabilities: (a) it organizes requirements
into a composition and abstraction hierarchy, where the lowest
level ones are tied to the concrete software assets implementing
them; (b) it defines whether requirements are mandatory or optional
across configurations; (c) provides alternatives for the refinement
of higher level (abstract) requirements; and (d) specifies constraints
that range across the hierarchy such as conditional inclusion or

https://conf.researchr.org/track/models-2024/models-2024-artifact-evaluation#Submission-Guidelines-
https://conf.researchr.org/track/models-2024/models-2024-artifact-evaluation#Submission-Guidelines-
https://doi.org/10.1145/3640310.3674090
https://doi.org/10.1145/3640310.3674090
https://doi.org/10.1145/3640310.3674090

MODELS °24, September 22-27, 2024, Linz, Austria

Variability Formal Analysis
Model Representation Results
Model Solvin
Transformation 9

== XX

Figure 1: Ad-hoc Automated Analysis Pipeline.

mutual exclusion. Over time many extensions to these models have
been defined, such as adding attributes to features [13], having
numerical bounds on the number of chosen alternatives [22], or
adding constraints that involve more than two features at once [53].
In the literature, they are loosely referred to as Extended Feature
Models (EFMs) when the goal is to distinguish them from SFMs.

Non-trivial SPLs are too large and complex to be manually ver-
ified, debugged, or to find valid configurations [48]. In addition,
these tasks need to be repeated as the SPL evolves throughout its
life-cycle, which may span over multiple decades [16]. Constraint
solvers from multiple paradigms have been proposed and tested
to automate these tasks [11]. As is the case with VMLs, there is no
accepted constraint solver standard for SPLE automation.

As is attested by a recent survey [36] and the comparative anal-
ysis presented in [20], the set of current, mature tools used for
automated reasoning on variability models follow a general design
principle: they directly transform a business-oriented variability
model into a formal representation in a solver’s input language.
A simplified schema of this approach is shown in Figure 1. The
reasoning tasks to be performed on the model are then hard-coded
into the tools themselves as they need to control the solvers di-
rectly to perform them. This has remained true starting from the
foundational tool for automated analysis of variability models [40].
Since all these tools either are, or are part of, a textual or graphi-
cal variability model editor, they all share the key commonality of
being designed for analyzing a specific VML (generally an SFM or
EFM [40]) for which they have selected a specific solver.

These approaches do not fulfill the need for Domain-Specific
VMLs (VML) beyond EFMs which is well attested in the literature.
In particular, the use of DSVMLs in SPLE projects has both been
argued for [17] and their use in combination with or as outright
replacements for traditional FMs was explored in [70]. Unfortu-
nately, tooling for a DSVML implies constructing, as is the case
with the approaches cited above, an ad-hoc model transformation
and analysis pipeline that tightly couples the DSVML to the solver.

Product Line Engineering Intelligent Assistant for Defect
dEtection and Solving (PLEIADES) [20] departs from these earlier
works by proposing a generic model-driven architecture that is ag-
nostic to both the input VML and the solver used for reasoning. This
proposal subsumes and supports all previous these siloed ad-hoc
approaches, into a single unifying architectural framework through
the use of a standard Knowledge Representation Language (KRL),
the ISO standard Commeon Logic Interchange Format (CLIF) [38],
acting as a pivot between the VMLs and solvers. To the best of our
knowledge, it remains today the sole architecture that can accom-
modate most past proposals from both the modeling and reasoning

Camilo Correa Restrepo, Jacques Robin, and Raul Mazo

sides. Moreover, it demonstrates what should be the way forward
for SPLE automation tool engineering, as it shows how efforts
expended by each tool development team could all be reused in
synergy into one overarching architecture fostering faster overall
progress of the field.

The PLEIADES architecture can be said to be a model-driven
architecture (MDA) (with respect to the OMG standard MDA [55])
for the following reasons: (a) it adopts the distinction between
a Platform Independent Model (PIM), in our case CLIF [38] and
(as will be seen later) a generic representation of the constraint
problems to be given to the underlying solvers, and the Platform
Specific Models (PSM), in our case, the solver specific inputs; (b) it
is structured as a pipeline of model transformations from PIM, to
PSM, and then to code; and, (c) we model our architecture using
the Unified Modeling Language (UML) [63] standard. Furthermore,
the language we use as PIM pivot, CLIF [38], while an ISO standard
rather than an OMG standard, is the very language used to defined
the formal semantics of UML models and MOF metamodel [56], in
the OMG Formal UML (fUML) standard [57]. However, we diverge
from strict adherence to the MDA approach, by using JSON [21], a
W3C standard, rather than MOF, for the meta-models of the VML
semantics and SPLE reasoning tasks. This choice is allows for more
agilty, a lower barrier of entry for the average developer and more
lightweight tooling than a MOF-based approach.

The PLEIADES proposal is accompanied by an open-source
prototype in Python that implements the architecture in order
to demonstrate its feasibility. Though the original proposal and its
prototype are limited in various ways, most notably being restricted
to only Graphical VMLs, in this article we aim to overcome these
fundamental limitations through the introduction of two major
extensions to this architecture.

The first of these extensions is to provide the architecture with
the ability to reason on purely textual VMLs within PLEIADES.
These VMLs form an important part of the landscape of variability
models [10]. In this article we explore the implications of such an
extension to the original PLEIADES architecture, and how it only
leads to minor modifications to its core design. We also examine the
problem of extending the original PLEIADES prototype with this
functionality. For this, we have chosen an emerging community-
led VML named Universal Variability Language (UVL) [64]. In
essence, UVL provides a textual syntax for EFMs and extends it fur-
ther with concepts from programming languages such as modules
and JSON-like nested attributes. This makes variability models us-
ing UVL more scalable to large models than graphical EFMs whose
editors rarely allow model element reuse across multiple diagrams.

The second important extension is the ability to integrate solvers
from other solver families than those originally considered, and in
particular, those from the SMT [24] family. With this extension, we
also demonstrate how to accommodate a new kind of solver API
where the problem instance is constructed directly as set of objects
instead of the purely text-generation based approach of previous
solver integrations. As will be seen in this article, the modifications
that such an addition imply for PLEIADES’ core design are, again,
minor.

The goal of these extensions is to make PLEIADES demonstrably
more versatile both in terms of the input VMLs and the output
solver input languages. The ability to reconcile the very different

Extensions and Scalability Experiments of a Generic Model-Driven Architecture for Variabili

ty Model Reasoning MODELS 24, September 22-27, 2024, Linz, Austria

EAN PAN RAN EAN
VarMod X) Commo
N Models To Pivot Logic . Solver W
Semantic Pivot Standard To | Solver Input . .
VarMod X) Standard Interchange Solving Analysis
Translation R . F Solver Input Resul
Specification epresentation ormat esults
1SO 24707
e o o e o o > > e o o : e o o
B VarMod YQ Ya,b,c (a =(bVc)) 3 Solver 7 3
) olver
VarMod Y Seman_tlc = Solver Input Analysis
Translation z
Specification . Results
(forall (abc) (if a(orbc)))
e o o e o o
2 . 2
Object Solver T :
Textua)I(ModeI Rl i Oriented Analysis
""" ' Solver T API . Results
-------------------- Textual .]
______________ Language
Parsers
..., Generating Pivot
- Standard

Representation

Figure 2: PLEIADES architecture’s Analysis Pipeline [20] (white with solid borders) with the proposed extensions (gray with

dotted borders).

natures of Graphical and Textual VMLs under one umbrella is a
key contribution of these extensions. To show that it can guide the
implementation of a tool that is not only versatile but also scales
for verifying and configuring large models, we implemented these
extensions and carried out scalability benchmarks with this imple-
mentation. For this purpose, we used benchmarks VMLs available
on the UVLHub! repository for UVL models. The main finding is
that the PLEIADES prototype, and therefore its architecture, can
indeed handle real-sized variability models.

The rest of the paper is organized as follows. In Section 2, we
quickly summarize the starting point of our research, the PLEIADES
architecture, by explaining how it differs from previous work and
discuss what are its limitations towards its stated goal. In Section 3,
we then describe the extensions we propose to this architecture and
their implementations. In Section 4, we describe the benchmarks
that we carried out with this implementation and discuss its results.
In Section 5, we compared our work with previous research on
providing a SPLE automation tools with some degree of genericity
supporting multiple VMLs and multiple solver paradigms. In Section
6, we conclude by summarizing the contributions of the research
presented in this paper, identifying its limitations and presenting
future lines of research to overcome them.

2 BACKGROUND AND MOTIVATION

2.1 A Proposal for a Generic Model-Driven
Architecture for Variability Model
Reasoning

The PLEIADES architecture proposed in [20] aimed to provide a

generic framework to automate reasoning on graphical variability

models. The genericity of the approach hinged on being agnostic to
the input VML and to the language accepted as input by the solvers
used for automated reasoning. The architecture is itself based on

Thttps://www.uvlhub.io/

an earlier proposal [18] that proposed utilizing the Common Logic
Interchange Format (CLIF) [38] as the language for encoding
VML semantics. The PLEIADES architecture uses CLIF as a pivot
language between various VMLs and various solver input languages
handling N VMLs and M solver input languages with only N + M
transformations rather than N X M where variability models are
directly transformed into formal knowledge bases as done in almost
all previous tools reasoning on variability models.

The arguments for CLIF’s use is that it was designed to be read-
able by both humans and machines to represent and exchange first-
order logic knowledge bases with some higher order extensions.
Its expressive power is superior or equal to that of the languages
accepted as input by the four main solver paradigms used to rea-
son on variability models in previous published approaches in the
literature:

e Logic Programming (LP) [46] and its Constraint Logic
Programming (CLP) [29] extensions which were used for
the foundational VML analysis tool [40] and the original
VariaMos tool [68].

Constraint Satisfaction Problem (CSP) solvers and their
extensions for Constraint Optimization Problems (COP)
[25] which were used for the COFFEE [69] and Familiar [1]
tools.

SATisfiability (SAT) solvers [34] and their extensions with
Satisfiability Modulo Theories (SMT) [24] were used for
FeatureIDE [66], FlamaPy [32], Splot [50], Glencoe [60], Ker-
nelHaven [43], and pure::variants [14].

Description Logic (DL) engines and their semantic web
reasoning extensions [6] which were used for the AUFM
tool [54].

The key insight in [18] is that the semantics of all the graphical
VMLs can be expressed in CLIF, which can in turn be used to
generate input specific to each solver (or family of solvers) [20]. In
this way, adding a new VML or solver would only need a single

MODELS °24, September 22-27, 2024, Linz, Austria

Camilo Correa Restrepo, Jacques Robin, and Raul Mazo

gl <<j.sor.1>> o SPLE R'easoning Web Sverlvice , gl <<dataTyPe>>
string :] Serialized answer(req : Serialized Reasoning Request) : Serialized Reasoning Response Domain
Reasoning -deserialize(req : Serialized Reasoning Request) : Reasoning Request |
Request -serialize(Res : Reasoning Response) : Serialized Reasoning Response
ZF -genResponse(sas : Solver Agnostic CSP Solution, vm : VM) : Reasoning Response <<dataType>>
<<json>> <<cltext>> <> -buildResponse(Sol : Solver Agnostic CSP Solution[], vm : VM) : Reasoning Response Variable
Serialized CLIF VM <> * *
Reasoning <<string>> VM2CLIF Translator g <<dataType>> | *
Response Serialized genCLIFVM(rr : Reasoning Request) : CLIF VM Constraint
- Textual VM *
<<ison>> TextualVML2CLIF Translator ﬂ ‘
Serialized VM ‘
<<json>> <<json>> <<json>> ‘ GraphicalVM2CLIF Translator E H TextualVML Parser E”
Serialized Serialized Serialized VM
Reasoning Task VM Syntax Semantic | CLIF2GenericCSP Translator @ ‘
Spec Spec Spec parseCLIFVM(clifVM : CLIF VM) : CLIF VM AST
genGenericCSP(ast : CLIF VM AST) : Solver Agnostic CSP <<dataType>> ‘
Solver Agnostic CSP
R<<data:ryp$>>k <<dataType>> <<dataType>> 9
easoning Tas! q
Speg VM Syntax VM Semantic Generic2SpecificCSP Translator E
solverName : string Spec Spec — genSolverlnput(sacsp : Solver Agnostic CSP) : Solver Input
| genGenericCSPSolution(solverOutput : Solver Output[*]) : Solver Agnostic CSP Solution[*]
<<dataType>> <<dataType>> Solver Controller gl <<dataType>>
VM Salan — iterativeBridgeCall(rr Reasoning Request) : Solver Output[*] CLIF VM AST
i 1
Ag;zls:'l:z:otl:‘SP <<dataType>> I <<use>> <<dataType>>
Solver Input \ll/ Solver Output

<<dataType>>
Reasoning Response

<<dataType>>
Reasoning Request
‘ <<string>>
Textual VM

Solver Bridge a <<use>
callSolver(in : Solver Input) : Solver Output = [7 =~~~ 7 = Solver E

Figure 3: PLEIADES architecture’s [20] Component Diagram with the proposed extensions. The elements from the original
proposal are in yellow and the modified or added components are in cyan.

additional translation on the VML (input) side or on the solver
(output) side, all within the same architecture, while reusing already
available language transformations.

A simplified schema of the PLEIADES architecture’s pipeline is
shown in Figure 2. In this figure, all the elements outlined in the
original proposal are in white with solid borders. It essentially con-
sists of expanding the basic pipeline shown in Figure 1 to allow for
the many-to-many correspondence of VMLs and solvers by utilizing
CLIF as an intermediary. The gray elements with dotted outlines
correspond to the extensions necessary to cover the architecture’s
limitations, which are the subject of Section 2.2.

The PLEIADES architecture is designed as a REST Web Service
[59] where the model in a given VML is accompanied by two declar-
ative specifications. The first encodes the semantics of the VML in
the form of a mapping from the VML abstract syntactic elements
to CLIF sentence elements. As shown in Figure 2, this specifica-
tion is used to translate the variability model into a CLIF sentence.
This sentence can then be translated into a sentence of the KRL
understood by the solver chosen to reason on the variability model.
The second declarative specification associated with the variability
model defines the reasoning task to be performed by the solver.
These tasks can be for example detection of a specific class of VML
defect or interactive configuration.

The new, extended PLEIADES architecture has five top-level
components (c.f. [20] for a much more detailed explanation of each
component and its design choices), as shown in Figure 3:

e The entry point web service, SPLE Reasoning Web Ser-
vice, that handles the web requests and orchestrates the
operations provided by the other components.

e A component, VM2CLIF Translator, that transforms the
input variability model into CLIF. In the original PLEIADES
architecture, it was a stand-alone component tied to the
transformation of the graphical models. As shown in Figure
3 the extended architecture makes it abstract and specializes
it into a Translator component for each type of model
(textual and graphical), as described in Section 3.1.

e A component CLIF2GenericCSP Translator that trans-
forms the CLIF model into a semantically-equivalent solver-
agnostic (generic) CSP specification. While CLIF can repre-
sent the logic underlying any solver input, as they are all
ultimately expressible in first-order logic, its concrete syntax
differs from that of the solver input languages. This transfor-
mation involves parsing the CLIF sentences string into an
Abstract Syntax Tree (AST) [2] and then translating it into the
AST for the solver-agnostic CSP specification language. As
will be seen in Section 3.2, this remains true for the addition
of the third solver family that we explore in this article.

e A component (Generic2SpecificCSP Translator) that
takes a solver-agnostic CSP specification and translates it
into a solver specific input. It is shown as modified in Figure
3 because it must include an additional translator for the
third solver family.

e A component (Solver Controller) which interprets the
requested reasoning task, orchestrates multiple calls to the
solver when needed, assembles the solutions returned by the
solver and sends the result to the top-level web service com-
ponent. It is composed internally of a component (Solver
Bridge) whose purpose is to handle the life-cycle of the
solver, provide its input and extract its raw output. Given

Extensions and Scalability Experiments of a Generic Model-Driven Architecture for Variability Model Reasoning

that each solver has its own specific APL, one must have set
of bridges, one for each solver. However, to preserve the sep-
aration of the controller from the solver-specific AP, each
bridge exposes the same interface to the controller, applying
the dependency inversion pattern [49].

This multilayered architecture corresponds to the top portion
of the simplified schema of the pipeline depicted in Figure 2. The
set of operations and the objects passed through each layer of the
architecture are detailed in Figure 4. Of particular note is that only
three activities change from the initial to the extended architecture.
These changes are encapsulated inside these activities and corre-
spond to the modifications needed for accommodating the textual
languages and more solvers. In this case, the nature of the pipeline
stays the same. We will return to this in Section 3.3.

2.2 Limitations of the Original PLEIADES
Architecture

The original PLEIADES architecture suffered, however, from two
main limitations: it did not consider neither Textual VMLs and
their semantics, nor a larger set of solver families. In addition, the
publications about it [18, 20] did not discuss the degree to which
the input languages to the different solvers could be generalized
and did not include scalability benchmarks.

The first limitation of the original PLEIADES architecture is
quite significant since, in practice, there are many relevant purely
textual VMLs, as attested by a recent survey [10]. Moreover, each of
these languages has its own grammar and structure which contrasts
with the principle outlined in the PLEIADES proposal where all
Graphical VMLs are Directed Graphs [15]. This VML-agnostic graph
structure was leveraged in the original PLEAIDES architecture to
generically transform the variability model into CLIF. But textual
VMLs lack such a language-agnostic graph structure, which is due
to the fact that, although as a product of parsing one may generate
a graph-like AST [2], text, by itself, is unstructured.

The second limitation of the original PLIEADES architecture
is tied to the construction of the input for other sets of solver
families than those originally considered, Constraint Satisfaction
Problem (CSP) solvers [25] and Constraint Logic Programming
(CLP) solvers [29]. In the architecture, both of these solvers are
managed through the generation of a string representation of the
input problem to be sent to the solver, and then invoking a sub-
process to read said string and return the result. This differs from,
for instance, the API offered by the Z3 solver [23] from the SMT
family [24] that offers an object-oriented [42] API to construct the
problem programmatically.

The lack of scalability evaluation of the original PLEIADES archi-
tecture and prototype implementation was also important since one
can suspect that there will be a significant trade-off between the
genericity of the architecture and the computational overhead of
decomposing the transformation into several intermediate layers.

3 EXTENSIONS TO THE ORIGINAL PLEIADES
ARCHITECTURE AND PROTOTYPE
Faced with the limitations evoked in Section 2.2, we have addressed

them one by one by proposing and implementing a series of ex-
tensions to the original PLEIADES architecture. The purpose of

MODELS 24, September 22-27, 2024, Linz, Austria

these extensions is twofold. First, we aim to determine, by critically
examining the original proposal, whether the architecture is indeed
amenable to the integration of these key features without signifi-
cant alteration as originally claimed. Second, we seek to show how
to concretely add these extensions and their impact on the overall
architecture.

The starting point for the extended PLEIADES prototype is the
open-source original prototype. This is important since one of the
key claims in the original paper hinge on extensions such as those
presented here being able to be effectively implemented. Moreover,
it is claimed as one the main requirements for the original architec-
ture that it must “[... sJupport low-cost [...] addition of new DSVMLs”
and that it must “[... support] low-cost addition of interoperability
with solvers from different paradigms” [20]. We can only verify
these claims in practice by actually performing such additions, and
in particular, measure the “cost” by the effort necessary to adapt
the architecture and its implementation.

3.1 Handling Textual VMLs

Textual languages pose a challenge to the original PLEIADES ar-
chitecture because the abstract syntax of each of them is specified
as a different grammar, whereas the abstract syntax of graphical
models can share a graph-based meta-model. Processing a textual
language thus requires a parser [2] that can recognize the language,
detect the well-formedness of models, and build a structured rep-
resentation, the Abstract Syntactic Tree that supports both their
programmatic manipulation and the association with its semantic
specification. Since the input is raw text, it cannot be trivially put
into a structured representation, such as JSON [21] over which the
original semantic specification approach could be applied.

This being the case, we posit that there are two possible ways to
add support for such languages within the architecture:

e Adding an additional layer to the architecture that trans-
forms the textual model into its equivalent in graph form
and then said model is fed to the rest of the architecture.

o Adding a layer in parallel to the graph-based CLIF generator
that transforms the textual model directly.

We consider that the latter of these options is the most adequate
for several reasons. Transforming the model into a graph-based
language would necessitate the additional definition of an abstract
syntax and translation rules on top of the need for the parser and
the code generation rules to create the graph in the first place.
This double indirection before even entering the pipeline of the
original architecture would be too costly in terms of additional
computation. In addition, the presence of relations that are not
expressible as edges in a graph (involving several nodes at once)
would nevertheless need to be rendered textually [20].

The process of integration involves the addition of only two
elements to the architecture for each new language:

e A parser that generates the CLIF encoding of the original
textual model.

e A mechanism to invoke the parser from the architecture
and provide the generated CLIF to the CLIF2GenericCSP
Translator.

MODELS °24, September 22-27, 2024, Linz, Austria

Camilo Correa Restrepo, Jacques Robin, and Raul Mazo

req : Serialized Reasoning Request

\

—

SPLE Reasoning Web Service::Answe)

Deserialize

(Run Reasoning Task
SPLE Reasoning Web Service::deserialize (Solver Controller::iterativeBridgeCall)

| rr : Reasoning Request |

\E

Generate CLIF Text
(VM2CLIF Translator::genCLIFVM)

$| CLIF Text : CLIF VM |—\|/

C

Generate CLIF AST
CLIF2GenericCSP Translator::parseCLIFVM),

\9| CLIF AST : CLIF VM AST }—\I/

Generate Generic CSP
(CLIF2GenericCSP Translator::genGenericCSP)

\%l CSP : Solver Agnostic CSP ’_\l/

Generate Solver Input Data
(Generic2SpecificCSP Translator::genSolverinput)

Call Solver
Solver Bridge::callSolver)

v

[solution : Solver Output |

Iteration
Complete?

\>| Solver Input : Solver Input I

E (SPLE Reasoning Web Service::buildResponseD

Yes

W Solutions : Solver Output] |

Create Generic CSP Solution
(Generic2SpecificCSP Translator::genGenericCSPSolution)

\§| Gen Sol : Solver Agnostic CSP Solution[] |:l/

Build Reasoning Response

res : Reasoning Response |q/

Serialize
SPLE Reasoning Web Service::serialize)

L

O

s_res : Serialized Reasoning Response

Figure 4: PLEIADES architecture’s [20] Analysis Pipeline Activity Diagram with the proposed extensions. The activities and
objects from the original proposal are in white and the modified or added components are in cyan.

3.1.1 The Universal Variability Language. Given that textual VMLs
are all different syntactically and semantically, it was necessary
to make a choice as to which would be the most suitable to con-
cretely realize the extension of the architecture. Ideally one would
utilize a “standard” language for this purpose. Unfortunately, while
there have been several standardization efforts, most notably the
Common Variability Language (CVL) [35] and the Variabil-
ity Exchange Language (VEL) [61], neither of these efforts has
led to the publication and adoption of a standard. The latest effort
that has managed to garner support in the SPLE community is the
Universal Variability Langauge (UVL) [64]. This language is an
attractive choice because it has been adopted as the export format
for several popular variability modeling tools such as FeatureIDE
[66] and pure::variants [14], which would open up the possibility
of interfacing a prototype of the architecture with these tools. An
example UVL model for a computer [65] is shown in Listing 1.

3.1.2 Implementing the Extension. Having decided on the use of
UVL, now comes the question of its implementation within the
extended PLEIADES architecture. The first step is defining its log-
ical semantics in CLIF of the constructs of the langauge. These
semantics follow closely those defined for Extended Feature Mod-
els [12, 26, 48, 51]. Though no complete description of the complete
logical semantics of UVL has yet been presented, we have based
our semantics on those hard-coded into two earlier tools that use
UVL as their input format: FlamaPy [31] and the UVL Language
Server [47] IDE extension.

1 features

2 PC

3 mandatory

4 RAM

5 or

6 "8GB"

7 "16GB"
8 CPU

9 "Power Unit"

10 alternative
11 Large

12 Small

13 optional

14 "Designated GPU"
15 constraints

"Designated GPU" => Large

Listing 1: Example UVL model for a computer reproduced
from [65].

With the semantics in place, it was necessary to construct a
parser capable of producing CLIF models based on them. To do this,
we have based our implementation on the grammar of the parser
proposed in [65], the main reference implementation of UVL. The
structure of our parser is based on the classic lexer/parser/code
generator structure [2]. Its implementation has been done in Prolog
and included in our extended version of the original prototype.

Extensions and Scalability Experiments of a Generic Model-Driven Architecture for Variability Model Reasoning

MODELS 24, September 22-27, 2024, Linz, Austria

o g

<<use>> A
SWI-CLP-FD Solver Bridge gl GeoCode Solver Z3 SMT gl
Solver callSolver(in : Solver Input) : Solver Output name = "GeoCode" Solver
A <<use>> A <<use>> : <<use>> :
e - - SWI-CLP-FD MiniZinc gl Z3 Solver gl
VM2CLIF Translator @ So_lver Solver Bridge Bridge
Bridge solverName : string
J
GraphicalVM2CLIF gl 4 TextualVML2CLIF Translator gl @p—| TextualVML gl
Translator Parser
VariaMos2CLIF gl UVL2CLIF Translator gl UVL Parser gl
Translator ‘

Figure 5: Current Extended Prototype instantiating the PLEIADES architecture with its additions. Components in yellow
(concrete) and white (abstract) correspond to components from the original architecture. Components in green (concrete) and
cyan (concrete) and blue are the newly implemented components.

We then instantiate the TextualVM2CLIF Translator component
inside the architecture in Python and use Prolog’s Python Foreign
Language Interface [71] to call the parser and receive the resulting
CLIF.

3.2 Adding solvers from the SMT family

SMT solvers are the natural choice as the next solver family to
integrate into the architecture for they have been applied with good
results in variability model reasoning (c.f., for example, in [47]),
as well as for reasoning tasks in a variety of other domains [24].
Out of the solvers available in this family, we have selected Z3 [23],
a mature, robust and well-documented solver with a Python API
which should considerably facilitate its integration into PLEIADES.
The problem of extending the architecture to handle an SMT
solver raises two main questions which we will address in order:

o Do solvers from this family fit into the approach of constructing
a GenericCSP as done in the PLEADES architecture?

o s the mechanism for controlling the solver from the architec-
ture analogous to that of the other two solver families?

3.2.1 Correspondence of the Structure of a Generic CSP with the
Problem Structure for an SMT Solver. The expressive power of an
SMT solver is dependent precisely on the theories over which it
reasons [24]. Considering that there is a direct correspondence be-
tween the expressivity of constraint solvers (either CLP or CSP)
and SMT solvers equipped with a theory for integer arithmetic and
equality [9], it is possible to affirm that, at a minimum, they are
capable of expressing the same types of constraints. In all cases we
have the same three fundamental elements of a “constraint” prob-
lem: a set V of variables, a set D of domains whence the variables
take their values (like the natural numbers N or the integers Z) and
a set C of constraints that must be respected [25]. This leads to an
affirmative answer to the first question posed, which is whether it
is possible to frame an SMT problem under the same GenericCSP
structure as is done in the architecture.

3.2.2 Controlling an SMT Solver. As described in the original archi-
tecture [20], the Generic2SpecificCSP Translator generates a
representation in the textual input format of a specific solver. While
it would be possible to directly control Z3 by running a sub-process
and writing the model out in the SMTLib [8] text-based format,
this is disadvantageous since it would require including another
parser to interpret the textual output and reintroduce it back into
the architecture. Instead, Z3 exposes an object-based API within
Python to both construct the problem and its solution. The Z3 run-
time is handled through Python’s C Foreign Language Interface.
Moreover, from an extensibility viewpoint, it is interesting to be
able to interact with solvers with this type of API (e.g. PySAT [37]
that exposes various SAT solvers with a single Python API).

The radical change is that instead of defining a translation from
the GenericCSP into text, as described in [20], a set of objects is
constructed directly within the Python runtime. Running the solver
and obtaining the results consists of simply calling the appropriate
functions of the Z3 APL

3.3 Changes to the Model-Driven Architecture

The two large extensions to the architecture outlined above entail
remarkably few changes to its structure. In particular, only one
of the original architecture’s high-level components (the VM2CLIF
Translator) is modified in a fundamental way. This component
was proposed as being the sole entry-point for translation of vari-
ability models in the orignal PLEIADES architecture, making use
of the declarative semantics specification to generate the CLIF repre-
sentation of the model. The introduction of textual models forces
the approach to change whereby the concrete component that used
to correspond to the VM2CLIF Translator becomes a Graphi-
calVM2CLIF Translator as depicted in Figure 3. This accommo-
dates for the possibility of having another type of “Translator” to
handle textual languages (shown as TextualVML2CLIF Transla-
tor). It includes the parser necessary for the analysis of the lan-
guage and the construction of the CLIF representation. Concerning
the generation of the solver input for the new solver family, the

MODELS °24, September 22-27, 2024, Linz, Austria

Generic2SpecificCSP Translator only changes internally, by
including the additional translation mechanism. Its place in the ar-
chitecture remains the same, as does the signature of its operations.
In the case of the Solver Bridge, the only change to the architec-
ture is that an additional subclass must be added corresponding the
new solver, though this is mainly tied to the implementation.

3.4 Prototype Implementation

Given that the architecture changes relatively little, and as detailed
in Sections 3.1.2 and 3.2, the implementation of our extended pro-
totype primarily involves the addition of the new components for
textual VMLs and the SMT solver. We depict in Figure 5 how the
prototype specializes the abstract components of the architecture.
Given that the original prototype closely follows the original ar-
chitecture [20], this is also the case for the new prototype. One of
the key motivations behind the implementation is to demonstrate
concretely that the architecture’s improvements are indeed feasible.

The prototype is made freely available as an open-source tool at
https://github.com/ccr185/semantic_translator. The exact release
version for this article can be found in [19].

4 BENCHMARKS AND EVALUATION

One of the principal goals of this research is to determine whether
the architecture, in its extended form, is indeed capable of scaling
as the sizes of the variability models grow. We define the notion of
“real-sized” variability models as those ranging into the hundreds of
features and constraints, as argued, for instance, in [62]. In addition,
since the architecture is ultimately designed to provide tooling
within a larger modeling framework, be it graphical or textual, we
argue that scalability is the ability of the framework to present
results within a reasonable time frame to users. Previous studies on
user behavior [5, 33, 52] suggest that users expect to receive results
from information systems in the range of 2 to 10 seconds.

4.1 Nature of the Dataset

For our scalability test we have selected the largest dataset available
on UVLHub [67], a repository of shared UVL models. In particular,
we have picked the “Complete SPLOT Dataset?”, which contains
a conversion into UVL of nearly all models originally created for
the SPLOT [50] tool. This dataset is pertinent because it is repre-
sentative of the large range of models that are encountered both in
academia and in industry [7, 30]. The model sizes range from 11 to
625 features, with a similar range of cross-tree constraints among
the features. Since the models in the dataset are based on user sub-
missions to SPLOT [50], it cannot be expected that all models are
necessarily satisfiable, in particular given the fact that the cross-tree
constraints users may place on the models are not checked before
inclusion into the original repository nor for the dataset.

4.2 Measurements and Set-up

In order to carry out the measurements for our benchmark, we
have first instrumented the prototype implementation to gather
statistics on each element of the dataset, in particular the number
of features and constraints that are contained in each model. Next,

2 Available at https://www.uvlhub.io/dataset/view/20.

Camilo Correa Restrepo, Jacques Robin, and Raul Mazo

we have prepared a set of scripts that run each model through the
prototype and gather the precise runtime (using the system clock)
of each run. A repository with the exact scripts and data needed
for replication is made available at [19].

The testing procedure is then done as follows for each of the
available solver back-ends:

e Launch a local instance of the prototype on the test machine
as a web service.

o Create a .csv file that will store the runtime information.

e Find all the “uvl” files in the benchmark folder and create
a request JSON file including the contents of each model
together with a specification of a reasoning task, checking
for satisfiability of the model.

e Run a web request to the prototype, gathering the time taken
for the entire round-trip without the (very variable) network
overhead.

e Record the response from the prototype and the runtime
information in the CSV file.

In order to have a very precise view of the runtime of the system,
the instrumentation measures the exact time the thread handling
the requests spends on the entire pipeline within the prototype.
We disregard the network overhead in the measurements for two
reasons: (a) it is likely to be highly dependent on the specific web
server and network conditions in real deployments, and (b) it gen-
erally is not consistent, even across identical requests in our testing.
In addition, for efficiency reasons, we ran 16 tests in parallel on the
server, each being handled by a server thread. This procedure is ran
a total of fifteen times, five times for each of three solvers included
in the prototype, which are then averaged to give a final runtime
for each model.

The machine on which the tests were carried out has the follow-
ing characteristics:

CPU: Intel i9-11900K @ 3.5 GHz (8 cores)
RAM: 4x16GB DDR4 @ 3200 MHz

OS: Ubuntu 22.04 LTS

Python Runtime: Python 3.10.6 (Anaconda)

4.3 Results

The primary run-time results are shown in Figure 6. The figure
depicts three data series: (1) the average run-time for each model
using the SWI-Prolog solver (shown as green dots), (2) the average
run-time using the MiniZinc solver front-end (shown as purple
dots), and (3) the average run-time using our newly-added Z3 SMT
solver (shown as blue triangles). The figure is semi-logarithmic,
with the axis corresponding to the model size being logarithmic.
The model size is taken to be the number of features added to the
number of constraints (cross-tree or otherwise) contained in the
model. We have also fitted exponential curves to the three data sets.

The data suggest that the runtime performance for models in this
size range is remarkably similar across the different solver back-
ends. Moreover, their performance is nearly identical for models
with a total size smaller than 100. Incidentally, it is around this
point that the computation time begins to grow exponentially, in
line with what one would expect of problems that are fundamen-
tally NP-complete and hence exponential in the worst case [25, 34].

https://github.com/ccr185/semantic_translator
https://www.uvlhub.io/dataset/view/20

Extensions and Scalability Experiments of a Generic Model-Driven Architecture for Variability Model Reasoning

0,6

MODELS 24, September 22-27, 2024, Linz, Austria

. Z3 RUNTIME
SWI RUNTIME

05 | . MINIZINC RUNTIME

Expon. (Z3 RUNTIME)

Expon. (SWI RUNTIME)

Expon. (MINIZINC RUNTIME)

o
S

Run time (s)
k=]
w

o
)

0,1

10 100

1000

Model size (a.u.)

Figure 6: Performance Data for the extended PLEIADES architecture.

This suggests that there is a minimal overhead for the orchestra-
tion of the pipeline operation’s, notably the transmission of data
to/from the solvers and to/from the UVL parser of approximately
~50 milliseconds.

4.4 Discussion

Several conclusions can be drawn from the data regarding the pro-
totype and its implications for the architecture. First, it is clear that
there is a minimal overhead that will always be present, indepen-
dent of any particular prototype, simply because the architecture
requires orchestrating the communication between different tools
with, in general, their own independent runtime, that requires
memory allocation, loading inputs and transmitting the outputs.
Nevertheless, for the cases examined, this overhead is minimal and
is unlikely to be the cause of future scalability issues.

A second conclusion is that for the entirety of the dataset in
question, the execution time of the architecture’s prototype con-
forms to our informal measure of “a reasonable amount of time”, i.e.,
providing an answer in less than 2 seconds. The exponential curves
that our modeling software has fit to the data do not correspond
exactly to the trend apparent in the upper range of data, since they
seem weighted by the numerous models of small and intermediate
size. Both the curves and the data suggest an exponential trend as
the model size grows, which corresponds to the expectations one
would have of combinatorial problems as is the case of determining
satisfiability of variability models [45]. The implications for the
architecture are twofold: (1) just like for any other automated anal-
ysis tool, the eventual bottleneck in computation will be solving
the model, whose scaling will depend on the optimizations and
meta-heuristics implemented by the solver; and, (2) as larger and
larger models are employed, care must be taken to ensure that the
processing overhead does not augment significantly, that is, not just

the overhead for the orchestration, but the overhead for parsing
the CLIF models or the variability models, constructing the Generic
CSP, generating the solver’s input, and all other miscellaneous
tasks.

A third and final conclusion is that the performance of the newly
added solver is nearly identical though consistently slower than
that of the two earlier solvers. We hypothesize that this may be
due to the object-oriented API of Z3, since Python will necessarily
need to perform a large amount of object creation and its associated
memory management, rather than as a consequence of belonging
to the SMT solver family.

It is important to highlight that the prototype we’ve presented
manages to scale well in the range we have tested. This lends cre-
dence to the architecture’s adequacy as the design for a generic tool
for automated analysis of variability models. Though our implemen-
tation has been done in Python, in our view, there is nothing that
would impede an instance of the architecture from being rebuilt in
another language, e.g. C++ or Rust, where the performance could
potentially be much improved. In addition, this being a research
prototype, further improvements to the implementation can dras-
tically reduce the overhead for the pipeline, for instance, with a
high-performance parser for CLIF.

4.4.1 Threats to Validity. Our work is subject to several threats to
its internal and external validity. In terms of Internal Validity we
have two main concerns: first, the feasibility of the architecture
(a threat also cited in the original proposal [20]), and, second, the
validity of the measurements here presented. We counter these
concerns in several ways. The prototype we presented corresponds
very closely to the architecture’s design, whose modifications we
examined and justified in Section 3. Moreover, the scalability testing
we used to stress-test the prototype, and presented in this article,
serves to give faith in the correctness of the implementation and the

MODELS °24, September 22-27, 2024, Linz, Austria

architecture’s ability to cover its intended purpose. We also show
that the PLEIADES architecture, as conjectured in the original
proposal, can indeed be extended beyond the graphical modeling
environment with which it was built and originally tested. The
architecture has been designed with a standard and well-understood
modeling language (UML) [63] with feedback from practitioners,
peers in the field, and users of the tool.

As for the measurements, we have utilized the Python runtime’s
time module’s thread_time_ns function to precisely measure the
time spent on computation with nanosecond accuracy. We have also
performed the measurements directly within the prototype’s code
independently of the network handling to avoid any interference
with the measurements, and to isolate the runtime that is dedicated
to the processing pipeline. We have performed several runs for each
model and solver combination and averaged the results.

Next, in terms of external validity, we firstly recognize that
our scalability experiments concern primarily the newly added
extension on the input side. We are unfortunately unable to perform
such an experiment with graphical models for the principal reason
that, to the best of our knowledge, the authors of the VariaMos
[68] tool, which was target of the original prototype, do not have a
corpora of models available for these purposes. We have also not
tested the entirety of the datasets available on UVLHub. We have
chosen the SPLOT dataset primarily because of the large number
of models it contains and the large diversity in size it presents, and
that it is representative of models encountered both in research and
practice [7, 30].

Finally, the informal definitions of real-sized models and reason-
able amount of time pose a threat to construct validity. We have
sought to base the former on previous empirical studies on indus-
trial models [62], though we are aware of the existence of consid-
erably larger models existing in industrial practice [41]. The latter
definition we have based on studies of user-behavior [5, 33, 52] w.r.t
to the response time of applications, though we do concede that
the exact value is arbitrary to a degree, there being no consensus
on a precise value for this parameter.

5 RELATED WORK

In this paper we present an extension, implementation and scala-
bility evaluation of PLEIADES [20], a generic model-driven archi-
tecture for variability model verification and configuration automa-
tion for models written in a variety of languages and leveraging
solvers from different paradigms. In [20], the PLEIADES proposal
was compared with previous work in variability model verifica-
tion and configuration automation, notably Feature IDE [66], its
related project FAMILIAR [1], FlamaPy [31], the COFFEE Frame-
work [69], SPLOT [50], Glencoe [60], ClaferTools [4], Kernel Haven
[43], pure::variants [14], and Gears [44]. This comparison was done
along five dimensions: (a) architecture model, (b) VML expressive-
ness, (c) solver input language expressiveness, (d) whether that
language was a standard and (e) whether the model verification
and/or configuration tasks carried out by the solver were declara-
tively specified as data or hard-wired in imperative code making
multiple queries to the solver which are needed for complex tasks.
We now summarize these results. Concerning (a), the PLEIADES
architecture was the only one, with Kernel Haven’s, to cover both

Camilo Correa Restrepo, Jacques Robin, and Raul Mazo

structural and behavioral aspects, with PLEIADES being more fine
grained (and thus easier to faithfully implement). Concerning (b),
PLEIADES was the only one to simultaneously support integer
attributes, first-order constraints and runtime, context-aware vari-
ability models for dynamic SPLs. Concerning (c), the CLIF language
proposed in PLEIADES is the only one, along with Clafer, to si-
multaneously cover integer domains, first-order constraints, utility
functions supporting search for an optimal configuration and incre-
mental reasoning, but with Clafer’s meta-programming capability
being unclear. Concerning (d), the uniqueness of the proposal to
use the CLIF standard was highlighted. Concerning (e), it was found
that PLEIADES and Kernel Haven were the only two proposing
a declarative specification of the reasoning task (verification or
configuration) to be carried out by the solver.

Concerning the PLEIADES extensions that we present in this
paper, the closest related approach is FlamaPy’s [31]. It supports
multiple VMLs, including UVL. However, it supports a single solv-
ing paradigm, SAT, whose KRL is known to be far less expressive
than those of the CSP, CLP and SMT paradigms incorporated in our
PLEIADES extension. These three paradigms can all be viewed as
extensions of SAT to concisely represent non-Boolean, first-order
and soft constraints. Adding new solver paradigms would require
rethinking FlamaPy’s architecture with its pivot language at the
abstract syntax level, in the direction of PLEIADES with a semantic
level pivot language.

Another recent approach is that of the UVL language server
(UVLS) [47]. It suffers from the inherent limitations of an ad-hoc,
single VML, single solver architecture, for it transforms the UVL
model directly into an SMT specification to be solved by Z3 [23].

To the best of our knowledge, no reasoning scalability study has
been published for either of those tools. Performing such a study is
difficult for a third party, since the user interfaces of those tools do
not provide options to generate run time performance logs.

6 CONCLUSION

In this article, we have presented two major extensions to the
initial PLEIADES architectural proposal [20] to provide a generic
model-driven architecture for automated reasoning on variability
models. The first extension, detailed in Section 3.1, concerns the
capacity of the architecture to handle purely textual VMLs, whose
absence was its main limitation. We showed how to extend the
architecture to handle textual VMLs in general. We also showed
how to implement this extended architecture to make it capable
of reasoning on models written in UVL [64], a textual VML that is
starting to gain traction in the SPLE community to help provide
some SPLE tool interoperability.

The second extension, presented in Section 3.2, details the ex-
tension of the architecture to leverage solvers from a third para-
digm, namely SMT solvers[24], complementing the CSP and CLP
paradigms already incorporated in the original architecture. We
show how to extend the architecture to add SMT solvers in general
and how to implement this extension by adding the Z3 SMT solver
[23]. For the resulting extended architecture we have provided
detailed structural and behavioral models.

The second major contribution presented in this paper is the
scalability and performance experiments we carried out on the

Extensions and Scalability Experiments of a Generic Model-Driven Architecture for Variability Model Reasoning

prototype implementation of this extended architecture. We have
instrumented the extended prototype for it to be able to generate
detailed performance measurement logs. We also examined the
relative performance of the new SMT solver, Z3, w.r.t. the CSP
meta-solver MiniZinc (with the Geode solver) and the CLP solver
in SWI-Prolog (with the CLPFD library) already integrated in the
implementation of the original architecture. We also discuss the
minimum overhead that a generic architecture introduces, as com-
pared to single-VML single-solver tools, in return for its ability to
be agnostic and versatile in terms of the input VML and the solver
used to reason on it.

It is our hope that this extended architecture, the ease with which
it can be instantiated, and its provided open-source baseline im-
plementation will constitute a stepping stone towards the creation
of an interoperable, reusable specialized SPLE tool ecosystem dis-
pensing researchers of re-implementing a whole variability model
analysis tool from scratch to test any novel idea in the field.

6.1 Limitations

The extended PLEIADES architecture has one major limitation that
is worth discussing: while integrating new textual languages or
solvers will not, in principle, require any architectural changes,
they do imply a non-trivial implementation effort. This is due to
the simple fact that a custom CLIF code generator must be fit to a
(new or existing) parser for said language, and, for the solver, a code
generator from a generic CSP representation has to be designed.

In addition, it remains unclear how VMLs that model constructs
such as the assets implementing the concrete leaf features of an SPL
or even temporal and state constraints, such as the full Clafer [39]
language, can be reasoned upon within the extended PLEIADES
architecture. Its current declarative representation of generic CSP
and reasoning tasks will likely require further extensions.

6.2 Future Work

We intend to continue this work in several directions. First, we
would like to add the ability to generate Generic Constraint Pro-
grams at different “levels”, i.e., as integer arithmetic problems or
as purely boolean problems as a function of the expressivity of the
input language. Indeed, UVL models can be annotated with the
“theories” (named “levels” in their presentation [64]) necessary for
solving them.

Next, we would like to add further fine grained control to the
solving strategies employed by the solvers, such as incremental [27]
solving and warm-starts (reusing previous complete or incomplete
solutions as starting point for search) [28] to support more efficient
solving. We suspect it would be beneficial to enable portfolio [3]
solving strategies leveraging all solver back-ends simultaneously.

Another avenue we wish to pursue is the treatment of the archi-
tecture itself as a software product line, whereby fully configurable
distributions could be produced for particular needs, for instance,
including a commercial solver if the licenses are available.

REFERENCES

[1] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. 2013.
FAMILIAR: A Domain-Specific Language for Large Scale Management of Feature
Models. Science of Computer Programming 78, 6 (June 2013), 657-681. https:
//doi.org/10.1016/j.scic0.2012.12.004

[10

(1]

(12]

(13]

(14]

[15]

[16

(17

(18]

(19]

[20

[21

~
oS

[23

[24

MODELS 24, September 22-27, 2024, Linz, Austria

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers:
Principles, Techniques, and Tools (second ed.). Addison Wesley.

Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. 2015. SUNNY-CP: a
sequential CP portfolio solver. In Proceedings of the 30th Annual ACM Symposium
on Applied Computing. 1861-1867.

Michat Antkiewicz, Kacper Bak, Alexandr Murashkin, Rafael Olaechea, Jia
Hui (Jimmy) Liang, and Krzysztof Czarnecki. 2013. Clafer Tools for Prod-
uct Line Engineering. In Proceedings of the 17th International Software Product
Line Conference Co-Located Workshops. ACM, Tokyo Japan, 130-135. https:
//doi.org/10.1145/2499777.2499779

Toannis Arapakis, Souneil Park, and Martin Pielot. 2021. Impact of response
latency on user behaviour in mobile web search. In Proceedings of the 2021
Conference on Human Information Interaction and Retrieval. 279-283.

Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. 2017. Introduction to
description logic. Cambridge University Press.

Onder Babur, Loek Cleophas, and Mark Van Den Brand. 2018. Model analytics for
feature models: case studies for SPLOT repository. In 2018 MODELS Workshops:
ModComp, MRT, OCL, FlexMDE, EXE, COMMitMDE, MDETools, GEMOC, MORSE,
MDE4IoT, MDEbug, MoDeVVa, ME, MULTI, HuFaMo, AMMoRe, PAINS, MODELS-
WS 2018. CEUR-WS. org, 787-792.

Clark Barrett, Aaron Stump, Cesare Tinellj, et al. 2010. The smt-lib standard:
Version 2.0. In Proceedings of the 8th international workshop on satisfiability modulo
theories (Edinburgh, UK), Vol. 13. 14.

Clark Barrett and Cesare Tinelli. 2018. Satisfiability Modulo Theories. In Hand-
book of Model Checking, Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith,
and Roderick Bloem (Eds.). Springer International Publishing, Cham, 305-343.
https://doi.org/10.1007/978-3-319-10575-8_11

Maurice H ter Beek, Klaus Schmid, and Holger Eichelberger. 2019. Textual
variability modeling languages: an overview and considerations. In Proceedings
of the 23rd International Systems and Software Product Line Conference-Volume B.
151-157.

David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated
Analysis of Feature Models 20 Years Later: A Literature Review. Information
Systems 35, 6 (Sept. 2010), 615-636. https://doi.org/10.1016/].is.2010.01.001
David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-Cortés. 2006.
A First Step towards a Framework for the Automated Analysis of Feature Models.
Proc. Managing Variability for Software Product Lines: Working With Variability
Mechanisms (2006), 39-47.

David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. 2005. Automated
Reasoning on Feature Models. In Advanced Information Systems Engineering: 17th
International Conference, CAiSE 2005, Porto, Portugal, June 13-17, 2005. Proceedings
17. Springer, 491-503.

Danilo Beuche. 2011. Modeling and Building Software Product Lines with
Pure::Variants. In Proceedings of the 15th International Software Product Line
Conference, Volume 2. ACM, Munich Germany, 1-1. https://doi.org/10.1145/
2019136.2019190

John Adrian Bondy and Uppaluri Siva Ramachandra Murty. 1976. Graph Theory
with Applications. Vol. 290. Macmillan London.

Goetz Botterweck and Andreas Pleuss. 2014. Evolution of Software Product
Lines. In Evolving Software Systems, Tom Mens, Alexander Serebrenik, and
Anthony Cleve (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 265-295.
https://doi.org/10.1007/978-3-642-45398-4_9

Barrett R. Bryant, Jeff Gray, and Marjan Mernik. 2010. Domain-Specific Soft-
ware Engineering. In Proceedings of the FSE/SDP Workshop on Future of Soft-
ware Engineering Research. ACM, Santa Fe New Mexico USA, 65-68. https:
//doi.org/10.1145/1882362.1882376

Camilo Correa, Raul Mazo, Andres O. Lopez, and Jacques Robin. 2023. A Light-
weight Method to Define Solver-Agnostic Semantics of Domain Specific Lan-
guages for Software Product Line Variability Models. In SOFTENG 2023 - The 9th
International Conference on Advances and Trends in Software Engineering. IARIA:
International Academy, Research and Industry Association, Venise, Italy.
Camilo Correa Restrepo. 2024. ccr185/semantic_translator: Updated Paper Version
with Installation Instructions V3. https://doi.org/10.5281/zenodo.13013170
Camilo Correa Restrepo, Jacques Robin, and Raul Mazo. 2023. Generating Con-
straint Programs for Variability Model Reasoning: A DSL and Solver-Agnostic
Approach. In Proceedings of the 22nd ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences. 138-152.

Douglas Crockford. 2006. The Application/Json Media Type for JavaScript Object
Notation (JSON). Request for Comments RFC 4627. Internet Engineering Task
Force. https://doi.org/10.17487/RFC4627

Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. 2005. Formalizing
cardinality-based feature models and their specialization. Software process: Im-
provement and practice 10, 1 (2005), 7-29.

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337-340.

Leonardo De Moura and Nikolaj Bjerner. 2011. Satisfiability modulo theories:
introduction and applications. Commun. ACM 54, 9 (2011), 69-77.

https://doi.org/10.1016/j.scico.2012.12.004
https://doi.org/10.1016/j.scico.2012.12.004
https://doi.org/10.1145/2499777.2499779
https://doi.org/10.1145/2499777.2499779
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1145/2019136.2019190
https://doi.org/10.1145/2019136.2019190
https://doi.org/10.1007/978-3-642-45398-4_9
https://doi.org/10.1145/1882362.1882376
https://doi.org/10.1145/1882362.1882376
https://doi.org/10.5281/zenodo.13013170
https://doi.org/10.17487/RFC4627

MODELS °24, September 22-27, 2024, Linz, Austria

[25] Rina Dechter and David Cohen. 2003. Constraint Processing. Morgan Kaufmann.

[26] A. O.Elfaki. 2013. Automated Verification of Variability Model Using First-Order
Logic. In Managing Requirements Knowledge, Walid Maalej and Anil Kumar
Thurimella (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 265-289. https:
//doi.org/10.1007/978-3-642-34419-0_12

[27] Bjorn N Freeman-Benson, John Maloney, and Alan Borning. 1990. An incremental
constraint solver. Commun. ACM 33, 1 (1990), 54-63.

[28] Robert M Freund. 1991. A potential-function reduction algorithm for solving a lin-
ear program directly from an infeasible “warm start”. Mathematical Programming
52,1 (1991), 441-466.

[29] Thom Frihwirth and Slim Abdennadher. 2003. Essentials of constraint program-
ming. Springer Science & Business Media.

[30] José A Galindo and David Benavides. 2019. Towards a new repository for feature
model exchange. In Proceedings of the 23rd International Systems and Software
Product Line Conference-Volume B. 170~173.

[31] José A Galindo and David Benavides. 2020. A Python Framework for the Auto-
mated Analysis of Feature Models: A First Step to Integrate Community Efforts.
In Proceedings of the 24th Acm International Systems and Software Product Line
Conference-Volume b. 52-55.

[32] José A. Galindo, David Benavides, Pablo Trinidad, Antonio-Manuel Gutiérrez-

Fernandez, and Antonio Ruiz-Cortés. 2019. Automated Analysis of Feature

Models: Quo Vadis? Computing 101, 5 (May 2019), 387-433. https://doi.org/10.

1007/s00607-018-0646-1

Dennis F Galletta, Raymond Henry, Scott McCoy, and Peter Polak. 2004. Web

site delays: How tolerant are users? Journal of the Association for Information

Systems 5, 1 (2004), 1-28.

[34] Carla P Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. 2008. Satisfia-
bility Solvers. Foundations of Artificial Intelligence 3 (2008), 89-134.

[35] @ystein Haugen, Andrzej Wasowski, and Krzysztof Czarnecki. 2012. CVL: Com-
mon Variability Language. In Proceedings of the 16th International Software Product
Line Conference-Volume 2. 266-267.

[36] José Miguel Horcas, Monica Pinto, and Lidia Fuentes. 2023. Empirical Analysis
of the Tool Support for Software Product Lines. Software and Systems Modeling
22, 1 (Feb. 2023), 377-414. https://doi.org/10.1007/s10270-022-01011-2

[37] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. 2018. PySAT: A
Python Toolkit for Prototyping with SAT Oracles. In SAT. 428-437. https:
//doi.org/10.1007/978-3-319-94144-8_26

[38] International Organization for Standardization. 2018. Information Technology

— Common Logic (CL) — A Framework for a Family of Logic-Based Languages —

ISO/IEC 24707:2018. Technical Report. International Organization for Standard-

ization, Geneva, CH. 70 pages.

Paulius Juodisius, Atrisha Sarkar, Raghava Rao Mukkamala, Michal Antkiewicz,

Krzysztof Czarnecki, and Andrzej Wasowski. 2018. Clafer: Lightweight Modeling

of Structure, Behaviour, and Variability. The Art, Science, and Engineering of

Programming 3, 1 (July 2018), 2. https://doi.org/10.22152/programming-journal.

org/2019/3/2

[40] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. S.
Peterson. 1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study:.
Technical Report. Defense Technical Information Center, Fort Belvoir, VA. https:
//doi.org/10.21236/ADA235785

[41] Alexander Kniippel, Thomas Thiim, Stephan Mennicke, Jens Meinicke, and Ina
Schaefer. 2017. Is there a mismatch between real-world feature models and
product-line research?. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering. 291-302.

[42] Tim Korson and John D McGregor. 1990. Understanding object-oriented: A

unifying paradigm. Commun. ACM 33, 9 (1990), 40-60.

Christian Kroher, Sascha El-Sharkawy, and Klaus Schmid. 2018. Kernel-

Haven - An Experimentation Workbench for Analyzing Software Product

Lines. In Proceedings of the 40th International Conference on Software Engineer-

ing: Companion Proceeedings. 73-76. https://doi.org/10.1145/3183440.3183480

arXiv:2110.05858 [cs]

[44] Charles Krueger and Paul Clements. 2018. Feature-Based Systems and Software
Product Line Engineering with Gears from BigLever. In Proceedings of the 22nd
International Systems and Software Product Line Conference-Volume 2. 1-4.

[45] Jia Hui Liang, Vijay Ganesh, Krzysztof Czarnecki, and Venkatesh Raman. 2015.
Sat-based analysis of large real-world feature models is easy. In Proceedings of
the 19th International Conference on Software Product Line. 91-100.

[46] John W. Lloyd and John Wylie Lloyd. 1993. Foundations of Logic Programming
(2., extended ed., 1. corr. print ed.). Springer, Berlin Heidelberg.

[47] Jacob Loth, Chico Sundermann, Tobias Schrull, Thilo Brugger, Felix Rieg, and
Thomas Thiim. 2023. UVLS: A Language Server Protocol For UVL. In Proceedings
of the 27th ACM International Systems and Software Product Line Conference-
Volume B. 43-46.

[48] Mike Mannion. 2002. Using First-Order Logic for Product Line Model Validation.

In Software Product Lines: Second International Conference, SPLC 2 San Diego, CA,

USA, August 19-22, 2002 Proceedings. Springer, 176-187.

Robert C Martin. 1996. The dependency inversion principle. C++ Report 8, 6

(1996), 61-66.

[33

w
A

[43

[49

Camilo Correa Restrepo, Jacques Robin, and Raul Mazo

[50] Marcilio Mendonca, Moises Branco, and Donald Cowan. 2009. S.P.L.O.T.: Software

Product Lines Online Tools. In Proceedings of the 24th ACM SIGPLAN Conference
Companion on Object Oriented Programming Systems Languages and Applications.
ACM, Orlando Florida USA, 761-762. https://doi.org/10.1145/1639950.1640002
Raphael Michel, Andreas Classen, Arnaud Hubaux, and Quentin Boucher. 2011.
A Formal Semantics for Feature Cardinalities in Feature Diagrams. In Proceedings
of the 5th Workshop on Variability Modeling of Software-Intensive Systems. ACM,
Namur Belgium, 82-89. https://doi.org/10.1145/1944892.1944902

Fiona Fui-Hoon Nah. 2004. A study on tolerable waiting time: how long are web
users willing to wait? Behaviour & Information Technology 23, 3 (2004), 153-163.
Damir Nesi¢, Jacob Kriiger, Stefan Stanciulescu, and Thorsten Berger. 2019. Prin-
ciples of feature modeling. In Proceedings of the 2019 27th ACM joint meeting on
european software engineering conference and symposium on the foundations of
software engineering. 62-73.

Mahdi Noorian, Alireza Ensan, Ebrahim Bagheri, Harold Boley, and Yevgen
Biletskiy. 2011. Feature Model Debugging Based on Description Logic Reasoning..
In Proceedings of the 17th International Conference on Distributed Multimedia
Systems, DMS 2011, October 18-20, 2011, Convitto della Calza, Florence, Italy, Vol. 11.
Citeseer, 158-164.

Object Management Group. 2014. Model Driven Architecture (MDA) — MDA Guide
rev. 2.0. Technical Report. Object Management Group.

Object Management Group. 2016. OMG Meta Object Facility (MOF) Core Specifi-
cation. Technical Report. Object Management Group.

Object Management Group. 2021. Semantics of a Foundational Subset for Exe-
cutable UML Models (fUML). Technical Report. Object Management Group.
Klaus Pohl, Giinter Bockle, and Frank van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles, and Techniques (1st ed ed.). Springer,
New York, NY.

Leonard Richardson and Sam Ruby. 2008. RESTful web services. " O’Reilly Media,
Inc!.

Anna Schmitt, Christian Bettinger, and Georg Rock. 2018. Glencoe-a Tool for
Specification, Visualization and Formal Analysis of Product Lines. In Transdis-
ciplinary Engineering Methods for Social Innovation of Industry 4.0. 10S Press,
665-673.

Michael Schulze and Robert Hellebrand. 2015. Variability Exchange Language-A
Generic Exchange Format for Variability Data.. In Software Engineering (Work-
shops). 71-80.

Ramy Shahin, Robert Hackman, Rafael Toledo, S Ramesh, Joanne M Atlee, and
Marsha Chechik. 2021. Applying declarative analysis to software product line
models: an industrial study. In 2021 ACM/IEEE 24th International Conference on
Model Driven Engineering Languages and Systems (MODELS). IEEE, 145-155.
Steve Cook, Conrad Bock, Pete Rivett, Tom Rutt, Ed Seidewitz, Bran Selic, and
Doug Tolbert. 2017. Unified Modeling Language (UML), Version 2.5.1. Technical
Report. Object Management Group.

Chico Sundermann, Kevin Feichtinger, Dominik Engelhardt, Rick Rabiser, and
Thomas Thiim. 2021. Yet Another Textual Variability Language?: A Community
Effort towards a Unified Language. In Proceedings of the 25th ACM International
Systems and Software Product Line Conference - Volume A. ACM, Leicester United
Kingdom, 136-147. https://doi.org/10.1145/3461001.3471145

Chico Sundermann, Stefan Vill, Thomas Thiim, Kevin Feichtinger, Prankur Agar-
wal, Rick Rabiser, José A Galindo, and David Benavides. 2023. UVLParser: Ex-
tending UVL with Language Levels and Conversion Strategies. In Proceedings of
the 27th ACM International Systems and Software Product Line Conference-Volume
B. 39-42.

Thomas Thiim, Christian Késtner, Fabian Benduhn, Jens Meinicke, Gunter Saake,
and Thomas Leich. 2014. FeatureIDE: An Extensible Framework for Feature-
Oriented Software Development. Science of Computer Programming 79 (Jan. 2014),
70-85. https://doi.org/10.1016/j.scic0.2012.06.002

University of Seville, University of Malaga, and University of Ulm. 2023. UVLHub.
https://www.uvlhub.io/. Accessed: 2024-03-27.

VariaMos Team. 2023. VariaMos Framework. https://variamos.com/. Accessed:
2023-03-27.

Angela Villota. 2022. Coffee : A Framework Supporting Expressive Variability Mod-
eling and Flexible Automated Analysis. Ph. D. Dissertation. Université Panthéon-
Sorbonne - Paris L.

Markus Voelter and Eelco Visser. 2011. Product Line Engineering Using Domain-
Specific Languages. In 2011 15th International Software Product Line Conference.
IEEE, Munich, Germany, 70-79. https://doi.org/10.1109/SPLC.2011.25

Eric Zinda. [n.d.]. Python and Other Programming Languge Integration for SWI
Prolog. https://www.swi-prolog.org/pldoc/doc_for?object=section(%27packages/
mgqi.html%27)

Received 28 March 2024; revised 31 July 2024; accepted 31 July 2024

https://doi.org/10.1007/978-3-642-34419-0_12
https://doi.org/10.1007/978-3-642-34419-0_12
https://doi.org/10.1007/s00607-018-0646-1
https://doi.org/10.1007/s00607-018-0646-1
https://doi.org/10.1007/s10270-022-01011-2
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.22152/programming-journal.org/2019/3/2
https://doi.org/10.22152/programming-journal.org/2019/3/2
https://doi.org/10.21236/ADA235785
https://doi.org/10.21236/ADA235785
https://doi.org/10.1145/3183440.3183480
https://arxiv.org/abs/2110.05858
https://doi.org/10.1145/1639950.1640002
https://doi.org/10.1145/1944892.1944902
https://doi.org/10.1145/3461001.3471145
https://doi.org/10.1016/j.scico.2012.06.002
https://www.uvlhub.io/
https://variamos.com/
https://doi.org/10.1109/SPLC.2011.25
https://www.swi-prolog.org/pldoc/doc_for?object=section(%27packages/mqi.html%27)
https://www.swi-prolog.org/pldoc/doc_for?object=section(%27packages/mqi.html%27)

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 A Proposal for a Generic Model-Driven Architecture for Variability Model Reasoning
	2.2 Limitations of the Original PLEIADES Architecture

	3 Extensions to the original PLEIADES Architecture and Prototype
	3.1 Handling Textual VMLs
	3.2 Adding solvers from the SMT family
	3.3 Changes to the Model-Driven Architecture
	3.4 Prototype Implementation

	4 Benchmarks and Evaluation
	4.1 Nature of the Dataset
	4.2 Measurements and Set-up
	4.3 Results
	4.4 Discussion

	5 Related Work
	6 Conclusion
	6.1 Limitations
	6.2 Future Work

	References

