
HAL Id: hal-04812405
https://hal.science/hal-04812405v1

Submitted on 30 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variability Management in Self-Adaptive Systems
through Deep Learning: A Dynamic Software Product

Line Approach
Oscar Aguayo, Samuel Sepúlveda, Raúl Mazo

To cite this version:
Oscar Aguayo, Samuel Sepúlveda, Raúl Mazo. Variability Management in Self-Adaptive Systems
through Deep Learning: A Dynamic Software Product Line Approach. Electronics, 2024, 13.5 (905).
�hal-04812405�

https://hal.science/hal-04812405v1
https://hal.archives-ouvertes.fr

Citation: Aguayo, O.; Sepúlveda, S.;

Mazo, R. Variability Management in

Self-Adaptive Systems through Deep

Learning: A Dynamic Software

Product Line Approach. Appl. Sci.

2023, 1, 0. https://doi.org/

Received:

Revised:

Accepted:

Published:

Copyright: © 2024 by the authors.

Submitted to Appl. Sci. for

possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Variability Management in Self-Adaptive Systems through Deep
Learning: A Dynamic Software Product Line Approach
Oscar Aguayo 1 ,Samuel Sepúlveda 1,* and Raúl Mazo 2

1 Departamento de Ciencias de la Computación e Informática, Centro de Estudios en Ingeniería de Software,
Universidad de La Frontera, Temuco 4811230, Chile; oscar.aguayo@ufrontera.cl

2 École Nationale Supérieure de Techniques Avancées Bretagne, Brest, France, raul.mazo@ensta-bretagne.fr
* Correspondence: samuel.sepulveda@ufrontera.cl

Abstract: Self-adaptive systems can autonomously adjust their behavior in response to environmental 1

changes. Nowadays, not only can these systems be engineered individually, but they can also be 2

conceived as members of a family based on the approach of dynamic software product lines. Through 3

systematic mapping, we build on the identified gaps in variability management of self-adaptive 4

systems, propose a framework that improves the adaptive capability of self-adaptive systems through 5

feature model generation, variation point generation, selection of a variation point, and runtime 6

variability management using deep learning and monitor - analysis - plan - execute - knowledge 7

(MAPE-K) control loop. We compute the permutation of domain features and obtain all the possible 8

variation points that a feature model can possess. After identifying variation points, we obtain 9

an adaptation rule for each variation point of the corresponding product line through a two-stage 10

training of an artificial neural network. To evaluate our proposal, we developed a test case in the 11

context of an air quality-based activity recommender system, in which we generated 11 features 12

and 32 possible variations. The results obtained with the proof of concept show that it is possible 13

to manage identifying new variation points at runtime using deep learning. Future research will 14

employ generating and building variation points using artificial intelligence techniques. 15

Keywords: Variability; Self-adaptive systems; Dynamic software product lines; MAPE-K; Deep 16

learning; 17

1. Introduction 18

The software industry has grown enormously and has had to meet the high demands 19

of customers and users regarding the benefits and quality of its products and services [1]. 20

To respond to these new requirements, Software Engineering (SE) has been formulated as 21

the discipline responsible for all aspects of software production through proposals that 22

address how to develop products and manage the projects and resources involved [2]. 23

Software constantly evolves due to repeated technological changes and the diversification 24

of its needs, either by the client or the execution environment [3]. Software systems have 25

moved away from traditional software systems to self-adaptive ones, which can modify 26

themselves to meet their changing requirements or environment at execution time [4]. Such 27

adaptation extends the software’s ability to be subject to change, a concept known in SE 28

as variability [3,5]. One approach to managing the aspects mentioned above is dynamic 29

software product lines (DSPL), which corresponds to a conceptual framework for managing 30

variability in systems that can automatically adapt themselves to changing contexts. One of 31

the most common techniques to implement the adaptation is by re-configuring the systems’ 32

artifacts or attributes when the system or its execution environment changes. 33

The approach proposed by the DSPL specializes in managing the system variability 34

before and after the running software system [5]. The above allows for generating mixed 35

approaches by incorporating various system states, called variation points, which are 36

related to the environment’s static properties before runtime, and others are linked to 37

Version November 30, 2024 submitted to Appl. Sci. https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://orcid.org/0000-0002-8079-0545
https://orcid.org/0000-0002-0369-7750
https://orcid.org/0000-0003-0629-1542
https://www.mdpi.com/journal/applsci

Version November 30, 2024 submitted to Appl. Sci. 2 of 26

the dynamic properties at runtime based on adaptation rules [6]. Therefore, managing 38

variability throughout the lifecycle of a DSPL is a central task, where the user, application, 39

or generic middleware can perform these tasks manually or automatically, thus allowing 40

software components to be dynamically added or removed while executing [7]. 41

Variability in self-adaptive systems using the DSPL approach is usually managed 42

adaptation using the MAPE-K control loop [8]. This loop provides a framework for the 43

logical adaptation of a system based on four phases, Monitoring, Analysis, Planning, and 44

Execution, which are executed in a given order and access a shared Knowledge component, 45

where a record of the events in each phase is maintained [9]. The MAPE-K control loop 46

used to manage a software system presents several problems associated with using this 47

approach, such as the need for significant training data and low initial performance due to 48

online learning of the approach [5]. These problems are similar to those encountered in 49

machine learning techniques and the need for massive data, such as those reported using 50

machine learning in big data for the agricultural area [10]. 51

DSPLs have had an impact in software engineering, particularly in improving the 52

adaptability and efficiency of software systems and the hardware that supports them. For 53

example, in the context of self-adaptive systems, DSPLs enable continuous reconfiguration 54

of software products to adapt to constantly changing environmental contexts, addressing 55

real-time aspects of reconfiguration processes [11]. Furthermore, in the realm of data 56

protection and trusted execution, DSPLs have enabled the adaptation of an application’s 57

binary code so that only relevant features are stored in protected memory at any given 58

time, which is crucial in hardware such as Intel’s Software Guard Extensions (SGX) [12]. In 59

cyber-physical systems (CPS), DSPLs combine performance models with Multi-Objective 60

Evolutionary Algorithms (MOEAs) to make decisions, improving efficiency through trans- 61

fer learning, which allows sharing previously acquired knowledge and applying it to 62

similar systems, mastering up to 71% of solutions without transfer learning [13]. Moreover, 63

automata learning, a fundamental technique for building behavioral models, has been 64

extended to evolving systems and variability-intensive systems applicable to the DSPL 65

field, demonstrating its versatility and applicability in various engineering contexts [14]. In 66

the automotive industry, for example, DSPLs have facilitated variability management in the 67

development of parking brake systems, enabling the identification of reuse opportunities 68

and variations early in the product development cycle, leading to less engineering effort 69

and higher quality and more reliable solutions [15]. This approach has been adapted to the 70

specific needs of model-based systems engineering in the automotive industry, implement- 71

ing suitable means to represent and operate with variability, demonstrating the adaptability 72

and relevance of DSPL in specific industrial contexts [16]. 73

Within the challenges in managing variability using DSPL, there is a need to sup- 74

port evolution regardless of the system domain, such as using various implementation 75

techniques or modeling approaches in DSPL [8]. In addition, DSPLs must ensure system 76

consistency while executing, i.e., that the execution environment has only the features 77

analyzed in the system domain enabled, supporting the visualization of variability in the 78

running system or the model [17]. In the case of self-adaptive systems, variability manage- 79

ment in this type of software system is complex because it requires changes at runtime, 80

where such changes may be based on external requirements, either from the execution 81

environment or from its stakeholders [3]. Thus, these changes can become a problem since it 82

is required to manage every possible reconfiguration the system could have [3]. Regarding 83

the challenges related to dynamic variability identified from a systematic mapping of the 84

literature [8], [18] proposes to continuously use online learning algorithms to refine the 85

performance influence models to runtime context specifications. In the case of real-time 86

reconfigurations, the challenges lie in defining new software products that meet these 87

requirements at runtime without human intervention [17,19]. Variability management of a 88

DSPL is performed based on variation points corresponding to a set of features selected 89

within the domain to be deployed according to compliance with an adaptation rule [17]. 90

Therefore, the finding of new variation points while the software is 91

Version November 30, 2024 submitted to Appl. Sci. 3 of 26

In this article, we address the management of dynamic variability by identifying 92

new variation points at runtime, thus enabling the autonomous management of a self- 93

adaptive system, supporting the problem mentioned above by [3,17,19]. The present work 94

aims to directly address variability management in self-adaptive systems by generating 95

a framework, studying runtime system reconfigurations to identify new points of vari- 96

ation, and extending the range of adaptability of the execution domain. This proposal 97

will allow a self-adaptive system to manage each possible adaptation of the system by 98

binding an adaptation rule using machine learning models. In the context of this work, our 99

research question corresponds to What is the potential of using artificial intelligence techniques 100

to automatically identify new points of variation while the system is at runtime in a DSPL?. 101

The remainder of this paper is structured as follows. We present the background of 102

the DSPLs and their context in Section 2. Section 3 presents some related work on SPLs 103

or DSPLs in variability management. Section 4 presents the methodology used to build 104

and evaluate the FMweb-K framework. Section 5 presents the FMweb-K framework with 105

the stages related to analyzing variation points by deep learning. Sections 6 and 7 present 106

the results and the discussion, respectively. Finally, Section 8 presents the conclusions and 107

future work. 108

2. Background 109

This section presents the theoretical framework for DSPL variability management. 110

In Section 2.1, we present DSPLs and how they manage variability in software systems. 111

Finally, Section 2.2 presents self-adaptive systems and the MAPE-K control loop. 112

2.1. Dynamic Software Product Lines 113

DSPLs are a software production approach based on Software Product Lines (SPL) that 114

share a common architecture and reusable components [5]. They can automatically adapt 115

and configure themselves in response to changes in the operating environment, system 116

requirements, or user preferences, all while the system operates. The primary purpose of 117

DSPLs is to increase the flexibility and responsiveness of software systems. By enabling 118

runtime adaptation, these systems can handle unforeseen conditions, take advantage of new 119

opportunities, and mitigate emerging threats without the need for manual intervention, 120

where one of their main objectives is to maintain or improve system functionality and 121

performance in the face of change while reducing the costs and time associated with 122

deploying traditional upgrades and configurations [17]. The main innovation offered 123

by DSPL is runtime adaptability. While traditional systems may require downtime to 124

apply changes or upgrades, DSPL-based systems can adapt quickly, which is crucial for 125

critical systems that require high availability [8]. This approach facilitates continuous 126

customization and system optimization, as changes can be made based on real-time user 127

or system behavior rather than relying solely on predefined configurations. In addition, 128

DSPL engineering reduces the need for long-term predictions and allows systems to evolve 129

organically in response to usage patterns and environmental changes [7]. 130

DSPLs comprise two main stages: the engineering cycle and runtime variability 131

management [7]. The engineering cycle aims to identify common characteristics and define 132

a robust software architecture. This process establishes essential variability mechanisms 133

for future configurations and reconfigurations, emphasizing the design of modular and 134

reusable components, culminating with the development and testing of these components, 135

ensuring their ability to dynamically modify the behavior or structure of the system through 136

elements such as plugins or micro services. Runtime variability management focuses on 137

monitoring the system and its operating environment, covering aspects ranging from 138

resource utilization to critical external factors. This comprehensive management allows the 139

system or a human operator, equipped with accurate data, to proactively determine the 140

need for reconfigurations, guided by rules, policies, or machine learning algorithms. In 141

the event of critical changes, the system has the ability to automatically reconfigure itself 142

Version November 30, 2024 submitted to Appl. Sci. 4 of 26

at runtime, adjusting functions, resources, or operational parameters, enabling real-time 143

adaptability without interruptions in service or functionality. 144

The configuration of a particular product in a product line is the process of selecting a 145

valid and complete set of variants to link to variation points [20]. In the case of a DSPL, 146

the variation points are used to describe all possible states of the system, where a set of 147

conditions must be met. These conditions are called adaptation rules, which define how 148

to change the state of the software between different variations [17]. Figure 1 presents the 149

change in system variability when an adaptation rule is activated, and the variation point 150

is modified according to some change in environmental requirements. 151

Over the years, various methodologies have been developed to address system vari- 152

ability management using the DSPL approach. These methodologies can be classified 153

into three main scenarios [17]. The first scenario focuses on customizing system changes 154

manually; for example, by manually updating the software code base. The second scenario 155

allows changes to be made manually while the customization process is automated, as in 156

DevOps processes. The third scenario provides an autonomous execution environment that 157

allows automation of variability changes and subsequent reconfigurations, thus providing 158

an optimal environment for self-adaptive systems. 159

Due to the difficulty of anticipating all the variability required by self-adaptive sys- 160

tems, we can consider the use of DSPLs to facilitate self-adaptation in this type of system. 161

Several approaches express changes in variability as a function of the context [21] (e.g., in 162

feature modeling [22]). Other approaches consider machine learning-based reconfiguration 163

management using the MAPE-K control loop, which is an architectural approach to system 164

variability management [23]. 165

F1

F5F4

F3F2

F1

F5F4

F3F2

Initial configuration
Variation point I

Reconfiguration
Variation point II

Changes the state of the system if
it meets condition N Execution

time

R4

R1 R2

R3

If condition N is fulfilled,
then activates variation

point II

Optional feature

Alternative
feature

Running software
system

Runtime
system

Adaptation
rules

Feature activated

Feature disabled

Adaptation rule

Nomenclature

Figure 1. Design and application of variation points in DSPL. Adapted from [17].

2.2. Self-adaptive Systems 166

Self-adaptive systems correspond to a closed-loop system with feedback intended to 167

adjust to runtime changes autonomously without third-party intervention [24]. In addi- 168

Version November 30, 2024 submitted to Appl. Sci. 5 of 26

tion to the "feedback loop", which allows the system to evaluate the effectiveness of its 169

adaptations and make adjustments to optimize future responses, self-adaptive software 170

systems must meet two fundamental principles [3]. On the one hand, the external principle 171

stresses that such a system must autonomously manage changes and uncertainties caused 172

by the demands of the environment, the system’s internal conditions, and its predefined 173

objectives, implying a proactive adaptation to variations without external intervention. On 174

the other hand, the internal principle specifies that a self-adaptive system comprises two 175

essential elements that manage its interaction with the environment and its adaptability. 176

These principles include components dedicated to constantly monitoring the system and 177

its context; i.e., sensors and a control logic that decides how to respond based on this infor- 178

mation. In addition, it has actuators that execute necessary changes in real-time, adjusting 179

operability according to the circumstances detected. These components and mechanisms 180

ensure that the system maintains efficient, resilient, and autonomous functionality, even in 181

dynamic and uncertain environments. 182

The MAPE-K control loop is widely used to manage architectures for self-adaptive 183

systems with DSPLs [8]. MAPE-K is a control loop that manages runtime variability 184

through a four-stage iterative cycle and a shared knowledge node [25]. This information 185

flows to the Analysis stage, where the system’s current state is evaluated, determining 186

whether corrective actions are required. If intervention is required, the Planning stage 187

comes into play, developing a strategic action plan that dictates the measures necessary to 188

achieve the desired state. This plan materializes in the execution stage, where actions are 189

implemented and monitored to ensure their correct application. The Knowledge repository 190

serves as a connection between all the modules, acting as a central storage and intelligence 191

hub that is accessible to all parts of the loop. This repository contains the collected and 192

processed data, as well as essential information such as architecture models, policies, and 193

change plans. This information is essential for making informed decisions and proactive 194

adaptations. 195

3. Related Work 196

This paper proposes FMweb-K, a variability management-oriented framework using 197

the MAPE-K control loop and deep learning that can be compared with other variability 198

management proposals in DSPL. It is possible to manage a system’s variability through a 199

product line using the following tools. 200

DyMMer 2.0 is a tool that allows modeling and generating variation points in DSPL 201

[26]. Its main features are the creation and edition of feature model, and the MAPE-K 202

control loop is the primary adaptation mechanism. It has a web tool developed in Vue.JS. 203

Additionally, it is proposed to occupy machine learning models that aim to classify the 204

maintainability of the [27] feature model. 205

Moskitt4SPL is a software application that facilitates the creation of both static and 206

dynamic product lines. It enables users to model their product lines in a straightforward 207

manner [28]. Its main features include feature model editing, configuration model genera- 208

tion, and DSPL context modeling. It is built on the Eclipse platform and is open source. 209

VariaMos is a web-based tool that utilizes micro services to enable the specification, 210

multi-language modeling, and multi-solver reasoning of SPL and DSPL projects [29]. In 211

addition, it enables users to create their own engineering languages in a straightforward 212

manner. The instances of these languages are then used to represent the domain engineering 213

assets in a way that they can be analyzed, verified, simulated, configured, and federated to 214

create static and dynamic software product lines. From an interoperability point of view, 215

VariaMos allows exporting XLS configuration files and JSON configuration files, importing 216

JSON configuration files, and saving/loading models from XML files. 217

S.P.L.O.T. [30] is a web application that allows the creation of feature models and offers 218

some reasoning functionalities on the models. It uses a binary decision diagram engine 219

and a Boolean satisfiability problem solver (SAT solver) to perform various analyses such 220

as counting the number of possible variation points, calculating the degree of variability 221

Version November 30, 2024 submitted to Appl. Sci. 6 of 26

of a model, checking the consistency of a model, detecting common features and dead 222

features (features without accessibility). In addition, the tool offers an extensive repository 223

of feature models, where several previously created models can be found. 224

Feature IDE [31] is a tool that, in addition to allowing the creation of feature models, it 225

allows users to configure the features and then convert these configurations into products 226

of the related SPL, which makes it possible to create a package of a software system from a 227

chosen set of features [32]. 228

In contrast, our FMweb-K framework not only allows the creation of feature models 229

but also allows the definition and use of dynamic contexts to manage the variability of self- 230

adaptive systems at runtime. In addition, our framework allows (i) managing self-adaptive 231

systems that implement a MAPE-K architecture, and (ii) identifying, through the use of 232

neural networks, variation points that were not contemplated during the design of the 233

product lines. 234

Finally, the proposals that partially manage run-time variability are those that allow 235

modeling and simulating the behavior of the system in case of a reconfiguration. Unlike the 236

other proposals, FMweb-K aimed at managing self-adaptive systems, so it is not feasible to 237

design the variability visually as in other proposals. Table 1 summarizes the comparison 238

between the various proposals (✓managed DSPL stage, ∼ partially managed). 239

Table 1. Comparison of proposals to manage variability in DSPL stages.

Proposal Engineering cycle Runtime variability management
DyMMer 2.0 ✓ ∼
FeatureIDE ✓ ∼
Moskitt4SPL ✓
S.P.L.O.T ✓ ∼
VariaMos ✓ ∼
FMweb-K ∼ ✓

4. Methodology 240

To develop the FMweb-K proposal, we used an adaptation of the Design Science 241

methodology, proposed by Wieringa [33], which aims to address research in software engi- 242

neering and information systems. The methodology focuses on the design and construction 243

of artifacts and the evaluation of their usefulness and effectiveness in solving problems 244

within a specific domain, which is ideal for this field of study, as it focuses on the creation 245

and evaluation of artifacts designed to fulfill a specific purpose, developing practical and 246

tangible solutions [34]. The Design Science methodology promotes an iterative approach, 247

continuously improving artifacts based on feedback and test results. Iterative and agile 248

development is fundamental in software engineering, corresponding to a common practice 249

to adapt to rapid changes in requirements and technologies [35]. The methodology has four 250

fundamental stages: (i) problem investigation or implementation evaluation, (ii) treatment 251

design, (iii) treatment validation, and (iv) treatment implementation. 252

4.1. Problem investigation 253

This stage aims to investigate a problem that can be improved before we design a 254

technological artifact, in which the requirements to develop such an artifact still need to 255

be identified. Therefore, our objective at this stage was to identify the current modeling 256

languages and techniques of DSPL engineing, and their limitations in managing variability. 257

We pursued our objectives by following the guidelines of Petersen et al. [36] in order to 258

idenfity the primary approaches, architectures, and challenges in variability management 259

for DSPLs. 260

Version November 30, 2024 submitted to Appl. Sci. 7 of 26

4.2. Treatment design 261

This stage is to design the artifacts that provide a solution to the problems encountered 262

in the initial phase, reducing the gap between what is done and what is desired. In this 263

context, the specific objectives associated with this stage correspond to determining the 264

procedure, tools, and assets necessary to develop FMweb-K. We designed the proposal in 265

the context of the reference architectures presented by [5,7,17]. 266

4.3. Treatment validation 267

This stage aims to assess whether the design of the solution will bring stakeholders 268

closer to the defined goals, where this assessment is only a prediction and will be verified 269

once the solution is implemented. For model validation, we opt for the Delphi method 270

using expert criteria [37] and proof of concept methodology [38]. 271

In Software Engineering and artificial intelligence, the Delphi methodology has been 272

used in several proposals to validate a proposal, such as to validate the design of the effort 273

estimation in agile software projects through deep learning [39]. Also, approaches based 274

on machine learning and software product lines have been presented to detect whether 275

an information visualization can be potentially confusing and misinterpreted, which was 276

validated by adapting the Delphi methodology and a proof of concept [40]. 277

In this context, the objectives associated with this stage correspond to the validation 278

of the design of the framework for the management of feature modeling, the creation 279

of variation points, and adaptation rules for the management of variability in DSPLs. 280

Additionally, we wish to validate that the MAPE-K control loop allows the management 281

of changes in variability from the selection and deployment of variation points, as well as 282

the implementation of a deep learning model to identify new variation points with their 283

respective adaptation rule. 284

A group of experts in software engineering and software product lines was involved in 285

the application of the Delphi method. These experts were essential to validate whether our 286

proposed architecture, once implemented, would effectively address the central challenge 287

of our study [41]. We use the methodology to validate our design focused on variability 288

management of self-adaptive systems using DSPLs, from the selection and deployment of 289

variation points to the implementation of a deep learning model to identify new variation 290

points with their respective adaptation rules. Through two rounds of questionnaires and 291

discussions, we explored and evaluated various architectures in artificial intelligence, 292

including different algorithms for supervised learning, semi-supervised learning, and 293

more specialized approaches such as convolutional neural network adaptations or artificial 294

neural networks with transfer learning. We used the proof of concept methodology to 295

validate with experts whose approach supported us in solving the problem associated 296

with a low initial amount of data [38]. This iterative and collaborative process allowed 297

us to refine our proposals, evaluating the feasibility of our proposal with artificial neural 298

networks and learning transfer. 299

4.4. Treatment implementation 300

This stage constitutes the implementation of the design previously validated through 301

expert criteria. In this context, the objectives associated with this stage correspond to the 302

implementation of the different components for variability management in the DSPL, such 303

as feature modeling, variation points, the MAPE-K control loop and the artificial neural 304

network to identify new variation points using an iterative-incremental development 305

methodology[42]. Additionally, we performed a new iteration of the Design Science cycle 306

to evaluate our implementation. In this context, the objective associated with this stage 307

corresponds to the realization of a set of tests to evaluate the correct functionality of the 308

proposal, both in managing variability and in analyzing new points of variation through 309

the proof of concept methodology [38]. 310

Version November 30, 2024 submitted to Appl. Sci. 8 of 26

5. FMweb-K framework 311

The origins of the proposal go back to the FMxx feature modeling tool, where we 312

allowed modeling variability in a product line and linked it to software artifacts for sub- 313

sequent deployment [43]. We base the proposal on two stages that can be visualized in 314

Figure 2. The first stage is in charge of managing runtime variability of a DSPL by means 315

of feature models, the MAPE-K control loop, variation points, and adaptation rules. The 316

second stage seeks to analyze new points of variation in runtime, through a deep learning 317

model, based on two stages and transfer of learning between these two stages. 318

M

Deep learning

Feature model

New variation points
+

 adaptation rules

Analyze

Monitor

Knowledge

Plan

Execute

MAPE-K
control loop

Variation points
+

 adaptation rules

Bidirectional
flow

Unidirectional
flow

Variation points based on correlation
 between features

Design and management of variability Analysis of future reconfigurations

Framework for Variability Management in Dynamic
Software Product Lines - FMweb-K

Figure 2. FMweb-K framework.

The systematic mapping study that we conducted aimed to capture approaches, 319

methodologies, or design patterns for variability management in DSPLs and self-adaptive 320

systems. This mapping included the analysis of the types of approaches used to manage 321

runtime variability, and to maintain system stability and reliability during the constant evo- 322

lution of variability. In addition, it was possible to identify the principal errors, difficulties, 323

or challenges in (i) developing DSPLs and (ii) adapting the systems derived from these 324

DSPLs [8]. 325

Next, Section 5.1 presents the steps of the proposed framework for managing vari- 326

ability by identifying new variation points. Section 5.2 presents the test case and its setup. 327

Finally, Section 5.3 presents the preliminary validation in which we train a deep learning 328

model in the context of the test case to identify new variation points. 329

5.1. Variability management through MAPE-K loop and deep learning 330

Based on identifying needs through the development of the systematic literature map- 331

ping, we identified the main modules that the new proposal must guarantee, among which 332

we highlight the implementation of the MAPE-K control loop to manage system reconfigu- 333

rations and a deep learning module to identify variation points at runtime. The proposal 334

includes six functionalities, which are detailed below. The details of these capabilities are 335

presented in Figure 3. 336

• Feature model generation: generation of feature models with their respective depen- 337

dencies and constraints. 338

• Variation points generation: generation of configuration models from the previously 339

defined feature model. 340

• Variation point selection: selecting a variation point for subsequent automatic deploy- 341

ment. 342

• Software product deployment: deployment of the variation point configuring the 343

execution environment with the selected features. 344

Version November 30, 2024 submitted to Appl. Sci. 9 of 26

• System monitoring via MAPE-K loop: monitoring of the software system, looking for 345

possible reconfiguration requests and resolving them at runtime. 346

• Variation point analysis by deep learning: identify a variation point by incorporating 347

an artificial intelligence component, allowing to obtain new system states in addition 348

to those initially defined in the variation point generation functionality. 349

Feature model
generation

Variation point
generation

Variation point
selection

Software product
deployment

System monitoring
via MAPE-K loop

Stage "Engineering
Cycle"

Stage "Runtime
Variability

Management"

Software product

Variation point
analysis by machine

learning

Variation
points

Artificial intelligence
component

Symbology

Figure 3. FMweb-K functionalities.

The MAPE-K control loop enables the system to be monitored, while deep learning 350

is used to analyze variation points. However, the data input to train the deep learning 351

model is limited to the initial set of variation points, which is usually small and thus not 352

suitable for machine learning tasks. Thus, the solution to this limitation is to employ a 353

transfer learning approach. Transfer learning allows the use of the knowledge acquired by 354

a previously trained model on a large and diverse dataset [44]. In the context of DSPL, few 355

variation points are defined at the beginning, making it difficult to identify new states with 356

machine learning techniques. In such cases, transfer learning approaches are often used, for 357

example, a study focuses on Multi-Objective Evolutionary Algorithms (MOEAs) in DSPL 358

and proposes transfer learning to improve the efficiency and quality in the generation of 359

configurations [13]. Transfer learning offers the flexibility to adapt models to new tasks 360

relatively quickly. It is beneficial in rapidly evolving fields where models must continually 361

adapt to new data types or problems. In deep learning, this approach uses previously 362

acquired knowledge from one domain or problem to apply it to a different but related 363

domain or problem [45]. In this context, it allows for improved efficiency and effectiveness 364

in training new models by leveraging existing knowledge rather than starting from scratch. 365

This deep learning technique contains two stages: pre-training and tuning, which are 366

detailed below [45]. 367

• Pre-training: In this stage, a machine learning model is trained on a large and diverse 368

data set, acquiring general valuable knowledge in various tasks. This pre-trained 369

model can be an image classification model a natural language processing model, 370

among others. 371

• Tuning: We adapt the pre-trained model to a specific problem or domain of interest in 372

this stage. Adaptation between machine learning models usually involves adjusting 373

some layers of the deep learning model, replacing them with new and more appro- 374

priate ones, and then training the model with a problem-specific dataset. The tuning 375

process allows the model to specialize and improve its performance on the exciting 376

task. 377

Through the permutation of domain features, we obtain all the possible variation 378

points that a feature model can possess and then predict the various adaptation rules 379

Version November 30, 2024 submitted to Appl. Sci. 10 of 26

linked to each variation point through the artificial neural network. Finally, the system 380

must be able to receive any adaptation rule and link it to a variation point. The linkage 381

of an adaptation rule to a variation point will be through a function that minimizes the 382

absolute difference between a target value of the dependent variable, which in this case are 383

the variation points, and the values of the independent variable, which correspond to the 384

adaptation rules previously linked to each variation point. Figure 4 presents the activities 385

associated with the use of artificial intelligence in our proposal. 386

Pre-training of the
machine learning

model

Machine learning
model training

Variation point
classifier according to

an adaptation rule

External
Dataset

Variation
points (VP)

VP +
adaptation

rules

VP identified

Deep learning Classification of variation
points

Adaptation
rule

Software system

Sensor

Sensor data

Figure 4. Variation point prediction phases.

To realize changes in system variability at runtime, we occupy the MAPE-K loop to 387

manage software systems under a micro services architecture, precisely a set of Docker 388

containers, where each container corresponds to a particular feature of the problem domain. 389

The MAPE-K control loop allows activating the features of a variation point and deactivat- 390

ing those that do not correspond to the current state of the system from the Docker library 391

available in Python. 392

5.2. Test Case Scenario 393

To test our proposal, we performed a test case in the context of an air quality-based 394

activity recommender system, in which, based on a feature model, we generated variation 395

points and their subsequent variability management. Figure 5 presents the feature model 396

for the activity recommender system, which has the following properties,where the features 397

that are always active in the domain are presented with a check mark, and features that 398

appear with a question mark indicate that they must be configured at the point of variation. 399

Air quality viewer is a mandatory feature in the model and Firewood use restriction 400

viewer is an optional one. The feature Tourism is mandatory in the model and has Closed 401

environments or Open environments as a mandatory feature. In the case of the feature Closed 402

Environments, it requires Firewood to use restriction viewer for its operation. Likewise, the 403

feature Open environments require the feature Sports for its operation. The feature Sports 404

is optional in the model. The Entertainment feature is an optional feature of the model 405

and optionally has the Family Entertainment, Senior Entertainment, and Adult Entertainment 406

features. 407

The architecture of the test case is based on micro services, specifically on micro fron- 408

tends since it is an architectural approach focused on managing services in a decentralized 409

way. From identifying new points of variation with deep learning and variability manage- 410

ment with the MAPE-K loop, we encapsulate each feature towards a specific container, 411

which allows us to activate and deactivate components easily. 412

Version November 30, 2024 submitted to Appl. Sci. 11 of 26

Figure 5. Feature model for test case.

5.3. Preliminary validation 413

From the test case, we will preliminarily validate the proposal, using two-stage training 414

to identify variation points using two data sets and deep neural networks. To carry out this 415

process, we used a dataset of 223,508 records associated with atmospheric emissions from 416

land transport in Chile during the year 2020. A first data filtering was performed according 417

to the context of the test case so that both data sets are in a similar and more limited context, 418

including only records related to the problem domain, obtaining a total of 84,079 records 419

to train the artificial neural network. Subsequently, we applied data scaling to the dataset 420

using normalization, which consists of pre-processing data to adjust the feature scales to 421

be in a typical range, usually [0, 1] or [-1, 1] [46]. In this case, an absolute maximum value 422

scaler (MaxAbsScaler), which transforms the sparse data by dividing by the maximum 423

absolute value in each feature [47]. 424

We built the first deep neural network model for system pre-training. The network has 425

several dense layers with different sizes and activation functions to perform model training. 426

When training the neural network, it obtains the weights of the first hidden layer of the 427

model and creates a feature extractor from this layer. This feature extractor is a separate 428

model that takes as input the data in the same format as the original neural network and 429

produces as output the activations of the neurons in the first hidden layer. The extractor 430

allows to take advantage of the knowledge acquired by the neural network during its 431

training, where the central idea is that the first hidden layer has learned to recognize certain 432

essential features of the input data. By using only this layer as a feature extractor, new 433

input data can be transformed into a feature set containing relevant information learned by 434

the neural network. Figure 6 presents the training phases for the deep neural network. The 435

neural network architecture that we occupy for this preliminary validation is based on an 436

adaptation of a convolutional neural network in terms of layers and activation function 437

since it allows us to identify images from patterns, which is a similar context to what 438

we wish to implement in the identification of variation points [48]. In addition, in the 439

first instance, we occupy the Relu activation function due to its regular use in software 440

engineering [49], starting with a network of 128 and 64 neurons as it ensures a lower 441

training error [50]. 442

Next, we build a new model that transforms the variation point data to have the same 443

dimension as the air emission set data, where this model is used to transform the training 444

and test sets of the variation point set. The dataset associated with the variation points are 445

normalized to the range [0, 1] [47]. For each feature, the minimum value is subtracted and 446

then divided by the range (maximum-minimum), looking for them to be in a specific, finite 447

range, which in this case is to describe whether a variation point feature is on or off. 448

Finally, we build a deep neural network model using the extracted features for the 449

small data set. The network has several dense layers with different sizes and activation 450

functions to train the model with the training data from the set of variation points. After 451

training the neural network, we perform a regression-type prediction for all the variation 452

points obtained from the permutation of features and their relationships. Figure 7 presents 453

the training phases of deep learning training in the transfer of learning. 454

Version November 30, 2024 submitted to Appl. Sci. 12 of 26

Input (external
dataset) 128 neurons 64 neurons 32 neurons 16 neurons 8 neurons

1 neuron

64 neuronsFeature
Extractor

Resizing (transfer of
learning)

Input (variation
points)

9 records
18 features

84,079 records
231 features

1 neuron

Neural network
phases

Neural network
layers datasets

Data prediction

Pre-training

Training

Symbology

Figure 6. Phases for the artificial neural network.

Load external
dataset

Load Variation Points
dataset

Data Preprocessing
and Normalization

Data Preprocessing
and Normalization

Machine learning
model building Transfer of learning

Deep learning model
building

Transform data set
dimensionality Data prediction

Model pre-training
phase

Model refinement
phase

Neural network
training phase

Symbology

Deep learning phases

Figure 7. Phases for the deep learning.

6. Results 455

Through developing the proposal framework, we built a series of functionalities to 456

enable the variability management of a self-adaptive system using DSPL. The main results 457

on generating variation points are visualized in section 6.1. Section 6.2 presents the results 458

of identifying variation points using deep learning. Section 6.3 presents the results on 459

variability management in DSPLs using the MAPE-K control loop and Docker. Finally, 460

Section 6.4 presents a proof of concept. 461

6.1. Generation of variation points 462

We built the feature model in Python, using a graph to record each feature and its 463

relationships. Relationships of type OR, XOR, Mandatory, and Optional indicated the cycle 464

and hierarchy of each network node as parent and child features. Dependencies of type 465

XOR, Requires and Excludes indicate the constraints that must be applied by the features 466

when the system creates a variation point. 467

Version November 30, 2024 submitted to Appl. Sci. 13 of 26

We managed the generation of variation points by permutation of features, obtaining 468

all the variation points corresponding to the model and then subtracting the constraint type 469

relations to obtain the total possible configurations of a model. Each variation point created 470

was stored in a CSV file to describe all possible variation points of a problem domain. 471

6.2. Identification of variation points through deep learning 472

To identify variation points using deep learning, we use a set of 24 possible configura- 473

tions in the neural network, seeking to obtain the best performance during the pre-training 474

and training of the model. To choose the configuration of the deep neural network to be 475

implemented, we analyzed the test cases presented in Table 2. 476

In the context of the artificial neural network implementation, we use different reg- 477

ularization techniques to avoid overfitting, such as L1, L2, and the Batch Normalization 478

function [51]. L1 regularization, also known as Lasso regularization, adds a penalty equal 479

to the absolute value of the coefficients of the network weights. This penalization can lead 480

to some weights becoming zero, which is helpful for feature selection in large models [51]. 481

The L1 regularization is added to the neural network cost function. The equation for L1 482

regularization is: 483

L1 = λ ∑
i
|wi|, (1)

Where λ is a regularization parameter and |wi| are the weights of the network. The 484

sum of the absolute values of the weights implies that some weights may become zero, 485

which helps in feature selection [52]. 486

On the other hand, L2 regularization, known as Ridge regularization, adds a penalty 487

equal to the square of the magnitude of the coefficients [53]. This penalization tends 488

to distribute the error among all the weights, often resulting in a smoother and more 489

generalizable model. Similar to L1, L2 is added to the cost function. The equation for the 490

L2 regularization is: 491

L2 = λ ∑
i

w2
i , (2)

In the L2 function, λ is also a regularization parameter and wi are the weights. The 492

sum of squares of the weights distributes the error across all weights, which can lead to a 493

more generalizable model [53]. 494

Batch normalization is a different technique used to improve artificial neural networks’ 495

speed, performance, and stability. It is applied to the input of each layer and normalizes 496

the data to have a mean of zero and a variance of one [54]. 497

x̂ =
x − µB√

σ2
B + ϵ

, (3)

Where µB is the batch mean, σ2
B is the batch variance, and ϵ is a small number to avoid 498

division by zero [55]. After this normalization, two learnable parameters, γ (scale) and β 499

(offset) [56], are applied for each feature: 500

y = γx̂ + β, (4)

Finally, these parameters are adjusted during training and allow the batch normalization to 501

maintain the representative capacity of the network [56]. 502

The tests to be performed are based on the evaluation of the model, comparing the 503

error and accumulated error in each training iteration. Each instance to be tested will have 504

a five-layer pre-training model. The first layer has 128 neurons; the second layer has 64 505

neurons; the third layer has 32 neurons; the fourth layer has 16 neurons; and the fifth layer 506

has eight neurons. This layer configuration seeks to reduce the dimensionality of the data, 507

that is, to reduce the number of random variables under consideration, by obtaining a set 508

of primary variables, simplifying the data without losing too much information [57]. 509

Version November 30, 2024 submitted to Appl. Sci. 14 of 26

Table 2. Neural network performance test cases.

Optimizer Training rate Regulatory function
Adagrad 0,01 Batch Normalization (BT)
Adagrad 0,01 L1
Adagrad 0,01 L2
Adagrad 0,001 Batch Normalization (BT)
Adagrad 0,001 L1
Adagrad 0,001 L2
Adam 0,01 Batch Normalization (BT)
Adam 0,01 L1
Adam 0,01 L2
Adam 0,001 Batch Normalization (BT)
Adam 0,001 L1
Adam 0,001 L2
RMSprop 0,01 Batch Normalization (BT)
RMSprop 0,01 L1
RMSprop 0,01 L2
RMSprop 0,001 Batch Normalization (BT)
RMSprop 0,001 L1
RMSprop 0,001 L2
SGD 0,01 Batch Normalization (BT)
SGD 0,01 L1
SGD 0,01 L2
SGD 0,001 Batch Normalization (BT)
SGD 0,001 L1
SGD 0,001 L2

Regarding the regulatory functions, which will be used only in the pre-training model, 510

a range of 0.001 will be used for L1 and L2. In the second model, to train the neural network 511

from the learning transfer, it will have an additional layer of 64 neurons. In the case of 512

optimizers, Adagrad, Adam, and RMSprop are optimizers that maintain adaptive learning 513

rates. In contrast, the SGD optimizer is a linear optimizer that is more concerned with 514

optimization since it updates the model parameters at each iteration through only one 515

network sample. 516

In the evaluation of the 24 possible cases, we sought to obtain the best performance in 517

the models, where in the case of the Adagrad optimizer, the pretraining that had the best 518

performance in terms of error and cumulative error was with training rate of 0.01 and the 519

regularizing function BatchNormalization(). Figure 8 presents the error and cumulative error 520

of the Adagrad optimizer in the pre-training of the model.

0 50 100 150 200 250 300
Epoch

0

50000

100000

150000

200000

250000

300000

Er
ro

r

Adagrad Optimizer pre-training - Error

LR 0.01 and L1 regularizer
LR 0.01 and L2 regularizer
LR 0.001 and L1 regularizer
LR 0.001 and L2 regularizer
LR 0,01 and BN regularizer
LR 0,001 and BN regularizer

(a) Error

0 50 100 150 200 250 300
Epoch

0

100000

200000

300000

400000

500000

600000

700000

Ac
cu

m
ul

at
ed

 e
rro

r

Adagrad Optimizer pre-training - Accumulated Error
LR 0.01 and L1 regularizer
LR 0.01 and L2 regularizer
LR 0.001 and L1 regularizer
LR 0.001 and L2 regularizer
LR 0,01 and BN regularizer
LR 0,001 and BN regularizer

(b) Accumulated error

Figure 8. Pre-training performance with Adagrad Optimizer.
521

Version November 30, 2024 submitted to Appl. Sci. 15 of 26

The Adagrad optimizer that achieved the best results after the learning transfer was 522

the same as the configuration displayed above, with a learning range of 0.01 and the 523

BatchNormalization() regularizing function. Figure 9 presents the error and the accumulated 524

error of the Adagrad optimizer in training the model after learning transfer in pre-training. 525

0 200 400 600 800 1000 1200 1400
Epoch

5000

10000

15000

20000

25000

30000
Er

ro
r

Adagrad Optimizer training - Error

LR 0.01 and L1 regularizer
LR 0.01 and L2 regularizer
LR 0.001 and L1 regularizer
LR 0.001 and L2 regularizer
LR 0,01 and BN regularizer
LR 0,001 and BN regularizer

(a) Error

0 200 400 600 800 1000 1200 1400
Epoch

0

5000

10000

15000

20000

Ac
cu

m
ul

at
ed

 e
rro

r

Adagrad Optimizer training - Accumulated Error

LR 0.01 and L1 regularizer
LR 0.01 and L2 regularizer
LR 0.001 and L1 regularizer
LR 0.001 and L2 regularizer
LR 0,01 and BN regularizer
LR 0,001 and BN regularizer

(b) Accumulated error

Figure 9. Training performance with Adagrad Optimizer.

In the case of the Adam optimizer, the pretraining that performed best in terms of 526

error and cumulative error was with training ratios of 0.001 and the regularizing function 527

L2. After learning transfer, the best performing Adam optimizer training was the same as 528

the configuration shown above, with a learning range of 0.001 and regularizing function 529

L2. The pretraining of the RMSprop optimizer that performed best in error and cumula- 530

tive error was with a training rate of 0.001 and regularizing function L1. The RMSprop 531

optimizer training performed best after transfer learning with the learning range 0.01 and 532

the BatchNormalization() regularizing function. However, it performs similarly for models 533

with the learning range 0.001 and the BatchNormalization() regularizing function. Finally, 534

in the case of the SGD optimizer, no pretraining model performed well, all having over 535

300,000 errors. The training of the machine learning model using the SGD optimizer after 536

the learning transfer evolves improvable in the data prediction; however, the great majority 537

remains with an error close to 9,000. The SGD optimizer with the learning range of 0.01 538

and the L2 regulator presented an error elevation during the first iterations, starting with 539

an error of up to 500,000,000. However, after a few iterations, it remains equally at an error 540

close to 9,000. Appendix A contains the plots of the error-based performance of the neural 541

network training with the Adam, RMSprop, and SGD optimizers. 542

According to the performance analysis based on error and cumulative error, we choose 543

the configuration associated with the Adagrad optimizer and the Batch Normalization 544

regulator function because of its pre-training and post-transfer learning model training 545

performance. 546

The identification of variation points using artificial neural networks is divided into 547

two stages, present in the following git repository. These two stages consisted of training 548

the network, identifying the points of variation, and linking these points of variation to the 549

given adaptation rules. 550

The first stage consists of the collection of all the variation points contained in a specific 551

problem domain; we need to statically define some initially defined variation points to 552

allow the model to be trained. This data set is limited and requires a learning transfer from 553

another machine-learning model to train the model correctly. For this purpose, a first neural 554

network was developed with a dataset similar to the problem domain of the feature model 555

to identify patterns in feature selection for machine learning. After the learning transfer, 556

we train a second neural network with the data set belonging to the defined variation 557

points with their respective adaptation rule. Finally, after 24 experiments with different 558

configurations in the neural network, we used the Adagrad optimizer, with a learning 559

range of 0.01 and a Batch Normalization regulator function. After training the automatic 560

https://github.com/or-aguayo/ML-FMweb-K

Version November 30, 2024 submitted to Appl. Sci. 16 of 26

learning model, we identify the adaptation rule associated with each record of the set of 561

variation points obtained from the feature permutation. 562

We obtain a variation point from an adaptation rule in the second stage. To accomplish 563

this goal, we use a function that uses the absolute difference as a metric to evaluate which 564

feature configuration most closely resembles the target value of the independent variable to 565

be evaluated. In our case, the set of variation points identified in the deep machine learning 566

process. Finally, the configuration that minimizes this absolute difference is selected. 567

6.3. Variability management in DSPL using the MAPE-K control loop 568

We define the variability management from the MAPE-K control loop, which we 569

developed using Python and the Docker API. In this context, we simulate the state of 570

a sensor to establish the value of an adaptation rule and to identify a point of variation 571

that satisfies that adaptation rule, which allows us to activate or deactivate features of the 572

problem domain. Each feature corresponds to a different Docker container for the test 573

case presented in the 5.3 section, allowing efficient integration and management through a 574

micro frontends architecture. 575

In the test case, we also display active (marked in green) and deactivated (marked 576

in red) features. Figure 10 presents the feature model of the test case with its respective 577

feature status. 578

Figure 10. Display of activated and deactivated features.

6.4. Proof of concept 579

In the Implementation evaluation stage of the Design Science methodology, we performed 580

a series of validations to corroborate the correct performance of the implementation of the 581

proposal. We present the results of the proposal’s implementation in a test case oriented to 582

a recreational activities recommender system based on air quality with its results associated 583

with the proof of concept applied to the implementation of the project. 584

The test case development is based on a monolithic micro frontend architecture since 585

the server raises and accesses the resources available for each microservice, so only the 586

server renders the resources. The main components we develop are in the Host app, 587

which is the main component that manages the other micro frontends and the global 588

configurations of the prototype, such as the security policies of the web content, the 589

imported libraries, and the paths assigned to the components. In addition to the above, 590

it contains the SVG format diagram that represents the prototype’s structure at the sub- 591

application level and the development of its activation states in runtime. The Host app 592

component manages the components through import maps, where we set the URL of the 593

components, assigning them a port on which each service runs. Additionally, we added 594

Version November 30, 2024 submitted to Appl. Sci. 17 of 26

a navbar, which corresponds to the dynamic navigation bar of the prototype, located in 595

the upper section. This bar contains the links to the active sub-applications when the user 596

interacts with the interface. These links and the SVG diagram are updated periodically 597

without the user needing to update it directly from his browser. The component also has 598

two buttons: a "Back to Home" button that redirects the user to the main screen and a 599

"Back to Back" button that redirects the user to the last accessed sub-application. For a 600

more intuitive design, we use SVG icons for these buttons. Finally, we managed the overall 601

design of the prototype in another container called Styleguide. 602

Figure 11 presents the architecture defined for the test case, containing four Docker 603

containers that manage the test case requests and deployment. In addition, it has ten 604

Docker containers that represent the various features of the test case, which are available 605

in a Git repository. The architecture consists of the API contained in a docker as the rest 606

of the structure, which has the power to modify every 2 minutes of service available on 607

the network. The front end receives the information from the API. It dynamically updates 608

the navigation bar every 200 milliseconds, making visible only the services available at the 609

time of consultation so we ensure that the client can only view them. 610

Ubuntu 22.04

Docker Service

API

docker compose
frontend-service

Host app

open_environments closed_environments sports

adult_entertainment family_entertainment senior_entertainment

entertainment

Tourism

air_quality_viewer firewood_viewer navbar styleguide

Critical

Non-Critical

Figure 11. Test case architecture.

We conducted a proof of concept to preliminarily validate the proposal, divided 611

into two segments, as presented in Tables 3 and 4. The first segment contemplates the 612

analysis of variation points through machine learning techniques, explicitly using deep 613

neural networks to evaluate prediction performance. The second segment is related to the 614

generation of software reconfigurations. It refers to the implementation of the MAPE-K 615

loop from the sensor simulation, the search for variation points related to the adaptation 616

rule mapped to the sensor, and its subsequent execution of the reconfiguration. 617

According to the results obtained from the tests, we can answer the research question 618

formulated at the beginning of the paper by the following statement that it is possible to 619

automatically identify new runtime variation points in a DSPL. With the incorporation 620

of machine learning models and the MAPE-K control loop, it is possible to manage a 621

self-adaptive system using a DSPL approach. 622

7. Discussion 623

The use of deep learning has been increasingly seen in the area of software engineering, 624

as well as in the domain of software product lines, implementing various proposals, such 625

as the implementation of defect prediction techniques to improve the quality assurance 626

activities of computer systems or the search for improvement in the use of machine learn- 627

ing through reuse techniques in the implementation of artificial neural networks [58,59]. 628

https://github.com/kianush00/Microfrontends_react_v2

Version November 30, 2024 submitted to Appl. Sci. 18 of 26

Table 3. Decision table for validating variation point analysis through deep learning.

N° Case
description

Input section Output section
Input variables State before testing Expected results

1 Feature permuta-
tion to obtain all
associated varia-
tion points

Feature model Feature modeling
with its respective
relationships

Set of associated
variation points

2 Pre-training of
machine learning
model

Pre-training
dataset

Not applicable Trained machine
learning model

3 Learning transfer
between machine
learning models

Pre-trained ma-
chine learning
model

Dimensionality
transformation of
variation point set

Machine learning
model with learn-
ing transfer

4 Training of ma-
chine learning
model

Initial dataset of
variation points
with its adapta-
tion rule

Machine learning
model with learning
transfer

Total set of varia-
tion points with
its associated
adaptation rule

5 Variation point
prediction

Adaptation rule Random forest
model trained with
total set of variation
points with the as-
sociated adaptation
rule

Identified varia-
tion point

Table 4. Decision table for validating the generation of software reconfigurations.

N° Case
description

Input section Output section
Input variables State before testing Expected results

1 Searching for
variation point
according to
sensor value

Adaptation rule
value

Machine learning
model to the soft-
ware system

Selection of the
variation point
linked to the
adaptation rule

2 Identification of
variation point in
execution

Selected varia-
tion point

Variation points
linked to the soft-
ware system

Identification of
active variation
point in the soft-
ware system

3 Execution of vari-
ation point

Active and cho-
sen variation
points

Variation points
linked to the soft-
ware system

Activation of
chosen variation
point and deacti-
vation of active
variation point

Likewise, product line engineering has also contributed to the electronics area, making it 629

possible to reuse the building blocks of the emerging behaviors of artificial neural networks 630

to train robotic controllers more efficiently [60]. In this context, we based the development 631

of the framework FMweb-K on the use of deep learning to identify variation points with 632

the adaptation rule and the MAPE-K control loop to manage the variability of the system. 633

Before applying deep training to identify the variation points with their respective adap- 634

tation rules, we permute all the features in the model to obtain the total set of possible 635

states. We then store them in a CSV file to have the input resource to identify the trigger 636

of that variation point by deep learning. We designed a two-stage architecture from that 637

initial approach, mixing two machine learning techniques called a hybrid machine learning 638

system [61]. In validating the architecture design using the Delphi and proof-of-concept 639

methodologies, we performed several tests on various architectures based on artificial intel- 640

ligence. The experts associated with the Delphi methodology do not share direct conflicts 641

Version November 30, 2024 submitted to Appl. Sci. 19 of 26

of interest in this research. We tested several techniques to identify variation points from 642

the proof of concept methodology. 643

The first stage consists of identifying the total set of variation points. By incorporating 644

transfer learning and a collection of variation points with their corresponding adaptation 645

rules, it is possible to recognize adaptation rules for potential variation points in the 646

corresponding domain. The second stage involves linking an adaptation rule with a 647

variation point containing features and their states. Through a machine learning model for 648

multi-class classification of results, we seek to obtain multiple feature states from a given 649

adaptation rule. In our proposal, initially, the classification algorithm receives the dataset 650

predicted by the artificial neural network as input. Then, from the adaptation rule given to 651

the system, the model must deliver the associated variation point. Since the initial data set 652

was minimal, with 32 samples in the test case context (see Section 5.3 for more details), we 653

opted for a relation that occupies the absolute difference between each adaptation rule to 654

classify the closest variation point. 655

Figure 12 presents the performance of the classification model according to the F1 656

metrics and the area under the multi-class ROC curve (AUC-ROC) [47]. The F1 score is 657

a metric that combines model accuracy and sensitivity into a single value, taking values 658

between 0 and 1, where 1 indicates perfect model performance, and 0 indicates poor 659

performance. As for the multi-class AUC-ROC, this metric measures the ability of a multi- 660

class classification model to correctly distinguish between all classes, which is in the range 661

of 0 to 1, where a value of 1 indicates perfect model performance in multi-class classification 662

and a value of 0.5 indicates performance similar to a random choice. We evaluated five 663

models: Random Forests, Decision Trees, K-Nearest Neighbors, and MLPClassifier, a 664

variant of an artificial neural network called a multilayer perceptron [62]. In summary, the 665

performance of each model was similar to theirs, denoting the lack of a more considerable 666

amount of input data to improve classification, as the evaluations indicate a performance 667

similar to a random choice [63,64]. 668

RandomForest DecisionTree KNeighbors MLPClassifier NaiveBayes
Models

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F1
 sc

or
e

Performance of classification models

(a) F1 performance assessment

RandomForest DecisionTree KNeighbors MLPClassifier NaiveBayes
Models

0.0

0.1

0.2

0.3

0.4

0.5

0.6

AU
C-

PR
 M

ul
tic

la
ss

Performance of classification models

(b) ROC curve assessment

Figure 12. Performance evaluation for supervised machine learning in variation point classification.

When using the Stochastic Gradient Descent (SGD) optimizer to create an artificial 669

neural network, it was found to be less effective than the Adagrad, Adam, and RMSprop 670

optimizers. This is because SGD does not have adaptation techniques or the ability to 671

automatically adjust the learning range, which the other optimizers possess [65]. As a 672

result, the initial impact of random initialization of the weights may be more pronounced 673

in SGD training, which may lead to a more variable initial loss behavior, as we show in 674

Figure A6. The first iterations resulted in an error of 500,000, leading to a training anomaly 675

due to the random initialization of the weights in the neural network connections, which 676

could have an initial effect on the loss behavior [65]. Figure 13 presents a new training 677

of the neural network with the atypical case of the SGD optimizer and the L2 regularizer 678

function. With this change, we saw a slight improvement in the early stages of the training 679

process, which eventually led to the same error rate and total error as discussed in Section 680

6.2. 681

In evaluating model performance, the choice of the Adagrad optimizer in combina- 682

tion with the Batch Normalization controller function proved to be decisive in achieving 683

Version November 30, 2024 submitted to Appl. Sci. 20 of 26

0 200 400 600 800 1000 1200 1400
Epoch

0

50000

100000

150000

200000

250000

300000

Er
ro

r

SGD Optimizer training - Error
LR 0,01 and L2 regularizer

(a) Error

0 200 400 600 800 1000 1200 1400
Epoch

0

50000

100000

150000

200000

250000

300000

350000

Ac
cu

m
ul

at
ed

 e
rro

r

SGD Optimizer training - Accumulated Error
LR 0,01 and L2 regularizer

(b) Accumulated error

Figure 13. Neural network performance evaluation with SGD optimizer and L2 regularizer.

lower uncertainty in terms of error and cumulative error. This configuration effectively 684

handled the adaptive learning rate, resulting in more stable and consistent convergence 685

than other optimizers such as Adam, RMSprop, and SGD. The latter presented challenges 686

in converging to a stable minimum, probably due to the complexity of the parameter space 687

involved in learning transfer. During neural network pre-training, high error was initially 688

observed. However, the model significantly improved over epochs, culminating in low 689

and cumulative errors. This evolution in performance suggests that the network effectively 690

matched the data, learning essential features without overfitting. The implementation of 691

batch normalization allowed the normalization of each layer’s inputs, thus reducing the 692

problem of internal covariate change, improving the training process, and contributing to 693

a higher overall stability of the model. In addition, the applied learning transfer allowed 694

the model to adapt better and generalize from prior knowledge, which is evident in the 695

decrease in error throughout training. This strategy ensured that the model learned from 696

data specific to the current problem and leveraged patterns and features learned from 697

previous tasks, resulting in more robust learning and reduced uncertainty. 698

We developed the test case based on a micro-frontend architecture, which provides 699

several benefits to web frontend development, including support for different technologies, 700

autonomous cross-functional teams, and independent development, deployment, and 701

management [66]. In this context, developing a test case in this architecture benefits the 702

development of a self-adaptive system since it fulfills the main characteristics of DSPL 703

engineering: be able to add or remove features at runtime, and be able to modify the 704

variability set of the system without the need to redeploy the entire system. Platforms 705

such as Apache Karaf provide the capability of dynamic variability management due 706

to their use of dynamic software containers that can be associated to a base project [67]. 707

However, this implementation was discarded because of the complexity of programming 708

the modules and working with Karaf. In addition to the micro frontends, we used Docker 709

containers to manage each test case feature in a different container, which allows us to 710

segment and isolate each service as proposed by [68]. We implemented the container 711

manager directly through the Docker API for Python, which allows us to incorporate the 712

deep learning model, the MAPE-K control loop, and component management in the same 713

software component.In the case of other machine learning approaches, evidence suggests 714

that a reinforcement machine learning system can be employed to manage autonomous 715

vehicle applications with the help of Docker, Kubeadm, and the machine learning model in 716

RSUs [69]. 717

The results obtained in this research project have certain limitations. Even if the 718

proposal allows for identifying new variation points at runtime, it is limited to a previous 719

definition of variation points with their respective adaptation rules since it is required 720

to have an initial data set to train the machine learning model and distinguish valid 721

reconfigurations. With little data to train the machine learning model, additional techniques 722

must be used to make predictions, such as transfer, semi-supervised, or reinforcement 723

Version November 30, 2024 submitted to Appl. Sci. 21 of 26

learning techniques. On the other hand, it is required to obtain an additional data set that 724

is of a similar context to the test case to be managed in order to pre-train the deep machine 725

learning model and perform the learning transfer. To not require a dataset similar to the 726

problem domain, a technique change is required, such as an adaptation to reinforcement 727

learning algorithms: an agent learns to make decisions by acting in an environment and 728

receiving feedback through rewards or punishments. 729

The evaluation of the neural network training is limited to occupying the activation 730

function Relu and the optimizers Adagrad, Adam, RMSprop, and SGD with learning ranges 731

of 0.01 and 0.001, respectively. We propose to extend the range of learning and optimizers 732

in future work by occupying subvariants of the above optimizers such as Momentum, 733

Nesterov Accelerated Gradient (NAG), Adadelta, Adamax, and Nadam [65]. 734

8. Conclusions 735

This paper introduces FMweb-K, a system for managing variability in DSPLs. It 736

enables the identification of new points of variation at runtime from a shared set of potential 737

system states. Additionally, it allows the software system to be reconfigured in accordance 738

with adaptation rules, providing a dynamic context for self-adaptive systems using the 739

MAPE-K control loop and deep learning. 740

While developing our proposal, we adapted the Design Science methodology pro- 741

posed by Wieringa [33]. Although we knew that variability management in DSPLs for 742

self-adaptive systems was an important and promising topic, we also knew that this topic 743

had great challenges. To explore the advances and challenges of this topic, we performed 744

a systematic mapping of the literature from 2010 to 2021. This resulted in the selection 745

of 84 articles related to the problem domain, which revealed various methodologies, ar- 746

chitectures, and challenges in variability management for self-adaptive systems using 747

DSPLs. 748

In the solution design, we propose a system based on six stages: feature model genera- 749

tion, variation points, selection of a variation point, and runtime variability management 750

through deep learning and MAPE-K control loop. We design a feature permutation to 751

obtain all the variation points of a problem domain and obtain an adaptation rule for 752

each variation point of the system through a two-stage training of an artificial neural 753

network. Finally, in the solution evaluation, we develop a test case in the context of an 754

air quality-based activity recommender system, creating a feature model with 11 features 755

and 32 possible variation points. We evaluated the artificial neural network with four opti- 756

mizers with two learning ranges. In addition, three regularization techniques, L1, L2, and 757

Batch Normalization, were employed, resulting in 24 experiments to determine the most 758

successful configuration that included the Adagrad optimizer and the Batch Normalization 759

regularization technique. Finally, we performed a proof of concept to validate the proposal, 760

where eight functional tests were presented to the proposal, completing the tests presented. 761

In future work, we propose to incorporate a meta-model in the feature model to extend 762

the range of possibilities in the context of self-adaptive systems, with several adaptation 763

rules for the same variation point, as well as to extend the range of evaluation of the 764

presented deep machine learning. In addition, we encourage extending the range of study 765

of identifying new variation points, analyzing various machine learning techniques, and 766

increasing the range of optimizers, regulators and learning range in the case of artificial 767

neural networks. Finally, artificial intelligence techniques can support several areas of 768

the product line, such as building and deploying new software products automatically, 769

identifying variant performance, supporting the MAPE-K control loop in configuration 770

tasks, and driving the generation of variants of customer interest through natural language 771

processing. 772

Author Contributions: Conceptualization, O.A. and S.S.; methodology, S.S. and O.A.; software, 773

O.A.; validation, O.A., S.S. and R.M.; formal analysis, O.A. and S.S.; investigation, O.A.; resources, 774

O.A. and S.S.; data curation, O.A.; writing—original draft preparation, O.A.; writing—review and 775

editing, S.S. and R.M.; visualization, O.A.; supervision, S.S. and R.M.; project administration, S.S.; 776

Version November 30, 2024 submitted to Appl. Sci. 22 of 26

funding acquisition, S.S. and O.A. All authors have read and agreed to the published version of the 777

manuscript. 778

Funding: Oscar Aguayo thanks to Universidad de La Frontera, Vicerrectoría de Investigación y 779

Postgrado, research project DIUFRO DI24-0112. Samuel Sepúlveda thanks to ANID - Fondecyt de 780

Iniciación, research project Nº 11240702. 781

Institutional Review Board Statement: Not applicable. 782

Informed Consent Statement: Not applicable. 783

Data Availability Statement: Not applicable. 784

Conflicts of Interest: The authors declare no conflict of interest. 785

Appendix A 786

Figures A1 and A2 present the training results of the artificial neural network in the 787

pre-training and training of the neural network with the Adam optimizer.

0 50 100 150 200 250 300
Epoch

0

50000

100000

150000

200000

250000

300000

Er
ro

r

Adam Optimizer pre-training - Error

LR 0.01 and L1 regularizer
LR 0.01 and L2 regularizer
LR 0.001 and L1 regularizer
LR 0.001 and L2 regularizer
LR 0,01 and BN regularizer
LR 0,001 and BN regularizer

(a) Error

0 50 100 150 200 250 300
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ac
cu

m
ul

at
ed

 e
rro

r

1e6 Adam Optimizer pre-training - Accumulated error
LR 0.01 and L1 regularizer
LR 0.01 and L2 regularizer
LR 0.001 and L1 regularizer
LR 0.001 and L2 regularizer
LR 0,01 and BN regularizer
LR 0,001 and BN regularizer

(b) Accumulated error

Figure A1. Pre-training performance with Adam Optimizer.
788

0 200 400 600 800 1000 1200 1400
Epoch

0

5000

10000

15000

20000

25000

30000

Er
ro

r

Adam Optimizer training - Error
LR 0.01 and L1 regularizer
LR 0.01 and L2 regularizer
LR 0.001 and L1 regularizer
LR 0.001 and L2 regularizer
LR 0,01 and BN regularizer
LR 0,001 and BN regularizer

(a) Error

0 200 400 600 800 1000 1200 1400
Epoch

0

5000

10000

15000

20000

Ac
cu

m
ul

at
ed

 e
rro

r

Adam Optimizer training - Accumulated error
LR 0.01 and L1 regularizer
LR 0.01 and L2 regularizer
LR 0.001 and L1 regularizer
LR 0.001 and L2 regularizer
LR 0,01 and BN regularizer
LR 0,001 and BN regularizer

(b) Accumulated error

Figure A2. Training performance with Adam Optimizer.

Figures A3 and A4 present the training results of the artificial neural network in the 789

pre-training and training of the neural network with the RMSprop optimizer. 790

Finally, Figures A5 and A6 present the training results of the artificial neural network 791

in the pre-training and training of the neural network with the SGD optimizer. 792

References 793

1. Laato, S.; Mäntymäki, M.; Islam, A.K.N.; Hyrynsalmi, S.; Birkstedt, T. Trends and Trajectories in the Software Industry: 794

implications for the future of work. Information Systems Frontiers 2023, 25, 929–944. https://doi.org/10.1007/s10796-022-10267-4. 795

https://doi.org/10.1007/s10796-022-10267-4

Version November 30, 2024 submitted to Appl. Sci. 23 of 26

0 50 100 150 200 250 300
Epoch

50000

100000

150000

200000

250000

300000

Er
ro

r

RMSprop Optimizer pre-training - Error

LR 0.01 and L1 regularizer
LR 0.01 and L2 regularizer
LR 0.001 and L1 regularizer
LR 0.001 and L2 regularizer
LR 0,01 and BN regularizer
LR 0,001 and BN regularizer

(a) Error

0 50 100 150 200 250 300
Epoch

0

25000

50000

75000

100000

125000

150000

175000

200000

Ac
cu

m
ul

at
ed

 e
rro

r

RMSprop Optimizer pre-training - Accumulated error
LR 0.01 and L1 regularizer
LR 0.01 and L2 regularizer
LR 0.001 and L1 regularizer
LR 0.001 and L2 regularizer
LR 0,01 and BN regularizer
LR 0,001 and BN regularizer

(b) Accumulated error

Figure A3. Pre-training performance with RMSprop Optimizer.

0 200 400 600 800 1000 1200 1400
Epoch

0

5000

10000

15000

20000

25000

30000

Er
ro

r

RMSprop Optimizer training - Error
LR 0.01 and L1 regularizer
LR 0.01 and L2 regularizer
LR 0.001 and L1 regularizer
LR 0.001 and L2 regularizer
LR 0,01 and BN regularizer
LR 0,001 and BN regularizer

(a) Error

0 200 400 600 800 1000 1200 1400
Epoch

0

5000

10000

15000

20000

Ac
cu

m
ul

at
ed

 e
rro

r

RMSprop Optimizer training - Accumulated Error
LR 0.01 and L1 regularizer
LR 0.01 and L2 regularizer
LR 0.001 and L1 regularizer
LR 0.001 and L2 regularizer
LR 0,01 and BN regularizer
LR 0,001 and BN regularizer

(b) Accumulated error

Figure A4. Training performance with RMSprop Optimizer.

0 50 100 150 200 250 300
Epoch

305500

305750

306000

306250

306500

306750

307000

Er
ro

r

SGD optimizer pre-training - Error
LR 0.01 and L1 regularizer
LR 0.01 and L2 regularizer
LR 0.001 and L1 regularizer
LR 0.001 and L2 regularizer
LR 0,01 and BN regularizer
LR 0,001 and BN regularizer

(a) Error

0 50 100 150 200 250 300
Epoch

20000

40000

60000

80000

100000

120000

140000

Ac
cu

m
ul

at
ed

 e
rro

r

SGD Optimizer pre-training - Accumulated error
LR 0.01 and L1 regularizer
LR 0.01 and L2 regularizer
LR 0.001 and L1 regularizer
LR 0.001 and L2 regularizer
LR 0,01 and BN regularizer
LR 0,001 and BN regularizer

(b) Accumulated error

Figure A5. Pre-training performance with SGD Optimizer.

0 200 400 600 800 1000 1200 1400
Epoch

0

1

2

3

4

5

Er
ro

r

1e8 SGD Optimizer training - Error
LR 0.01 and L1 regularizer
LR 0.01 and L2 regularizer
LR 0.001 and L1 regularizer
LR 0.001 and L2 regularizer
LR 0,01 and BN regularizer
LR 0,001 and BN regularizer

(a) Error

0 200 400 600 800 1000 1200 1400
Epoch

0

1

2

3

4

Ac
cu

m
ul

at
ed

 e
rro

r

1e6 SGD optimizer training - Accumulated error
LR 0.01 and L1 regularizer
LR 0.01 and L2 regularizer
LR 0.001 and L1 regularizer
LR 0.001 and L2 regularizer
LR 0,01 and BN regularizer
LR 0,001 and BN regularizer

(b) Accumulated error

Figure A6. Training performance with SGD Optimizer.

Version November 30, 2024 submitted to Appl. Sci. 24 of 26

2. Bourque, P.; Lavoie, J.M.; Lee, A.; Trudel, S.; Lethbridge, T.C.; et al. Guide to the software engineering body of knowledge 796

(swebok) and the software engineering education knowledge (seek)-a preliminary mapping. In Proceedings of the Proceedings 797

10th International Workshop on Software Technology and Engineering Practice. IEEE Computer Society, 2002, pp. 8–8. 798

3. Weyns, D., Software Engineering of Self-adaptive Systems. In Handbook of Software Engineering; Springer International Publishing: 799

Cham, 2019; pp. 399–443. https://doi.org/10.1007/978-3-030-00262-6_11. 800

4. Wong, T.; Wagner, M.; Treude, C. Self-adaptive systems: A systematic literature review across categories and domains. Information 801

and Software Technology 2022, 148, 106934. https://doi.org/https://doi.org/10.1016/j.infsof.2022.106934. 802

5. Abbas, N. Towards autonomic software product lines. In Proceedings of the Proceedings of the 15th International Software 803

Product Line Conference, Volume 2, 2011, pp. 1–8. 804

6. Hallsteinsen, S.; Hinchey, M.; Park, S.; Schmid, K. Dynamic Software Product Lines. Computer 2008, 41, 93–95. https: 805

//doi.org/10.1109/MC.2008.123. 806

7. Hinchey, M.; Park, S.; Schmid, K. Building Dynamic Software Product Lines. Computer 2012, 45, 22–26. https://doi.org/10.1109/ 807

MC.2012.332. 808

8. Aguayo, O.; Sepúlveda, S. Variability Management in Dynamic Software Product Lines for Self-Adaptive Systems–A Systematic 809

Mapping. Applied Sciences 2022, 12. https://doi.org/10.3390/app122010240. 810

9. Kephart, J.; Chess, D. The vision of autonomic computing. Computer 2003, 36, 41–50. https://doi.org/10.1109/MC.2003.1160055. 811

10. Cravero, A.; Pardo, S.; Sepúlveda, S.; Muñoz, L. Challenges to Use Machine Learning in Agricultural Big Data: A Systematic 812

Literature Review. Agronomy 2022, 12, 748. 813

11. Göttmann, H.; Luthmann, L.; Lochau, M.; Schürr, A. Real-time-aware reconfiguration decisions for dynamic software product 814

lines. In Proceedings of the Proceedings of the 24th ACM Conference on Systems and Software Product Line: Volume A-Volume 815

A, 2020, pp. 1–11. 816

12. Krieter, S.; Thiem, T.; Leich, T. Using Dynamic Software Product Lines to Implement Adaptive SGX-Enabled Systems. In 817

Proceedings of the Proceedings of the 13th International Workshop on Variability Modelling of Software-Intensive Systems; 818

Association for Computing Machinery: New York, NY, USA, 2019; VaMoS ’19. https://doi.org/10.1145/3302333.3302340. 819

13. Ballesteros, J.; Fuentes, L. Transfer Learning for Multiobjective Optimization Algorithms Supporting Dynamic Software Product 820

Lines. In Proceedings of the Proceedings of the 25th ACM International Systems and Software Product Line Conference - Volume B; 821

Association for Computing Machinery: New York, NY, USA, 2021; SPLC ’21, p. 51–59. https://doi.org/10.1145/3461002.3473944. 822

14. Mousavi, M.R. Automata Learning for Dynamic Software Product Lines: A Tutorial. In Proceedings of the Proceedings of the 823

27th ACM International Systems and Software Product Line Conference - Volume A; Association for Computing Machinery: 824

New York, NY, USA, 2023; SPLC ’23, p. 271–272. https://doi.org/10.1145/3579027.3609001. 825

15. Dumitrescu, C.; Mazo, R.; Salinesi, C.; Dauron, A. Bridging the Gap Between Product Lines and Systems Engineering: An 826

experience in Variability Management for Automotive Model-based Systems Engineering. In Proceedings of the 17th International 827

Software Product Line Conference (SPLC); , 2013. 828

16. Dumitrescu, C.; Tessier, P.; Salinesi, C.; Gerard, S.; Dauron, A.; Mazo, R. Capturing variability in Model Based Systems Engineering. 829

In Proceedings of the Complex Systems Design & Management (CSD&M) Conference; , 2013; pp. 100–115. 830

17. Quinton, C.; Vierhauser, M.; Rabiser, R.; Baresi, L.; Grünbacher, P.; Schuhmayer, C. Evolution in dynamic software product lines. 831

Journal of Software: Evolution and Process 2021, 33, e2293, [https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2293]. e2293 832

smr.2293, https://doi.org/https://doi.org/10.1002/smr.2293. 833

18. Weckesser, M.; Kluge, R.; Pfannemüller, M.; Matthé, M.; Schürr, A.; Becker, C. Optimal reconfiguration of dynamic software 834

product lines based on performance-influence models. In Proceedings of the Proceedings of the 22nd International Systems and 835

Software Product Line Conference-Volume 1, 2018, pp. 98–109. 836

19. Gharsellaoui, H.; Maazoun, J.; Bouassida, N.; Ahmed, S.B.; Ben-Abdallah, H. A Software Product Line Design Based Approach 837

for Real-time Scheduling of Reconfigurable Embedded Systems. Computers in Human Behavior 2021, 115, 104925. https: 838

//doi.org/https://doi.org/10.1016/j.chb.2017.04.026. 839

20. Royer, J.C.; Arboleda, H. Model-driven and software product line engineering; Wiley-ISTE, 2013. 840

21. Rosenmüller, M.; Siegmund, N.; Pukall, M.; Apel, S. Tailoring dynamic software product lines. In Proceedings of the Proceedings 841

of the 10th ACM international conference on Generative programming and component engineering, 2011, pp. 3–12. 842

22. Santos, I.S.; Rocha, L.S.; Neto, P.A.S.; Andrade, R.M. Model verification of dynamic software product lines. In Proceedings of the 843

Proceedings of the 30th Brazilian Symposium on Software Engineering, 2016, pp. 113–122. 844

23. Guedes, G.; Silva, C.; Soares, M. Comparing configuration approaches for dynamic software product lines. In Proceedings of the 845

Proceedings of the 31st Brazilian Symposium on Software Engineering, 2017, pp. 134–143. 846

24. Salehie, M.; Tahvildari, L. Self-Adaptive Software: Landscape and Research Challenges. ACM Trans. Auton. Adapt. Syst. 2009, 4. 847

https://doi.org/10.1145/1516533.1516538. 848

25. Kephart, J.; Chess, D. The vision of autonomic computing. Computer 2003, 36, 41–50. https://doi.org/10.1109/MC.2003.1160055. 849

26. Bezerra, C.; Lima, R.; Silva, P., DyMMer 2.0: A Tool for Dynamic Modeling and Evaluation of Feature Model. In Brazilian 850

Symposium on Software Engineering; Association for Computing Machinery: New York, NY, USA, 2021; p. 121–126. 851

27. Silva, P.; Bezerra, C.; Machado, I. Automating Feature Model maintainability evaluation using machine learning techniques. 852

Journal of Systems and Software 2023, 195, 111539. https://doi.org/https://doi.org/10.1016/j.jss.2022.111539. 853

https://doi.org/10.1007/978-3-030-00262-6_11
https://doi.org/https://doi.org/10.1016/j.infsof.2022.106934
https://doi.org/10.1109/MC.2008.123
https://doi.org/10.1109/MC.2008.123
https://doi.org/10.1109/MC.2008.123
https://doi.org/10.1109/MC.2012.332
https://doi.org/10.1109/MC.2012.332
https://doi.org/10.1109/MC.2012.332
https://doi.org/10.3390/app122010240
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1145/3302333.3302340
https://doi.org/10.1145/3461002.3473944
https://doi.org/10.1145/3579027.3609001
http://xxx.lanl.gov/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2293
https://doi.org/https://doi.org/10.1002/smr.2293
https://doi.org/https://doi.org/10.1016/j.chb.2017.04.026
https://doi.org/https://doi.org/10.1016/j.chb.2017.04.026
https://doi.org/https://doi.org/10.1016/j.chb.2017.04.026
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/https://doi.org/10.1016/j.jss.2022.111539

Version November 30, 2024 submitted to Appl. Sci. 25 of 26

28. Alférez, G.; Pelechano, V.; Mazo, R.; Salinesi, C.; Diaz, D. Dynamic adaptation of service compositions with variability models. 854

Journal of Systems and Software 2014, 91, 24–47. https://doi.org/https://doi.org/10.1016/j.jss.2013.06.034. 855

29. Mazo, R.; Muñoz Fernández, J.C.; Rincón, L.; Salinesi, C.; Tamura, G. VariaMos: An Extensible Tool for Engineering (Dynamic) 856

Product Lines. In Proceedings of the Proceedings of the 19th International Conference on Software Product Line; Association for 857

Computing Machinery: New York, NY, USA, 2015; SPLC ’15, p. 374–379. https://doi.org/10.1145/2791060.2791103. 858

30. Mendonca, M.; Branco, M.; Cowan, D. S.P.L.O.T.: Software Product Lines Online Tools. In Proceedings of the Proceedings of the 859

24th ACM SIGPLAN Conference Companion on Object Oriented Programming Systems Languages and Applications; Association 860

for Computing Machinery: New York, NY, USA, 2009; OOPSLA ’09, p. 761–762. https://doi.org/10.1145/1639950.1640002. 861

31. Thüm, T.; Kästner, C.; Benduhn, F.; Meinicke, J.; Saake, G.; Leich, T. FeatureIDE: An extensible framework for feature-oriented 862

software development. Science of Computer Programming 2014, 79, 70–85. 863

32. Linsbauer, L.; Westphal, P.; Bittner, P.M.; Krieter, S.; Thüm, T.; Schaefer, I. Derivation of Subset Product Lines in FeatureIDE. 864

In Proceedings of the Proceedings of the 26th ACM International Systems and Software Product Line Conference - Volume B; 865

Association for Computing Machinery: New York, NY, USA, 2022; SPLC ’22, p. 38–41. https://doi.org/10.1145/3503229.3547033. 866

33. Wieringa, R.J. Design science methodology for information systems and software engineering; Springer, 2014. 867

34. Runeson, P.; Engström, E.; Storey, M.A., The Design Science Paradigm as a Frame for Empirical Software Engineering. In 868

Contemporary Empirical Methods in Software Engineering; Springer International Publishing: Cham, 2020; pp. 127–147. https: 869

//doi.org/10.1007/978-3-030-32489-6_5. 870

35. Silveira, C.; Reis, L. Sustainability in Software Engineering: A Design Science Research Approach. In Proceedings of the 8th 871

International Scientific ERAZ Conference – ERAZ 2022 – Conference Proceedings. Association of Economists and Managers of 872

the Balkans, Belgrade, Serbia, 2022, ERAZ 2022. https://doi.org/10.31410/eraz.2022.317. 873

36. Petersen, K.; Vakkalanka, S.; Kuzniarz, L. Guidelines for conducting systematic mapping studies in software engineering: An 874

update. Information and Software Technology 2015, 64, 1–18. https://doi.org/https://doi.org/10.1016/j.infsof.2015.03.007. 875

37. Steurer, J. The Delphi method: an efficient procedure to generate knowledge. Skeletal radiology 2011, 40, 959–961. 876

38. Glass, R.L.; Ramesh, V.; Vessey, I. An Analysis of Research in Computing Disciplines. Commun. ACM 2004, 47, 89–94. 877

https://doi.org/10.1145/990680.990686. 878

39. Choetkiertikul, M.; Dam, H.K.; Tran, T.; Pham, T.; Ghose, A.; Menzies, T. A Deep Learning Model for Estimating Story Points. 879

IEEE Transactions on Software Engineering 2019, 45, 637–656. https://doi.org/10.1109/TSE.2018.2792473. 880

40. Vázquez-Ingelmo, A.; García-Holgado, A.; García-Peñalvo, F.J.; Therón, R. Proof-of-concept of an information visualization classifi- 881

cation approach based on their fine-grained features. Expert Systems 2023, 40, e12872, [https://onlinelibrary.wiley.com/doi/pdf/10.1111/exsy.12872].882

https://doi.org/https://doi.org/10.1111/exsy.12872. 883

41. da Assunção Moutinho, J.; Fernandes, G.; Rabechini, R. Evaluation in design science: A framework to support project studies 884

in the context of University Research Centres. Evaluation and Program Planning 2024, 102, 102366. https://doi.org/https: 885

//doi.org/10.1016/j.evalprogplan.2023.102366. 886

42. Robey, D.; Welke, R.; Turk, D. Traditional, iterative, and component-based development: A social analysis of software development 887

paradigms. Information Technology and Management 2001, 2, 53–70. 888

43. Esperguel, M.; Sepúlveda, S.; Monsalve, E. FMxx: A proposal for the creation, management and review of feature models in 889

software product lines. In Proceedings of the 2017 36th Int. Conf. of the Chilean Computer Science Society (SCCC), 2017, pp. 1–7. 890

https://doi.org/10.1109/SCCC.2017.8405152. 891

44. He, Y.; Tian, Y.; Liu, D. Multi-view transfer learning with privileged learning framework. Neurocomputing 2019, 335, 131–142. 892

https://doi.org/https://doi.org/10.1016/j.neucom.2019.01.019. 893

45. Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering 2010, 22, 1345–1359. 894

https://doi.org/10.1109/TKDE.2009.191. 895

46. Singh, D.; Singh, B. Investigating the impact of data normalization on classification performance. Applied Soft Computing 2020, 896

97, 105524. https://doi.org/https://doi.org/10.1016/j.asoc.2019.105524. 897

47. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; 898

et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 2011, 12, 2825–2830. 899

48. Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. 900

IEEE Transactions on Neural Networks and Learning Systems 2022, 33, 6999–7019. https://doi.org/10.1109/TNNLS.2021.3084827. 901

49. Banerjee, C.; Mukherjee, T.; Pasiliao, E. An Empirical Study on Generalizations of the ReLU Activation Function. In Proceedings 902

of the Proceedings of the 2019 ACM Southeast Conference; Association for Computing Machinery: New York, NY, USA, 2019; 903

ACM SE ’19, p. 164–167. https://doi.org/10.1145/3299815.3314450. 904

50. Kashyap, N.; Singh, S.; Kumar, V.; Singla, K. Using Convolutional Neural Network for Human Posture Estimation: A study 905

of the effects of number of layers and number of neurons on accuracy. In Proceedings of the 2023 International Conference on 906

Disruptive Technologies (ICDT), 2023, pp. 8–12. https://doi.org/10.1109/ICDT57929.2023.10150730. 907

51. Nusrat, I.; Jang, S.B. A Comparison of Regularization Techniques in Deep Neural Networks. Symmetry 2018, 10. https: 908

//doi.org/10.3390/sym10110648. 909

52. Rahangdale, A.; Raut, S. Deep Neural Network Regularization for Feature Selection in Learning-to-Rank. IEEE Access 2019, 910

7, 53988–54006. https://doi.org/10.1109/ACCESS.2019.2902640. 911

https://doi.org/https://doi.org/10.1016/j.jss.2013.06.034
https://doi.org/10.1145/2791060.2791103
https://doi.org/10.1145/1639950.1640002
https://doi.org/10.1145/3503229.3547033
https://doi.org/10.1007/978-3-030-32489-6_5
https://doi.org/10.1007/978-3-030-32489-6_5
https://doi.org/10.1007/978-3-030-32489-6_5
https://doi.org/10.31410/eraz.2022.317
https://doi.org/https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1145/990680.990686
https://doi.org/10.1109/TSE.2018.2792473
http://xxx.lanl.gov/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/exsy.12872
https://doi.org/https://doi.org/10.1111/exsy.12872
https://doi.org/https://doi.org/10.1016/j.evalprogplan.2023.102366
https://doi.org/https://doi.org/10.1016/j.evalprogplan.2023.102366
https://doi.org/https://doi.org/10.1016/j.evalprogplan.2023.102366
https://doi.org/10.1109/SCCC.2017.8405152
https://doi.org/https://doi.org/10.1016/j.neucom.2019.01.019
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/https://doi.org/10.1016/j.asoc.2019.105524
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1145/3299815.3314450
https://doi.org/10.1109/ICDT57929.2023.10150730
https://doi.org/10.3390/sym10110648
https://doi.org/10.3390/sym10110648
https://doi.org/10.3390/sym10110648
https://doi.org/10.1109/ACCESS.2019.2902640

Version November 30, 2024 submitted to Appl. Sci. 26 of 26

53. Wang, T.; Kerschbaum, F. Attacks on Digital Watermarks for Deep Neural Networks. In Proceedings of the ICASSP 2019 912

- 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 2622–2626. https: 913

//doi.org/10.1109/ICASSP.2019.8682202. 914

54. Barlaud, M.; Guyard, F. Learning sparse deep neural networks using efficient structured projections on convex constraints 915

for green AI. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), 2021, pp. 1566–1573. 916

https://doi.org/10.1109/ICPR48806.2021.9412162. 917

55. Wu, S.; Li, G.; Deng, L.; Liu, L.; Wu, D.; Xie, Y.; Shi, L. L1 -Norm Batch Normalization for Efficient Training of Deep Neural 918

Networks. IEEE Transactions on Neural Networks and Learning Systems 2019, 30, 2043–2051. https://doi.org/10.1109/TNNLS.2018 919

.2876179. 920

56. Abdalla, Y.; Iqbal, M.T.; Shehata, M. Convolutional Neural Network for Copy-Move Forgery Detection. Symmetry 2019, 11. 921

https://doi.org/10.3390/sym11101280. 922

57. Mańdziuk, J.; Żychowski, A. Dimensionality Reduction in Multilabel Classification with Neural Networks. In Proceedings of the 923

2019 International Joint Conference on Neural Networks (IJCNN), 2019, pp. 1–8. https://doi.org/10.1109/IJCNN.2019.8852156. 924

58. Queiroz, R.; Berger, T.; Czarnecki, K. Towards Predicting Feature Defects in Software Product Lines. In Proceedings of 925

the Proceedings of the 7th International Workshop on Feature-Oriented Software Development; Association for Computing 926

Machinery: New York, NY, USA, 2016; FOSD 2016, p. 58–62. https://doi.org/10.1145/3001867.3001874. 927

59. Ghofrani, J.; Kozegar, E.; Bozorgmehr, A.; Soorati, M.D. Reusability in Artificial Neural Networks: An Empirical Study. In 928

Proceedings of the Proceedings of the 23rd International Systems and Software Product Line Conference - Volume B; Association 929

for Computing Machinery: New York, NY, USA, 2019; SPLC ’19, p. 122–129. https://doi.org/10.1145/3307630.3342419. 930

60. Nienaber, S.; Soorati, M.D.; Ghasemzadeh, A.; Ghofrani, J. Software Product Lines for Development of Evolutionary Robots. 931

In Proceedings of the Proceedings of the 27th ACM International Systems and Software Product Line Conference - Volume B; 932

Association for Computing Machinery: New York, NY, USA, 2023; SPLC ’23, p. 77–84. https://doi.org/10.1145/3579028.3609018. 933

61. Tsai, C.F.; Chen, M.L. Credit rating by hybrid machine learning techniques. Applied Soft Computing 2010, 10, 374–380. https: 934

//doi.org/https://doi.org/10.1016/j.asoc.2009.08.003. 935

62. Windeatt, T. Accuracy/Diversity and Ensemble MLP Classifier Design. IEEE Transactions on Neural Networks 2006, 17, 1194–1211. 936

https://doi.org/10.1109/TNN.2006.875979. 937

63. Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 1997, 938

30, 1145–1159. https://doi.org/https://doi.org/10.1016/S0031-3203(96)00142-2. 939

64. Lipton, Z.C.; Elkan, C.; Naryanaswamy, B. Optimal Thresholding of Classifiers to Maximize F1 Measure. In Proceedings of the 940

Machine Learning and Knowledge Discovery in Databases; Calders, T.; Esposito, F.; Hüllermeier, E.; Meo, R., Eds.; Springer 941

Berlin Heidelberg: Berlin, Heidelberg, 2014; pp. 225–239. 942

65. Chollet, F.; et al. Keras. https://keras.io, 2015. 943

66. Peltonen, S.; Mezzalira, L.; Taibi, D. Motivations, benefits, and issues for adopting Micro-Frontends: A Multivocal Literature 944

Review. Information and Software Technology 2021, 136, 106571. https://doi.org/https://doi.org/10.1016/j.infsof.2021.106571. 945

67. Edstrom, J.; Goodyear, J.; Kesler, H. Learning Apache Karaf; Packt Publishing Birmingham, UK, 2013. 946

68. Mangwani, P.; Mangwani, N.; Motwani, S. Evaluation of a Multitenant SaaS Using Monolithic and Microservice Architectures. 947

SN Computer Science 2023, 4, 185. https://doi.org/10.1007/s42979-022-01610-2. 948

69. Nsouli, A.; Mourad, A.; El-Hajj, W. Reinforcement Learning Based Scheme for On-Demand Vehicular Fog Formation and Micro 949

Services Placement. In Proceedings of the 2022 International Wireless Communications and Mobile Computing (IWCMC), 2022, 950

pp. 1244–1249. https://doi.org/10.1109/IWCMC55113.2022.9824490. 951

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 952

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 953

people or property resulting from any ideas, methods, instructions or products referred to in the content. 954

https://doi.org/10.1109/ICASSP.2019.8682202
https://doi.org/10.1109/ICASSP.2019.8682202
https://doi.org/10.1109/ICASSP.2019.8682202
https://doi.org/10.1109/ICPR48806.2021.9412162
https://doi.org/10.1109/TNNLS.2018.2876179
https://doi.org/10.1109/TNNLS.2018.2876179
https://doi.org/10.1109/TNNLS.2018.2876179
https://doi.org/10.3390/sym11101280
https://doi.org/10.1109/IJCNN.2019.8852156
https://doi.org/10.1145/3001867.3001874
https://doi.org/10.1145/3307630.3342419
https://doi.org/10.1145/3579028.3609018
https://doi.org/https://doi.org/10.1016/j.asoc.2009.08.003
https://doi.org/https://doi.org/10.1016/j.asoc.2009.08.003
https://doi.org/https://doi.org/10.1016/j.asoc.2009.08.003
https://doi.org/10.1109/TNN.2006.875979
https://doi.org/https://doi.org/10.1016/S0031-3203(96)00142-2
https://keras.io
https://doi.org/https://doi.org/10.1016/j.infsof.2021.106571
https://doi.org/10.1007/s42979-022-01610-2
https://doi.org/10.1109/IWCMC55113.2022.9824490

	Introduction
	Background
	Dynamic Software Product Lines
	Self-adaptive Systems

	Related Work
	Methodology
	Problem investigation
	Treatment design
	Treatment validation
	Treatment implementation

	FMweb-K framework
	Variability management through MAPE-K loop and deep learning
	Test Case Scenario
	Preliminary validation

	Results
	Generation of variation points
	Identification of variation points through deep learning
	Variability management in DSPL using the MAPE-K control loop
	Proof of concept

	Discussion
	Conclusions
	
	References

