
HAL Id: hal-04812311
https://hal.science/hal-04812311v1

Submitted on 30 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An HLS algorithm for the direct synthesis of complex
control flow graphs into finite state machines with

implicit datapath
Jean-Christophe Le Lann

To cite this version:
Jean-Christophe Le Lann. An HLS algorithm for the direct synthesis of complex control flow graphs
into finite state machines with implicit datapath. 27th Euromicro Conference Series on Digital System
Design, Aug 2024, Paris, France. �hal-04812311�

https://hal.science/hal-04812311v1
https://hal.archives-ouvertes.fr


1

An HLS algorithm for the direct synthesis of
complex control flow graphs into

finite state machines with implicit datapath
Jean-Christophe Le Lann

ENSTA Bretagne Lab-STICC UMR 6285, Brest, France
Email: jean-christophe.le lann@ensta-bretagne.fr

Abstract—In this paper, we introduce an efficient algorithm
for automating the direct transformation of a control flow
graph (CFG) into a synthesizable finite-state machine with
implicit datapath (FSMD). In our opinion, this transformation
has not received sufficient attention: although the passage of
a CFG to FSMD is mentioned in many textbooks on digital
system design, and presented as trivial, to our knowledge it has
never been explicitly formulated nor automated. Our experience
shows, moreover, that this process is trickier than claimed.
We believe our algorithm can become a key transformation
for high-level synthesis (HLS) of control-dominated applications
presenting a low level of instruction-level parallelism. Our paper
presents the algorithm in detailed procedural form. Experimental
measurements carried out on synthetic benchmarks shows its
effectiveness.

I. INTRODUCTION

High-level synthesis (HLS) [1] is now a mature and
widespread technique for designing digital circuits. It
involves transforming a source program, usually written in C
or any other imperative language, into a circuit described at
register transfer level (RTL). HLS thus relieves the designer
of the task of defining the micro-architecture, which is
considered error-prone at this level of design. What’s more,
HLS enables the designer to explore different solutions for far
more complex algorithms than can be handled by paper and
pencil. The adoption of HLS in most industrial design-houses
has been achieved thanks to the intensive and continuous
work of the academic community [2]. However, there has
been a strong focus on a particular type of applications,
namely those with a high degree of instruction parallelism
(ILP). These applications enable HLS compilers to exhibit
data-flow graphs (DFG), on which the algorithms are now
particularly effective: HLS compilers are able to propose
near-optimal solutions in terms of the number of resources
used or the number of computation cycles. These synthesis
capabilities are particularly impressive and irreplaceable for
large DFGs.

However this focus and progresses have been to the detri-
ment of control-intensive applications. In this second type
of applications, we find a large number of conditional in-
structions, as well as loops (notably non-unrollable loops)
carrying out waiting operations (synchronization on inputs or
outputs) interwoven with conventional calculations. For such

applications, HLS compilers struggle to run their traditional
algorithms: for example, the classic phase of scheduling the
instructions present in the DFG on different control-steps is
inoperative here, by lack of deep DFGs. This type of control-
intensive applications is much more widespread than initially
imagined. For example, they intervene at the periphery of
regular calculation kernels, in order to retrieve data according
to protocols that are often complex. Among them are the
protocols associated with video decoders (H264, for exam-
ple), which have a real syntax requiring the development of
complete and complex parsers [3], which will feed SIMD-
like accelerator kernel dedicated to image reconstruction [4].
More generally, they also appear during packet processing in
network-oriented applications [5]. These parsers require few
calculations: only a few counters need to be updated, as and
when required. In general terms, this means that there are
applications that can make many complex decisions without
complex calculations. This absence of complex calculations
makes conventional HLS practically useless, and calls for
alternative way of thinking about RTL generation.

In this article, we propose an algorithm that, given a control-
intensive application, transforms its control flow graph to a
finite state machine form at the RTL level directly, without
running conventional HLS passes. Although such processes
have been mentioned in the literature, to our knowledge no
effective formulation in executable algorithmic form has been
proposed.

Our paper is structured as follows. Section II provides
some definitions and a formulation of the problem. Section
III details the algorithm using several pseudo-codes. Section
IV presents experiments carried out to validate the algorithm
and particularly its performance. Sections V proposes different
related works. Section VII finally concludes our paper.

II. DEFINITIONS AND PROBLEM STATEMENT

A. Control flow graphs

Control flow graphs (CFG) serve as a classical compiler
intermediate representation (IR) for representing and analyzing
program behaviors, enabling various compiler optimizations,
such as dead code elimination, loop optimization, and register
allocation. Hereafter, the terms CFG and IR may be used
interchangeably. A CFG can be processed as a directed graph
G = (V,E) where:



2

Fig. 1. GCD source code example, together with its CFG acting as compiler
intermediate representation

• V is a set of vertices representing basic blocks or control
flow nodes in the program.

• E is a set of directed edges representing control flow
transitions between basic blocks. Each edge (vi, vj) ∈ E
indicates that control can flow from basic block vi
to basic block vj . The edge from vi to vj may be
labeled as vi

α−→ vj with a boolean condition value
α ∈ {true,false}, in the case where basic block vi
contains a conditional branching instruction .

The CFG satisfies the following properties:
1) Single entry point: there exists a unique vertex, typically

denoted as the entry node, representing the starting point
of the program’s execution. In the sequel, CFG entry
points will be drawn at the top of the figures.

2) Single exit Point: there may exist a unique vertex,
typically denoted as the exit node, representing the
termination point of the program’s execution. In the case
of reactive applications, that continuously interact with
their environment, this exit point may not exist (looping
behaviors).

B. Basic blocks and superblocks
A basic block itself is a sequence of sequential instructions

with a single entry point at the beginning and a single exit
point at the end. It contains no branches, except possibly at the
end : in the sequel, we will resort to goto for an unconditional
jump to next labeled basic block and ite (if-then-else) for a
conditional jump to two labeled basic blocks, depending on a
boolean value.

The literature also evokes the notion of superblocks. A
superblock is an extended basic block that may contain mul-
tiple basic blocks. Superblocks are designed to capture linear
sequences of code execution (sometimes called ’traces’). A
superblock ends when the flow of control hits a conditional
jump like ite or any control flow instruction that introduces
multiple potential paths of execution, such as a switch state-
ment or a function call. In this article, we will aim to create
groupings of chained basic blocks, but we won’t talk about
superblocks, as this chaining can indeed contain basic blocks
pointed to by such a ite branching instruction.

Fig. 2. Problem statement : given a CFG with n basic blocks (here n = 6)
from figure 1, we look for the FSM covering the CFG using a minimum
number of states (here 2) that respect synchronous digital design rules.

C. Overview of the HLS process

Together, the CFG and DFGs form a CDFG (control and
data flow graph). In classic HLS synthesis, instruction par-
allelism is mainly found in the basic blocks: the compiler
seeks to establish a data flow graph from these instructions.
As the DFG has no cycles, it is often referred to as a DAG
(direct acyclic graph). It could also be noted that this data
flow graph is potentially unconnected (meaning that several
DAGs can emerge from a single basic block). Based on
resource constraints expressed in number of functional units
(FU) allocated, DFGs nodes are then scheduled on control-
steps (c-steps) and mapped to these FUs. DFG edges are
similarly mapped to either registers or wires, depending on
operation chaining. Datapath controller generation ensures that
the order of scheduled operations is respected, and that data
is routed from registers to functional units. This requires the
creation of as many intermediate states as there are control
steps (c-steps). But this same controller must, naturally, ensure
the execution of the application’s control flow: most generally,
the controller ensures inter-basic block sequential chaining, by
allocating at least one state per basic block. In traditional HLS,
the general structure of the controller thus reflects the structure
of the CFG.

D. Problem statement

We will now look at the degenerate case where the DFGs
are particularly shallow and show little parallelism, and where,
conversely, the CFG is predominant. The previous HLS pro-
cess is then visibly naive: such a naive synthesis leads to
the generation of a controller that now strictly reflects the
initial CFG structure, which is of no interest when looking for
hardware acceleration. To help us understand this, let’s look at
the CDFG of the very trivial Euclide GCD (greatest common
divisor) calculation example in Figure 1. None of the contents
of the basic blocks are parallel, and our previously described
classical HLS procedure inevitably leads to a controller with 6
states (one per basic block). However, we are well aware that
it is possible to describe a much clever automaton as shown
in the figure 2, using the fact that it is perfectly possible to
perform conditional operations in combinatorial logic, leading



3

to Mealy-style FSM. This automaton now has only 2 states.
We can now formulate the problem we’re seeking to address as
follows: given the CFG of an application, how many states
are required for its execution as a synthesizable finite state
machine ?

E. Implicit FSMD model as process target

The previous GCD example led us to modify the result of
the behavioral synthesis: we authorized the generation of an
FSM whose states operate directly on the variables of our
application, rather than controling an external datapath. In
reality, this design model is more natural for RTL designers,
who do not systematically separate controler and datapath
whenever possible (which is still the case when no resource
sharing is involved). This universal model is an extended
state machine, which performs calculations in situ. As such,
this style of FSMD is sometimes refered as implicit as the
datapath (’D’ of FSMD) is not explicitly isolated [6]. A formal
description of this model can be found in [7]. In concrete
terms, if we refer to VHDL or Verilog code, this means
that the automaton described not only has state transition
logic, but also combinatorial conditional assignments that
modify signals and registers. Our key observation is that these
conditionals can be deeply nested and as complex as desired,
at least as long as they don’t burden the clock frequency.
Both assignments and state changes can be described within
these nested conditionals. These conditionals, which would
necessarily involve a change of state in a classical HLS, can
here be absorbed by combinatorial logic, within a smaller
number of states. Figure 3 gives an example of the textual
FSM generated by our compiler (named Archipel) for the GCD
example. Note also that despite their intuitive nature, FSMDs

Fig. 3. Textual FSM generated for GCD example from figure 1, as output
of our compiler. Syntax resembles VHDL or Verilog and makes it easy to
generate both (VHDL in our case). Nested if-else statements appearing
here have been easily regenerated from ite and goto basic block statements
within CFG/IR.

do not dispense with the usual precautions when it comes to
digital design: in particular, combinatorial loops are obviously

Fig. 4. Algorithm flow.

Fig. 5. Algorithm illustration. On the left : loop detection (red dots), state
population (dotted ovals) and illegal transition detection (red cross). In the
center : supplemental state D created to fix illegal transition. On the right :
final FSM structure.

illegal. This remark is the very starting point of our algorithm,
proposed in next section.

III. ALGORITHM PROPOSED

A. Overview

Our top-level algorithm is presented in pseudo-code Algo-
rithm 1 and illustrated in Figure 4. It is divided into three main
steps : loop detection, states population and illegal transition
handling. Its execution can be followed again as depicted in
Figure 5 on an illustrative input CFG.

Loop detection step Our algorithm first seeks to detect the
basic blocks to which execution paths loop. If ignored, these
structural loops between basic blocks would also generate
loops in the combinatorial logic of the FSM, which is of
course prescribed. Each of these basic blocks then represents
the first basic block of a distinct state of the FSM under
construction. We will call such a basic block a ”starter” of the
state. The visit of the CFG itself follows a depth-first seach
(DFS) algorithm [8]. Figure 5 shows an illustrative case. The
red dots indicate the determination of these starters (1,2 and
4 basic blocks). As the CFG entry, basic block labelled 1
naturally starts a state.

State population step From every starter, associated with a
state, the CFG is traversed again in a depth-first manner, until
another starter is hit. When hitting such a starter, it means that
we have reached the limit of the current state and the switching
to a new state. Until reaching this limit, the basic blocks visited



4

are mapped to the current state. These first groupings of basic
blocks are shown dotted on the figure. In our algorithm, this
simple grouping process is called the population phase. In our
example, we finally obtain 3 distinct states, A, B and C, from
7 basic blocks.

Illegal transitions handling step Our algorithm continues
with an mandatory third step, which is the heart of our
procedure. To understand why previous steps are not sufficient,
let’s take a look at the transition from 2 to 6 (marked with
a cross). The associated states are B and C. Transitioning
from 2 to 6 likewise is actually illegal : in terms of state
transition, it would imply that we can transit from one state
to another, without passing through the basic block starter of
the destination state. This RTL behavior is impossible to write
in HDL code : it is not possible to transition to the ”middle
of a state”. To fix this situation, an additional state (named
D in the example) is added, whose starter is the destination
basic block. In our example, after a population phase (similar
to step 2) , the new fourth state D now includes basic blocks
6 and 7.

Iteration step As the creation of this last state may itself
invalidate transitions processed previously, previous step must
be iterated. Our example of figure 5 does not necessitate
any such iterations, but our next experiments on synthetic
benchmarks will make them mandatory. We notice that this
iteration step has an acceptable complexity cost: indeed, the
initial grouping of basic blocks, during the first two phases of
the algorithm, tends to facilitate the quick detection of these
illicit transitions. This is verified experimentally in section IV.

This algorithm makes it possible to establish the final FSM,
represented fig 5 for our illustrating example : we finally get
4 states, from a CFG consisting of 7 basic blocks.

B. Pseudo-code
To maximize its reuse, our algorithm pseudo code is pre-

sented below in its entirety.

Algorithm 1 Top-level CFG to FSMD
Input: a CFG
Output: a FSM

1: call loop detection procedure ▷ Algorithm 2 & 3
2: set retry to true
3: while retry do
4: call populate states procedure ▷ Algorithm 4 & 5
5: call detect illegal transitions ▷ Algorithm 6 & 7
6: if number of states differs then
7: set retry to true
8: else
9: set retry to false

10: end if
11: end while
12: return FSM

IV. EXPERIMENTS

A. Evaluation of algorithm complexity
We conducted a number of experiments to measure the

efficiency of our algorithm, and to deduce an asymptotic

Algorithm 2 Loop detection
Inputs: CFG
Output: FSM

1: mark all nodes as not visited
2: pick the CFG basic block entry L0

3: create a first current state, that covers L0

4: add current state to FSM
5: map L0 to current state
6: call detect loop rec(CFG,L0,empty path)
7: return FSM

Algorithm 3 Recursive detect loop rec procedure
Inputs: CFG, bb node, path
Output: updated FSM

1: if node already visited then
2: if node already in current path then
3: if node not already a state starter then
4: add new state with node as starter
5: map node to state
6: end if
7: end if
8: return
9: else

10: add node to visited set
11: for all node successors do
12: new path=clone path
13: add node to new path
14: call detect loop rec(g,succ,new path)
15: end for
16: end if

Algorithm 4 State population procedure
Inputs: CFG, FSM
Output: updated FSM

1: mark all nodes as not visited
2: for all state of the FSM do
3: get state starter L
4: call populate rec(cfg,L,state)
5: end for

Algorithm 5 Recursive populate rec procedure
Inputs: CFG, bb node, state
Output: updated FSM

1: return if node already visited
2: if visited node is already a state starter then
3: return
4: else
5: if visited node is not current state starter then
6: map node to state
7: end if
8: mark node as visited
9: for all successor succ of node in CFG do

10: call populate rec(cfg,succ,state)
11: end for
12: end if



5

Algorithm 6 Iterative detect illegal transitions
Inputs: CFG, FSM
Output: updated FSM

1: pick CFG entry L0
2: call detect illegal transitions rec(cfg,L0)

Algorithm 7 detect illegal transition rec
Inputs: CFG,bb node
Output: updated FSM

1: get current state that maps to node
2: if node already visited then return
3: else
4: mark node as visited
5: for all successor succ of node do
6: get next state that maps to succ
7: if curr state != next state then
8: get starter of next state
9: if succ!=starter then

10: if no state has already this starter then
11: create new state, starting by succ
12: map succ to this new state
13: abort illegal transitions detection
14: end if
15: end if
16: end if
17: call detect illegal transition rec(cfg,succ)
18: end for
19: end if

complexity, which is difficult to find analytically. To this end,
we randomly generated a large number of CFGs and report
the number of states found for each of the CFG.

These CFGs can contain a variable number of basic blocks,
transitions (ite and goto) and loops. In order to provide
an objective measure of the complexity of generated CFGs,
we provide the cyclomatic complexity measure, due to Mc-
Cabe [9]. Cyclomatic complexity quantifies the intricacy of a
program’s control flow graph, correlating with the difficulty
of comprehending and analyzing its logic; higher complexity
implies greater cognitive load for understanding code. In
concrete terms, this is the simple formula C = E −N + 2P ,
where N is the number of basic blocks, E the number of arcs
and P the number of graph connected components. In our case,
P is always 1, because our CFGs take the form of a perfectly
connected graph. The measures are reported in Figure 7.a. The
measured worst case complexity is polynomial in O(n1.58).

B. Efficiency of states gathering

Figure 7.b shows the measurement of the number of de-
tected states as a function of the number of basic blocks
present in the input CFG. The relationship is clearly linear: the
directing coefficient of the linear interpolation is 3.4, which
means that on average each state is capable of covering 3.4
basic blocks.

Fig. 6. Example test CFG generated, and processed by our algorithm. Same
colored basic blocks indicate they belong to the same FSM state. Here eight
states were found.

V. RELATED WORKS

A. ASMD related work

As mentioned in the abstract, many introductory books on
digital circuit design allude to a process similar to the one
described in our article. However, the object on which this
procedure is applied is not explicitly a compiler intermediate
representation like a control-flow graph : in particular, these
books start from a relatively old graphical formalism called
ASM or ASMD (algorithmic state machine description), orig-
inally developed by Thomas E. Osborne and made popular
by Christopher R. Clare [10] in the 60-70th. For instance,
this formalism is at the heart of Pr Chu’s more recent series
of books (for instance [6]), but can also be found in many
others [11] etc. ASMD can be understood as a flowchart taken
as entry graphical language. None of these books actually
proposes an explicit algorithm for switching from ASMD
or flowchart to FSMD. Barkarov’s book [12] also considers
such an ASMD formalism as the means to capture circuit
specifications at a higher level than finite state automata (like
[13]), and details how to encode them at the logic level.
However, the production of the ASMD is considered to be the
responsibility of the designer, but is not part of a complete
HLS approach.

B. Hydrid representation of control and dataflows for HLS

Several authors have attempted to propose intermediate rep-
resentations that reconcile control-flow and data-flow concerns



6

(a) Algorithm performance measured as time (y axis,
in seconds) function of McCabe complexity (x axis).
Lower is better. McCabe complexity accounts here for
a growing number of basic blocks and branching behav-
iors. The measured worst case complexity (upper points)
is polynomial in O(n1.58)

(b) Capacity of our algorithm to gather basic blocks into
states : number of states detected for 1000 CFGs with
a growing number of basic blocks (x axis)

Fig. 7. In each case, 1000 CFGs have been generated and processed using our algorithm prototyped as a Ruby program (a notably slow programming
language).

for HLS. These alternative representations to conventional
CDFGs are called “hybrid” CDFGs [1]. For example, [14]
and [15] have proposed a type of fully flattened dataflow
graph, whose arcs are annotated with complex boolean guards,
restoring instantaneous control paths from the application’s
point of view. This approach, based on the complete flattening
of data flows and the construction of such new hybrid control-
data flow graph, also means a complete dismantling of the
CFG, which is no longer manipulated as such during HLS.
Dropping the CFG structure seems highly damaging, and in
particular makes the generated code particularly obscure.

C. Dataflow analysis

In the field of compilation, there is of course a wealth
of work on visiting the CFG for different purposes. This is
particularly true of dataflow analysis. Dataflow analysis is a
technique that examines how values flow through a program,
essential for optimizations and dependency detection. It is
divided into forward and backward analysis, determining the
propagation of data from beginning to end and from points of
use to origins, essential for eliminating dead code, propagating
constants and detecting loops. The places where values are
produced and consumed can be different basic blocks, making
dataflow analysis highly dependent on analysis of the CFG
structure. The work of Cytron et al. [16] formalized the SSA
(Static Single Assignment) form of CFGs. In this approach, the
CFG is revisited in order to rename variables so that they are
assigned only once, thus facilitating downstream code analysis
and optimization. This renaming can occur in basic block
themselves, but control paths need to be taken into account.
In particular, join points (basic block with more than one
predecessor) have a strong influence on the effectiveness of
this renaming and call for a judicious insertion of nodes called
“phi”, which allow multiplexing of the variables previously
renamed. Several methods have been proposed in the literature
[17], but the most effective and widely accepted is based on
the determination of “dominance frontiers”. As a reminder,

a basic block B1 dominates a block B2 if and only if all
paths to B2 pass through B1. A dominance frontier is the
collection of nodes that are precisely “one edge away” from
being dominated by a specific node. To put it differently,
node A’s dominance frontier includes node B if and only if
A doesn’t strictly dominate B, but A does dominate some
predecessor of B. This definition maps well to our idea of
changing from one state to another : our understanding is
that our state starter are precisely the nodes belonging to this
dominance frontier, an that the set of nodes dominated by a
node n belong to the same state, starting with n. This calls for
confirmation of this intuition, but also may open new ways to
jointly think about control (our paper) and dataflows (works
on SSA) from both a VLSI and compilers point of view :
for instance, gathering basic blocks for FSMD determination
like we proposed (with VLSI purpose in mind) may constitute
an interesting new intermediate step while compiling plain
software applications.

D. If-conversion compiler pass

We can also compare our procedure with alternative ap-
proaches, in particular the compilation procedure known as
“if-conversion”. The aim of the “if-conversion” process is to
better deal with the presence of conditionals in programs,
by transforming them into predicated instructions, ready for
standard dataflow analysis[18]. This optimization enables the
number of basic blocks interconnected by ite instructions to
be reduced, by merging them: they then individually present
more potential for linear execution. It is particularly useful
to augment the level of instruction parallelism and simplify
the workloard of branch predictors. Our FSM elaboration
process automatically manipulates the conditions associated
with the assignments encountered in the basic blocks, and
renders them nested in the combinatorial logic. This manip-
ulation is effectively similar to the symbolic manipulation
performed by predication-based compilers. It’s conceivable
that these compilers could benefit from our process. However,



7

the comparison ends there, as the objectives for developing
our FSM differ: among the interesting values of our process
is the idea of returning to the RTL designer an FSM very close
to the initial structure of his behavioral code. In particular, our
process doesn’t flatten predicates, but restores their effects by
preserving their hierarchy, in a source-to-source manner.

E. Synchronous language similarities

We also noted some other interesting similarities between
our approach and those studied in the context of synchronous
languages [19] compilation. These languages have a formal
semantics inspired by synchronous digital circuits, but aim to
generate embedded software code. The compilation of Esterel
in particular has generated a great deal of work, including the
particularly well-documented work of Edwards at Columbia
University [20] and the joint work of Berry and Potop-
Butucaru at INRIA [21]. Because of its concurrent nature,
Esterel requires threading, which we don’t have to deal with
here. However, each thread has been studied with the aim of
generating fast software code for simulation purposes. The
proposed technique consists in setting up a particular CFG,
called GRC, and dividing it into “clusters”. Once execution
has started, the cluster must run without interruption. At the
end of its execution, it must be possible to connect to a new
cluster. This is very similar to our basic blocks grouping by
states. It is worth noting that the authors found that generating
software code in the form of automata was quicker than a total
flattening in the form of boolean circuits, which prompts us to
consider future work on simulation acceleration, which could
benefit from our algorithm. We also note that the authors of
[20] point out that their heuristics are not perfectly satisfactory.
Here too, it will be interesting to see whether our algorithm
provides an effective solution to this shortcoming.

VI. SUMMARY AND FUTURE WORK

In this article, we set out to clarify the direct transformation
of a control flow graph (CFG) into an extended finite state
machine (FSMD). The proposed technique is of interest for
applications where complex decision-making is predominant
over data flows. We stress that, to our knowledge, no rigorous
formulation of this algorithm has ever been provided. Even
if such a formulation existed in the past (a possibility we
acknowledge), this formulation deserves particular renewed
attention given the widespread adoption of HLS.

We mention that our prototype HLS compiler, named
“Archipel”, uses these FSMs as an supplemental intermediate
representation that can be directly synthesized at RTL level.
In the general case of compute-intensive kernels, these RTL
codes result in frequencies that are obviously too low, and
our compiler then triggers a classical HLS synthesis. Our
current work is to study the benefits of these FSMDs as
intermediate representations in conventional passes. Resource
sharing should logically benefit from this pre-analysis in the
form of FSMs.

Beyond pure hardware synthesis concerns, we believe that
the transformation of sequential codes to finite state automata,
as outlined in our paper, is of more general interest. In

particular, these automata are strangely absent from most
traditional compilers, or only very implicit. Our paper may
give the idea of reintroducing these automata in a simple and
natural way into compiler flows.

REFERENCES

[1] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin, High-level
synthesis: introduction to chip and system design. Kluwer Academic
Publishers, 1992.

[2] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for FPGAs: From prototyping to deployment,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 30, no. 4, pp. 473–491, 2011.

[3] M. Wu, Y. Chen, and C. Tsai, “Hardware-assisted syntax decoding
model for software AVC/H.264 decoders,” in International Symposium
on Circuits and Systems (ISCAS 2009), 24-17 May 2009, Taipei, Taiwan.
IEEE, 2009, pp. 1233–1236.

[4] T.-C. Chen, C.-J. Lian, and L.-G. Chen, “Hardware architecture design
of an h.264/avc video codec,” in Asia and South Pacific Conference on
Design Automation, 2006.

[5] V. Puš, L. Kekely, and J. Kořenek, “Design methodology of configurable
high performance packet parser for FPGA,” in 17th International Sym-
posium on Design and Diagnostics of Electronic Circuits & Systems.
IEEE, 2014, pp. 189–194.

[6] P. Chu, FPGA Prototyping by VHDL Examples: Xilinx Spartan-3 Ver-
sion. Wiley, 2008.

[7] C. Karfa, D. Sarkar, C. Mandal, and P. Kumar, “An equivalence-
checking method for scheduling verification in high-level synthesis,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 27, no. 3, pp. 556–569, 2008.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd Edition. MIT Press, 2009. [Online]. Available:
http://mitpress.mit.edu/books/introduction-algorithms

[9] T. J. McCabe, “A complexity measure,” IEEE Trans. Software Eng.,
vol. 2, no. 4, pp. 308–320, 1976.

[10] C. R. Clare, Designing logic systems using state machines. McGraw-
Hill, 1973.

[11] M. Zwolinski, Digital System Design with VHDL (2nd Edition). USA:
Prentice-Hall, Inc., 2003.

[12] A. Barkalov, L. Titarenko, K. Mielcarek, M. Mazurkiewicz, and
E. Kawecka, Logic Synthesis for VLSI-Based Combined Finite State
Machines - Synthesis Targeting ASICs, CPLDs and FPGAs, ser. Lecture
Notes in Electrical Engineering. Springer, 2022, vol. 922.

[13] S. de Pablo, F. Martı́nez, L. C. Herrero, J. A. Cebrián, and S. Cáceres,
“Recent advances in asm++ methodology for FPGA design,” in Pro-
ceedings of the 7th FPGAworld Conference. New York, NY, USA:
Association for Computing Machinery, 2010, p. 49–59.

[14] H.-P. Juan, V. Chaiyakul, and D. Gajski, “Condition graphs for high-
quality behavioral synthesis,” in IEEE/ACM International Conference
on Computer-Aided Design, 1994, pp. 170–174.

[15] A. A. Kountouris, C. Wolinski, and J.-C. Le Lann, “High-level syn-
thesis using hierarchical conditional dependency graphs in the Codesis
system,” J. Syst. Archit., vol. 47, no. 3–4, p. 293–313, apr 2001.

[16] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control
dependence graph,” ACM Trans. Program. Lang. Syst., vol. 13, no. 4,
p. 451–490, oct 1991.

[17] F. Rastello and F. Bouchez-Tichadou, Eds., SSA-based Compiler Design.
Springer, 2022.

[18] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conversion
of control dependence to data dependence,” in Proceedings of the
10th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, 1983, pp. 177–189.

[19] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic,
and R. de Simone, “The synchronous languages 12 years later,” Proc.
IEEE, vol. 91, no. 1, pp. 64–83, 2003.

[20] S. A. Edwards, V. Kapadia, and M. Halasz, “Compiling esterel into static
discrete-event code,” in Proc. International Workshop on Synchronous
Languages, Applications, and Programs, SLAP 2004, vol. 153, no. 4.
Elsevier, 2004, pp. 117–131.

[21] D. Potop-Butucaru, S. A. Edwards, and G. Berry, Compiling Esterel.
Springer, 2007.


