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Abstract
In deterministic global optimization, techniques for linear relaxation of a non-convex program
are used in the lower bound calculation phase. To achieve this phase,most deterministic global
optimization codes use reformulation-linearization techniques. However, there exist also
two interval-based polyhedral relaxation techniques which produce reliable bounds without
adding new auxiliary variables, and which can take into account mathematical operations and
most transcendental functions: (i) the affine relaxation technique, used in the IBBA code,
based on affine forms and affine arithmetic, and (ii) the extremal Taylor technique, used in
the Ibex-Opt code, which is based on a specific interval-based Taylor form. In this paper, we
describe how these two interval-based linear relaxation techniques can be hybridized. These
two approaches appear to be complementary, and such a hybrid method performs well on a
representative sample of constrained global optimization instances.

Keywords Interval analysis · Global optimization · Linear relaxation · Reliable computing ·
Branch-and-bound

1 Introduction

Lower bounding appears to be a crucial phase for solving constrained global optimization
problems in a deterministic way. This ensures that no feasible point exists with an objective
function value inferior to a provided lower bound. Linear relaxation techniques are one of
the most efficient acceleration routines in the lower-bounding phase.
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Polyhedral (linear) relaxations are the most commonly used convex relaxations tech-
niques and reformulation is the most common way to achieve polyhedral relaxations [39].
Roughly, the reformulation-linearization techniques replace recursively each nonlinear term
in mathematical expressions with an auxiliary variable and a nonlinear equality constraint.
The feasible domain created by each new equation is then linearly relaxed by one or several
linear constraints. Thus, the nonlinear system is relaxed to a polytope including the linearized
constraints and the constraints corresponding to the nonlinear terms. Finding the minimum
value of the linearized objective function subject to this polytope can improve the lower
bound. Reformulation methods compute generally a sharp approximation of the feasible
domain leading to a smaller number of branching nodes (iterations) in the tree expanded
by the branch-and-bound algorithm. Unfortunately, these relaxation techniques can rarely
guarantee that the computed polytope contains the whole feasible domain due to rounding
errors performed by the computations with floating-point numbers.

An increasing number of global optimization algorithms based on interval arithmetic is
now available [16, 19, 23, 26, 36, 42, 44]. These interval-based methods take into account
numerical errors due to calculations with floating-point numbers and thus, can compute the
global solution with a guaranteed error. However, because developing reliable reformulation-
linearization techniques is challenging, only a few interval-based strategies use such linear
relaxations. The Icos solver proposes the Quad operator [22] where only quadratic and
bilinear operators are rigorously relaxed by linear constraints. A version of the GlobSol
solver [19] also uses a rigorous polyhedral relaxation described in [18].

Two interval-based polyhedral relaxation techniques also exist for producing reliable
bounds: (i) Affine Relaxation Technique (ART), used in the IBBA code [24, 26], which
is based on affine forms and affine arithmetic to provide linear under and over-estimations
of a function over a box [25, 28, 34, 35];
(ii) eXtremal Taylor (X-Taylor), used in the IbexOpt code [42], which is based on a first-
order interval Taylor expansion in some box vertices [3].

Note that, unlike classical reformulation techniques, interval-based linearization tech-
niques do not introduce new auxiliary variables and constraints.Moreover, these linearization
techniques can take into account the four operations and most transcendental functions such
as for example exp, log, sin and cos.

The performances of these solvers were shown on numerous examples [34, 35, 42] and on
several applications such as the design of electrical motors [26, 27]. In both solvers, the per-
formance mainly comes from two acceleration procedures: the linear relaxation techniques
mentioned above and other contraction techniques used to reduce the bounds of the domain
under study without loss of feasible points. Constraint propagation is the most famous con-
traction technique. Constraint propagation, and especially the HC4 algorithm [7, 24], appears
in almost all deterministic global optimization algorithms including BARON [41], COUENNE
[6], IbexOpt [42] and IBBA, [24, 26, 34, 35]. It has been empirically shown in [35, 42] that
associating constraint propagation and interval-based linear relaxation techniques provides
very efficient interval global optimization codes.

The main ideas of this paper are: (i) a comparison of the ART and X-Taylor lineariza-
tion procedures inside the same branch-and-bound IbexOpt code, and (ii) a new hybrid
linearization operator implemented in Ibex.

An important observation is that, for a given non-convex function, X-Taylor achieves
a Taylor expansion at a vertex of the box under study, whereas ART performs a better
approximation of the function at the center of the box. This may explain why both techniques
are complementary in practice and why it is relevant to hybridize them.
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Section 2 introduces several notations and definitions related to the handled problem and
interval arithmetic tools. In Section 3, ART and X-Taylor are presented. In Section 4, we
propose a new contractor hybridizing ART and X-Taylor. In Section 5, we present numerous
tests coming from the COCONUT global optimization library, [38]. These numerical results
obtained by using the operator implemented in Ibex highlight the efficiency of the hybrid
method on several hard instances.

2 Background

2.1 Global optimization, interval analysis

In this paper, we address the following constrained global optimization problem:

(P)

⎧
⎪⎨

⎪⎩

min
x∈x⊆Rn

f (x),

s.t. gk(x) ≤ 0, ∀k ∈ {1, . . . , p},
hl(x) = 0, ∀l ∈ {1, . . . , q},

where g : x ⊆ R
n → R

p and h : x ⊆ R
n → R

q . Note that f , gk and hl are not all linear and
they do not have convex properties. Nevertheless, they have to be continuous, differentiable
(at least one time) and defined in a formal way in order that interval and affine arithmetics
can be used.

Interval arithmetic enables handling this mathematical problem defined over the real
numbers rigorously; i.e., they take into account rounding errors implied by floating-point
operations. An interval xi = [xi , xi ] defines the set of real numbers xi such that xi ≤ xi ≤ xi .
A box x is a Cartesian product of intervals x1 × · · · × xn .

Several interval tools, including GlobSol [19] and Icos [22], solve problem (P) by
returning a small box which guarantees to contain an optimal point.

The codes IBBA and IbexOpt, used in this paper, handle problem (P) where the equa-
tions h(x) = 0 are relaxed by inequalities −εeq ≤ h(x) ≤ +εeq .1 In the following, all
the equality constraints will be reformulated as above and included in the set of inequality
constraints. IBBA and IbexOpt interval solvers return a floating-point vector that is an
ε f -global minimum; i.e., for which the objective function value is optimal modulo an upper
bounded error ε f .

Note that most of global optimizers (nonlinear programming solvers) from the mathe-
matical programming community also handle an ε f -optimization problem. This includes the
deterministic global optimization codes Baron [41], Lindo [37], Antigone [29], SCIP
[1], COUENNE [6]. However, due to a lack of rigorous computations over the floating-point
numbers, they cannot guarantee that the answer has an error bounded by ε f and therefore
sometimes these codes could miss the global minimum.

The operator introduced in this paper is implemented in the rigorous C++ interval-based
Ibex library and is rigorous; i.e., no feasible point can be lost. However, this operator can
also be used by any rigorous or non-rigorous NLP solver.

1 This type of relaxation often occurs in practical problems, e.g. in physics or robotics, where the coefficients
of equations are generally known with a bounded uncertainty (e.g., a measured distance), thus providing an
εeq specific to a given equation. The relaxation of equations in IBBA and IbexOpt is motivated by the
upper-bounding phase (find a feasible point with an accuracy εeq ). For the lower-bounding phase studied in
this paper, it is not necessary to relax equations so that the results presented still hold if equality constraints
are viewed as two inequalities 0 ≤ h(x) ≤ 0.
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Finally, note that the operator proposed in this paper does not apply only to optimization
problems, but it could also be used to solve feasibility problems. It can be viewed as a
contracting operator that can reduce the domain of each variable without loss of feasible
points.

2.2 Interval branch-and-bound algorithm

We summarize in this section how the interval branch-and-bound (B&B) algorithm behind
IBBA and IbexOptworks. We show an example where the interval-based polyhedral oper-
ator proposed in this paper can be used for constrained global optimization problem. The
B&B scheme is described by Algorithm 1. Algorithm 2 is dedicated to the contraction of
variable intervals.

Algorithm Interval Branch-and-Bound ( f , g, x, ε f )
fmin ← −∞; f̃ ← +∞; x f̃ ← ∅; lbx ← −∞;

L ← {(x, lbx)}
while L 
= ∅ and f̃ − fmin > ε f and

f̃ − fmin
| f̃ | > ε f do

x ← BestBox (L); L ← L \ {x}
(x1, x2) ← Bisect (x)
(x1, lbx1 , x f̃ , f̃ ) ← Contract&Bound (x1, f , g, f̃ , ε f )

(x2, lbx2 , x f̃ , f̃ ) ← Contract&Bound (x2, f , g, f̃ , ε f )

( fmin , L) ← UpdateBoxesLB ((x1, lbx1 ), (x2, lbx2 ), L, ε f )

Algorithm 1: Interval Branch-and-Bound Algorithm.

The B&B algorithm maintains the following main information during the iterations: the
current value of the best solution for f denoted by f̃ and the corresponding best feasible
point x f̃ found so far, and the lowest lower bound of all the boxes x stored in L which is
denoted by fmin . For every box x, there is a guarantee that no feasible point with a value
lower than fmin exists.

The algorithm is launched with the set of constraints (g), the objective function f and the
initial domain x. ε f is the required precision on the global minimum value.

The procedure BestBox selects the next box to handle. The box x with the lowest lower
bound on the objective function is selected, hence the B&B algorithm achieves a best-first
search.

The selected box x is then split into two sub-boxes x1 and x2 along one dimension. Several
branching heuristics can be used, and our default strategy uses a variant of the Kearfott Smear
function described in [2, 19, 42].

Both sub-boxes are then handled by theContract&Bound procedure (seeAlgorithm2).
A constraint f (x) ≤ f̃ − ε f is added to the system for decreasing the upper bound of the
objective function over the box. The ε f value implies to find a solution significantly better
than the current best feasible point. The Contraction procedure contracts the handled
box without loss of feasible part. In other words, some infeasible parts of the domain are
discarded byHC4 and the convexification algorithms presented in this paper.Contraction
returns the contracted box and a lower bound of its cost obtained by interval computation,
i.e. lbx = f(x).
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Algorithm Contract&Bound (x, f , g, f̃ , ε f )
g′ ← g ∪ { f (x) ≤ f̃ − ε f }
(x, lbx) ← Contraction (x, f , g′)
if x 
= ∅ then

(x f̃ , f̃ )← FeasibleSearch (x, f , g′, ε f ) /* Upperbounding */

return (x, lbx, x f̃ , f̃ )

Algorithm 2: The Contract&Bound procedure of the B&B algorithm.

The last part of the procedure carries out upper-bounding. FeasibleSearch calls
several heuristics searching for a feasible point x f̃ that improves the best minimum value

found f̃ . More precisely, these algorithms extract inner regions inside the feasible domain;
i.e., domain in which all points satisfy the inequality and relaxed equality constraints, details
can be found in [4]. The last call to UpdateBoxesLB in Algorithm 1 pushes the two sub-
boxes in the list L of open nodes if they are sufficiently large and updates fmin with lbx1 and
lbx2 .

2.3 Contraction algorithms

In this section, we detail the Contraction procedure which runs the polyhedral convexi-
fication operators described in this paper.

The Contraction procedure is implemented in the Interval-Based EXplorer (Ibex)
C++ library2 [8] and used into the global optimization solver called IbexOpt [42]. It is very
close to the contraction procedure implemented in IBBA [35]. In IbexOpt, the by default
contraction is achieved by HC4 [7, 24], then by ACID [33] and finally by PolytopeHull,
see Section 2.4.

HC4 is the classical constraint propagation algorithmmentioned in the introduction.ACID
is an adaptive constraint programming algorithm enforcing a strong consistency called CID
[32, 43].3 CID is variable oriented and runs a VarCID procedure on several variables:
VarCID splits the domain of a variable into several sub-intervals; another contraction oper-
ator, e.g. HC4, is launched on each corresponding sub-problem and the hull of the resulting
contracted boxes is returned. ACID auto-adapts (i.e., limits) the number of variables handled
by VarCID during the B&B algorithm [32].

After the call to HC4 and ACID, the PolytopeHull contractor is applied. The last
two methods are embedded in a fixed-point process; i.e., they iteratively run until a quasi
fixed-point is reached in terms of contraction.

2 https://github.com/ibex-team/ibex-lib
3 CID is a consistency slightly stronger than Singleton Arc Consistency (SAC [11]) in finite domains, but
limited to the bounds of the domains.
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2.4 The polytope hull contraction

The linear relaxation methods studied in this paper are included in a contraction algorithm
[5, 21]. Algorithm 3 describes this procedure. The inputs of the procedure PolytopeHull
are: (i) the objective function f , the vector function g corresponding to the inequalities; (ii)
the box x under study; (iii) a parameter RT , indicating the relaxation technique employed
for linearly relaxing the system. This parameter can take the values X-Taylor, ART, or Hyb,
corresponding to the techniques detailed in Sections 3.1, 3.2, and 4, respectively. The outputs
of this procedure are: (i) the box x after the contraction, which is necessarily included in the
input domain; (ii) lbx, the new lower bound of the objective function over x.

The PolytopeHull algorithm constructs first a linear relaxation gl(x) ≤ 0 of the
constraint system by calling the method LinearRelaxation. This method applies the
selected linearization technique, as specified by RT , to the vector function g over x. Then,
the algorithm improves the bounds of the variables domains without loss of feasible solutions
using a linear programming (LP) solver. Then, a linearization of the objective function fl is
generated by using themethodLinearRelaxation. Finally, the lower bound is improved
by minimizing the relaxed objective function.

Algorithm PolytopeHull (x, f , g, RT )
gl ← LinearRelaxation(x, g, RT )
for i from 1 to n do

/* Two calls to a linear programming algorithm contracts xi : */
xi ← min xi s.t. gl (x) ≤ 0
xi ← max xi s.t. gl (x) ≤ 0

fl ← LinearRelaxation(x, f , RT )
lbx ← min fl (x) s.t. gl (x) ≤ 0 /* Lower-bounding */
return (x, lbx)

Algorithm 3: The PolytopeHull algorithm for contracting the domains and improving
the lower bound.

The construction of the polytope follows the principles described in Section 3. An LP
solver is called twice per variable to improve the bounds. We have implemented the heuris-
tics mentioned in [5] to determine in which order the variables have to be handled. This
improvement avoids in practice to solve 2n linear programs. Even though, the polytope com-
putation is safe, the floating-point round-off errors made by the LP solver could provide a
numerical-feasible solution that is outside the polytope. A cheap post-processing proposed
by Neumaier and Shcherbina in [31], using interval arithmetic, has been added to certify that
the solutions so-obtained by the LP solver, provide certified lower bounds; note that for a
broader approach to solution certification, especially relevant in handling degenerate and/or
ill-posed problems, the work of Jansson [17] proposes a more comprehensive method.

3 Linear RelaxationMethods

In deterministic global optimization and more recently in interval-based methods, linear and
nonlinear relaxation techniques were proposed to compute lower bounds of problem (P).
Two of them were implemented in the solvers Ibex [42] and IBBA [24, 35] respectively.
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These two linear relaxation methods are different and complementary. They are recalled and
summarized in the following two subsections.

3.1 Taylor-based linear relaxation technique

In the Ibex solver, a linear relaxation technique was derived from an interval Taylor expan-
sion of each constraint, where the expansion point is a vertex (extremal point) of the box
x [3]; this technique is named X-Taylor. Thanks to the use of box vertices, this technique
generates a convex polyhedral relaxation.

Let v denote a vertex of a box x, where xi = [xi , xi ] and let v̊ denote the opposite vertex
of v, i.e. if vi = xi then v̊i = xi and vice versa. Vx denotes the set of vertices v of the box
x. Considering a general differentiable function f : x ⊆ R

n −→ R, one has, ∀x ∈ x and
∀v ∈ Vx:

f (v) + (x − v).∇fv(x) ≤ f (x) ≤ f (v) + (x − v).∇f v̊(x), (1)

where the interval vector ∇f(x) denotes the enclosure of the gradient of f over x, which
can be computed by interval automatic differentiation, and the scalar vector ∇fv(x) denotes
the extremal value of ∇f(x) corresponding to vertex v, i.e. if vi = xi then ∇fvi (x) = ∇f i (x),
and if vi = xi then ∇fvi (x) = ∇f i (x).

Example 1 Let us introduce the following univariate example:

f (x) = 3x3 − 2

(

x + 1

2

)2

+ 2x + 1, with x ∈ x = [0, 1].

By computing an enclosure of the first derivative estimated on the interval [0, 1], one obtains:
∇f(x) = [−4, 9]. Indeed, f ′(x) = 9x2 − 4x and by evaluating the expression f ′ on the
interval [0, 1] the result directly follows.

Hence, by using the vertex v = 0, one has:

∀x ∈ [0, 1], 1

2
− 4x ≤ f (x) ≤ 1

2
+ 9x,

and with the vertex v = 1, one obtains:

∀x ∈ [0, 1], 3

2
+ 9(x − 1) = −15

2
+ 9x ≤ f (x) ≤ 3

2
− 4(x − 1) = 11

2
− 4x .

In Figure 1, the linear hull is drawn by taking into account these 4 hyperplanes (here blue
lines).

Therefore, by relaxing the functions of problem (P) by using X-Taylor using the set of
vertices |Vx| of the box x as expansion points, we obtain the following linear relaxation:

(PXT )

⎧
⎪⎪⎨

⎪⎪⎩

min
x∈x⊆R

n

z∈R
z

s.t. f (v) + (x − v)∇fv(x) ≤ z, with v ∈ Vx,
gk(v) + (x − v)∇gv

k (x) ≤ 0,∀k ∈ {1, . . . , p}, with v ∈ Vx.

where ∇f(x) is a vector of enclosures of the partial derivative ∂ f
∂xi

(x) over the box x. A scalar
vector av denotes the extremal value of a related to vertex v, for instance, if v = {x1, x2, x3},
then av = {a1, a2, a3}.
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Fig. 1 X-Taylor linear relaxation
technique

Choice of vertices

Since the box studied contains 2n vertices (i.e., |Vx| = 2n), we can select one or several
linear underestimations of gk among the 2n ones. Providing a linear relaxation using the 2n

hyperplanes for each function is computationally expensive. Several heuristics for selecting
a subset of the 2n vertices were proposed in [3]. It appears that selecting a vertex that tries to
minimize the volume lost by the corresponding linear relaxation is not the most significant
criterion.

Instead, a simple policy has been kept in the distributed code: for each inequality, we
generate two hyperplanes by selecting two opposite vertices: a vertex v is randomly selected
and its opposite vertex v̊ is deduced. The reason why this simple approach is efficient in
practice is because two opposite vertices touch every face of the studied box/domain. We
know that an (interval or not) Taylor form is exact at the selected expansion point. InX-Taylor,
the possible expansion points are the vertices of the box studied. Therefore, a constraint
relaxed twice at two opposite vertices using X-taylor is likely to be well approximated in the
2n faces of the box. However, all the contraction methods used by interval solvers including
IbexOpt and IBBA (see Sections 2.3 and 2.4) remove infeasible points from the bounds of
the box studied; i.e., focus on the 2n faces of the box.

Despite the non-deterministic nature of this approach, significant variations in CPU time
between runs have not been observed. This consistency is attributed to the comparable
effectiveness of contractionmethods across different sets of randomly selected vertices. Con-
sequently, for the purposes of experimental analysis, it is considered sufficient to conduct
only one run per instance to achieve a thorough evaluation.

Management of rounding errors

Finally, considering numerical/floating-point values issues, we have to take care about the
real coefficients in the linear expressions. Using rounded interval arithmetic [30], the interval
enclosure of the partial derivatives is carefully and reliably computed, as well as the constants
f (v), and gk(v). This produces a reliable relaxed linear program (PXT ).

3.2 Affine arithmetic based relaxationmethods

Affine arithmetic was introduced in 1993 by Comba and Stolfi [9] and developed by De
Figueiredo and Stolfi in [13, 15, 40]. In this section, the notations introduced by Comba
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and Stolfi in [9] are used4. Affine arithmetic can be understood as an extension of interval
arithmetic by replacing intervals with affine forms in order to keep some linear information
(about the dependencies between the variables) during the computations of bounds of a
function f over a box.

3.2.1 New affine forms, devoted arithmetics and reliable affine arithmetics

Affine arithmetic was first developed for drawing functions on computers and it was extended
to be used in global optimization by De Figueiredo and Stolfi [13], Messine [25] andMessine
and Touhami [28]. When a non-affine operation is performed, this yields a result which is
non-affine and which has to be converted into an affine form. The first idea introduced in
[13] was to convert all the non-affine terms into a new affine one which represents the
approximation error. In [25, 28], new affine and quadratic forms were proposed. One of the
main idea in [25] was to gather all the error terms into only one new extra term representing
all the approximation errors. Indeed, an affine form is denoted by:

x̂ = x0 +
(

N∑

i=1

xiεi

)

+ x±ε±, (2)

with ∀i ∈ {0, . . . , N }, xi ∈ R, x± ∈ R
+, ∀i ∈ {1, . . . , N }, εi ∈ εi and ε± ∈ [−1, 1].

From two distinct affine forms x̂ = x0 + ∑N
i=1 xiεi + x±ε±, and ŷ = y0 + ∑N

i=1 yiεi +
y±ε±, of the same size N (by adding some null components if it is necessary), the affine
operations between the affine forms are defined as follows:

x̂ ± ŷ = (x0 ± y0) + ∑N
i=1(xi ± yi )εi + (x± + y±)ε±,

a ± x̂ = (a ± x0) ± ∑N
i=1 xiεi + x±ε±,

a × x̂ = ax0 + ∑N
i=1 axiεi + ax±ε±,

where a is a real number.
The approximation of the multiplication has been improved in [20, 45]. For example,

when a multiplication is performed between two affine forms, an efficient approximation
which keeps the inclusion properties is the following:

̂̂x × ŷ = z0 +
N∑

i=1

ziεi + z±ε±,

with

z0 = x0y0 + 1
2

N∑

i=1

xi yi ,

zi = x0yi + y0xi , ∀i ∈ {1, . . . , N },
z± = x±y± + |x0|y± + |y0|x± + y±

N∑

i=1

|xi | + x±
N∑

i=1

|yi |+

1

2

N∑

i=1

|xi yi | +
∑

1≤i, j≤N ;i 
= j

|xi y j |.

4 Note that ε is the chosen notation for the variables in the affine forms and should not be confused with the
accuracy parameters ε f and εeq in Section 3.2.
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Fig. 2 Affine approximations by min-range methods and Chebyshev

For computing unary functions in affine arithmetic, two linear approximations: the Cheby-
shev and the min-range approximations are mainly used, see Figure 2 and [14]. These affine
approximations have the following form:

f̂ (̂x) = ζ + αx̂ + δε±,

with x̂ given by equation (2) and ζ ∈ R, α ∈ R, δ ∈ R
+.

Thus, on the one hand, the Chebyshev linearization produces the affine approximation
which minimizes the error δ, but the lower bound is worse than the actual minimum of
the range, see Figure 2. On the other hand, the min-range linearization is less efficient for
estimating the linear dependency between the symbolic variables εi , while the lower bound
is equal to the actual minimum of the range. Of course, for a unary function f , the interval
where f is considered and the choice of the Chebyshev or the min-range approximation
provides the respective values for ζ, α and δ, see [40]. All the usual functions (log, exp, cos,
sin, acos, etc.) have been included in the affine arithmetic of the Ibex library.

3.2.2 Management of rounding error

Using affine forms and affine arithmetics directly, such as they are defined above, provides
non-reliable computations. Indeed, all the coefficients of affine forms are real numbers and
have to be converted to floating-point ones. Thus, these approximations and the floating-point
operations which will then be used could introduce some numerical difficulties and errors.
In order to deal with these numerical errors, three methods were proposed. The first one is
due to Stolfi and De Figueiredo in [40]. The idea is to keep floating-point coefficients in
the affine forms but particular rounding rules are used in the affine computations in order
to render the bounds rigorous. The second reliable method is due to Messine and Touhami
[28]. The idea was to consider interval coefficients inside the affine forms and to compute
the resulting affine forms using interval arithmetic. The third method is due to Ninin [34],
the coefficients are floating-point numbers but an upper bound of all the rounding errors is
computed and added to the error terms of the affine forms; this upper bound is computed by
using the maximal truncation error number which is 2−52 in double precision. Note that these
three methods were implemented and compared within IBBA, and the third one appears to
be clearly the most efficient, see [34]. Thus, the last method is included in the Ibex library.

3.2.3 Linear relaxations using affine arithmetics

In [34, 35], affine forms were directly used to generate a linear relaxation of problem (P).
Indeed, by converting a box x into a vector of affine forms x̂i depending on εi , and by replacing

123



Journal of Global Optimization

all the operations in an expression of a function f by affine arithmetic operations, a resulting
affine form can be provided; we denote it f̂ (̂x). Its corresponding real coefficients are denoted
fi for all i ∈ {1, . . . , n} and by f± for the error term corresponding to ε±. By denoting the
transformation Tx which maps x ∈ x into ε ∈ [−1, 1]n , we have that x = Tx(ε) with xi =
mid(xi )+ rad(xi )εi ; note that Tx is a bijective mapping if and only if rad(xi ) 
= 0. Therefore,
this yields ∀x ∈ x, f (x) = f (Tx(ε)) ∈ [ f̂ (Tx(ε))], where f̂ (Tx(ε)) = f0+∑n

i=1 fiεi +f±ε±
denotes the resulting affine form using affine arithmetic operations in the computation of an
expression of the function f . Thus, the following inequalities arise:

∀ε ∈ ε, f (Tx(ε)) ≥ ∑n
i=1 fiεi + f0 − f±,

∀ε ∈ ε, f (Tx(ε)) ≤ ∑n
i=1 fiεi + f0 + f±.

This result is detailed in Propositions 3.1 and 3.2 of [35].
Therefore, we can derive and obtain the following linear relaxation of problem (P):

(PART )

⎧
⎪⎪⎨

⎪⎪⎩

min
ε∈[−1,1]n

z∈R
z,

s.t.
∑n

i=1 fiεi − z ≤ f± − f0,∑n
i=1 g

k
i εi ≤ gk± − gk0,∀k ∈ {1, . . . , p}.

Here gki denotes the i-th component of the corresponding affine form performed using the
constraint function gk over a box x.

Example 2 Let us consider the same function f as for Example 1, over the same interval
x = [0, 1]. Now linear relaxations based on affine forms and affine arithmetics are used. By
converting x = [0, 1] into an affine form, one has: x̂ = 1

2 + 1
2ε, with ε ∈ [−1, 1]. In the

computations defined in subsection 3.2.1 with the min-range approximation, we obtain the
following affine forms:

3̂x̂3 = 9−2
√
3

6 + 3
2ε +

√
3
3 ε±,

̂−2
(
x̂ + 1

2

)2 = − 9
4 − 2ε + 1

4ε±,

2x̂ + 1 = 2 + ε.

Thus, we obtain the following affine result:

f̂ (̂x) = 3x̂3 − 2

(

x̂ + 1

2

)2

+ 2x̂ + 1 = 15 − 4
√
3

12
+ 1

2
ε + 3 + 4

√
3

12
ε±

Hence, the following affine enclosures are:

∀ε ∈ [−1, 1], 3 − 2
√
3

3
+ 1

2
ε ≤ f (Tx(ε)) ≤ 3

2
+ 1

2
ε.

By converting ε into x , with ε = T −1
x (x) = 2x − 1, we obtain:

∀x ∈ [0, 1], 3 − 4
√
3

6
+ x ≤ f (x) ≤ 1

2
+ x .

InFigure 3, the linear enclosures are drawnby taking into account the two linear relaxations
obtained directly using affine forms and computations.
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Fig. 3 Affine Arithmetic Relaxation Technique

Fig. 4 Hybridation of X-Taylor
and ART linear relaxation
methods

4 Hybridization of two Linear Relaxations

The X-Taylor linear relaxation method provides bounds by constructing linear underestima-
tions on some vertices of a box. Considering linear relaxation technique ART based on affine
arithmetic, a linear approximation is provided by taking about the center of the box. Thus,
the combination of the two distinct approaches appears to be promising. Figure 4 illustrates
the complementarity between both approaches on our example (see Section 3). The polyhe-
dral hull of the linear constraints coming from both relaxations is plotted in solid blue line.
Computing a lower bound of problem (P) amounts to solving a linear program where the
constraints come from the combination of X-Taylor and ART methods.

In order to consider those two types of constraints together, we have first to compute con-
versions between the X-Taylor and ART linear programs. Indeed, the use of affine arithmetic
provides automatically a conversion of the initial domain described by the box x into a box
including the symbolic errors ε where all the variables are in [−1, 1].

Let v denote a vertex of a box x, as detailed in Subsection 3.1 using X-Taylor, considering
a general function denoted by f : x ⊆ R

n −→ R, one has:

f (x) ≥ aT (x) = f (v) + (x − v).∇fv(x),

where ∇f(x) denotes the enclosure of the gradient of f computed for instance via interval
automatic differentiation.

Hence, we have:

aT (x) = f (v) −
n∑

i=1

vi∇fvi (x)

︸ ︷︷ ︸
constant term

+
n∑

i=1

∇fvi (x)xi .

︸ ︷︷ ︸

linear terms
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In the same way, as detailed in subsection 3.2 using ART, one obtains:

f (Tx(ε)) ∈ âAF(ε) = f0 +
n∑

i=1

fiεi + f±ε±,

where εi ∈ [−1, 1],∀i ∈ {1, . . . n} and ε± ∈ [−1, 1] (which is the error term).
In order to combine X-Taylor and ART, we use the variable changes defined above by

x = Tx(ε). Thus, one has:

âT (ε) = aT (Tx(ε)) = f (v) −
n∑

i=1

vi∇fvi (x) +
n∑

i=1

∇fvi (x)
xi + xi

2
︸ ︷︷ ︸

constant term

+
n∑

i=1

∇fvi (x)
xi − xi

2
εi

︸ ︷︷ ︸

linear terms

.

Conversely, from an affine formulation denoted by âAF(ε) and by using

εi =
(
xi − xi+xi

2

)
2

xi−xi
, we have the following affine function depending on x and ε±:

aAF(x) = âAF(T −1
x (x)) = f0 −

n∑

i=1

fi
xi + xi
xi − xi

︸ ︷︷ ︸
constant term

+
n∑

i=1

2fi
xi − xi

xi

︸ ︷︷ ︸

linear terms

+ f±ε±
︸︷︷︸

error term

,

where x ∈ x and ε± ∈ [−1, 1].
The error term is changed by their corresponding intervals and this provides the two

following affine under and over-estimations:

âAF(ε) ≥ aAF(x) = f0 − f± −
n∑

i=1

fi
xi + xi
xi − xi

︸ ︷︷ ︸
constant term

+
n∑

i=1

2fi
xi − xi

xi

︸ ︷︷ ︸

linear terms

.

âAF(ε) ≤ aAF(x) = f0 + f± −
n∑

i=1

fi
xi + xi
xi − xi

︸ ︷︷ ︸
constant term

+
n∑

i=1

2fi
xi − xi

xi

︸ ︷︷ ︸

linear terms

.

Thus, it is easy to convert an affine form coming from affine arithmetic computations into
an affine form with xi as variables and conversely.

The idea is then to combine both methods in order to provide a relaxed linear program
where the linear constraints come from both techniques (see (PXT ) and (PART )); these
general conversions between affine forms depending on variables xi and on εi make possible
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to provide the two following equivalent linear relaxations of problem (P):

(PHx )

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x∈x⊆R

n

z∈R
z,

s.t. f (v) + (x − v)∇fv(x) ≤ z, for any v ∈ Vx,
gk(v) + (x − v)∇gv

k (x) ≤ 0, for any v ∈ Vx,∀k ∈ {1, . . . , p},
∑n

i=1
2fi

xi−xi
xi − z ≤ f± − f0 + ∑n

i=1 fi
xi+xi
xi−xi

,

∑n
i=1

2gki
xi−xi

xi ≤ gk± − gk0 + ∑n
i=1 g

k
i
xi+xi
xi−xi

,∀k ∈ {1, . . . , p}.
and,

(PHε )

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
ε∈[−1,1]n

z∈R
z,

s.t.
∑n

i=1 fiεi − z ≤ f± − f0,∑n
i=1 g

k
i εi ≤ gk± − gk0,∀k ∈ {1, . . . , p},

f (v) + (Tx(ε) − v)∇fv(x) ≤ z, for any v ∈ Vx,
gk(v) + (Tx(ε) − v)∇gv

k (x) ≤ 0,
for any v ∈ Vx,∀k ∈ {1, . . . , p}.

Remark 1 In order to solve in a reliable way the relaxed linear programs (PHx ) or (PHε ),
as explained in the two previous subsections, we have to use the Neumaier and Shcherbina
result [31] to provide safe and reliable bounds of those so-obtained linear programs.

Remark 2 Note that a difficulty occurs when a degenerate interval is considered: xi = xi .
In this case, particular attention must be paid in solving the relaxed programs (PHx ) and
(PHε ). Indeed, in (PHx ) a division by 0 will occur and then, (PHx ) will be not well defined.
In order to eliminate this difficulty, we have to remove the variable xi from (PHx ) by moving
it in the second member of the linear inequality constraints. Moreover, a linked numerical
difficulty will occur if the width of the interval is too small (because a division by a small
floating-point number arises). In this case, we can remove the variable xi from the linear
program and add it to the second member by taking care of its small variation in the small
interval. Considering now program (PHε ), this difficulty is easiest to discard because the
coefficient of εi will become 0 and the variable εi will directly be removed from the relaxed
linear program (PHε ).

Obviously, the linear relaxed programs (PHx ) and (PHε ) contain all the constraints of
(PXT ) and (PHART ), and we have the following proposition:

Proposition 1

(P) ≥ (PHx ) = (PHε ) ≥ (PXT ) and (P) ≥ (PHx ) = (PHε ) ≥ (PART ).

Remark 3 Note that (PXT ) and (PART ) are not comparable.
Moreover, (PHx ) = (PHε ) means that the two problems provide the same optimal value for
the objective function.

5 Numerical Results

In order to validate our approach, we implemented the PolytopeHull contractor (see
Section 2) using the different linear relaxation techniques described above. The contractor
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was implemented in the Interval-Based EXplorer (Ibex) C++ library5 [8] and embedded
into the default global optimization software called IbexOpt [42]. The branching strategy
chosen is the SmearSumRel variant of the Kearfott Smear function [10] described in [2,
42].

We selected all 112 global optimization problems from the series 1 and 2 of theCOCONUT
constrained global optimization benchmark6 solved in less than 1 hour and more than 0.5
seconds by at least one compared strategy, [38].

5.1 Chebyshev versus min-range linearizations

In a preliminary experiment, we have compared the ART Chebyshev and the ART min-
range approximations for unary nonlinear functions. This will allow us to select the best
linearization technique for the affine arithmetic based relaxationmethod. Table 1 summarizes
the reported results7.

Those numerical results show the superiority of the Chebyshev linearization over the
min-range one. Indeed, 39% of the instances are most quickly solved using the Chebyshev
linearization, whereas the min-range is the best strategy for 11% of the instances. (The results
are similar in 50% of the instances.) Hence, we decided to use the Chebyshev linearization
in the ART affine forms that we develop and use in our code.

This superiority in the numerical tests can be explained because Chebyshev minimizes
the maximum absolute error in the linear approximation while min-range minimizes only
the range of the unary function. When we linearize a nonlinear region for minimization, the
objective is to find hyperplanes which better approximate this region.

5.2 Comparison between different linear relaxationmethods

We compared the following implementations of the PolytopeHull contractor:

– ART: Using the ART-based relaxation, see Section 3.2.
– XT: Using the X-Taylor relaxation, see Section 3.1.
– Hyb: Using the hybrid approach, which combines the linear constraints obtained with

the two above methods, see Section 4.
– ART-XT: Calling twice the PolytopeHull contractor, the first one using the ART

relaxation and the second one using the X-Taylor relaxation.

Table 1 Comparison of Min-range and Chebyshev linearizations. The Gain value x indicates the number
of instances in which the Min-range (resp. Chebyshev) strategy is x times faster than the Chebyshev (resp.
Min-range) strategy. The column "≈" indicates the number of instances in which both strategies are equivalent.

Winner Min-range ≈ Chebyshev

Gain > 10 [2, 10] [ 65 , 2] ≈ 1 [ 65 , 2] [2, 10] > 10

#instances 2 1 2 23 7 5 6

5 https://github.com/ibex-team/ibex-lib.
6 www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Benchmark.html.
7 We selected all the 46 instances from series 1 of the COCONUT benchmark requiring less than 1 hour to
be solved and with a search-tree size of at least 50 nodes.
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Table 2 Comparison of pairs of strategies. The Gain value x indicates the number of instances in which the
strategy A (resp. B) was at least x times faster than a strategy B (resp. A). The column "≈" indicates the
number of instances in which the strategies A and B are equivalent.

Strategies Winner A ≈ Winner B

A B > 10 [5, 10] [2, 5] [ 43 , 2] ≈ 1 [ 43 , 2] [2, 5] [5, 10] > 10

ART XT 9 5 16 22 39 12 5 2 2

Hyb XT 10 3 12 18 55 11 3 0 0

Hyb ART 5 2 3 8 69 20 3 2 0

Hyb ART-XT 1 1 4 27 76 1 1 1 0

Hyb Best 2 1 0 5 70 27 5 2 0

Table 2 summarizes the results by comparing pairs of strategies A/B named in the first two
columns. The line Hyb/Best, corresponds to the comparison between the hybrid approach
and the Best among ART and XT.

In the left part (Winner A), an entry in a line A/B and a gain column x (given in second
line) indicates the number of instances in which the strategy A runs x times faster than the
strategy B. In the right part (Winner B), an entry indicates the number of instances in which
the strategy B runs x times faster than the strategyA. The column "≈" indicates the number of
instances in which the strategies A and B are equivalent or both spend less than 0.5 seconds.

Note that, in the ART/XT column, ART is generally better than the X-Taylor technique.
However, in several particular cases, X-Taylor can bemuchmore efficient; e.g., in 4 instances,
it is at least 5 times faster than ART, and in 2 of these 5 instances, X-Taylor is at least 10
times faster.

The hybridization Hyb reduces drastically the number of instances in which X-Taylor
performs better while maintaining most of the good results obtained by ART (compare
columnsART/XTandHyb/XT).Compared toART (see columnHyb/ART), the hybridization
Hyb is, in 7 instances, at least 5 times faster than ART and, in 5 of them, at least 10 times
faster. On the other hand, ART is at least 5 times faster than Hyb in only 2 instances.

It is interesting to note that, except for 3 instances, the hybridization approach Hyb is
strictly better than the ART-XT strategy, which calls twice the PolytopeHull contractor (once
with each relaxation method). This is not surprising: assuming that ART-XT and Hyb have
a similar time complexity, the Hyb approach filters the domains by using a high-restricted
polytope. Indeed, ART-XT uses two polytopes independently, both are relaxations, thus
generally offering a poorer contraction.

Summarizing, results show that Hyb outperforms both X-Taylor and ART in many cases,
achieving speeds up to ten times faster than either alternative in certain scenarios.Aside froma
limited number of exceptions, Hyb surpasses the combined ART-XT strategy, demonstrating
superior efficiency. This is largely attributed to its strategic use of a highly restricted polytope,
which enables more effective contraction compared to the independent relaxations employed
by ART-XT.

Figure 5 shows performance profiles [12]. Each curve represents the percentage of
instances solved by a given strategy in less than:
factor · (the CPU time spent by the best strategy). For instance, when factor = 1, each
curve shows the percentage of instances inwhich the corresponding strategy provides the best
results. Note that ART spent less CPU time inmost of the instances (54% of instances of ART
versus 29% for Hyb). However, the hybrid approach Hyb outperforms ART when factor
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Fig. 5 Performance profile

Fig. 6 Tree search size comparison

> 1.8. This behavior can be explained because the ART-based relaxation generates fewer
constraints than the hybrid one. Hence, calling PolytopeHull using ART is cheaper than
calling PolytopeHull using Hyb. When the hybrid approach does not improve enough
the contraction, the ART-based approach is slightly better because it is cheaper. On the other
hand, when the hybrid approach Hyb offers a better contraction than ART, it can greatly
improve the performance of the optimization algorithm, because it reduces the tree search
size. For the same reason, ART-XT outperforms ART when factor > 2.7.

Figure 6 shows a comparison in the size of the tree search, i.e. the number of branching
nodes in Algorithm 1. Each curve represents the percentage of instances solved by a given
strategy generating less than: factor · (number of nodes of the best strategy). We can note
that the hybrid strategy visits generally fewer nodes than its competitors followed by ART-
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XT, ART and X-Taylor. In 56% of the instances, the hybrid approach Hyb is the strategy
generating the lowest number of nodes.

In order to evaluate the overhead of the approaches, we compute the following ratio: CPU
time divided by the number of treated nodes. The ART-based strategy spent on average 17
milliseconds (ms) per node while the X-Taylor strategy spent 20ms per node. The hybrid
approach Hyb is, of course, more expensive and spent 27ms per node on average, while the
ART-XT strategy spent 30ms per node.

In summary, the performance profiles show that for over 90% of the cases, the hybrid
approach delivers solutions within a CPU time less than double and produces search trees
no more than 1.5 times larger than those generated by alternative strategies. This efficiency
indicates that, even in the most challenging cases, the performance reduction is capped at a
factor of two. Performance comparisons consistently show that ART-XT and X-Taylor lag
behind the hybrid approach in performance.

6 Conclusion

In this paper, a new reliable linear relaxation technique is presented by combining two distinct
interval-based methods. One of them performs linear relaxations from some vertices of a box
using Taylor expansion, and the other one from about the center of the box using the affine
arithmetic. Thus, the hybridization of these two reliable linear techniques is possible. The
efficiency is validated on 279 test problems coming from the COCONUT library. This shows
that the hybrid method solved more problems than the two other techniques, and generally
in less CPU time.

Indeed, by hybridization, the generated linear relaxations are more accurate. The advan-
tages of both techniques are merged without drawbacks. The number of nodes visiting by the
branch-and-bound algorithm is reduced, and this improvement is not made up by the CPU
time spent on each node to solve a larger linear relaxation. In conclusion, this hybrid linear
relaxation is now included by default in the last version of IbexOpt in the Ibex library.
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