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ABSTRACT

Obtaining ground truth annotations for 3D pose estimation
(3D HPE) typically depends on motion capture equipment
(Mocap), which is not only expensive but impractical for
widespread deployment. In contrast, triangulation can re-
construct 3D poses solely from multi-view 2D poses with
known camera parameters, eliminating the need for Mocap.
However, inherent noise in 2D pose predictions introduces
uncertainties, compromising the reliability of the results. To
obtain more reliable annotations with noisy input, we intro-
duce an annotation approach for the 3D HPE task, driven by
prior knowledge of the skeletal configuration. We split our
approach into two steps: first a parametric model is designed
to enhance confidence predictions. Then, a differentiable
weighted triangulation is employed to estimate the 3D pose
in world space, leveraging the predicted confidence scores
as weights. The pipeline is trained using a bone length loss.
Moreover, we collect a multi-view dataset for 3D HPE and
annotate it using our proposed annotation tool. This dataset
is characterized by more construction scenarios, including
heavier occlusion cases, diverse viewing directions, and the
integration of various optical sensors, setting it apart from
existing datasets. Experiments on both our dataset and Hu-
man3.6M demonstrate the effectiveness of our method.

Index Terms— 3D Human Pose Estimation, Multi-view
fusion, Dataset

1. INTRODUCTION

The significant progress in 3D Human Pose Estimation (3D
HPE) owes much to the wealth of ground truth annotations
in training data. Nevertheless, the simultaneous capture of
videos and corresponding ground truth necessitates costly
specialized motion capture equipment [1]. Alternatively, with
calibrated camera parameters, the 3D pose can be directly tri-
angulated from synchronized 2D poses in the image space of
multiple cameras [2], albeit with a compromise in accuracy.
Typical triangulation in 3D pose estimation can be divided

∗: Equal Contribution

Fig. 1: Overview of data acquisition setup. 3D human pose
estimation under : occlusions, various sensors, various optics,
various viewpoints. How to balance views? How to general-
ize across views?

into two stages: first estimating 2D poses in multi-view im-
ages, and then applying triangulation to derive the 3D human
pose [3]. While substantial progress has been made within
this pipeline, traditional triangulation methods [4] still face
two constrains which hinder its application for 3D HPE: (1)
Information loss in the 2D pose estimation process; (2) In-
formation loss of human skeleton prior in triangulation.
To alleviate (1), Iskakov et al. [2] and Tu et al. [5] opt to
bypass the 2D estimation step entirely, integrating heatmaps
directly into a discrete volume before regressing the 3D pose.
However, these works necessitate 3D ground truth for train-
ing, which is the factor we’re searching for in annotation
process. Pavlakos [6] introduced a method for training 3D
human pose estimation without ground truth, while elimi-
nating the need for calibration parameters during inference.
However, their performance in annotation, when calibration
parameters are available, still falls behind basic triangulation
methods. However, these approaches are designed for indi-
vidual joints, frequently overlooking the relationship among
these joints. The human body, on the other hand, inherently
exhibits a structured arrangement with interrelated joints,
offering robust priors for 3D HPE and introducing the con-
straint (2) to the stage. Several earlier study [7] incorporate



prior knowledge of the human skeleton, surpassing the pre-
cision of earlier triangulation-based methods. [7] introduce
a weighted triangulation-based approach, enhanced by incor-
porating bone length as a supervisory signal. In contrast to
the prototype triangulation method [4], [7] employs confi-
dence scores from the 2D pose estimator as weights for the
Direct Linear Transform (DLT) process. While achieving
impressive performance, the accuracy highly depends on the
confidence estimation associated to the 2D pose prediction.
However, bunch of factors, including, e.g., occlusions, dis-
tance from the cameras, variations in camera configurations
(sensor and optics), may affect the reliability of the 2D pose
prediction and associated confidence. To this end, we propose
leveraging a parametric model to enhance the robustness of
confidence scores by incorporating prior information derived
from human skeletal structures. Consequently, a more de-
pendable confidence score can be employed as the weighting
factor in the triangulation process, thereby enhancing the
overall performance of 3D pose estimation.

To validate our annotation approach, we present a novel
multi-view 3D pose dataset called 3D-Labor. Numerous
multi-view datasets have been proposed with joint position
labels, such as Human3.6M[8], CMU Panoptic [9], and
HumanEva [10]. However, the majority of these datasets
have limitations, with few cameras and fixed viewing an-
gles directed towards a central stage, limited occlusions, and
monotonous sensor diversity. Additionally, these datasets
primarily capture social interactions and basic movements
such as jogging and walking. Therefore, there is a notable
absence of datasets emphasizing specific scenarios, such as
construction operations involving activities like shifting, lift-
ing, hammering, etc. Accordingly, we design a unique dataset
collection setup tailored specifically for the task of multi-view
3D pose estimation in construction scenarios.

Moeover, we engineered our dataset collection process to
exhibit versatility across varying motion scales and optical
configurations. This involved introducing a substantial num-
ber of cameras (16 cameras), with diverse optical sensors, and
incorporating challenging viewing directions, as well as oc-
cluding objects in the scene.

The contributions of our method are threefold:

• We present a triangulation-based parametric model de-
signed for annotating 3D Human Pose in multi-view
datasets. This model enhances triangulation by lever-
aging more reliable confidence scores derived from the
2D pose input, estimated by an off-the-shelf estima-
tor. It capitalizes on constraints provided by the human
skeletal prior to improve accuracy.

• We introduce a novel 3D HPE dataset focused on con-
struction scenarios, employing our annotation approach
for labeling. Distinguished by heavy occlusions, a sub-
stantial number of views, challenging viewing direc-
tions, and the integration of diverse optical sensors, our

dataset stands out from others.

• Extensive experiments on our dataset and Human3.6M
demonstrate that our proposed annotation method sig-
nificantly enhances traditional triangulation in multi-
view 3D HPE.

Code for our annotation tools and link to data can be found at:
https://github.com/KevinRiou22/supervised hall6 pose estimation

2. WEIGHTED TRIANGULATION AND DYNAMIC
WEIGHTS PREDICTON

Triangulation for 3D Human Pose Estimation, as introduced
by [7], is a 2 step process that allows to recover the 3D posi-
tions of a set of J joints defining the human skeleton. The
first step consists in the simultaneous detection of the 2D
joints in multiple views {uj

i}Ni=1. The 2D detection of a joint
j in the view i ∈ {1..N} corresponds to its pixel position
ui = [ui, vi] in the corresponding image. Such detection can
be done using off the shelf 2D pose estimation models, such
as HRNet [15]. A confidence in the detection Cj

i is also asso-
ciated to each joint j, in each view i by the 2D detector.

The second step allows to lift the 2D joint detections to
3D, using Direct Linear Transform. The relationships be-
tween the 2D detections ui, i ∈ [1, N ], the corresponding
homogeneous 3D joint x̃ ∈ R4, and cameras projection ma-
trices Pi ∈ R3×4, can be written as Ax̃ = 0, where

A =


u1p

T
1,3 − pT1,1

v1p
T
1,3 − pT1,2

...
uNpTN,3 − pTN,1

vNpTN,3 − pTN,2

 ∈ R2N×4

x̃ can be recovered as the unit singular vector corresponding
to the smallest singular value of the Singular Value Decompo-
sition of A. The final 3D position of the joint can be recovered
by dividing the 3 first values of x̃ by its fourth value: x = x̃

(x̃)4
Triangulation with confidence weights The reliability of

2D detections can vary across different views. Factors such
as occlusions, joints positioned outside the field of view, dis-
tance from the cameras, and variations in camera configura-
tions (including sensor and optics) can all contribute to this
variability. To address this variability, a straightforward ap-
proach involves assuming that the confidence levels associ-
ated with the 2D detections accurately represent their relia-
bility. Subsequently, joints in each view are weighted based
on their respective confidence levels, by multiplying each row
of A by a weight wj =

(
C1

∥aT
1 ∥ ,

C1

∥aT
2 ∥ , . . . ,

CN

∥aT
2N−1∥

, CN

∥aT
2N∥∥

)
.

Triangulation with dynamic weights Confidence levels
associated with the 2D detections may not represent the opti-
mal contribution of the corresponding joints to the triangula-
tion, due to the high complexity of the factors that can affect

https://github.com/KevinRiou22/supervised_hall6_pose_estimation


Table 1: Comparison for existing 3D Pose Estimation Datasets. Heavy occlusions, a sufficient number of views, challenging
viewing directions, and the integration of diverse optical sensors distinguish our dataset from others.

Dataset #Frames #Cameras #Subj Tricky Viewing
Direction

Optic sensor
Variation Environment Characteristics/Issues

HumanEva [10] 80K 7 4 No Yes Indoor
Inconsistent body structure bettwen
3D annotation and 2D prediction

Human3.6M [8] 3.6M 4 11(5 female + 6 male) No No Indoor -
Shelf - 3 4 No No Indoor Heavy occlusion

Campus - 2 3 No No Outdoor -
HuMMan[11] 60M 11 1000 No No Indoor Involving 500 actions

CMU Panoptic[9] 154M 480 Up to 8 subjects No No Indoor Various social interactions

MPI-INF-3DHP[12] 1.3M 14 8(4 female + 4 male) No No
Indoor&
Outdoor -

Total Capture[13] 1.892M 4 5(4 male + 1 female) No No Indoor Shift when reprojecting 3D GT to 2D
3D-Labor (Ours) 1.98M 16 5(2 male+3 female) Yes Yes Indoor Construction operations; Heavy occlusion

Fig. 2: Overview of our method. Rather than directly predicting 3D pose in world space, we employ a canonical weighted
triangulation pipeline[7]. However, instead of using the weights provided by the off-the-shelf 2D pose estimator, we substitute
them with predictions generated by the Adaptive Multi-view and Temporal Fusing Transformer (MTF) [14] model. Let Ĉv

1:J

denote the confidence scores for the j-th joint in the v-th view, where j ranges from 1 to J , and v ranges from 1 to V . Here,
J represents the total number of joints, and V represents the total number of views. Camera parameters including Intrinsic
Params (I1:V ) and Extrinsic Params (E1:V ) are provided by multi-view camera calibration.

the 2D detections. In this work, we propose to train a deep
learning model to predict refined confidences , from the set of
multi-view 2D detections and associated inital confidences :

{Ĉ1:V
1:J } = MTF ({u1:V

1:J }, {C1:V
1:J }),

where {Ĉ1:V
1:J }, {u1:V

1:J } and {C1:V
1:J } represent respectively

the sets of refined confidences, 2D detections, and initial con-
fidences; for each joints and in each view. MTF refers to
the Adaptive Multi-view and Temporal Fusing Transformer
(MTF) [14], originally proposed for 3D human pose predic-
tion from multi-view 2D skeleton data. We adapted the fi-
nal convolutional layer of MTF to predict a refined set of JV
confidences instead of the JV 3D poses originally output by
MTF. The overall pipeline is illustrated in Fig. 2. We utilize
the refined confidences Ĉ1:V

1:J to triangulate the 3D joints and
supervise the entire process using skeletal priors for subjects
in the dataset. Specifically, we incorporate prior knowledge
of participant bone lengths, supervising the pipeline to ensure
that the lengths of the bones in the triangulated skeleton b̂k
match the corresponding participant bone lengths bpriork :

LB =

B∑
k=1

(̂bk − bpriork )2

3. DATA ANALYSIS

3.1. Datasets

3.1.1. 3D-Labor

We collected a new dataset for multi-view 3D human pose
estimation, incorporating several factors that complicate the
assessment of view reliability for the 3D reconstruction task.
The setup consists of a room equipped with 16 calibrated and
synchronized cameras. Occlusions in the camera views are
caused by a shelf and a table placed within the scene. The
setup includes a set of 4 RGB cameras (Flir GS3-U3-41C6C-
C) with 12mm focal length optics positioned above the scene.
These cameras, labeled as cameras 0, 1, 3, and 6 in Fig. 1,
are collectively referred to as “Flir Top.” Additionally, there
is a set of 4 Flir cameras positioned lower and closer to the
scene, equipped with optics causing vignetting that narrows
the field of view. These cameras, labeled as cameras 2, 4, 5,
and 7 in Fig. 1, are denoted as “Flir Bot.” Furthermore, there
are 4 Stereo Cameras (ZED Mini) placed around the corners
of the scene, aligned with the shelf’s height. Each ZED cam-



era provides two individual yet closely aligned views. With
8mm focal length optics, the ZED cameras offer wide fields
of view. The cameras are labeled (12,13,14,15) and (8, 9, 10,
11) for the right and left views of the stereo cameras, respec-
tively, and referred to as “Zed r” and “Zed l.” We defined var-
ious multi-view scenarios comprising different combinations
of these cameras, resulting in varying levels of occlusion and
scene coverage. We recorded footage of 5 participants using
the multi-view setup. Each participant completed 27 tasks,
comprising 15 box-shifting tasks between the shelf and the
table, along with 6 screwing tasks and 6 hammering tasks on
the table. The cameras recorded at a rate of 30 frames per
second.

We provide 2D joints annotations obtained using HR-
Net [15] pose estimation model trained on Coco Keypoint
Dataset Format [16]. In section 3.4, we discuss triangulation
approaches used to recover 3D pose ground truth from the 16
views.

3.1.2. Human3.6M

It’s a widely used benchmark dataset for 3D human pose es-
timation [8], comprising 3.6 million 3D human poses using
four synchronized cameras at 50Hz, which are organized by
11 subjects. All the 3D pose annotations for these frames are
obtained using a professional motion capture system.

3.2. Metrics

Percentage of Failed Parts (PFP) A bone is deemed failed
if its error exceeds half the ground truth length.

3D Bone Error on data cleaned from failed bones. Al-
though the Percentage of Failed Parts (PFP) effectively iden-
tifies instances of substantial error in 3D reconstructions, it
overlooks the accuracy of successful cases. To provide a more
comprehensive assessment, we introduce the “3D Bone Er-
ror” metric. This metric computes the error between ground
truth bones and reconstructed bones, excluding the extreme
“failed bones.” By focusing on more typical scenarios, we ob-
tain a finer estimation of 3D error.

Ground truth bone lengths are determined by triangulat-
ing from a manually selected frame, combined with manually
selected views corresponding to that frame.

Reprojection error in the best view (Reproj. Error)
While metrics based on 3D Bone Error provide insight into
the accuracy of the reconstructed skeleton, they may not suf-
fice to evaluate the precise positioning of 3D joints. This
is particularly relevant in scenarios where a deep learning
model guides triangulation to minimize bone error, yet does
not guarantee correct joint positioning. To address this limita-
tion, a complementary metric is necessary. The reprojection
loss assesses how well the 3D skeleton aligns with 2D pro-
jections. It assumes the presence of at least one view with
accurate 2D detections and compares the 3D reconstructed
pose, when projected into 2D space, with the input 2D poses

in the best view. Concretely, the reprojection loss computes
the Euclidean distance between the input 2D poses and the
corresponding reprojected poses from the view that yields the
lowest distance.

P-MPJPE The Procrustes-aligned Mean Per Joint Posi-
tion Error (P-MPJPE) is the L2-error of the 3D estimation,
calculated after applying optimal rigid alignment (shift and
scale) to both the predicted 3D pose and the ground truth 3D
pose.

3.3. Benchmark and Implementation Details

We train our model following a configuration similar to MTF
[14] configurations (batch size, learning rate, learning decay,
and dropout rate are set to 64, 1e3, 0.95, 0.1, respectively).
The models are implemented with pytorch and trained using
Adam Optimizer for 60 epochs on a single NVIDIA V100
GPU. Since our pipeline is designed for annotation purpose,
we aim to overfit the trained model on the data that need to be
annotated. Therefore, we train and test on all subjects for our
data, and focus only on the training set subjects (S1, S5, S6,
S7, S8) for the H36M dataset.

3.4. Comparing Annotation approaches

The Table 2 reports 3D Bone Error, Percentage of Failed Parts
and Reprojection Error metrics while triangulating without
weights (basic), with the 2D detector weights (w/2DConf)
and with the weights predicted by our trained model (w/DynConf).
The results are reported for all the camera setups defined in
section 3.1.1 , resulting in various levels of occlusions.

Analyzing the Impact of Occlusions on Triangulation
The presence of occlusions poses a significant challenge

to triangulation, especially in scenarios with strong occlu-
sions, resulting in substantial errors in 3D reconstruction and
subsequently higher Percentage of Failed Parts (PFP).

Using PFP as a metric allows us to explore the setups’
sensitivity to strong occlusions and understand how the in-
troduction of 2D confidences in triangulation addresses this
issue.

Initially sorting setups by PFP on basic triangulation re-
sults, we observe the following ranking from best to worst:
“16 views,” “Zed r, Flir Top” (8 views), “Flirs Top” (4 views),
Flirs Bot. (4 views), “Zed r, Flir Bot.” (8 views), “All Zeds”
(8 views), “Zed l” (4 views), “Zed r” (4 views). Notably,
the use of multi-view information is not optimized, evident in
instances where triangulating solely from “Flirs Bot.” yields
lower PFP than combining “Flirs Bot.” and “Zed r,” which
inherently provides more information.

Subsequently, sorting setups by the percentage improve-
ment in PFP when using triangulation with 2DConf compared
to basic triangulation, we find the following order of improve-
ment from best to worst: “16 views” (95.1%), “Zed r, Flir
Top” (92.9%), “Zed r, Flir Bot.” (92.7%), “All zed” (85.4%),



Table 2: Evaluation of 3D reconstruction approaches on our dataset.

3D Bone Error (mm) Reproj. Error (best view) (px) PFP

S1 S2 S3 S4 S5 Avg Max S1 S2 S3 S4 S5 Avg Max

16 views (basic) 30.3 32.2 44.5 33.6 33.2 25.9 2.14e+02 39.5 54.3 1.14e+02 54.1 68.0 68.2 1.06e+03 12.2
16 views (w/2DConf) 15.3 14.2 17.7 14.6 16.8 15.4 1.89e+02 4.7 4.6 6.3 4.5 4.6 5.0 6.83e+02 0.6
16 views (w/DynConf) 2.5 2.6 3.0 2.6 2.6 2.7 59.9 4.9 4.5 5.8 4.7 4.7 5.0 96.4 0.0

All Zeds (basic) 20.6 23.7 31.9 25.7 27.1 20.0 2.15e+02 28.7 42.8 1.06e+02 55.0 68.1 61.9 1.16e+03 17.8
All Zeds (w/2DConf) 16.3 15.1 20.2 16.1 19.0 16.3 1.92e+02 5.0 4.9 9.6 5.0 5.8 6.2 1.06e+03 2.6
All Zeds (w/DynConf) 5.1 5.1 7.1 5.2 5.8 5.6 1.92e+02 52.6 53.7 69.1 54.3 57.5 58.0 8.40e+02 0.2

Zed r (basic) 20.5 23.6 30.5 24.9 26.4 20.3 2.15e+02 31.0 45.9 1.10e+02 57.4 72.8 65.3 1.07e+03 18.6
Zed r (w/2DConf) 17.8 16.0 20.8 16.6 19.3 17.0 1.92e+02 7.1 6.6 10.8 6.6 7.1 7.8 1.01e+03 3.1
Zed r (w/DynConf) - - - - - - - - - - - - - - 0.0

Zed l (basic) 20.9 23.7 30.3 25.2 26.4 20.3 2.15e+02 31.1 47.3 1.14e+02 58.8 72.4 66.7 9.68e+02 18.0
Zed l (w/2DConf) 16.5 15.9 21.7 17.3 20.2 17.0 1.92e+02 6.5 6.3 11.2 7.1 7.5 7.9 1.31e+03 3.2
Zed l (w/DynConf) - - - - - - - - - - - - - - 0.0

Flirs Top (basic) 42.5 46.0 46.2 41.1 41.5 33.0 2.15e+02 1.35e+02 1.66e+02 2.17e+02 1.28e+02 1.64e+02 1.65e+02 1.02e+03 15.9
Flirs Top (w/2DConf) 20.9 21.9 27.5 22.5 22.4 21.1 1.92e+02 31.1 47.3 1.14e+02 58.8 72.4 66.7 9.68e+02 3.5
Flirs Top (w/DynConf) 5.9 6.2 6.8 6.7 6.6 6.4 1.75e+02 11.8 13.9 25.1 12.6 15.2 16.2 7.00e+02 0.2

Flirs Bot. (basic) 29.7 38.4 44.2 32.5 34.0 27.2 2.15e+02 76.0 1.04e+02 1.80e+02 1.09e+02 1.29e+02 1.22e+02 1.51e+03 16.3
Flirs Bot. (w/2DConf) 20.8 23.2 24.5 19.8 22.2 21.0 2.02e+02 13.1 13.8 14.8 12.3 13.1 13.5 1.26e+03 6.5
Flirs Bot. (w/DynConf) - - - - - - - - - - - - - - 0.0

Zed r, Flir Top (basic) 29.7 34.5 45.2 36.0 33.7 28.1 2.15e+02 54.1 66.3 1.19e+02 63.7 76.9 78.2 9.34e+02 14.1
Zed r, Flir Top (w/2DConf) 16.7 15.1 19.7 16.2 17.8 16.5 1.91e+02 6.5 6.0 8.2 5.9 5.7 6.6 6.62e+02 1.0
Zed r, Flir Top (w/DynConf) 3.5 3.7 4.3 3.7 3.8 3.8 1.06e+02 12.8 12.6 14.7 12.4 13.6 13.3 2.28e+02 0.0

Zed r, Flir Bot. (basic) 26.3 30.9 45.8 30.9 32.8 21.8 2.15e+02 37.8 58.8 1.51e+02 64.6 83.5 82.5 1.25e+03 16.4
Zed r, Flir Bot. (w/2DConf) 16.9 16.6 19.4 15.4 17.9 16.7 1.92e+02 6.8 6.5 9.0 6.3 6.5 7.1 8.19e+02 1.2
Zed r, Flir Bot. (w/DynConf) 4.2 4.5 5.8 4.5 4.9 4.8 1.87e+02 15.1 13.6 16.2 13.7 14.0 14.6 3.51e+02 0.0

Table 3: Validation of our DynConf weight prediction ap-
proach on H36M dataset train subjects.

P-MPJPE 3D Bone Error (mm) PFP (%)

basic 20.78 12.10 0.0
weighted 2DConf 27.41 16.27 0.0
weighted DynConf 17.99 5.53 0.0

“Zed r” (83.3%), “Zed l” (82.2%), “Flir Top” (78.0%), and
“Flir Bot.” (60.1%). Sorting setups by triangulation with
2DConf PFP mirrors the order of PFP improvements.

It becomes evident that setups with more views and di-
verse perspectives benefit the most from weighted triangula-
tion. For instance, “Zed r, Flir Top” with diverse views out-
performs “Zed r, Flir Bot.,” showcasing the advantage of in-
corporating diverse perspectives.

Shifting the focus to smaller occlusions, we employ 3D
Bone Error on data cleaned from Failed parts as a proxy to
assess sensitivity and understand how weighted triangulation
influences these scenarios.

Sorting setups by 3D Bone Error on basic triangulation
results, the order is as follows: “All zed,” “Zed r,” “Zed l,”
“Zed r, Flir Bot.,” “16 views,” “Flir Bot.,” “Zed r, Flir Top,”
“Flir Top.”

Subsequently, sorting setups by the percentage improve-
ment in 3D Bone Error when using triangulation with 2DConf,
the order from best to worst improvement is: “16 views”
(40.5%), Zed r, Flir Top (41.3%), flir top (36.0%), Zed r,
Flir Bot. (23.4%), flir bot (22.8%), all zeds (18.5%), zed r
(16.3%), and zed l (16.3%).

When using triangulation with 2DConf, the setups can be

sorted by 3D Bone Error, from best to worst as “16 views,”
“All Zeds,” “Zed r, Flir Top,” “Zed r, Flir Bot.,” “Zed r,”
“Zed l, Flirs Bot.,” “Flirs Top.”

We observe a consistent pattern in the relationship be-
tween 3D Bone Error, derived from data cleaned of Failed
parts, and the PFP metric. Notably, setups with a higher
number of views and greater view diversity exhibit a more
pronounced benefit from incorporating confidence weighting
into the triangulation process.

However, integrating 2DConf in the triangulation process
appears to be less significant than in the more challenging sce-
narios highlighted by the PFP metric. This observation sug-
gests that the influence of 2DConf varies based on the com-
plexity of the reconstruction task.

An intriguing insight emerges from the results presented
in Table 3, which showcases the outcomes of both basic
triangulation and triangulation with 2DConf on the H36M
dataset—a dataset exclusively featuring self-occlusions. De-
spite both approaches yielding a PFP of 0.0%, utilizing trian-
gulation with 2DConf in such scenarios leads to an increase in
both 3D Bone Error and P-MPJPE. This unexpected outcome
suggests that in specific instances, incorporating 2DConf in
triangulation may detrimentally impact the overall triangula-
tion performance.

Enhancing Occlusion Handling through Predicted Tri-
angulation Weights

Because of the high amount of PFP when triangulat-
ing from few views, the models trained to predict DynConf
weights from 4 views failed to converge. However, except for
these 4-view setups, DynConf weights allowed to reduce the
PFP to almost 0% for all the studied setups. Moreover, using



(a) 2DConf (b) DynConf

Fig. 3: Visualization of joints re-projected to 2D (green dots)
following triangulation with 2DConf and DynConf weights
(16 views). The red dots denote the initial 2D joint detections.

DynConf significantly reduces the 3D Bone Error (cleaned
from Failed parts) compared to using 2DConf weights. The
“16 views”, “Zed r, Flir Top”, “Zed r, Flir Bot.” and “All
zeds” setups reduced their 3D Bone Error respectively by
82.5%, 77.0%, 71.3% and 65.6%. We can notice that our
approach also improves more the setups that showcase more
views, and more diverse perspectives.

Overall, triangulating with 16 views and with DynConf
weights allows 0.0% PFP and 2.7mm average 3D Bone Error
on the whole dataset.

As a qualitative result, Fig. 3 highlights a triangulation
that fails for the human’s left wrist with 2DConf weights but
succeds with DynConf weights.

On H36M dataset, as illustrated in Table 3, while using
2DConf weights decreased performances compared to basic
triangulation, using the DynConf weights imporves both 3D
Bone Error and P-MPJPE metrics.

Does our approach improve bone len at the expense of
correct joint positioning?

As illustrated in Table 2, regarding the “16 views” sce-
nario, using DynConf weights drastically improved the 3D
bone error, while maintaining a stable re-projection error. Fig.
3 highlights the distribution of 3D bone errors and reprojec-
tion errors in the best view. Using DynConf weights squeezes

(a) 3D Bone Error (b) Reprojection Error

Fig. 4: Violin plot and box plot for 3D Bones and re-
projection errors, when traingulating with 2DConf weights vs
DynConf weights on our dataset.

most of the 3D Bone error distribution bellow 10mm, while
showcasing a similar, and even slightly better Reprojection
error distribution.

Interestingly, for setups that include Zed r cameras, our
model found a way to predict DynConf weights that reduce
the 3D Bone error, while increasing the reprojection error.
Fig. 5 highlights the re-projected joints compared to the pre-
dicted 2D joints for this case.

Fig. 5: Failure case with DynConf (“Zed r, Flir Top” setup on
our dataset.)

4. CONCLUSION

This paper proposed a triangulation-based approach for the
automatic annotation of 3D labels in the context of 3D HPE
tasks, with the goal of eliminating the use of impractical Mo-
cap equipment. Utilizing multi-view 2D poses and their cor-
responding confidence scores obtained from an off-the-shelf
2D pose estimator as input, our approach endeavors to learn a
set of confidence scores aimed at enhancing the performance
of triangulation. We introduced a novel 3D HPE dataset
with a construction theme, featuring significant occlusions, a
substantial number of cameras, various optical sensors, and
diverse activity scales. Our annotation approach was trained
using both the proposed dataset and Human3.6M, leading to
significant improvements over existing triangulation-based
methods.
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