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ABSTRACT
The energy transition generates for the financial system the so-called ’transition risks’, leading
to the development of Climate Stress-Tests. We propose a firm-level corporate credit risk model
that accounts for business model evolution in a transition scenario for Climate Stress-Tests. It
is a structural and path-dependent model with stochastic total assets and debt and it integrates
all the transition risks drivers as well as physical risks. Simulations show that reducing emis-
sions intensity may improve leverage ratios despite the mitigation costs. However, often-used
strategies such as aligning with sectoral averages, increase credit risk, with default probabilities
up to 4 times higher in orderly transitions. Constant market share assumptions underestimate
default risk for high polluters and overestimate it for low polluters. Tailored business model
strategies are essential for managing credit risk effectively during the energy transition.
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1. Introduction

1.1. The context of Climate Stress-Tests.

The increasing focus on climate-related financial risks has led to the emergence of Climate Stress-

Tests, a forward-looking risk assessment that aims to evaluate how financial entities would fare

under different climate transition scenarios [2, 3]. Credit Risk Stress-Tests typically assess the

impact of adverse but plausible short-term macroeconomic shocks on financial actors’ credit

portfolios and compute inherent financial risks’ metrics, mainly the probabilities of default

term structures. However, as [16] points out, the methods used for traditional Stress-Tests

are unfit for capturing the long-term and potentially abrupt nature of transition risks. The

complexity of Climate Stress-Testing is compounded by the time horizons involved and the need
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for finer granularity to account for the various drivers of transition risks (policy, technology and

sentiment, [5]) that break past relations in the bank’s book. The lack of historical data makes

it difficult to apply traditional statistical models to estimate the relationships between these

factors, and as the energy transition progresses, these relationships are expected to evolve.

1.2. State of the art on Corporate Credit Risk Stress-Testing.

Incorporating climate Stress-Tests into Credit Risk Stress-Testing frameworks requires new

models that integrate climate risk drivers and satisfy Climate Stress-Tests requirements. A first

attempt by [15] proposed a bottom-up approach by augmenting the long-used Asymptotic Single

Factor Risk model [24] with a climate risk factor but assumed static correlations that may not

hold under transition risks. Moreover, it is not fit for the counterparty-level evaluation of the

credit risk required by regulators in this context (see as an example [3]). On a finer granularity,

[11] refines the model from [13] with a stochastic component to evaluate short-term transition

risks for SMEs but is unsuitable for long-term Climate Stress-Tests due to the static nature of

their modeling. In particular, they do not account for a change of business model (i.e. the way

the firm makes profits) for the SMEs, which is a determinant of the energy transition.

Additionally, [16] thoroughly details the financial cash flows that would be impacted by an

energy transition. On the one hand, profits would be reduced due to increased carbon taxa-

tion and augmentation of input prices. However, transition-compliant firms could see their net

sales revenues rise thanks to inflated demand. This will directly impact the total assets of the

company. On the other hand, debt stock would need to expand for the deployment of new

technologies to meet the new market requirements. The choice of new technologies, either in

the production process or as the object of production itself, constitutes a shift in the company’s

business model induced by the transition.

Other works, such as [10] and [7], extend the well-known Merton model by [18] by introducing

carbon price shocks, but they often excluded business model adaptation and its impact on

debt. Note that these models only focus on one driver of transition risk. Models like [1, 4, 14]

encompass the business model adaptation using deterministic projections calibrated on historical

data and based on a constant market shares assumption. While this allows a dynamic debt, this

hypothesis limits the effects of consumer sentiment on demand for “brown” goods and services

the associated credit risk augmentation. For instance, car manufacturers, while having low direct

emissions, remain highly vulnerable to changes in consumer sentiment. Furthermore, they use

scoring models calibrated on historical data to compute the default probability, similarly to

[16]. The key question remains: how to compute probabilities of default for corporates under

a transition scenario, encompassing all transition risk drivers and business model adaptation

strategies?

1.3. Our contribution.

We propose a structural and path-dependent model for corporate credit risk assessment in Cli-

mate Stress-Tests. This scenario and sector invariant stochastic model encompasses the different

transition risks’ drivers as described by [5] and allows for market share reallocation throughout

the scenario with respect to the company’s emissions relative to the rest of its sector. It also

enables the design and assessment of different types of business model adaptation strategies

to the energy transition and scenarios [9]. We use a financial cash flow logic to compute both

sides of the firm’s balance sheet as stochastic processes that depend on the scenario and the

company’s business model. The model also takes into account physical shocks with increasing

frequency. Using Nested Monte Carlo simulations, we evaluate different business model tran-
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sition strategies in terms of corporate default probabilities under two transition scenarios: an

orderly and a disorderly transition. We find that in a market sensitive to the consumer sentiment

channel, companies that lower their intensity are rewarded with a better leverage ratio, despite

the convex costs of such reduction. However, if the business model adaptation plan is not chosen

wisely, it may worsen the company’s credit risk. Costs-based strategies perform better in terms

of the probability of default. Specifically, following the same growth rate as the sector’s average

intensity provided by the scenario systematically increases the credit risk, due to the required

investment. It can yield PDs up to 4 times greater than other strategies. Moreover, contrary

to similar works that rely on macroeconomic simulations or the assumption of optimal and

homogenous firm-level behaviors, we focus on the impact of a firm’s individual decisions that

may not be optimal. This allows interesting perspectives for banks’ risk management thanks to

informed dialogue with their clients.

1.4. Organisation of the paper.

In Section 2, the default event and its probability are defined in a general setting. Next, the

various cash flows are outlined in Section 3, leading to the computation of the firm’s total

assets and debt as stochastic variables. Results based on different fictitious firms and transition

scenarios are presented in Section 5.

2. Definition of the Default and the Probability of Default

As scenarios are the central component of Stress-Tests, we begin with a given energy transition

scenario, namely a deterministic set of likely energy transition pathways for main macroeconomic

variables ranging on the period [0, T ], where T is the end of said scenario. Consider an energy

transition risk-vulnerable firm that evolves in that same scenario. Precisely, its financial cash

flows and business decisions will depend on the scenario on [0, T ]. Our goal is to compute the

company’s probability of default term structure, as the probabilities of defaulting within the

next period at each date, given the state of the macroeconomy described by the scenario, as

well as its business decisions at N fixed dates i = 0 : N −1, with constant time step δ. Thus, an

important first step is to define the default event. We denote by Ai and Di the company’s total

assets and debt at date i respectively, which are stochastic variables depending on the scenario

and the firm’s business decisions.

Following [8], we define the company’s default as the first time the total assets are no longer

sufficient to cover the debt commitments, given it has never been the case beforehand. In other

terms, the default of the firm is the random time τ defined as follows:

{τ = i} = {i ≥ 1, Ai < Di, Aj ≥ Dj , ∀j = 0, · · · , i− 1}. (2.1)

At each decision date i, we wish to compute the probability of the company defaulting within

the next period, given that it has not occurred before. To do so, consider a filtered probability

space (Ω, (Fi)i≥0 ,P) where, (Fi)i≥0 represents the information flow. (Ai)i≥0 and (Di)i≥0 are F-
adapted processes. To get the probability of default term structure, it is necessary to compute

for each i = 0 : N − 1 the probability of defaulting in the following period. Hence, we leverage

the definition given in (2.1). The 1-period probability of default at date i = 0 : N − 1 denoted
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by PDi is:

PDi :=P(τ = i+ 1 | Fi)
=P(Ai+1 < Di+1 | Aj ≥ Dj , ∀j = 0 : i)1{Aj ≥ Dj , ∀j = 0 : i}.

This is the conditional probability of the company defaulting in i+ 1, evaluated in i and given

that it has not defaulted before. We discuss the firm’s dynamics in the next section.

3. Financial cash flows and balance sheet’s dynamics

3.1. Business model adaptation

We assume the company will adapt to the transition by reducing its relative emissions uniquely.

Doing so will not only reduce its carbon tax costs, but also increase its sales revenues. The

firm’s sole lever of action is the intensity reduction rate process (γi)i=0:N−1.

Moreover, the climate policy is usually disclosed in advance. for firms to enclose future

carbon price shocks or technology bans in the design of their business model. Therefore, we

assume the company tailors its own carbon emissions mitigation plan in date 0. This plan

may be constructed with respect to the scenario and the company’s characteristics or may be

completely exogenous. Furthermore, it may either be a deterministic or constant function of

some parameters or even stochastic.

At each date i = 0 : N − 1, the company may choose whether to invest in its own carbon

emissions mitigation plan for the next period [i, i+ 1] by selecting its intensity reduction effort

γi ∈ R+. If γi = 0, the company’s effort is null for the next period, and there is no ”green”

investment. However, if γi > 0, this implies that the company has chosen to invest in its emissions

mitigation plan. We assume that large investment strategies are not feasible either due to the

lack of technological progress or a constrained number of available units, thus γi ≤ γmax, with

γmax > 0.

The company’s carbon emissions plan is πππ := (γi)i=0:N−1 a vector containing all the intensity

reduction rates over the scenario. For the following, we will refer to it as a “carbon reduction

strategy” (or “strategy”). We give a more thorough definition:

Definition 3.1. A strategy is a sequence πππ = (γ0, γ1, . . . , γN−1) where, each γi is a universally

measurable stochastic kernel of the history (X0, γ0, . . . , γi−1,Xi) ∈ (R+)
2×R+×· · ·×R+×(R+)

2

with values in R+, such that:

γi([0, γmax] | X0, γ0, . . . , γi−1,Xi) = 1,

where γk, k = 0, · · · , i− 1 are the past realizations of the control process.

In other words, each γi,∀i = 0 : N − 1 conditional probability of γi has support in [0, γmax].

For all i = 0 : N−1, they each are a stochastic function of the history, i.e., a stochastic function

of all Xj ,∀j ≤ i and γj ,∀j < i. We may consider weaker definitions of such a strategy. This is

the object of the next definitions.

Definition 3.2. A Markovian strategy is a sequence πππ = (γ0, γ1, . . . , γN−1) such that, for each

i = 0, . . . , N − 1, γi is a universally measurable stochastic kernel on (R+)
2
satisfying:

γi([0, γmax] | Xi) = 1.
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3.2. Financial Cash Flows

We leverage the model from [20] to define the firm’s financial cash flows under a given business

model strategy. Let Π be the set of admissible strategies πππ = (γi)i=0:N−1, i.e. Markov, F-adapted
and such that each γi ∈ [0, γmax], ∀i = 0 : N − 1. To compute the probability of default under

admissible strategy πππ, we need to introduce the next notation: Let Xπππ
i = (Iπππi , S

πππ
i ) be the value

of the state variable at date i computed with strategy πππ for i = 0 : N . Firstly, we denote the

firm’s intensity under strategy πππ = (γi)i=0:N−1 ∈ Π as the next stochastic process:

Iπππi+1 =

{
Iπππi e

−γiδ × eσI∆εIi−ψI
i (σI), i = 0 : N − 1

IπππN , i ≥ N,
(3.1)

with I0 > 0, γi ∈ R+ the intensity reduction effort rate and σI a positive constant. Here, ∆εIi
should be viewed as the time-increment of a random process ∆εIi , which models the uncertainty

in the evolution of the emission intensity. We assume that (∆εIi )i are independent and bounded

for technical reasons. The additional factor ψIi (σI) is the log moment generating function of

∆εIi at point σI :

eψ
I
i (σI) = E

[
eσI∆εIi

]
,

which ensures that the uncertainty factor in (3.1) has unit mean. Secondly, the company’s sales

revenues (Si)i≥0 are given by the following dynamics:

Sπππi+1 =

{
Sπππi

S̄i+1

S̄i
e−κ(I

πππ
i −Irefi )δ × eσS∆εSi −ψS

i (σS), i = 0 : N − 1

SπππN , i ≥ N.

where S̄ are the sales revenues of the reference market given by the scenario in current prices,

and Iref is the market reference for the intensity. We assume that the market shares are real-

located with respect to the company’s carbon efficiency relative to its market: this is reflected

through the first exponential, where κ ≥ 0 is the sensitivity to the company’s relative intensity

with respect to the market. This captures both the consumer sentiment and demand-price ef-

fects due to the carbon cost pass-through (see [21]). As for (3.1), σS is a constant real number

and the firm’s idiosyncratic disturbances (∆εSi )i are independent random variables with log

moment generating function ψSi (.):

eψ
S
i (σS) = E

[
eσS∆εSi

]
.

We also assume that ∆εSi is bounded for technical reasons. Because the intensity is by definition

the ratio of emissions over sales revenues, we add the following assumption:

Cov(∆εIi ,∆εSi ) < 0.

For the following, we will denote the variables needed to retrieve the absolute carbon emissions

as one single vector in R+ × R+: Xi := {(Ii, Si)}i≥0. Moreover, we will write as X(1) = I and

X(2) = S for the two components of X. The production of goods or services needed to earn

Si yields costs that directly depend on the quantity effectively produced and the price of used

inputs. Here, we use the sales revenues as a proxy for the volume of production since the sales

revenues are the product of the volume of sold goods and their selling price. Indeed, it enables
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to account for both the eventual changes in the volume of production as well as the inputs’

price’s inflation that is assumed to be the same as the selling price’s.

TC(i, S, I) = cpiIS + kSν . (3.2)

with k a positive constant standing for the coefficient factor of variable costs and ν ∈ R+ the

exponent of the sales revenues, and (cpi)i=0:N the deterministic carbon price trajectory given

by the scenario. Aside from costs, production also requires long-term capital. Let (Kπππ
i )i≥0 the

required productive capital under πππ to produce Sπππi and (Pi)i≥0 the selling price of the firm’s

production. Assuming the relation between the production volume (Y πππi )i≥0 and the productive

capital is a Cobb-Douglas function [12] with constant labor stock and

Let a ∈ R+ be the productivity rate of capital and θ ∈ R the exponent of the capital. Given

that the selling price evolves with respect to a deterministic inflation rate trajectory (IRi )i=0:N

extracted from the scenario, we get the next dynamics for the selling price: Pi := Pi−1(1 + IRi )

with P0 set to 1. The firm’s capital under strategy πππ is:

Kπππ
i =

(
Y πππi
a

)1/θ

=

(
Sπππi
aPi

)1/θ

.

Considering the depreciation rate d ∈ [0, 1], the capital investments are obtained as follows:

ING(i,πππ) = (Kπππ
i − (1− dδ)Kπππ

i−1)
+, (3.3)

where x 7→ (x)+ = max(x, 0).

3.3. The firm’s balance sheet

As in [18], we assume the company’s total assets equal its value. Moreover, we insert our model

in a Modigliani-Miller framework [19], i.e., the value of the firm is independent of its capital

structure and the physical assets are modeled through the flow of profits they yield. Given a

deterministic risk-free interest rate r > 0 we model (Aπππi )i=0:N as the conditional expectation of

the sum of future discounted profits [17]:

Aπππi = E

 ∞∑
j=i

Profitsπππj
(1 + rδ)j−i

| Fi

 .
The firm’s profit between i − 1 and i is the difference of the sales revenues Sπππi , the company’s

operating costs (3.2) and physical risks damages that we model as an inhomogeneous compound

Poisson process
∑ni

q=ni−1+1 Zq. Note that, each ni is an inhomogeneous Poisson process with

intensity λi := λ0g
i, g ≥ 1, i ≥ 0 1 and (Zt)t∈N∗ is an i.i.d. stochastic process with positive

values independent from (ni)i>0, (∆ε
I ,∆εS)0≤i≤N and (Fi)i≥0. The profit is thus given by:

Profitsπππi = Sπππi − TC(i, Sπππi , Iπππi )−
ni∑

q=ni−1+1

Zq. (3.4)

Using the definition of profits given in (3.4), the independence of (ni)i>0 and (Zt)t>0 from

(∆εI ,∆εS)0≤i≤N , equation (??), and the properties of the sum of an infinite number of consec-

1n0 = 0 by convention
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utive terms of a geometric sequence with reason lower than 1, we get:

Aπππi = E

N−1∑
j=i

Sπππj − TC(j, Sπππj , Iπππj )
(1 + rδ)j−i

+
SπππN − TC(N,SπππN , IπππN )
rδ(1 + rδ)N−i−1

| Fi

− Z̄i,

where:

Z̄i = E

∑
j≥i

nj∑
q=nj−1+1

Zq

(1 + rδ)j−i

 =


λ0

(1 + rδ)

r
E [Z1] , if g = 1,

λ0
[
giδ − g(i−1)δ

]
δ ln(g)

× 1 + rδ

1 + rδ − gδ
E [Z1] , if g > 1.

We assume that the company contracts debt for the sole purpose of fully financing long-term

investments such as in [1]. Thus, there is no self-financing or shareholder’s equity augmentation

possible for the payment of investments costs. The investments are the sum of green investments

and non-green investments (or capital investments, given by (3.3)). The green investment costs

IG are the ones generated by the intensity reduction strategy πππ. They are used to green the

producing capabilities that are already set up in place, meaning they aim to produce Sπππi−1 with

a lesser intensity whose reduction rate is determined by γi−1. Following Nordhaus’ Dynamic

Integrated Climate-Economy (DICE) model [22], we denote the green investment costs by:

IG(i, S, γ) = S × c× αiδ ×
(
1− e−γδ

)β
β

,

where c > 0 is the unit abatement cost of emissions in USD, α ∈ [0.95, 1] the factor of au-

tonomous cost decrease over time, and β ≥ 2 the exponent of the emissions reduction rate as

a percent of total emissions 1 − e−γδ. With ζ ∈ (0, 1) being the constant amortization rate for

the debt, we define the debt dynamics as:

Dπππ
i = (1− ζδ)Dπππ

i−1 + IG(i− 1, Sπππi−1, γi−1) +

((
Sπππi
aPi

)1/θ

− (1− dδ)
(
Sπππi−1

aPi−1

)1/θ
)+

.

4. Computation of the Probability of Default Term Structure

For the sake of clarity, we will write as Xπππ
j (i,x) =

(
Iπππj (i,x), S

πππ
j (i,x)

)
,∀i = 0 : N, j = 0 : N, i ≤

j the value of the state variable in date j starting with value x ∈ (R+)2 at date i and computed

with strategy the admissible strategy πππ ∈ Π.

(1) Simulate M1 ≫ 1 trajectories {(Xπππ,m
i (0,X0))i=0:N}m=1:M1

with starting value X0 =

(I0, S0) strategy πππ(0, X0) = (γi)i=0:N−1.

(2) For i = 0 : N − 1:

(a) Compute the expected sum of future discounted physical damages Z̄i.

(b) For each simulated value Xπππ,m
i (0,X0),m = 1 :M1, do:

(i) Consider an admissible strategy πππi(X
πππ,m
i (0,X0)) = (γj(.))j=i:N−1 and compute

{
(
Xπππi,m,l
j (i,Xπππ,m(0,X0))

)
j=i:N

}l=1:M2
, with M2 ≫ 1.

(ii) Compute the assets Aπ
ππ,m,l
i+1 and the debt Dπππ,m,l

i+1 for trajectory m with the newly

simulated trajectories.
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(c) For each trajectory m, compute the default frequency as:

P̂D
πππ,m
i =

1

M2

M2∑
l=1

1{Aπππ,m,li+1 < Dπππ,m,l
i+1 }.

We thus get:

P̂D
πππ
i =

1

M1

M1∑
m=1

P̂D
πππ,m
i .

(d) Because the trajectories such that P̂D
πππ,m
i = 1 are defaulted a.s., they can no longer be

considered in the computation of the default frequency due to the default condition

(2.1). Hence, we need to delete them and reduce the number of trajectories M1

accordingly: M1 ←M1 −
∑M1

m=1 1{P̂D
πππ,m
i = 1}.

We detail this methodology in Algorithm 1:
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Algorithm 1: Computation of the Probability of Default Term Structure

with Nested Monte Carlo Simulations
Input: Number of Trajectories: M1 >> 1,

Number of Nested Simulations: M2 >> 1,

Strategy: πππ(X0) = (γi)i=0:N−1.

Output: PD term structure: (P̂D
πππ
i )i=0:N−1.

1 Compute M1 Monte Carlo paths for

{(Xπππ,m
i (0,X0))i=1:N}m=1:M1

= {(Iπππ,mi (0,X0), S
πππ,m
i (0,X0))i=0:N}m=1:M1

with strategy

πππ.

2 for i = 0 : N − 1 do

3 Compute Z̄i.

4 for m = 1 :M1 do

5 for l = 1 :M2 do

6 Set strategy πππi(X
πππ,m
i (0,X0)) := (γi(.), γi+1(.), . . . , γN−1(.)).

7 Simulate a trajectory (Xπππi,m,l
j (i,Xπππ,m

i (0,X0)))j=i:N starting with value Xπππ,m
i

in i.

8 Compute the assets and debt :

Aπ
ππ,m,l
i+1 :=

N−1∑
j=i+1

Sπ
ππi,m,l
j (i,Xπππ,m

i (0,X0))− TC(j, Sπππi,m,l
j (i,Xπππ,m

i (0,X0)), I
πππi,m,l
j (i,Xπππ,m

i (0,X0)))

(1 + rδ)j−i−1

+
Sπ
ππi,m,l
N (i,Xπππ,m

i (0,X0))− TC(N,Sπππi,m,l
N (i,Xπππ,m

i (0,X0)), I
πππi,m,l
N (i,Xπππ,m

i (0,X0)))

rδ(1 + rδ)N−i−2

− Z̄i,

Dπππ,m,l
i+1 := (1− δζ)Dπππ,m,l

i + IG
(
i, Sπ

ππi,m,l
i (i,Xπππ,m

i (0,X0)), γi(X
πππ,m
i (0,X0))

)
+

(Sπππi,m,l
i+1 (i,Xπππ,m

i (0, X0))

aPi+1

)1/θ

− (1− δd)

(
Sπ
ππi,m,l
i (i,Xπππ,m

i (0, X0))

aPi

)1/θ
+

.

end

end

9 Compute the conditional default frequency: P̂D
πππ,m
i =

1

M2

M2∑
l=1

1{Aπππ,m,li+1 < Dπππ,m,l
i+1 }.

10 Compute P̂D
πππ
i =

1

M1

M1∑
m=1

P̂D
πππ,m
i .

11 Delete all trajectories such that P̂D
πππ,m
i = 1.

12 Update M1 ←M1 −
∑M1

m=1 1{P̂D
πππ,m
i = 1}.

end
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Table 1. Summary of the different NGFS Scenarios studied for the analysis. CDR means carbon Dioxide Removal technologies

(Source: NGFS ).

Scenario Temperature Policy type Technology CDR Regional Policy
increase in 2100 Variation

B2C 1.6°C Immediate and smooth Moderate change Medium-high Low variation

DT 1.6°C Delayed Slow then Fast change Low-medium High variation

5. Application to fictitious companies

5.1. Description of the scenarios

We have based our application on two NGFS phase II energy transition scenarios [23], namely,

Below 2 Degrees (B2C), and Delayed Transition (DT) (see Table 1). Both show different path-

ways running from 2020 to 2050. B2C is a smooth (or orderly) transition scenario, with a gradual

increase of the carbon price until 2050. DT is a disorderly transition scenario, with constant

carbon price until 2030, where a carbon price shock occurs with a dramatic increase of the

carbon price until 2050. It goes from USD10 to USD1000 at the end of the scenario. We focused

on a transition vulnerable sector “D35: Electricity, gas, steam, and air conditioning supply” for

France.

5.2. Choice of parameters

We have considered a 6 dates problem (N = 6, δ = 5), and have ran tests on three fictitious

companies that only differ in starting point intensity: I10 = 1.16E−3 (brown), I20 = 7.71E−4
(yellow), I30 = 3.86E−4 (green). Table 2 summarizes all other parameters used. We ran M1 =

10E4 simulations with M2 = 200 nested simulations.

5.3. Description of the strategies

For each scenario, we have computed the results for four strategies. The first one is entitled

the uncontrolled strategy, i.e. with πππ := 0N . Then, we consider the exogenous (exo) strategy

consisting in selecting the same reduction rate as the reference intensity with the yearly reduction

rate capped to 40% (see γmax in Table 2). The third strategy is the myopic (myo) strategy and

consists of selecting the reduction rate such that the investment at date i is the same as the

cost of paying the carbon tax at date i:

πππexo := (γexoi )i=0:N−1 , e−γ
exo
i δ = max

(
Irefi+1

Irefi

, e−γmaxδ

)
,

πππmyo := (γmyo
i (I))i=0:N−1 , γmyo

i (I) = min

(
−1

δ
ln

(
1−

(
β
cpiI

cαi

) 1

β

)
, γmax

)
,

for all i = 0 : N − 1. Lastly, let us introduce the minimum transition costs strategy (“min

costs”). It is defined so as to minimize the firm’s future carbon cost in the cheapest way over

the time horizon [0, T ] in [20].

Table 2. Values of the model parameters for the toy example.
σI S0 σS κ α β c r γmax k ν a θ E [Z1] λ0 g D0 ζ d

2% 8.4E5 2% 30 0.95 2.8 1.26 6% − log(0.6) 1 1 1 1 100 1/5 1 1.5E5 12% 5.5%
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5.4. Results in the ‘Below 2 Degrees’ scenario

As expected, the uncontrolled strategy largely degrades the company’s financials. The company’s

total assets’ growth is smothered, while the debt costs augment until 2035. This results in a

starting level PD of 95.74%. Because the firm’s sales are rapidly decaying, there is no need for

more productive capital investments, thus, the company gradually pays back it debt from 2035

onwards, should it have survived until then. As shown in [20], the myopic strategy provides

the lowest intensity levels throughout the B2C scenario with the brown company, thus leading

to higher sales and lower carbon costs, but also higher green investments IG. On the one

hand, the total assets growth is driven up by higher gross revenues and lower carbon costs

simultaneously (Fig. 1). On the other hand, the debt stock augments rapidly due to the inflated

green investments, but also non-green investments required to follow the production’s needs.

The solidity of the total assets supersedes the debt stock augmentation, leading to a stable

probability of default.

Figure 1. Simulated results for the brown company (I10 = 1.16E−3) in scenario B2C. Shaded area: 90% confidence

interval for each strategy. Probabilities of default (strict and cumulated) for the uncontrolled strategy are to be read on

the RHS y-axis.

The minimum costs strategy takes advantage of the autonomous factor of cost decrease α

to schedule higher intensity mitigation when it is cheaper. This leads to similar debt costs than

the exogenous strategy while greater total assets. In turn, the PD under the exogenous strategy

surpasses the minimum transition costs’ for the brown firm.

In Figure 2, results are shown for the yellow company. First, the uncontrolled PD starts

largely degraded in 2020 (36.9%). Then, it immediately shoots up to 92.5% in 2025, leading

to default chances near 100% by the end of the scenario. The myopic strategy still supersedes

the other strategies thanks to boosted sales due to κ. In 2025, it is more than 9 times lower
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than both the minimum transition costs and the exogenous PDs. The gap narrows over the

scenario, until it becomes around twice as much as the other PDs in 2050. The exogenous and

minimum transition costs PD are close in the first periods considered. Then, because of large

green investment costs, the exogenous debt grows faster than the minimum transition costs

strategy’s, leading to a 1.6 times higher PD in 2035.

Figure 2. Simulated results for the yellow company (I20 = 7.71E−4) in scenario B2C. Shaded area: 90% confidence

interval for each strategy. Probabilities of default (strict and cumulated) for the uncontrolled strategy are to be read on

the RHS y-axis.

The green company starts off with an advantage in terms on intensity. However, it would

catch up with the scenario-provided sector average intensity pathway around 2035 under the

uncontrolled strategy. This would lead to significant carbon tax costs, that thus decreases the

company’s profit. In turn, the total assets under the uncontrolled strategy are much lower than

the others (Fig. 3). The firm’s uncontrolled PD is almost 450 times higher than the second

largest PD in 2035 (minimum transition costs). However, the green company’s uncontrolled PD

is still much lower than the other two companies studied.

Nevertheless, the green company’s financial health would benefit from participating in the

transition. In addition, the more it invests in reducing its carbon emissions, the smaller its

PD gets. Precisely, contrarily to the ulterior cases, despite being much more onerous than the

minimum transition costs strategy in terms of investment, it displays lower PDs (Fig. 3). The gap

widens with time due to higher carbon tax and lower gross revenues generated by the gradually

increasing difference in intensity. In a similar fashion, the myopic PD yields once again the lower

PDs despite requiring the most green investments. This suggests that overzealous but carefully

crafted green investment leads to better PD thanks to lower intensity driving sales up and and

cutting costs for green firms.
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Figure 3. Simulated results for the green company (I30 = 3.86E−4) in scenario B2C. Shaded area: 90% confidence

interval for each strategy. Probabilities of default (strict and cumulated) for the uncontrolled strategy are to be read on

the RHS y-axis.

5.5. Results in the ‘Delayed Transition’ scenario

The brown firm is expected to fail almost surely under the uncontrolled strategy (Fig. 4). Indeed,

its floored assets fall to 0 as soon as 2020. Thanks to the investment in carbon mitigation, the

other strategies cope better under this stringent scenario. For instance, the exogenous strategy’s

carbon costs reach 1.75E5 in 2035, compared to 4E5 for the uncontrolled strategy. However,

this causes a bump in green investments that is then passed on the debt stock in 2035 (Fig. 4).

At the same time, the perspective of high carbon costs in this scenario degrows the total assets

from 2020 to 2035. This causes the exogenous PD to flirt with 100%.

Regarding the other two strategies, they have lower odds of leading to bankruptcy at the

beginning of the scenario, as they take the costs of reducing the intensity into account. Thanks

to its forward-looking feature, the minimum transition costs strategy acts much earlier and

harder so as to provide a buffer to lessen the 2035 carbon shock impact (see [20]). In turn, the

impact of the 2030 carbon price on total assets is smoother. Nonetheless, this colossal investment

effort degrades the leverage ratio. However, this strategy still performs better than the myopic

in this setting. This is explained by the fact that the myopic strategy happens in reaction to

the scenario’s shocks. Thus, not only would the firm suffer the 2030 carbon price shock on its

profits, and thus total assets, but also it will need to invest drastically to match the carbon tax.

Figure 5 shows that all the uncontrolled trajectories have almost surely defaulted by 2035

for the yellow company due to the anticipation of the 2035 carbon price shock and the slow

down in sales due to higher intensity. Once again, the exogenous strategy puts the company in
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Figure 4. Simulated results for the brown company (I10 = 1.16E−3) in scenario DT. Shaded area: 90% confidence

interval for each strategy. Probabilities of default (strict and cumulated) for the uncontrolled strategy are to be read on

the RHS y-axis.

default in 2030 almost surely in this scenario. Similarly, the 2030 carbon shock also inflates the

minimum transition costs PD despite a strong start in 2020 (0.01%). Lastly, the myopic PD

suffers a first shock in 2025 due to the future carbon price sharp increase. It goes from 14.34%

in 2020 to 95.31%, whereas the minimum transition costs PD is equal to 16.2% in 2025. Thanks

to its starting level intensity, the green company’s PDs under the different strategies are lower

than that of the other two companies at starting point (Fig. 6). What stands out is that the

exogenous strategy now yields smaller PDs than the myopic strategy. They are in fact close to

that of the minimum costs strategy. What’s more is that the minimum costs PDs are thrice

higher with the green company than the yellow company (0.01% vs 0.03% in 2020, 16.2% vs

36.7%). This is because the intensity levels yielded by the minimum transition costs strategy

for the green and yellow company are similar as of 2035. In turn, the green company’s assets

growth joins that of the yellow, whereas it needed to contract more debt in the first half ot the

scenario to follow the sales’ boost.
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Figure 5. Simulated results for the yellow company (I20 = 7.71E−4) in scenario DT. Shaded area: 90% confidence

interval for each strategy. Probabilities of default (strict and cumulated) for the uncontrolled strategy are to be read on

the RHS y-axis.
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Figure 6. Simulated results for the green company (I30 = 3.86E−4) in scenario DT. Shaded area: 90% confidence

interval for each strategy. Probabilities of default (strict and cumulated) for the uncontrolled strategy are to be read on

the RHS y-axis.
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6. Discussion

6.1. Computation of the PD.

We define the default probability based on a stronger default condition than that of Merton [18].

The probability of default we get is thus path-dependent. One major issue is that the number

of trajectories accounted for the computation of the expected default frequency will decrease

through time. Thus, the precision of the algorithm also decreases. In the banking industry, PDs

are around 50E−4, which means the number of defaulted trajectories is negligible with respect

to the total number of simulated points. However, in some of our simulations, the resulting PDs

largely surpass this value. This is the reason why have systematically presented the cumulated

PDs trajectories for each. Moreover, we give the computation for a 1-period probability of

default. If δ ̸= 1, this does not amount to the 1-year probability of default usually required in

stress tests. One workaround would be to use a linear interpolation to compute the values of

the assets and debt 1 year after the considered date.

6.2. The debt dynamics.

We consider that the entirety of investments, whether green or for production, are financed by

debt. This in line with real-life practice, where corporations finance considerable investments

through debt. The same assumption is found in the literature [1, 6]. However, equity augmen-

tation, as well as self-financing, can also be used. Moreover, we designed the debt dynamics

using a constant amortization rate, independent from the firm’s profits. One can consider that

the relationship between the debt and the firm’s profits can be retrieved in the leverage ratio

during the PD computation. Indeed, if the firm’s profits perspective is unfavorable, the total

assets will be devaluated, leading to a degraded leverage ratio. Thus, by considering debt stocks

with respect to the firm’s profit, the impact on its credit risk is clear. The debt does not depend

on its costs either. Similarly to profits, the relationship between both appears in the credit risk

evaluation. Indeed, the risk-free interest rate directly impacts the firm’s valuation, thus the

firm’s PD.

6.3. The total assets.

We define the assets as the expectation of future discounted profits. However, the estimation

of profits after the end of the scenario is an arduous task. We have assumed constant sales

revenues for all i > N . However, this may underestimate the assets at the end of the scenario.

A deterministic growth rate could be added. Note that this choice would be another source of

model risk. Furthermore, the link between the total assets and the capital (Ki)i≥0 is implicit.

Since both are estimated based on the sales revenues trajectory, a clear relationship does appear.

Moreover, for firms with decreasing sales, the need for non-green investment gradually decrease,

while the previously owned capital is depreciated. The same effect is seen through total assets

that gradually decrease due to the perspective of decaying future profits through (Si)i≥0.

6.4. Considered strategies.

We have considered four strategies: uncontrolled, myopic, exogenous and minimum transition

costs. The first three were chosen because they have been used in the literature. The latter was

designed to ressemble the way scenarios are computed. For instance, GCAM, one of the IAMs

used for the computation of the NGFS scenarios, use a minimum cost assumption to derive
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the likely transition pathways. Other strategies could be considered, such as “max profits”’or

“min PD”. However, such strategies require more work on their resolution, specifically on the

existence of their solution.

7. Conclusion

We have proposed a model for computing probabilities of default alongside a transition scenario

for credit risk stress testing. The foundation of this model is based on the work of [20], which

presents a framework for modeling a firm’s sales revenues and relative emissions, conditional on

a transition scenario. This approach particularly fits credit risk stress testing, as it accounts for

the various transmission drivers of transition risk to credit risk, as outlined in [5]. Additionally,

the model allows for the analysis of the firm’s business model adaptation to the energy transition.

The business model variables from [20] have been extended to incorporate transition-

contingent financials while adapting market shares according to the company’s relative emis-

sions. Using a discounted cash flows approach, the firm’s total assets have been computed as a

stochastic process. Given that transition risks and physical risks are complementary, physical

risk shocks have been incorporated into the firm’s profits equation, thereby directly linking total

assets to physical risks. On the liabilities side, the company’s dynamics have been modeled by

directly estimating the firm’s total investments. A notable feature of this model is that both

total assets and debt are stochastic processes that evolve in response to both the scenario and

the company’s choice of business model. Due to the model’s complexity, a numerical method-

ology for computing probability of default term structures has been proposed, using Nested

Monte Carlo simulations. Then, probability of default term structures for companies with vary-

ing starting levels of relative emissions under two transition scenarios from the NGFS Phase II

have been computed with the purpose of comparing the credit risks associated with different

business models.

We found that companies that keep a static business model have higher probabilities of

default, regardless of their starting point emissions level. This amplifies with time. Thus, PD

models that disregard company transition are not suitable for long-term credit risk estimation,

as is the case in Climate Stress-Tests. Moreover, the strategy consisting of following the same

decrease rate as the scenario’s sectoral average emissions augments the credit risk due to the

investment costs it engages. Forward-looking strategies perform best in disorderly transition

scenarios.
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