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Identifying individual characteristics influencing post-adaptation of
motor behavior in upper-limb exoskeleton users

Océane Dubois∗1, Agnès Roby-Brami1, Ross Parry2 and Nathanaël Jarrassé1

Abstract— Over the past decade, industrial ergonomics have
made significant advances, leading to the development of var-
ious occupational exoskeletons. While beneficial, exoskeletons
could disrupt motor control due to their distributed interaction
with the human body. This study explores individual factors
influencing different adaptation patterns following exoskeleton
use in asymptomatic individuals. Fifty-five participants used a 4
Degree of Freedom (DoF) arm exoskeleton to perform reaching
tasks under low-magnitude force fields. Pre- and post-exposure
movements were recorded via motion capture, and personal
characteristics were documented. Spectral clustering identified
variations in inter-joint coordination after exposition to the ex-
oskeleton, and a random forest classifier linked these patterns to
individual anthropometric, demographic and kinematic traits.
The model highlighted factors such as laterality, forearm length,
and some spontaneous kinematics metrics as key predictors
of post-adaptation behavior. These findings underscore the
need to consider individual profiles to minimize disruptive
motor adaptations and improve exoskeleton safe widespread
in industrial applications.

I. INTRODUCTION

Since 2010, significant advancements in industrial er-
gonomics have led to the development of various commer-
cially available occupational exoskeletons. These devices,
mainly built with spring-based mechanisms, are designed to
offset the weight of body parts or tools, thereby providing
assistive forces to industrial workers and reducing stress
and fatigue during load carrying or prolonged postures [1]
[2] [3]. However, it is crucial to acknowledge that, despite
their benefits, it is yet unclear if exoskeletons may dis-
rupt motor control due to their close physical interaction
with the body, particularly over extended periods. Previous
research indicates that while adaptation can occur at the
joint level, the end-effector may remain unaffected [4], and
individual adaptation to force fields can vary significantly
[5]. Nonetheless, the underlying reasons for these variations
remain underexplored.

In parallel, there has been increasing attention on person-
alizing wearable devices to enhance their performance and
utility. To date, personalization efforts have predominantly
focused on lower-limb devices [6] [7]. Current approaches to
personalization typically involve real-time optimization using
kinematic data. These methods are complex and necessitate
the use of optimal controllers to effectively manage the
devices. Given that individuals exhibit different behaviors
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even with the same controller, influenced by factors such
as morphological characteristics, investigating the impact
of personal characteristics on adaptation may offer a more
straightforward approach to exoskeleton personalization.

This study aims to investigate the factors and character-
istics influencing the adaptation patterns in asymptomatic
individuals. Various joint force fields of low magnitude were
programmed into a robotic exoskeleton to simulate typical
perturbations and physical behaviours. Fifty-five participants,
connected to a 4 Degree of Freedom (DoF) arm exoskeleton,
performed reaching tasks under different weak magnitude
force fields. Their movements, both pre- and post-exposure
to the force field, were recorded using optical motion capture,
alongside the collection of data on height, weight, arm
length, and laterality. Here, the focus is mainly made on
inter-joint coordination since previous studies have shown
that different adaptation patterns are visible at this level, on
the contrary of the end-effector variation [4]. This study aims
at examining associations between an observed adaptation
behaviour after the exposition to an exoskeleton and initial
movement characteristics and personal traits of subjects,
such as demographic and anthropometric informations. The
subsequent sections detail the experimental protocol, the
extraction of various adaptation behaviors, the exploration of
the relationships between these behaviors and the subjects’
personal characteristics, including natural movement kine-
matics and demographic or anthropometric informations.

Fig. 1: Able 4 Dof exoskeleton

II. MATERIAL AND METHODS

This section will initially describe the materials utilized in
the experiment, specifically the exoskeleton and the motion



capture system. Subsequently, the methodology will be pre-
sented, including the task, protocol, participants details, and
data analysis techniques used.

A. Material

1) Exoskeleton: In this experiment, a 4-DoF robotic
upper-arm exoskeleton, Able, is employed. This exoskeleton
features 3-DoF at the shoulder (abduction/adduction θ1,
internal/external rotation θ2, and flexion/extension θ3) and 1-
DoF at the elbow (flexion/extension θ4), as depicted in Fig.
1. Its mechanical design ensures high efficiency and minimal
residual friction torques, facilitated by patented actuators [8].
The length of the exoskeleton arm is fixed, the distance
between the shoulder and the elbow is 357mm. In the present
study, θ1 and θ2 were fixed in position, using only θ3 and
θ4.

2) Exoskeleton Controller: Control algorithms are exe-
cuted on a real-time controller (RTLinux) with a control
loop operating at 1 kHz. The default control mode is Grav-
ity Compensation, allowing unrestricted upper-limb motion.
This mode implements a feedforward gravity compensation
based on a quasi-static model of the exoskeleton. Although
this mode minimizes resistance to the user’s movements
[9], some undesired resistance is present due to the lack
of friction and dynamic compensation. This mode will be
referred to as the Transparent condition in the experiment.

Four additional control modes or perturbative force fields,
which can be superimposed on the always-on ”transparent”
reference condition, were designed to simulate typical per-
turbing force fields on the two joints θ3 and θ4: elastic,
viscous, increased gravity, and decreased gravity. The force
field parameters were experimentally selected to apply a
limited yet perceptible perturbation to users.

Viscous: In exoskeletons, a viscous field can emerge at the
joint level due to uncompensated friction in the transmis-
sions. In this experiment, friction is generated at each joint,
depending on each joint’s velocity, such that τ = Kv θ̇. Here,
τ represents the vector of output torque of the exoskeleton
joints θ3 and θ4 provided as feedforward with τ = [τ3 , τ4],
and Kv is a vector of friction coefficients for each joint with
KT

v = [2, 0.6].
Elastic: An elastic field in exoskeletons can be induced

by mechanical elasticity of the structure or by incorrectly
adjusted equilibrium points of a spring mechanism. In this
mode, a reference position θi,0 is defined as the rest position
of the user, usually with the arm aligned with the trunk
and the elbow slightly bent at 130°. The elastic mode is
characterized as τ = Ke(θi − θi,0), where τ denotes the
vector of output torque of the exoskeleton joints θ3 and θ4
provided as feedforward with τ = [τ3 , τ4], and Ke is a vector
of stiffness values for each joint with KT

e = [3.5, 2].
Decreased Gravity: Decreased gravity fields are encoun-

tered in poorly adjusted passive industrial exoskeletons, caus-
ing overcompensation of limb and/or tool weight, resulting
in the user’s arm feeling lighter. In this mode, decreased
gravity corresponds to the overcompensation of 25% of the
exoskeleton mobile part weight, giving the user the sensation

of their arm being 750 grams lighter. This is achieved by
modulating the gravity vector to 0.75 of the feedforward
gravity compensation in the controller.

Increased Gravity: Similarly, increased gravity fields can
be encountered in improperly adjusted exoskeletons, making
the user’s arm feel heavier. The increased gravity mode corre-
sponds to the under-compensation of the exoskeleton mobile
parts weight by 25% (+750 grams). This is accomplished
by modulating the gravity vector to 1.25 of the feedforward
gravity compensation.

3) Motion Capture System and Data Recording: A motion
capture system (OptiTrack, NaturalPoint, USA) is employed
to track participant movements using markers placed on their
trunk, arm, forearm, and hand. Specific marker placement
locations are not required as the calibration algorithm (see II-
B.4) does not necessitate specific placements. Four cameras
positioned around the participant capture movement data,
recording at 120Hz.

Fig. 2: Set-up

B. Method

1) Task and Set-up: The task was designed to be redun-
dant and represent a first simple case study. It involves a
pointing task using one degree of freedom (DoF) controlled
by two DoFs of the upper limb. Specifically, the height of
the exoskeleton’s extremity (representing the user’s hand)
controls the height of a bird-shaped cursor displayed on a
screen placed 2 meters in front of the participant, as well
as the targets to reach (Fig. 2). During the experiment, the
participant is seated on a stool and instructed to lean against
the back structure of the exoskeleton. A button is placed
next to the participant so that their hand naturally rests on
it in a comfortable position with the elbow slightly bent,
approximately 130°. This button defines a repeatable starting
position for the hand. For each trial, a target, represented
as a horizontal line on the screen, is presented at one of
nine heights in a random order. The instruction is to reach
the target using two DoFs of the exoskeleton: shoulder (θ3)
and elbow flexion/extension (θ4). The other two exoskeleton
DoFs are blocked, restricting hand movement to a vertical
parasagittal plane aligned with the participant’s shoulder.
The wrist is immobilized using a pre-made orthosis. Due to



Fig. 3: Experimental protocol. The time indication can vary between subject and take into account the time to put and remove the
exoskeleton

redundancy, the target can be reached by an infinite number
of hand positions along an anteroposterior line at the target
height in the sagittal plane. In the natural condition, reaching
without the exoskeleton (but with the trunk blocked and wrist
orthosis), the task can be performed with four DoFs (three
shoulder DoFs and elbow flexion/extension, trunk always
blocked and wrist with the othosis).

2) Protocol: The experimental protocol consists of six
distinct phases (Fig. 3). During the Calibration phase, the
participant performs random, slow, and large movements
without the exoskeleton for one minute. The experiment
is designed to maximize the participant’s exposure to the
exoskeleton, thereby enhancing the potential effects of the
device. The other phases are structured to ensure sufficient
repetition and data collection, while prioritizing the main
exposure phase. The Natural Before Exposition and Natural
After Exposition phases occur without the exoskeleton. In
these phases, the participant encounters 27 targets (each of
the 9 targets presented 3 times in random order). They press
the button to initiate the reaching task; the target appears on
the screen, and the participant then reaches for it naturally,
utilizing their arm’s 4 DoFs. Once the hand remains steady
at the target height for 2 seconds, the target is confirmed, and
the participant can proceed to the next target by pressing the
button. In the Preliminary and Washout phases, participants
wear the exoskeleton in Transparent mode, with the first
two joints blocked. They encounter 27 targets (3 times each
target) and 90 targets (10 times each target) respectively,
presented randomly and follow the same reaching procedure.
In the Exposition phase, participants wear the exoskeleton
with the first two joints blocked and experience one force
field while reaching 200 targets (40 times for each of
the 5 exposed targets). Each participant is exposed to a
unique force field among the four to prevent any interference
between different force field impacts. One group is exposed
only to the Transparent force field. Participants can take
breaks as needed. The exposure lasts 15 to 25 minutes.

3) Participants: Eleven participants were exposed to each
force field and eleven to the transparent mode only, totaling
55 participants. All participants were aged between 18 and
34 years old. Height, weight, number of men and women
as well as left- and right-handed participants were balanced
between groups (see Table I). Each subject completed the
Edinburgh inventory [10] to rate their handedness between

-100 (completely left-handed) and 100 (completely right-
handed).

The study was approved by the local ethics committee
at Sorbonne University, and participants provided informed
consent prior to participation.

4) Data Processing: Motion capture markers’ raw posi-
tions and orientations were used to identify the participant’s
joint rotation centers using a calibration algorithm [11].
This algorithm provides the positions of each joint rotation
center (shoulder and elbow). Data were filtered using a low-
pass filter with a 5Hz cutoff frequency. From the shoulder
and elbow positions, joint angles were extracted using the
exoskeleton joint angle sequence: θ1, θ2, θ3, and θ4 (see
Fig. 1). Movements were then segmented into single move-
ments, starting with the button press and ending with target
validation.

For each protocol phase, end-effector and joint metrics
were computed: task time, overshoot (i.e., the distance
between the end-effector maximum height and the target
height), distance covered by the end-effector, maximum
end-effector velocity, time taken to reach maximum end-
effector velocity, and individual joints’ range of motion
(ROM). This study focuses on participants’ reactions once
the exoskeleton is removed. Therefore, for all metrics listed
above, the relative differences between the pre- and post-
exposure force field exposure results were computed to
highlight modifications in participants’ own behavior.

In this study, the variations of inter-joints coordinations
are also measured. Inter-joint coordination refers to the way
joints are coordinated together in a spatial and temporal way
in order to produce a movement. Both aspects are measured
using dedicated metrics : Joint contribution variation based
on Principal Component Analysis (JcvPCA) for spatial inter-
joint coordination, and Joint synchronization variation based
on Continuous Relative Phase (JsvCRP) for temporal inter-
joint coordination [4]. JcvPCA uses Principal Component
Analysis to compare 2 datasets. A first PCA is computed on
the first dataset, defining a new reference frame. Then the
second dataset is projected in this new reference frame. A
second PCA is done over the projected dataset, representing
the difference between the first dataset and the second dataset
concerning the joints contribution. JsvCRP is based on a well
known metric named CRP [12], [13] used in biomechanics
to quantify the coordination between two movements. It
provides a way to measure the dynamic relationship between



Condition Num. of Subjects Sex (F/M/Non-Binary) Laterality Weight (kg) Height (cm)
Transparent 11 4/7/0 63.3 ± 36.0 67.7 ± 11.0 175.0 ± 12.6

Increase of gravity 11 3/8/0 69.7 ± 53.6 69.5 ± 10.3 176.8 ± 8.7
Decrease of gravity 11 3/8/0 50.8 ± 59.3 68.6 ± 6.7 175.6 ± 10.4

Viscous 11 6/4/1 48.1 ±62.5 67.7 ± 13.4 173.2 ± 12.5
Elastic 11 4/7/0 54.2 ± 54.7 68.6 ± 11.2 173.2 ± 8.7

TABLE I: Characteristics of the participants by group condition

two body segments or joints in motion. Since the force field
affects only shoulder and elbow flexions, we monitored only
variations in their contribution to the movement (JcvPCA
Shoulder Flexion and JcvPCA Elbow Flexion) and their
temporal synchronization (JsvCRP Shoulder/Elbow) post-
exposition to the exoskeleton.

5) Methodology used to identify individual characteristics
influencing post-adaptation behavior: This process involved
four main steps:

1) Clustering Participants Based on Post-Adaptation
Behaviors : Participants were grouped into distinct
post-adaptation behaviors by clustering their inter-joint
coordination metric values using Spectral Clustering
algorithm [14]. The optimal number of cluster is deter-
mined using an graphical methode [15]. This clustering
identifies different patterns of post-adaptation among
subjects.

2) Building a Random Forest Model : A random forest
model [16] was built using the clustered data to iden-
tify and enhance the relationships between individual
characteristics (e.g., natural movement kinematics and
demographic and anthropometric informations) and the
observed post-adaptation behaviors. Parameters of the
model are optimized via randomized search with cross-
validation.

3) Model Validation : The random forest model was
tested and validated to ensure the accuracy and reliabil-
ity of the results. This step is used to confirm that the
model accurately predicts post-adaptation behaviors
based on individual characteristics.

4) Main Feature Extraction : Key features contributing
to the classification of post-adaptation behavior groups
were extracted. These features reveal the main factors
influencing the decision-making process of the random
forest model regarding the assignment of subjects to
specific post-adaptation behavior groups.

III. RESULTS

a) Variety of adaptation behaviors: A previous study
[4] attempted to extract global reactions to different force
fields. Post adaptation patterns were measured using the vari-
ations in shoulder flexion contribution (JcvPCA Shoulder),
elbow flexion contribution (JcvPCA Elbow), and synchro-
nization between shoulder and elbow flexion (JscCRP Shoul-
der/Elbow). However, the results were difficult to analyze,
with no significant differences observed in the adaptation
patterns among the various force field groups.

Yet, when examining the reaction behavior of individual
subjects within a single force field, differences in their post-

adaptation pattern become apparent. Figure 4b illustrates
how participants exposed to the Viscous force field exhibit
varied responses. For example, participant 68 (yellow) shows
significant changes in both elbow and shoulder contributions,
as well as in shoulder-elbow synchronization after exposure
to the force field. In contrast, participant 22 (pink) maintains
consistent joint contributions but alters joint synchroniza-
tion. Meanwhile, participant 53 (purple) adjusts shoulder
contribution without modifying elbow contribution or joint
synchronization. Diverse patterns can be observed in all the
different post-adaptation patterns of all the different force
fields, as shown for exemple in Figure 4a for the Transparent
force field and Figure 4c for the Decrease of Gravity force
field.

These plots demonstrate that, despite being exposed to
the same condition, individuals may adapt differently. In the
following work, we will analyze which individual factors
could influence the different adaptation patterns of subjects
exposed to a same force field.

b) Clustering Participants on Post-Adaptation Behav-
iors: The three inter-joint coordination metrics were pre-
sented in the previous section as a radar chart, but they can
also be represented as a 3D scatter plot. To extract groups
of reaction behaviors, the 3D data of all subjects (1 point
= 1 subject) were clustered using the Spectral Clustering
Algorithm, with the three clusters as defined by the graphical
method.

The dataset of 55 subjects was clustered into these three
groups, each exhibiting distinct adaptation behaviors. These
behaviors involve either increasing or not the desynchro-
nization of elbow/shoulder flexion, and increasing either
the shoulder or the elbow contribution to the movement
(see Table II and Fig. 5). Since, in this task, shoulder
and elbow contributions are linked, a decrease in elbow
flexion necessitates increased shoulder flexion to reach a
given target.

This table highlights that certain adaptation strategies are
preferred among the subjects. Regarding the desynchroniza-
tion of the shoulder/elbow, almost half of the subjects (22/55)
tend to desynchronize their elbow and shoulder. In the second
group, approximately 30% (18/55) of the subjects, they did
not change their elbow/shoulder synchronization, increased
their elbow contribution to the task and maintaining the same
shoulder flexion. Finally, for the third group, around 27%
(15/55) of the subjects increased the contribution of their
shoulder joint and maintained the same synchronization.

As indicated earlier, the type of force field might not
be the only factor influencing these groups of inter-joint
modification behaviors after exposure to a joint-level force



(a) Transparent (b) Viscous (c) Decrease of gravity

Fig. 4: Reaction behavior for 3 different participants exposed to the different force field

Force field repartitionGroup Num.
of Subject

JsvCRP
Shou./Elb.

JcvPCA
Shou.

JcvPCA
Elb. Transp. Incr. of grav. Decr. of grav. Ela. Visc.

1 22 + / / 5 4 5 6 2
2 18 - - + 2 4 2 3 7
3 15 - + - 4 3 4 2 2

TABLE II: Inter-joint coordination pattern groups.
’+’ means that there is an important variation in the metric and a ’-’ means that the modification of the metric is minor
Name of the conditions : Transp. = Transparent / Incr. of grav. = Increase of gravity / Decr. of grav. = Decrease of Gravity / Ela =
Elastic / Visc = Viscous

Fig. 5: Clustering of inter-joint coordination metrics

field applied by an exoskeleton. Indeed, the three different
adaptation behaviors are found across all five force field
groups (see the last columns of Table II). A hypothesis is
that the chosen adaptation behavior might also depend on
individual characteristics.

c) Building and validating the random forest model:
The goal of this section is to explore the link between
demographic informations, anthropometric informations and
kinematic characteristics and adaptation behavior, as sum-
marized by Figure 6. In order to extract the complexe
relationships between the variabales and predict the post-
adaptation inter-joint coordination pattern, a random forest
classifier is constructed.

The inputs include anthropometric variables (height,
weight, laterality, arm, and forearm size), demographic vari-
ables (such as sex), exoskeleton variables (force field and
quality of joint alignment), and spontaneous kinematic vari-
ables (mean velocity, task time, joint range of motion, etc.,
recorded before exposure to the exoskeleton), for a total of
18 variables. The H2O algorithm [17] is used as it can handle

Fig. 6: Variables used for the random forest classifier

categorical variables such as force field, sex, and alignment.
The dataset is randomly split into 80% training and 20% test
data. Each participant is present several times in each dataset
since they’ve reached 9 different targets height, resulting in
the same amount of lines in the dataset (data are averaged
by participant and by target height). The model achieve 97%
accuracy over the testing dataset for predicting the adaptation
behavior group (see Confusion matrix on Figure 7). On the
test dataset, the Root Mean Square Error (RMSE) is 0.226,
and the corresponding logarithmic loss (that quantifies the
uncertainty of the predictions, the closer to 0 the better) is
0.20.

d) Main Features Extraction: The most influential vari-
ables were extracted and are shown in Figure 8. Notably,
the force field emerged as only the second most important
factor in predicting reaction behavior. Anthropometric and
demographic variables played a significant role, with 5 of
the 9 most important features being from this category. The
most critical variable was participant laterality. In contrast,
spontaneous kinematic variables of the end-effector, such as



Fig. 7: Confusion matrix for the random forest classifier
built over the dataset of 55 participant exposed 30min to
an exoskeleton

overshoot and task time, ranked 8th and 9th, respectively,
while spontaneous joint range of motion did not appear
among the top predictors. The low ranking of end-effector
variables and the absence of joint range of motion suggest
that a large portion of exoskeleton personalization, aimed
at minimizing motor control disruption, can be achieved by
focusing on users’ personal characteristics.

It is also noteworthy that joint alignment quality ranked
fourth, highlighting its potential influence on behavior, even
after the exoskeleton is removed. Since joint alignment can
easily shift during exoskeleton use due to slippage, this
characteristic might significantly impact post-exoskeleton
use behavior. Additionally, arm and forearm size ranked
highly, which may be related to non-adjustable exoskeleton
segments causing misalignment with the participant’s joint
rotation center. This misalignment could amplify or reduce
the exoskeleton’s effects.

Interestingly, sex did not emerge as a significant factor in
this experiment. However, sex-related morphological differ-
ences, such as weight and arm/forearm size, could influence
other important variables.

Fig. 8: Main variable importance for adaptation behavior
prediction, scaled between 1 (the most important) and 0.

Based on the previous results, it may be tempting to clas-

sify individuals solely based on the most important factors
and predict their post-adaptation pattern to a specific force
field. However, the relationships between these variables
are complex, and correlation should not be mistaken for
causation. As shown in Figure 9, the importance of these
factors demonstrates statistically significant differences in
their distribution across the three post-adaptation groups. A
Kruskal-Wallis test was performed for each variable to assess
differences in distribution between groups. For laterality
score, the p-value was < 0.001, indicating a significant effect,
with similar results for forearm (p < 0.001) and arm length
(p < 0.001). This suggests that a participant’s laterality score,
arm length, and forearm length significantly influence the
type of post-adaptation they exhibit.

Although it may seem appealing to conclude that partici-
pants with lower laterality scores are more likely to belong to
post-adaptation group 2 (characterized by an increased elbow
contribution), the absence of clearly defined thresholds for
individual factors makes such direct classification difficult.
The random forest model captures complex, multivariate
relationships by considering multiple factors simultaneously
to predict post-adaptation responses to force field perturba-
tions. Therefore, it is crucial to account for these intricate
interactions rather than relying on any single factor to predict
behavior.

IV. DISCUSSION AND CONCLUSION

This study demonstrates that participants exhibit different
post-adaptation and retention patterns, even when exposed to
the same perturbation. This work proposes a novel method-
ology to extract these distinct inter-joint coordination post-
adaptation patterns and investigate potential relationships
between these post-adaptation patterns and participants’ in-
dividual characteristics—ranging from anthropometric and
demographic data to kinematic metrics—and experimental
conditions, such as force fields, task height, and participant-
exoskeleton alignment. The methodology involves using a
Spectral Clustering algorithm to identify post-adaptation
patterns, followed by a Random Forest classifier to explore
how various factors contribute to these patterns. By analyzing
the importance of each variable in the final decision process,
we observe that anthropometric and demographic data, such
as laterality, arm and forearm sizes emerge as critical factors.
This suggests that these personal characteristics play a signif-
icant role in determining how participants adapt their inter-
joint coordination. Then, variables linked to the exoskeleton
are also important to take into account such as the force
field and the joint alignement. Importantly, the distribution of
key variables among the post-adaptation groups often shows
statistically significant differences, though no single variable
offers a clear threshold to categorize participants alone. This
underlines the need to consider interactions among multiple
factors when predicting post-adaptation patterns. Based on
these findings, guidelines could be developed for exoskeleton
use to minimize disruptive changes in inter-joint coordination
patterns. However, many occupational exoskeletons lack cus-
tomization guidelines for individual users based on weight



Fig. 9: Mean and average values of factors of importance per group for the short term dataset, where * means p ≤ 0.05, **
means p ≤ 0.01 and *** means p ≤ 0.001

or laterality, increasing the likelihood of undesirable motor
post-adaptations.

However, this study has several limitations. First, partici-
pants were exposed to force fields for only 25 minutes which
is far less than the multi-hour exposures expected in indus-
trial settings. Thus, it is unclear whether the same retention
patterns would occur with prolonged and repeated exposure
and the generalization of actual results is therefore limited.
A longer-term study with repeated exposure is necessary to
determine whether these results can be reliably generalized.

Regarding the methodology, to enhance the robustness
of the results, k-fold cross-validation could have been em-
ployed. In this approach, the dataset is divided into k subsets
(referred to as ”folds”). The model is trained and validated
k times, with each iteration using a different fold as the
validation set, while the remaining k − 1 folds are used for
training. This process is repeated until each fold has served as
the validation set once. This method provides a more reliable
assessment of a model’s ability to generalize to unseen data
and helps mitigate the risk of overfitting. In our case, the
model-building process was conducted by running multiple
iterations with different random splits of the dataset, ensuring
that similar results were produced in each iteration. However,
adopting a systematic cross-validation methodology, such as
k-fold cross-validation, would have further strengthened the
robustness and reliability of the results.

Moreover, retention patterns in exoskeleton use remain
underexplored. While studies such as [5] and [18] identi-
fied two retention patterns, our study identified three. It is
possible that increasing the number of subjects in this exper-
iment might have revealed additional subgroups, particularly
within Group 1, which could distinguish participants based
on whether they increased elbow or shoulder contribution.
Notably, around half the participants maintained their initial
elbow/shoulder synchronization, while the other half mod-
ified it, indicating no clear preference for a specific post-
adaptation pattern.

Similarly, participants in Groups 2 and 3 displayed varied
behaviors, with some increasing shoulder contribution and
others favoring elbow contribution. This suggests that post-
adaptation is highly individualized, with each participant
adjusting their inter-joint coordination based on how their

central nervous system (CNS) interprets task constraints and
completion strategies. This reinforces the idea that there is no
single ”correct” way to coordinate joints during adaptation.
The diversity of adaptation patterns highlights that joint
coordination is a personal and complex process, resulting in
optimal solutions unique to each individual’s specific context.
Similar observations were made by [19], where participants
exhibited different movements under varying levels of arm
support, with no consistent trends in arm adaptation. Each
asymptomatic participant developed their own unique way to
adapt to different support levels. In the short term, none of
these post-adaptations can be classified as inherently ’good’
or ’bad.’ The primary concern arises if these adaptations,
which emerge within minutes of exposure to perturbation,
persist for several hours or even days. Shifting the load to
different joints or body parts to manage the perturbation may
increase the risk of overuse injuries, such as tendinopathy
[20].

The dominance of demographic and anthropomorphic
parameters in predicting post-adaptation behaviors might
arises from the absence of force field normalization to
individual participants’ physiology. In this experiment, the
force fields were not customized to account for differences in
participants’ body morphologies, future studies should take
this parameter into account in order to maybe lower the
importance of anthropomorphic parameters. In addition, con-
cerning the importance of the weight of the participants in the
decision variables it is important to note that different body
weights are linked to differences in body weight distribution,
resulting in differences in limbs inertia that could lead to
different ways of moving. [21] has also shown a link between
Body Mass Index (BMI) and shoulder range of motion,
showing a decrease in the range of motion with an increase
of the BMI, potentially then leading in different movements
strategies since the available range of motion is narrowed.
Additionally, the fixed size of the robotic exoskeleton means
that the same torque applied by the robot may be perceived
differently by participants due to variations in the location of
force application. In industrial settings, exoskeletons should
be personalized for each user, with support levels adjusted
according to their specific morphology and the task at
hand. For instance, a constant level of assistance may be



experienced differently depending on the user’s physical
characteristics, resulting in variations in the actual support
provided. Future research could benefit from frameworks like
the one proposed by [22], which may enhance exoskeleton
personalization and reduce the influence of anthropomorphic
variables on retention patterns. However, despite the lack of
personalized force fields in this experiment, it is important to
note that the applied forces remained low in magnitude and
were manageable for all participants. Even without individual
calibration, participants were able to effectively adapt to the
perturbations introduced by the exoskeleton.

This finding underscores the necessity of personalizing
exoskeletons to minimize the influence of anthropomorphic
and demographic factors on retention behaviors, particularly
concerning user morphology (e.g., arm size, weight) and arm
dominance. One aspect that remains insufficiently explored is
how exoskeletons affect the dominant versus non-dominant
arm. As demonstrated in [23], dominant and non-dominant
arms may require different levels of support. While bilateral
support is common in industrial applications and asymmetric
training is used in rehabilitation, most occupational exoskele-
tons apply uniform settings to both arms. Our results suggest
that applying the same force field to the dominant and non-
dominant arms can lead to different retention behaviors,
increasing the risk of appearance of asymmetrical behaviors.
Customizing exoskeleton support for the dominant arm may
help minimize disruptions in inter-joint coordination and
prevent asymmetrical motor patterns from developing.

Further research is necessary to better understand the
specific role of each factor and to determine how to opti-
mally adjust and control exoskeletons based on these fac-
tors, thereby reducing motor control modifications. Research
on the long-term effects of exoskeleton use and the post-
adaptation movement patterns following repeated exposure
to exoskeletons should also be conducted.
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