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1 Abstract

In this paper, we propose a new architecture for real-time anomaly detection
in video data, inspired by human behavior combining spatial and temporal
analyses. This approach uses two distinct models: (i) for temporal analysis, a
recurrent convolutional network (CNN + RNN) is employed, associating VGG19
and a GRU to process video sequences; (ii) regarding spatial analysis, it is
performed using YOLOvV7 to analyze individual images. These two analyses
can be carried out either in parallel, with a final prediction that combines the
results of both analysis, or in series, where the spatial analysis enriches the
data before the temporal analysis. Some experimentations are been made to
compare these two architectural configurations with each other, and evaluate
the effectiveness of our hybrid approach in video anomaly detection.

Keywords: Anomaly Detection, Real-Time, YOLOv7, VGG-GRU, Video Anal-
ysis, Modular Architecture

2 Introduction

Anomaly detection in videos is essential for various applications, ranging from
security surveillance to disaster management, and the monitoring of large-scale
events such as the Olympic Games. In such situations, the ability to quickly
identify anomalies can have significant consequences, whether it is ensuring the
safety of people or responding effectively to critical situations. However, tra-
ditional detection systems often rely on an isolated analysis of the temporal
aspects of videos, limiting their ability to detect anomalies efficiently in com-
plex environments (cf. Section 3). Since videos are multimodal, incorporating
both static visual information (images) and dynamic information (sequences of



images), it is necessary to adopt an approach capable of capturing the full rich-
ness of potential anomalies as efficiently and quickly as possible. To this end, we
propose a hybrid architecture that combines spatial analysis, to detect objects
and visual patterns in each image, with temporal analysis to model the dynam-
ics of video sequences. For this purpose, we use YOLOvV7 [17], a state-of-the-art
object detection model, coupled with a combination of the supervised learning
model VGG19 and GRU to model temporal sequences. This approach enables
not only the detection of anomalies based on the presence of suspicious objects
but also the identification of suspicious behaviors over time. The originality of
our approach lies in the integration of these two types of analysis. We explore
two main configurations: a parallel approach (where spatial and temporal anal-
yses are performed simultaneously and combined for a final prediction) against
a sequential approach (where spatial analysis enriches the temporal analysis).
This integration improves the precision and reliability of anomaly detection by
leveraging the strengths of each type of analysis. This paper aims to evaluate
the effectiveness of these hybrid configurations by comparing the parallel and
sequential approaches, while also analyzing the impact of spatial analysis in-
tegration into our architecture. We trained and tested both approaches on a
proprietary dataset. The results allow us to assess the specific contribution of
spatial analysis, highlighting its strengths and limitations within the context of
anomaly detection.

3 Related works

Anomaly detection in videos has made significant advances in recent years [13],
driven by progress in deep learning technologies and data analysis techniques. In
this study, Samaila et al. [13] highlights that deep learning has now emerged as a
dominant approach compared to traditional machine learning methods. Among
the various learning strategies used for video anomaly detection, reinforcement
learning remains significantly less explored than supervised and unsupervised
learning. Consequently, the authors focus primarily on deep learning techniques
and these two prevalent learning paradigms. Therefore, this section examines
recent approaches in object and anomaly detection, as well as hybrid models
that combine spatial and temporal analyses.

3.1 Object Detection

The evolution of object detection models has played a crucial role in improving
anomaly detection systems. Zou et al. (2019) in [21] published a detailed review
of the evolution of object detection techniques over the past two decades. Ini-
tial methods, such as the Recurrent Convolutional Neural Network (RCNN) [6],
paved the way for modern object detection but suffered from significant limita-
tions. RCNN required generating a large number of region proposals, which were
then processed individually by a convolutional network, resulting in extremely
high computational costs and slow inference times. To address these ineffi-



ciencies, Fast RCNN [5] introduced a more integrated approach, while Faster
RCNN [12] replaced region proposal mechanisms with a Region Proposal Net-
work (RPN), significantly accelerating the process. Despite these advances, the
RCNN family still struggled to meet the demands of real-time detection, es-
pecially in scenarios requiring high-speed analysis. This limitation led to the
development of the You Only Look Once (YOLO) series [9-11], which redefined
object detection by formulating it as a single regression problem. YOLO pro-
cesses an image in a single pass, dividing it into a grid and simultaneously pre-
dicting bounding boxes and class probabilities, achieving unparalleled speed and
efficiency. Successive versions of YOLO have brought significant improvements:
YOLOv4 introduced advanced data augmentation techniques [2]. YOLOv7,
currently the latest version available at the time of this publication, incorpo-
rates the YOLOR (You Only Learn One Representation) architecture [18] and
eliminates anchor boxes, enabling ultra-fast image analysis [17].

3.2 Anomaly Detection

Anomaly detection technologies have also evolved and diversified. As for meth-
ods focusing solely on temporal analysis, we find technologies such as LSTMs,
GRUs, CNNs, and GANs, which have been widely used for anomaly detection in
videos, as mentioned by Samaila et al. [13]. Among these techniques, less com-
mon models like C3D (3D Convolutional Networks) have also shown promising
results for extracting spatio-temporal features. This technology was previously
used by Du Tran et al. [14] for action recognition, addressing problems simi-
lar to those discussed here. Lin Wang et al. [19] adopted this architecture to
propose a weakly-supervised anomaly detection method, using a multi-instance
pseudo-label generator and an anomaly detector enhanced by attention. Their
goal is to overcome the limitations of traditional anomaly detection methods,
particularly the lack of labeled data, through a weakly-supervised approach.
The pseudo-label generator produces approximate labels for anomalous videos,
transforming anomaly detection into a supervised learning problem. Videos
are first processed to extract spatio-temporal features using the C3D network,
which serves as a feature encoder. The model also integrates attention modules
to focus on the anomalous regions of the videos. Finally, it is trained using
the generated pseudo-labels and normal videos, and the C3D network param-
eters are fine-tuned to adapt to the task-specific features. Futhermore, Vision
Transformers (ViT), although more recent, are being explored for their ability
to capture complex relationships in video sequences. In their paper, Waseem
Ullah et al. [15] present the ViT-ARN model, which consists of two distinct
models, each playing a specific role in anomaly detection and recognition in
videos. The first model is an anomaly detection model based on one-class clas-
sification (OCC), aimed at predicting whether an anomaly is present in a video
or not. This model relies on a VGG-type network to extract features from
images, followed by a fully connected network to classify events as normal or
anomalous. The second model is dedicated to recognizing the types of anoma-
lies, using a Vision Transformer (ViT) to extract spatio-temporal features from



videos. The images are divided into patches processed by a transformer encoder,
and the process is refined by a Multi-Reservoir Echo State Network (MrESN).
The final prediction is then made by a fully connected model. Regarding hy-
brid models combining spatial and temporal analysis, Doshi and Yilmaz [3]
proposed an approach combining YOLOv3 (non-retrained) for object detection
and FlowNet2 for optical flow feature extraction. These features are then pro-
cessed by a KNN algorithm applied to surveillance camera images, as well as
datasets such as CUHK Avenue, UCSD Pedestrian, and ShanghaiTech. How-
ever, it is worth noting that YOLOv3, although effective at its release, is now
considered relatively outdated compared to newer versions like YOLOv7, which
offer better performance and efficiency. Subsequently, they proposed MONAD
(Multi-Objective Neural Anomaly Detector), an architecture composed of two
main modules:

e The first module is a feature extraction module based on deep learn-
ing, using a generative adversarial network (GAN) to predict future video
frames and compute the prediction error (MSE). This module also uses a
lightweight object detector, YOLOV3, to extract localization information
(center and area of the bounding box) and appearance information (class
probabilities) of the objects detected in each frame. For each object, a fea-
ture vector is constructed by combining the prediction error, localization
information, and class probabilities.

e The second module, dedicated to anomaly detection, uses a non-para-
metric sequential algorithm to analyze feature vectors in real time. It
compares new observations with normal training data using a k-nearest
neighbors (KNN) approach [4].

However, using GANs to predict future frames is not ideal for real-time
applications, as these models are often computationally expensive and intro-
duce significant latency. More recently, Mostafa [1] introduced the AVAD
(Autoencoder-based Video Anomaly Detection) method, which uses a convo-
lutional autoencoder to detect abnormal frames and YOLOv5 (non-retrained)
to identify objects responsible for anomalies. This method was applied to the
same datasets used by Doshi and Yilmaz, including UCF Crime. However, the
autoencoder-based approach has a significant limitation: the model must re-
construct each image in the input sequence, making it suboptimal for real-time
applications due to the computational overhead associated with this process.

3.3 Dataset

Regarding existing datasets, Zhu et al. [20] lists several datasets suitable for
anomaly detection in videos. These include the Dashcam Accident Dataset
(DAD), the Car Accident Dataset (CADP), A3D, DOTA Detection of Traffic
Anomaly (DADA), UCSD, ShanghaiTech, and UCF Crime. These datasets
can be categorized into three groups. On one hand, there are datasets that
focus exclusively on a specific type of anomaly, such as DAD, CADP, A3D,



and DADA, which are dedicated to traffic-related issues. On the other hand,
datasets like UCSD and ShanghaiTech address low-impact anomalies related to
safety, such as bicycles on sidewalks. Finally, the third category includes UCF
Crime, which is the only dataset relevant to our study. It contains 1,900 raw
videos divided into 13 types of anomalies: abuse, arrests, arson, assault, road
accidents, burglary, explosions, fighting, armed robbery, shootings, shoplifting,
theft, and vandalism, as well as videos without anomalies. However, despite its
diversity, UCF Crime is insufficient for effectively training artificial intelligence
models for video anomaly detection, as noted by Vrskova et al. [16]. In addition
to being poorly cleaned and unbalanced, UCF Crime lacks a sufficient amount of
data to meet the needs of anomaly detection models. Jacob [7] further points out
that no dataset is currently rich enough to properly train a deep learning model
for video anomaly detection. This view is reinforced by Samaila et al. [13], who
indicate that public datasets are limited in size and diversity, and most data is
too unrealistic.

4 Spatio-temporal Video Analysis Architecture

In this article, we propose an architecture composed of two complementary
analyses: a spatial analysis and a temporal analysis. Figure 1 illustrates this
dual approach and its overall structure.
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Figure 1: Spatio-temporal Video Analysis Architecture

On one hand, for spatial analysis, we have chosen to use YOLOV7 for its re-
markable performance in terms of execution speed and detection accuracy. The



temporal analysis, on the other hand, relies on a neural network combining
VGG19 (Visual Geometry Group) and GRU (Gated Recurrent Unit), also in-
cluding an Multi-Layer Perceptron (MLP). This model is designed to process
sequences of 15 images, each with a size of 112x112 pixels. VGG-GRU has al-
ready been used to achieve high performance in the detection of anomalies in
videos [8]. Figure 2 presents in detail the structure of this temporal analysis
model.

VGG19 GRU Dense Dense Dense Dense Softmax
—> > 1024 > 1024 > 512 > 128 —> 64 > 4
units units units units units classes

Figure 2: Structure of the Temporal Analysis Component VGG-GRU.
The GRU layer has a dropout rate set to 50%, as do all Dense layers, which
also have L2 regularization fixed at 0.01.

These two models have been trained on proprietary data sets'. The data set for
YOLOvVT consists of 10,000 images of firearms, 2,000 images of fires containing
flames or smoke, people images, and images unrelated to these objects to ensure
robust and adaptable detection. All images are in JPEG format. The VGG-
GRU model, meanwhile, was trained on a corpus of MP4 videos representing
three classes of anomalies: fights (978 videos), gunshots (311 videos), and fires
(298 videos). These videos were carefully edited to retain only the segments
that contained anomalies. Videos that did not contain anomalies were added to
represent the“normal“ class. One of the main advantages of this architecture
lies in its flexibility. The spatial analysis model can be positioned either in
parallel or in series, depending on the specific needs of the application. In
addition, by configuring the frame interval during the video preparation process,
it is possible to handle video streams (continuous video) or downloaded videos
(finished video). It is also possible to completely deactivate one of the two
analysis modules or replace them with more recent versions without requiring
the entire architecture to be retrained. For instance, a more advanced version
of YOLO can be seamlessly integrated. Furthermore, the architecture can run
on a CPU, although GPU execution is recommended for optimal performance.

5 Experiments

In this section, we present various experiments that aim to compare the perfor-
mance of our different architectures. We will begin by evaluating the architec-
ture in which our components are arranged in parallel.

IThe data sets used are confidential and cannot be shared publicly.



5.1 Parallel Architecture

This architecture uses YOLOvV7 to detect various key objects related to our
anomalies, based on the assumption that the absence of these objects makes
the occurrence of the anomaly highly unlikely. We focus on detecting people
for the “fight“ anomaly, the presence of flames and smoke for “fire®, and the
Intersection over Union (IoU) between a person and a firearm for the “gunshot ¢
anomaly. Once predictions are made by our two analysis modules, they are
combined using the following logical rule:

1. If our model detects an anomaly, the predicted class will correspond to
this anomaly.

2. Otherwise, if a key object is detected, we will predict the anomaly associ-
ated with that object. However, in the specific case of a weapon, we will
first check if the IoU between the weapon and a person is greater than 0
before predicting the ”gunshot” anomaly.?

For the “gunshot* class, given that it involves two distinct objects and that
a firearm only represents a risk when it is within reach of a person, we use the
IoU between these two objects when combining the results of our detections.
This approach allows for a more precise evaluation of the spatial context of the
detected objects. Although the architectures presented in section 3 are diverse,
they are not systematically comparable with one another. Most of them focus on
unsupervised learning techniques or rely on models that do not necessarily meet
the constraints we have set, such as real-time processing. Furthermore, while
many architectures claim to be suitable for real-time anomaly detection, it is
important to highlight that none of these studies provide specific timing metrics
or performance benchmarks to support these claims. For this reason, we chose to
compare our model with C3D, a well-known architecture designed for a related
task, namely action recognition, and for which pretrained weights are available.
Our initial tests on our dataset demonstrate that our architecture, based on a
combination of CNN + RNN + GRU, delivers slightly better performance than
C3D, achieving an Fl-score of 36.5% compared to 35.7% [8]. The results of our
model are presented in Table 1.

20ur model was designed to detect real weapons. In this context, no tests have been
conducted on images containing toys, drawings, or other types of representations.



Table 1: VGG-GRU + YOLO Performance

Accuracy Precision Recall F1-Score
78.42% 85.60%  78.42%  81.16%

Confusion matrix (in percent)

Truth Predicted Fight Gunshot Fire Normal
Fight 63.66%  6.58% 1.93% 27.83%
Gunshot 9.94%  66.06%  9.33% 14.67%

Fire 13.66% 15.73% 57.71%  12.9%
Normal 7.43% 5.96% 3.98%  82.63%

Although the precision score presented in Table 1 is 85.6%, the recall (78.42%)
could be improved. These results demonstrate good anomaly detection but the
confusion matrix reveal weaknesses for specific classes, such as the ”fire” class,
where confusion with other types of anomalies is high.

5.2 Serial Architecture

As part of our serial analysis, we leveraged YOLOV?7 to enrich our input data
by applying various preprocessing techniques. Our main approach consisted of
removing the background from images, leaving only the key objects detected by
YOLO. This method is illustrated in Figure 3.

Figure 3: Example of Mask Generated with YOLO

The objective of this technique is to focus our model’s attention on relevant ele-
ments, thus avoiding it from concentrating on parasitic background movements.
During this experimentation, we explored two options for cases where no key
objects were detected by YOLO:



e Retaining the original image without background: The results of this ap-
proach are presented in Table 2.

e Introducing an entirely black image: This alternative is presented in Ta-
ble 3.

Table 2: Performance for Mask without Black Background
Recall F1-Score

Accuracy Precision
72.22%  75.68%

72.22% 82.37%

Confusion matrix (in percent) for mask without black background

Truth Predicted Fight Gunshot Fire Normal
Fight 63.06%  9.33% 1.96% 25.65%
Gunshot 25.99%  41.45%  2.29% 30.27%

Fire 19.23%  15.98%  32.44% 32.35%

Normal 15.33% 4.41% 2.07%  78.19%

Table 3: Performance for Mask with Black Background
Recall  F1-Score

Accuracy Precision
75.58%  76.50%

75.58% 79.34%

Confusion matrix (in percent) for mask with black background

Truth Predicted Fight Gunshot Fire Normal
Fight 55.52%  4.43% 1.76% 38.29%
Gunshot 16.20%  41.44% 1.53% 40.83%

Fire 14.09%  12.49% 20.59% 52.83%

Normal 10.55% 2.98% 2.09%  84.38%

Comparing these two approaches, we noted that using a black image in the
absence of detected objects improved the detection of the “normal” class, in-
creasing from 78% to 84%. However, this improvement came at the expense of
precision for other classes, particularly “fight” and "fire.” For the “fight” class,
precision decreased from 63% without a black image to 55% (-8%), while for
the “fire” class, it dropped from 32% to 20% (-12%). Given the behavioral
nature of certain anomalies, particularly those involving human interactions,
we leveraged the flexibility of our architecture to integrate YOLOv7-pose as a
replacement for standard YOLOv7. This adaptation allows us to trace the skele-
ton of each person present on the screen, thus offering a more refined analysis of
movements and postures. We experimented with two preprocessing approaches

using YOLOv7-pose:



e Preservation of the background with superimposition of detected skele-
tons: Visual illustration (see Figure 4) and Detailed results (see Table 5);

e Removal of the background, presenting only the skeletons on a black back-
ground: Visual illustration (see Figure 5) and Detailed results (see Ta-
ble 4).

Figure 4: Pose Estimation by Figure 5: Pose Estimation by
YOLOvT7 with background YOLOvT7 without background

Table 4: YOLOv7-Pose + VGG-GRU without Background (3 Classes)

Accuracy Precision Recall F1-Score
87.2% 90.9% 87.8% 89%

Confusion Matrix (in %) for Pose Analysis without background

Truth Predicted Fight  Gunshot Normal
Fight 64.5% 1% 34.5%
Gunshot 11.7%  70.7% 17.6%
Normal 9.5% 0% 90.5%

Table 5: YOLOv7-Pose + VGG-GRU with Background (4 Classes)

Accuracy Precision Recall F1-Score
87.3% 87.6% 87.3% 87.1%

Confusion Matrix (in %) for Pose Analysis without Black Background

Truth Predicted Fight = Gunshot  Fire Normal
Fight 60.5% 2.4% 1.3% 35.8%
Gunshot 10% 55.6% 14.8% 19.6%
Fire 15.5% 10.6% 48% 25.9%
Normal 3.4% 0.6% 1% 95%
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The results of these two experiments (see Table 4 and Table 5) revealed in-
teresting trade-offs. The analysis of poses on a black background significantly
improved the detection of anomalies related to human behaviors, such as fights
(+4%) and gunshots (+15%), compared to the normal background. This im-
provement is explained by the increased focus of the model on people’s move-
ments and interactions, without distraction from the background. However, this
approach also led to a notable decrease in the system’s ability to detect fires.
The removal of the background effectively eliminated crucial visual information
for identifying flames and smoke, rendering these anomalies undetectable. This
experiment highlights the importance of a judicious balance between focusing on
human behaviors and preserving contextual information from the environment.
It also underscores the need for an adaptive approach in anomaly detection,
capable of adjusting based on the specific nature of the anomalies to be de-
tected. Given the potential impact of the anomalies discussed in this article,
we aimed to conclude our experiments by measuring various processing times.
Each of these measurements was performed on a laptop equipped with 32 GB
of RAM, an Intel Core i9 processor with 16 cores clocked at 2.3 GHz, and an
Nvidia GeForce RTX2080 GPU with 8 GB of dedicated memory. As expected,
the parallel architecture proved to be significantly faster than the sequential one
(cf. Table 6 and Table 7).

Table 6: Execution time of YOLO and CGRU in parallel

Video duration | Average detections | Processing time
16s 601ms 15s
44s 533ms 35s
9s 994ms 12s
35s 1.1s 57s
23s 1s06 358
1min 43 758ms 116s (1min 56)
50s 826ms 61s
1min 30 886ms 83s (1min 23)
2s 847ms 847ms
9s 870ms 11s
2s 1s 1s
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Table 7: Execution time of YOLO and CGRU in serie

Video duration | Average detections | Processing time
16s 1s 26s
44s 1s 71ls (Imin 11)
9s 1.5s 20s
35s 1.5s 81s (1min 21)
23s 1.5s 48s
1min 43 1.2s 193s (3min 13)
50s 1.3s 102s (1min 42)
lmin 05 1.4s 134s (2min 14)
2s 1.3s 1.3s
9s 1.3s 17s
2s 1.5s 1.5s

This can be explained by the fact that, in the sequential setup, YOLOv7 must
pre-process each video frame before being analyzed by our VGG-GRU model.
However, the average prediction time for the sequential architecture remains
reasonably fast, with an average of 1 to 1.5 seconds per prediction, allowing
for a timely response when an anomaly is detected. It is worth noting that
the execution speed of the parallel model can be further improved by adjusting
the number of frames YOLOv7 needs to analyze. Due to the combination of
both models, it is not necessary to analyze every frame in a sequence to make
a prediction. Because of the redundant information between successive frames,
the model can be configured to analyze a reduced number of frames per sequence,
which enhances processing speed.

6 Conclusion and Future works

This paper proposes a hybrid architecture combining spatial and temporal
analyses for real-time video anomaly detection. This approach leverages the
strengths of YOLOvVT for object detection and the VGG-GRU model for tem-
poral sequence analysis, offering flexibility in the arrangement of the modules
according to specific needs. Our various experiments have allowed us to identify
two optimal configurations for video anomaly detection, each addressing specific
requirements:

For precise anomaly detection The serial configuration, combining YO-
LOv7 with VGG-GRU, has proven particularly effective. This approach excels
in identifying human behavioral anomalies. The integration of pose estima-
tion preprocessing and background removal has significantly improved results,
offering detailed analysis adapted to situations where accuracy is paramount.

For real-time analysis The parallel architecture, combining YOLOv7 and
our VGG-GRU, offers an optimal balance between reliability and speed. This
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configuration ensures prompt detection of anomalies while maintaining adequate
accuracy, thus meeting the needs of applications requiring instant processing.

These results highlight the importance of an adaptive approach in video anomaly
detection. Our modular architecture effectively responds to various scenarios,
paving the way for diverse applications in the fields of security, surveillance, and
event management. The flexibility of our system allows for prioritizing either
precision or speed, depending on the specific requirements of each application.

Our study has highlighted several challenges and improvement perspectives for
our anomaly detection system. Firstly, we observed that not all anomalies are
necessarily linked to identifiable key objects, particularly in the case of natural
disasters. Moreover, the presence of key objects does not always signify danger,
as illustrated by the example of armed military personnel in airports. To over-
come these limitations, we are considering directly transmitting the information
collected by YOLO and VGG+GRU to our Multi-Layer Perceptron, allowing it
to automatically learn the conditions for anomaly detection. We also noticed
confusion between certain anomaly classes, suggesting the potential benefit of
exploring a binary model to verify this hypothesis.

Another promising approach would be to combine several different processing
methods. For example, by associating a mask with the detected objects and
representing people by their skeletons, which could improve the reliability of the
sequential model, at the cost of reduced detection speed. Finally, to enhance
the robustness and versatility of our system, it would be beneficial to enrich
our dataset with new anomaly classes and examine the execution speed of our
architecture compared to other existing models in the field.
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