
Poseidon: A Source-to-Source Translator for
Holistic HPC Optimization of Ocean Models on

Regular Grids
Maurice Brémond1, Hugo Brunie2,3, Laurent Debreu1,3, Florian Lemarié1,

Julien Rémy1,3, Philippe Rosales2, Martin Schreiber2,3, Arthur Vidard1,3

AIRSEA team
Centre Inria de l’Université Grenoble Alpes & Laboratoire Jean Kuntzmann

3 Université Grenoble Alpes
Saint-Martin-d’Hères, France

1{first name}.{last name}@inria.fr, 2{first name}.{last name}@univ-grenoble-alpes.fr

Rupert W. Ford †, Andrew R. Porter, Sergi Siso
Hartree Centre

Science and Technology Facilities Council
Warrington, United Kingdom

{first name}.{last name}@stfc.ac.uk

Martin Schulz, Anna Mittermair
TUM School of Computation, Information and Technology

Technical University of Munich
Munich, Germany

{first name}.{last name}@tum.de

Abstract—Ocean simulation models often fail to reach top
performance from modern high-performance computing (HPC)
architectures. Proposed solutions are often complete code rewrites
which are impractical due to their cost and time requirements.

We introduce “Poseidon”, an HPC-oriented source-to-source
translator for fluid dynamics solvers of ocean simulation models
written in Fortran with a regular grid structure. Our main
motivation is to perform architecture-specific optimizations by
recovering from the source code and the numerics experts
knowledge the high-level information and semantics.

Index Terms—HPC, ocean, simulation, source, optimization,
fortran, transpiler

I. INTRODUCTION AND METHODOLOGY

We introduce “Poseidon”, an HPC-oriented source-to-source
translator for the dynamic core of fluid dynamics solvers for
ocean simulation models with a regular grid structure written
in Fortran. The primary motivation is to perform architecture-
specific optimizations, by gaining back the high-level informa-
tion and semantics from partial-differential equation models
which got lost during the process of converting numerics to
source code. Poseidon uses a multi-stage approach: (a) A PDE-
solver-specific front-end to uplift the solver to a high-level
control flow (CF) by extracting its numerics and semantics, (b)
a conversion of the CF to a high-level Data Flow (hyper)Graph
(DFG), (c) DFG-based modifications of the PDE solver (e.g.,
kernel fusion), and (d) finally scheduling and code generation
in backends.

”Initiatives de recherche à Grenoble Alpes” (IRGA) 2024 for funding part
of this project

II. BACKGROUND AND MOTIVATION

Ocean simulations on modern supercomputers often utilize
only a small fraction of their peak performance, despite
representing a significant share of usage [6, 5]. Many of these
codes predate the integration of GPUs into supercomputers,
and porting them to GPU architectures is challenging and
costly due to the need for extensive rewrites of existing Fortran
code.

To address the complexity of programming for massively
parallel architectures, researchers have developed Domain
Specific Languages (DSLs), compilers, and runtimes that
abstract this complexity [7].
We focus on a source-to-source solution that maximizes HPC
performance with minimal code rewrite, ensuring that numeri-
cal scientists do not need to write HPC optimizations, to tackle
the performance portability challenge of ocean simulations on
HPC architectures. As demonstrated in [2], parallel code can
be generated directly from sequential Fortran programs.

III. METHODOLOGY DETAILS

A. Uplifting from Fortran to a Data Flow HyperGraph

Poseidon uses PSyclone [4] to parse Fortran code, extracting
variables and meta-information such as type, kind, and lifes-
pan. Computational kernels, communications, and boundary
conditions nodes are identified to build a Control Flow (CF)
representation, which is then transformed into a Data Flow
(hyper)Graph (DFG), where edges represent data dependencies
between nodes.



B. DFG-based code transformation

Following some transformation rules, computational kernels
can be fused together when they are linked by a data depen-
dency edge. The computations from the input (upflow) kernel
can be substituted in the output (downflow) one, thus reducing
the number of memory access and intermediate arrays being
allocated. In order to avoid loop dependencies, we assign to
local scalar variables and perform substitutions in expressions.

C. Scheduling and code generation

After performing static scheduling, code generation is man-
aged by converting Poseidon’s intermediate representation (IR)
into PSyclone IR, followed by Fortran code generation via the
PSyclone backend.

IV. RESULTS

We tested Poseidon on a 2D fast barotropic solver research
code involving over 20 stencil-based kernels, adapted from
the CROCO ocean simulation model [5], which already leads
to a high combinatorial complexity for kernel fusion. A naive
autotuning method was applied to generate various versions of
the Fortran code. Results show that optimal performance on
an Intel® Xeon® W-2295 CPU @ 3.00GHz with 18 cores is
achieved not by fusing all kernels but by selective fusion. The
best kernel fusion choices yielded up to a 1.75x speedup with
OpenMP parallelization, whereas full fusion increased single-
threaded execution time by 10%, while optimal fusion choices
still achieved a 1.29x speedup.

V. RELATED WORK

In [1], Tal Ben-Nun et al. applied DaCe to optimize FV3,
an Earth System Model originally written in Fortran. Their
optimizations are similar to what we aim to achieve with
Poseidon, but FV3’s dynamical core was entirely rewritten in
Python.
Psyclone [4], a Python-based source-to-source Fortran com-
piler, allows us to parse Fortran code and to create a DFG-
based intermediate representation in Poseidon.
In [2], Nick Brown et al. used the Flang LLVM MLIR
compiler to extract stencil patterns from Fortran code, writing
their xDSL framework as a compiler pass and leveraging
existing MLIR dialects and transformations. Our approach,
however, supports the use of any general-purpose compiler.

VI. SUMMARY AND CONCLUSION

Future work will involve applying Poseidon to production
ocean simulation models like NEMO [6] and CROCO [5] in
collaboration and co-design with their developers. Co-design
collaboration has already shown good results in other HPC
applications [3, 8, 9].

ACKNOWLEDGMENTS

We thank ”Initiatives de recherche à Grenoble Alpes”
(IRGA) 2024 for funding part of this project.
Some experiments we performed in this and other projects
were carried out using the Grid’5000 testbed, supported by a

scientific interest group hosted by Inria and including CNRS,
RENATER and several Universities as well as other organiza-
tions.

REFERENCES

[1] Tal Ben-Nun et al. “Productive performance engineering
for weather and climate modeling with Python”. In:
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Anal-
ysis. SC ’22. Dallas, Texas: IEEE Press, 2022. ISBN:
9784665454445.

[2] Nick Brown et al. “Fortran performance optimisation and
auto-parallelisation by leveraging MLIR-based domain
specific abstractions in Flang”. In: Proceedings of the
SC ’23 Workshops of The International Conference on
High Performance Computing, Network, Storage, and
Analysis. SC-W ’23. Denver, CO, USA: Association
for Computing Machinery, 2023, pp. 904–913. ISBN:
9798400707858. DOI: 10.1145/3624062.3624167. URL:
https://doi.org/10.1145/3624062.3624167.

[3] A. Dubey et al. “A tool and a methodology to use
macros for abstracting variations in code for different
computational demands”. In: Future Generation Com-
puter Systems (2023). ISSN: 0167-739X. DOI: https :
/ / doi . org / 10 . 1016 / j . future . 2023 . 07 . 014. URL:
https : / / www . sciencedirect . com / science / article / pii /
S0167739X23002649.

[4] Rupert Ford et al. PSyclone. Version 2.5.0. May 2024.
DOI: 10.5281/zenodo.11190458. URL: https://doi.org/10.
5281/zenodo.11190458.

[5] Swen Jullien et al. CROCO Technical and Numerical
Documentation. Apr. 2024. DOI: 10 . 5281 / zenodo .
11036558. URL: https : / / doi . org / 10 . 5281 / zenodo .
11036558.

[6] Gurvan Madec et al. NEMO Ocean Engine Reference
Manual. Version v4.2.1. July 2023. DOI: 10.5281/zenodo.
8167700. URL: https://doi.org/10.5281/zenodo.8167700.

[7] Sparsh Mittal and Jeffrey S. Vetter. “A Survey of CPU-
GPU Heterogeneous Computing Techniques”. In: ACM
Comput. Surv. 47.4 (July 2015). ISSN: 0360-0300. DOI:
10.1145/2788396. URL: https://doi.org/10.1145/2788396.

[8] Jared O’Neal et al. “Domain-Specific Runtime
tonbsp;Orchestrate Computation onnbsp;Heterogeneous
Platforms”. In: Euro-Par 2021: Parallel Processing
Workshops: Euro-Par 2021 International Workshops,
Lisbon, Portugal, August 30-31, 2021, Revised
Selected Papers. Lisbon, Portugal: Springer-Verlag,
2021, pp. 154–165. ISBN: 978-3-031-06155-4. DOI:
10 . 1007 / 978 - 3 - 031 - 06156 - 1 13. URL: https :
//doi.org/10.1007/978-3-031-06156-1 13.

[9] Johann Rudi et al. CG-Kit: Code Generation Toolkit for
Performant and Maintainable Variants of Source Code
Applied to Flash-X Hydrodynamics Simulations. 2024.
arXiv: 2401.03378 [cs.DC]. URL: https : / /arxiv.org/
abs/2401.03378.


