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Maurice Brémond1, Hugo Brunie2,3, Laurent Debreu1,3, Florian Lemarié1,
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Abstract—Ocean simulation models often fail to reach top
performance from modern high-performance computing (HPC)
architectures. Proposed solutions are often complete code rewrites
which are impractical due to their cost and time requirements.

We introduce “Poseidon”, an HPC-oriented source-to-source
translator for fluid dynamics solvers of ocean simulation models
written in Fortran with a regular grid structure. Our main
motivation is to perform architecture-specific optimizations by
recovering from the source code and the numerics experts
knowledge the high-level information and semantics.

Index Terms—HPC, ocean, simulation, source, optimization,
fortran, transpiler

I. INTRODUCTION AND METHODOLOGY

We introduce “Poseidon”, an HPC-oriented source-to-source
translator for the dynamic core of fluid dynamics solvers for
ocean simulation models with a regular grid structure written
in Fortran. The primary motivation is to perform architecture-
specific optimizations, by gaining back the high-level informa-
tion and semantics from partial-differential equation models
which got lost during the process of converting numerics to
source code. Poseidon uses a multi-stage approach: (a) A PDE-
solver-specific front-end to uplift the solver to a high-level
control flow (CF) by extracting its numerics and semantics, (b)
a conversion of the CF to a high-level Data Flow (hyper)Graph
(DFG), (c) DFG-based modifications of the PDE solver (e.g.,
kernel fusion), and (d) finally scheduling and code generation
in backends.
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II. BACKGROUND AND MOTIVATION

Ocean simulations on modern supercomputers often utilize
only a small fraction of their peak performance, despite
representing a significant share of usage [6, 5]. Many of these
codes predate the integration of GPUs into supercomputers,
and porting them to GPU architectures is challenging and
costly due to the need for extensive rewrites of existing Fortran
code.

To address the complexity of programming for massively
parallel architectures, researchers have developed Domain
Specific Languages (DSLs), compilers, and runtimes that
abstract this complexity [7].
We focus on a source-to-source solution that maximizes HPC
performance with minimal code rewrite, ensuring that numeri-
cal scientists do not need to write HPC optimizations, to tackle
the performance portability challenge of ocean simulations on
HPC architectures. As demonstrated in [2], parallel code can
be generated directly from sequential Fortran programs.

III. METHODOLOGY DETAILS

A. Uplifting from Fortran to a Data Flow HyperGraph

Poseidon uses PSyclone [4] to parse Fortran code, extracting
variables and meta-information such as type, kind, and lifes-
pan. Computational kernels, communications, and boundary
conditions nodes are identified to build a Control Flow (CF)
representation, which is then transformed into a Data Flow
(hyper)Graph (DFG), where edges represent data dependencies
between nodes.



B. DFG-based code transformation

Following some transformation rules, computational kernels
can be fused together when they are linked by a data depen-
dency edge. The computations from the input (upflow) kernel
can be substituted in the output (downflow) one, thus reducing
the number of memory access and intermediate arrays being
allocated. In order to avoid loop dependencies, we assign to
local scalar variables and perform substitutions in expressions.

C. Scheduling and code generation

After performing static scheduling, code generation is man-
aged by converting Poseidon’s intermediate representation (IR)
into PSyclone IR, followed by Fortran code generation via the
PSyclone backend.

IV. RESULTS

We tested Poseidon on a 2D fast barotropic solver research
code involving over 20 stencil-based kernels, adapted from
the CROCO ocean simulation model [5], which already leads
to a high combinatorial complexity for kernel fusion. A naive
autotuning method was applied to generate various versions of
the Fortran code. Results show that optimal performance on
an Intel® Xeon® W-2295 CPU @ 3.00GHz with 18 cores is
achieved not by fusing all kernels but by selective fusion. The
best kernel fusion choices yielded up to a 1.75x speedup with
OpenMP parallelization, whereas full fusion increased single-
threaded execution time by 10%, while optimal fusion choices
still achieved a 1.29x speedup.

V. RELATED WORK

In [1], Tal Ben-Nun et al. applied DaCe to optimize FV3,
an Earth System Model originally written in Fortran. Their
optimizations are similar to what we aim to achieve with
Poseidon, but FV3’s dynamical core was entirely rewritten in
Python.
Psyclone [4], a Python-based source-to-source Fortran com-
piler, allows us to parse Fortran code and to create a DFG-
based intermediate representation in Poseidon.
In [2], Nick Brown et al. used the Flang LLVM MLIR
compiler to extract stencil patterns from Fortran code, writing
their xDSL framework as a compiler pass and leveraging
existing MLIR dialects and transformations. Our approach,
however, supports the use of any general-purpose compiler.

VI. SUMMARY AND CONCLUSION

Future work will involve applying Poseidon to production
ocean simulation models like NEMO [6] and CROCO [5] in
collaboration and co-design with their developers. Co-design
collaboration has already shown good results in other HPC
applications [3, 8, 9].
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