N

N

Poseidon: A Source-to-Source Translator for Holistic
HPC Optimizations of Ocean Models on Regular Grids
Maurice Brémond, Hugo Brunie, Laurent Debreu, Rupert W Ford, Florian

Lemarié, Anna Mittermair, Andrew R Porter, Julien Rémy, Philippe Rosales,
Martin Schreiber, et al.

» To cite this version:

Maurice Brémond, Hugo Brunie, Laurent Debreu, Rupert W Ford, Florian Lemarié, et al.. Poseidon:
A Source-to-Source Translator for Holistic HPC Optimizations of Ocean Models on Regular Grids. SC
2024 - International Conference for High Performance Computing, Networking, Storage, and Analysis,
Nov 2024, Atlanta (Georgia), United States. , pp.1-1, 2024, 10.5281/zenodo.11190458 . hal-04811677

HAL Id: hal-04811677
https://hal.science/hal-04811677v1
Submitted on 29 Nov 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-04811677v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

UCA Poseidon: A Source-to-Source Translator for Holistic) SC24

Université
Grenoble Alpes

. HPC Optimizations of Ocean Models on Regular Grids

y 4
h%‘ Maurice Brémond*, Hugo Brunie®’, Laurent Debreu®?, Rupert W. Ford’ T, Florian Lemarié', Anna Mittermair®,
Andrew R. Porter?, Julien Rémy"’, Philippe Rosales"®, Martin Schreiber*’, Martin Schulz’, Sergi Siso?, Arthur Vidard"’

*AIRSEA team, Inria - LJK, Grenoble, France - *Hartree Centre, STFC, Warrington, United Kingdom %
etous it e *Univ. Grenoble Alpes, Grenoble, France - *“TUM School of Computation, Information and Technology, Munich, Germany

Main objectives of Poseidon Abstract Preliminary kernel fusion results

1. Utilization of existing Fortran code (the main asset). * Ocean simulation models play a crucial role in weather PDE model: 2D nonlinear barotropic solver using an AB3/AM4 multi-step time integration
2. Numerics experts can still write numerics code in Fortran e However, they are often far from the top performance of Experiment: Naive autotuning of kernel fusions using Poseidon, see below.
without hand-written HPC optimization. computer architectures due to legacy programming styles. Hardware: Intel® Xeon® W-2295 CPU @ 3.00GHz. / Compiler: nvfortran version 24.5-1.
e Often, entire codes are rewritten which is often too costly, Scalability: Single-core and multi-core with OpenMP directives on 18 cores, without MPI, single CPU.

time-consuming and error prone. Correctness: Tested against output of original source code.
e |n addition, highly performing ocean models require a

co-design, including MPI, automatic differentiation, and Single-core kernel fusion Multi-core kernel fusion (18 cores)

Worst performance Worst performance

3. Develop method to automatically analyze, optimize
and parallelize such numerics code.

4. Output is source code which is compatible to existing
ocean models including used parallel programming models. many other features.
This raises the research question "Whether it is possible to

5. First goal: Models with regular grid structure translate existing Fortran code to reach top performance
without rewriting of the entire code?" motivating "Poseidon".

o
=
~
w

Best performance

o
=
w
o

Best performance

1.21e-01

Overview of the Poseidon approach

Average seconds per time step

Average seconds per time step
1.53e+00

Stage 1: Input - PDE solvers written in Fortran O 0 5 211 a 12 20 13 19 11 15 16 10 0 2025 1 20 6 2 42 8 b L) e Al e e B

Fused kernel ID (accumulated from left) Fused kernel ID (accumulated from left)

Input: Long-term goal is the applica.tion to the Nucleus fqr European Modelling of the Ocean Kernel fusion by autotuning:

(NEMO) [1], Coastal and Regional Ocean Community Ocean (CROCO) [2] model and i e Each "Fused kernel ID" is based on a kernel fusing all kernels of ID from left to this kernel ID.

to other developments.(e.g., FIash-X).. _ - E.g., in left image, "21" refers to fusing kernels 10, then 9 and finally 21. No fusion is denoted by "-1".
Case study: Re'search code usm.g the numerics of.the barotropl.c solv.er of the CROCO model e Selection of next kernel ID to fuse based on steepest descend offline autotuning.
Example: Multi-step extrapolation and computation of total height (in Croco model) e The last bar on the right shows the results of a fusion of all possible kernels.

- sz 1minimjirr]:?ximax Coastal and Regional Ocean COmmunity model Disc.ussion of results:
omit _ (§ .\ 6) o (_ .\ 26) (ot gem -2 Drhs(i,j) = cffl * zeta(i,j, kstp) & * Single-core vs. multi-core kernel fusion: Kernel fusion provides higher speedups on multi-core
S\ 2 + cff2 * zeta(i,], kbak) & systems due to effects of roofline model.
D"tz = (™2 4+ h I EH?’JT zeta(1,],kold) & e Speedup of x12 reached between the best version on 1 core (left graph) versus best version
on 18 cores (right graph).

e Speedup of x16 reached between fully fused single core run (left graph) and best multi-core fusion.

Stage 2: Uplift through a PDE model-specific connector

Example of data flow hypergraph: Uplifted from a non-linear 2D barotropic

We extract variables, computations, and their semantics with a model-specific connector based on PSyclone [3].)) , , .) .
g g Y 3] multi-stepping solver with two of its Poseidon IR high-level nodes detailed.

After this step, all relevant information is known about every variable and every access in the dynamical core.

[SOURCE]

2.a Variables scope: Poseidon Intermediate Representation (PosIR): g@(%gﬁ ‘% <
—

ST 5~

1~

q —_—
T

-
High-level information and meta data about all variables inferenced from the e List of assignment operations O DL _
' L -
~—

code with the PDE model-specific uplifter. e Assignment = numerical expressions 27 OQ
e Stencil-oriented P e
2.b Control Flow: Nodes of the following types with a closure describing their * Branches expressed as conditions) (- Rermeoon 3

control flow index: 2, schedule index: 3

inpUt and OUtpUt data dependenCieS' Based again On PDE mOdeI_SpeCiﬁC upliﬁer' : -j:[meta.zeta%llocalranges%ranges(z)%start+(-2). metazeta%localranges%ranges(2)%end + 2]

- it [metazeta%localranges%ranges(1)%start + (- 2) , metazeta%localranges%ranges(1)%end + 2]

Loop step: 1

e Kernel Loops: DIM nested loops performing stencil-like operations, based on PosIR 7] < O ey

- zeta(kstp) [Variable_GridDataNDMultiStep_Element] (grid: META%zeta), stencils=[[0,0]]

- cff2_zeta [Variable_Scalar] Stencil

e Boundary Conditions: (DIM-1) nested loops on boundaries, with conditions, based on PosIR ‘v 3 e SR B ST p———

- cff3_zeta [Variable_Scalar] access
- zeta(kold) [Variable_GridDataNDMultiStep_Element] (grid: META%zeta), stencils=[[0,0]]

e Computations: All other computations, e.g., precomputed friction coefficients, based on PosIR ' : S —>< N A B AT e o e

Output data:

- Drhs [Variable_GridDataND] (grid: META%zeta), stencils=[[0,0]]

¢ CO m m u n icati O n S : H ig h -l eve I a b St ra Cti O n Of d i St ri b u te d CO m m u n i Cati O n — < '-I‘D'lt')hsse[:f:iot?l’-‘l-(l)r]{=(i?f‘?ﬁil.cisetaan3< :étsat(igig)slifgffg)]:+ cff2_zeta * zeta(kbak)[+0, +0] + cff3_zeta * zeta(kold)[+0, +0]+h[+0, +0

e Black Boxes: Anything we do not yet support but can extract the closure from (I/O, printing, calls) X ‘\\\JL»VUQMV

T e o V
Fortran = Stage 3: Convert to a Data Flow Graph UUQQJA
= . ' /]
[

. [(if == 1] conditions — gl
dynamical clone Variables] vel=1.083333333333;“iz:erdilti)j)ns:[(.not.((iif==1))) ((i:ilft:=(1+1))] v | (=)
“ore High-level : . : el
1. PDE model 2. Uplift e Convert to a data flow graph (see image to the right) L e
. control flow . : O e S
Numerics with hyperedges between nodes representing data flow.

experts Connector PosIR

knowledge e This results in a high-level intermediate representation for
Poseidon further graph-based operations applicable in a safe way.

cffl_vel = (-(0.1666666666666)) Conditions: [(.not.((iif == 1))), (iif == (1 + 1))]

cff2_vel = 0.0833333333333 Conditions: [(.not.((iif == 1))), (iif == (1 + 1))]

6. Ven(_j?rs' 3. Data Flow
specific

compilers : hyperGraph) Stage 4: Graph-based operations

E.g. on kernel loops: Works in progress:
e Loop splitting e Automatic differentiation
e Kernel fusion e |njection of communications

Poseidon limitations

Stage 6: Leverage vendors-specific compilers Stage 5: Code generation backends Uplifting:
e Requires to be adapted to each model (but Poseidon is python3 code, easy to get involved).

* Poseidon is independent of a specific compiler as the next step Create code for PDE model e Requires correct extraction of the numerics and control flow.

=

in the compilation chain. e Pure Fortran with clone —
e Consequently, Poseidon can leverage further optimizations as e Parallel programming models for now: Reliability:

performed by existing low-level and eventually OpenMP, optional offloading to GPU e Failure of correct uplifting can lead to wrong results.
hardware-specific compilers and communication backends. Future work: Other parallel prog. models, IRs and DSLs 60% of the code is currently covered with unit tests (pytest).
e Continuous integration tests on 2 research code mini-applications.

Summary Future research directions

e Poseidon: A new uplifting approach to a data-flow-oriented intermediate representation. Near-term goals:
e Target: Holistic HPC optimization of PDE models on regular grids written in Fortran. e Developing uplifting connectors to production codes, including NEMO ocean model.
e Avoids e Reduce arithmetic intensity by simplifying kernel numerics after kernel fusion.
- hand-tuned codes (making code often less understandable), e Implementing more graph operations, e.g., array buffer reuse and loop fusion.
- entire rewrites of code in another domain-specific language (often not accepted by numerics experts), e Automatic distributed-memory communication and latency hiding strategies.
- introducing errors in numerics by rewriting code, e.g., in new domain-specific language e Automatic differentiation of data flow graph followed by graph-based optimization.
e Approach: Uplifting brings back the semantics of the numerical model through PDE model-specific connectors. Long-term goals:
Further steps allow performance optimizations on data flow graph. e Support other programming models (OpenCL, OpenACC, etc.) and hardware (e.g., FPGASs)
e Retains the original Fortran code which is considered to be a highly-valuable asset. e Extension to unstructured grids

Related work References

[1] Gurvan Madec, et al. "NEMO Ocean Engine Ref. Manual", Scient. Notes of IPSL Clim. Mod. Center, 20.6.2023

[2] Francis Auclair, et al. Coastal and Regional Ocean Community Model. 2.0, 22 April 2024

[3] Ford, R., et al. Psyclone. 2.5.0, GitHub, 14 Feb. 2024, doi:10.5281/zenodo.11190458.

o . . [4] Brown, Nick, et al. "Fortran perf. optimisation and auto-parallelisation by leveraging MLIR-based domain specific
Psyclone [3] is a source-to-source Fortran compiler written in Python. to leverage existing MLIR dialects and transformations. Contrary abstr. in Flang.", Proc. of the SC'23 Workshops of the Int. Conf. on HPC, Network, Storage, and Analysis. 2023 (SC'23)
It allows us to easily parse Fortran code and create our own to this approach, e.g., our source-to-source code transformation [5] Tal Ben-Nun, et al. "Productive performance engineering for weather and climate modeling with Python".
Intermediate Representation based on a Data Flow Graph in Poseidon. framework allows us to use any general purpose compiler. In Proceedings of the International Conference on HPC, Networking, Storage and Analysis (SC '22).

Usage of DaCE [5] to optimize FV3, an Earth System Model, originally In [4] Nick Brown et al. present an extension of the Flang LLVM

written in Fortran. Optimizations are similar to those aimed with MLIR Compiler to extract stencil patterns from Fortran source
Poseidon, but the PDE solver has been entirely rewritten in Python3. code. Writing their framework as a compiler pass, they are able

