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Abstract8

In dense train networks, the alighting and boarding process involves complex pedes-9

trian flow dynamics. A common rule to facilitate this process is to wait until alighting10

is complete before boarding. However, many passengers do not adhere to this rule11

in real-world scenarios. Here we present an experimental study to assess the impact12

of such non-compliance on pedestrian flow and compare the results with field data13

collected from infrared sensors. Our findings indicate that pedestrian discomfort in-14

creases considerably with increasing non-compliance. However, the average alighting15

and boarding times are similar regardless of non-compliance levels. We show that this16

counter-intuitive effect is due to a compensatory mechanism between lower densities17

at lower degrees of non-compliance and higher densities at higher degrees of non-18

compliance. This research opens new perspectives in understanding and managing19

pedestrian flows in dense railway environments.20

1 Introduction21

In major cities, daily commuting is an essential aspect of urban life. People travel to city22

centers for work in the morning and return home in the evening, leading to significant23

crowding on suburban trains. For example, in the Paris suburban rail network (RER),24

over three million journeys are made daily across its five lines. In particular, the processes25

of boarding and alighting involve complex pedestrian dynamics that directly affect train26

dwell times and can contribute to delays, thus impacting the network’s overall efficiency.27

Therefore, understanding the pedestrian flows during the alighting and boarding phases is28

crucial.29

The collective dynamics of pedestrian flows emerge from the interactions between multiple30

individuals. These interactions include, among others, imitation, avoidance, and scram-31

bling. A comprehensive overview of these interactions has been provided by Moussaid32

(2010).33

Collective behaviors are characterized by macroscopic variables such as pedestrian density34

and flow. The relationship between these variables is frequently represented using fun-35

damental diagrams (Hankin & Wright, 1958; Carstens & Ring, 1970; Lam et al., 1995).36

Experimental approaches have also been employed to refine these models in various con-37

texts (Weidmann, 1993). However, it is important to report that the fundamental diagram38

is formed to be highly context-dependent. For instance, stress levels have been shown to39

influence pedestrian behavior in non-trivial ways (Helbing et al., 2000), and the form of the40

relationship between density and flow can differ for bi-directional flows (Motsch et al., 2018;41

J. Zhang et al., 2012). In some cases, bi-directional flows are more efficient at high den-42

sities due to self-organizing patterns, such as the formation of lanes (Kretz, Grünebohm,43

Kaufman, et al., 2006; Moussaïd et al., 2012). Similarly, the presence of bottlenecks can44

significantly alter flow patterns (Helbing et al., 2005; Kretz, Grünebohm, & Schreckenberg,45

2006). See Vanumu et al. (2017) for a discussion on how the fundamental diagrams change46

under varying contexts, including bi-directional flows, cross-flows, and bottlenecks.47
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The situation at train doors presents a unique case characterized by bi-directional pedes-48

trian flows in a confined space, often complicated by compliance to rules—such as alighting49

before boarding—that are not consistently observed.50

Pedestrian flows at train doors have rarely been studied at the individual level, with a few51

exceptions, such as the study by Q. Zhang et al. (2008), which proposed a simulation based52

on cellular automata. More often, research has focused on more aggregated variables, such53

as alighting and boarding times (Wiggenraad, 2001; Daamen et al., 2008). Several models54

have been proposed to estimate these times. For example, Weston (1989) developed an55

analytical model based on the number of alighting and boarding passengers and various56

geometric parameters. However, this model appeared inadequate under high passenger57

loads (Harris, 2005). Additionally, Coulaud et al. (2023) highlighted that the dwell time58

of trains is related to the passenger flow data at critical door locations.59

Seriani et al. (2019) explored the relationship between alighting and boarding times and60

the ratio of boarding to alighting passengers, along with the level of congestion. Their61

study found that the boarding time (and, similarly, the alighting time) increased when62

there were more alighting passengers than boarding, and vice versa. They also observed63

the formation of alighting lanes, which had narrower widths when the number of boarding64

passengers exceeded the number of alighting passengers. This observation suggests that65

self-organization patterns can enhance efficiency.66

Furthermore, when platform-edge doors were present, De Ana Rodríguez et al. (2016)67

observed shorter alighting and boarding times. This improvement was interpreted through68

better positioning of passengers on either side of the door, which reduces interference69

between boarding and alighting passengers. Generally, operators promote compliance with70

the rule of waiting for alighting to be completed before boarding, assuming the alighting71

and boarding process to be improved. In this study, we refer to this behavior as non-72

compliance.73

Despite being common in daily commuting, non-compliance with boarding and alighting74

rules has rarely been the subject of detailed study. Wahaballa et al. (2022) conducted75

observations using video footage from Cairo metro stations but found no significant rela-76

tionship between non-compliance and the overall alighting and boarding time. In contrast,77

Seriani et al. (2022) observed a slight increase—ranging from 1 to 2 seconds—in alighting78

and boarding times under non-compliance conditions in a controlled laboratory setting.79

Similarly, Li et al. (2020) investigated the effects of non-compliance using microscopic sim-80

ulations. Their findings indicated no significant impact on alighting and boarding times81

under low passenger loads; however, they noted a considerable influence under higher pas-82

senger loads.83

While these studies have primarily focused on the duration of alighting and boarding84

processes, they have not provided strong explanations for the observed effects, nor have85

they explored the related flow and density patterns. Furthermore, so far, no research has86

evaluated the impact of non-compliance on passenger comfort.87

There are limited tools available for studying comfort in pedestrian flows. Instead, the88

concept of Level of Service (LOS) is more commonly used to assess pedestrian comfort89

situations. Originally developed for vehicular traffic analysis (see TRB (1956) and TRB90

(2022) for a more recent version), LOS was adapted for pedestrian flows by Fruin (1970).91

LOS categorizes pedestrian environments into letter grades (from A to F), with each grade92

representing decreasing levels of comfort (related to increasing density). These categories93

also take into account different contexts, such as waiting, walking, or ascending stairs94

(TRB, 2022; FGSV, 2015), though they are typically defined in discrete terms.95

Kretz (2011) proposed a formula to unify various pedestrian scenarios and calculate LOS96

on a continuous scale. This continuous LOS measurement offers a more nuanced tool97

for evaluating complex pedestrian flows, such as those occurring during the alighting and98

boarding processes.99

The goal of the present study is to quantitatively assess the impact of varying degrees100
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of non-compliance on flow and density patterns in pedestrian traffic, where the degree of101

non-compliance refers to the number of passengers who begin boarding before alighting is102

complete. We design an experiment to measure these effects under controlled conditions,103

and the experimental findings are validated using field data. Additionally, we provide a104

quantitative evaluation of the LOS for each level of non-compliance based on the experi-105

mental results.106

This paper is organized as follows: Section 2 details the experimental setup, including107

data collection and preprocessing methods for both experimental and field data. Section108

3 presents the effects of non-compliance on cumulative profiles, as well as on alighting and109

boarding times, followed by an analysis of the flow and density patterns. This section110

concludes with an estimation of the LOS for different levels of non-compliance. Finally,111

Section 4 provides a discussion of the results and offers concluding remarks.112

2 Method113

In this section, we present the experimental setup and the data collection framework.114

We also present field data and how they were pre-processed to be compared with the115

experimental data.116

Two kind of data; experimental data and field data117

Experiment118

We designed an experiment to quantitatively measure the impact of passenger non-compliance119

during the alighting and boarding process. We used a real train (called Z20500) dwelling120

at a dedicated platform at Gare de Lyon (Paris) available during the whole morning. This121

rolling stock was chosen for its small doors (1,3m wide). We wanted to make sure enough122

hindrance would occur with a small number of participants as there was uncertainty on123

the number of participants we would reach. We called on colleagues to participate in the124

experiment to play "passengers". To do so, we spread a form in the company to register125

interested people to participate. Despite the no-shows, we reached 32 participants.126

The experiment has been divided into scenarios (S ) of non-compliance to extract the127

influence of increasing non-compliance, and scenarios were replicated (R). In each scenario128

replication (S,R), half of the participants (16 people) were positioned inside the train (to129

alight), the other half (16 people) outside the train (to board) in a designated waiting zone130

marked by chalk. The zone was divided into two (both sides of the door) and the same131

number of participants had to stand on both sides. After a signal to the train driver, the132

door was unlocked and one participant inside pressed the button to open the door. An133

alighting and boarding process then occurred.134

We evaluated five different scenarios of non-compliance. A scenario of non-compliance135

corresponds to a given number of boarding passengers trying to board as soon as the door136

is open before the alighting is complete. The five scenarios match five different numbers137

of non-compliant boarding passengers, see Table 1. For each scenario, we performed 12138

replications. The sequence of scenarios and replications is sorted by replication and for each139

replication, the five scenarios are performed in randomized order, for example, the sequence140

for the two first replications was: (S1, R1 ), (S5, R1 ), (S4, R1 ), (S2, R1 ), (S3, R1 ), (S2,141

R2 ), (S4, R2 ), (S3, R2 ), (S5, R2 ), (S1, R2 ). Randomising enabled mitigating the impact142

of fatigue perceived by the participants during the experiment. We did 45 minutes of143

experiment followed by a 15-minute break followed by 30 minutes of experiment for a total144

duration of 90 minutes.145

Before starting the experiment, participants had to sign an informed consent form and were146

briefed on the experiment’s functioning and some security information. Each participant147

was given a colored chasuble (red or blue) and a number (from 1 to 16). At each replication,148
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Scenario Number
(S ) of non-compliant

passengers
S1 0
S2 3
S3 6
S4 9
S5 12

Table 1: Presentation of the five scenarios assessed in the experiment. Twelve replications
(R) were performed for each scenario (S ).

the non-compliant passengers were designated by their number.149

Finally, each replication follows this sequence:150

1. Indication of the scenario and call for non-compliant passengers,151

2. Signal to the train driver and closing of the door,152

3. Unlocking of the door by the train driver and opening of the door (one alighting153

participant had to push a button),154

4. Alighting and boarding process,155

5. Repositioning of participants (alighting participants becoming boarding participants156

and vice-versa).157

The whole experiment was captured by a camera fixed above the train door.158

Two kinds of data have been extracted from the video of the experiment:159

• The passenger flow (number of people alighting and boarding at each second),160

• The passenger density (number of people in one square meter).161

For both of these variables, two steps were followed. First, the videos were subsampled162

into pictures every second. Second, manual counting was done on each picture to get flow163

and density data. For the passenger flow, the counting was validated by comparing the164

total number of counted people to the known number of participants. In other words, if165

we did not count 16 people alighting and 16 people boarding, the counting had to be done166

again. For the density, a surface was fixed, in which the counting was done. The surface167

was 1.5m2 included in the camera view where all participants were fully viewable. The168

density was obtained by dividing the counted number by this surface. Flows and density169

are time-dependent with data extracted every second. For each (S,R) time 0 corresponds170

to the door’s opening.171

Field data172

Some new-generation trains (called Regio2N) are equipped with infrared sensors that count173

the number of people alighting and the number of people boarding every several seconds174

at each door and each stop of a train. The time separating two counting events is truly175

random, having a standard deviation of 3s for an average of 3s. The data has been collected176

over six months (September 2022 to February 2023) on line N which is the main line177

operated by this rolling stock. Unfortunately, it is rare to see important bi-directional178

flows on this line. There are 205 observations for ten people alighting and ten people179

boarding (see Table 2) which is the studied case. Considering more alighting and boarding180

people leads to an excessively small sample. On line N, the platforms are all at the same181

height (except for two excluded stations) which leads to negligible differences in flows for182

different stations or doors and all the doors are 1.6m wide.183
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Degree of non-compliance Number of observation
ten alighting 0 34
and 3 4
ten boarding 6 4
people Others (excluded) 163

Table 2: Number of observations for the different studied cases from field data.

We defined the number of non-compliant passengers slightly differently than in the experi-184

ment: the degree of non-compliance will be the number of passengers boarding before 90%185

of the alighting passengers have got off. A more strict definition considering the number of186

passengers boarding before alighting is complete (as for the experiment) is not appropri-187

ate. Indeed, in real-world scenarios, some passengers may alight lately. For example, if the188

latest alighting passengers are not standing close to the door they may not be seen by the189

boarding passengers right away. Then, the passengers boarding after 90% of the alighting190

flow and before the 10% remaining may not necessarily hinder the alighting flow.191

Notice that these sensors only capture the flow and do not capture the density. Then, we192

are studying only cumulative profiles and flows from this field data for three degrees of193

non-compliance (0, 3, and 6 non-compliant passengers).194

Variables of interest195

In Section 3, we analyse the results through several variables:196

• The cumulative profiles (cumulative alighting, cumulative boarding, and total) over197

time;198

• The alighting and boarding times computed as the time of the last alighting or199

boarding;200

• The alighting, boarding, and total flows (number of people crossing the door each201

second);202

• The alighting, boarding, and total densities (number of people in the vicinity of the203

door by square meter).204

From flows and densities, we plot the fundamental diagrams (flow versus density). Then, we205

compute the capacity (maximal flow) and the critical density (density where the maximal206

flow is obtained). Two methods were used to estimate them. First, we used a raw method:207

we compute the maximum of the flow and the density where this maximum is obtained.208

Second, we fitted a parabola (using the polyfit function from the numpy library in Python)209

over the data of the fundamental diagram and took capacities and critical densities from210

this parabola.211

Finally, we studied the comfort during the alighting and boarding process through the212

notion of level of service (LOS). To do so, we use the formula proposed by Kretz (2011). The213

formula needs to be calibrated with two speed parameters (c1 and c2). The chosen values214

correspond to existing categories (Fruin, 1970; TRB, 2022; FGSV, 2015), for example, A215

being from 0 to 1, B being from 1 to 2, and so on. This formula is the following:216

LOS = ρ

(
1 +

v

c1
+

V ar(v)

c22

)
, (1)217

where ρ is the density,218

v =
1

N

N∑
i

∥vi∥,219
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220

V ar(v) =
1

N

N∑
i

(
vi −

1

N

N∑
i

vi

)
·

(
vi −

1

N

N∑
i

vi

)
,221

vi being the speed vector of passenger i. The term proportional to the mean speed illus-222

trates that the faster is the crowd the less comfortable it is. The term proportional to the223

variance captures how messy the flow is. Taking c1 = 0.67 m/s and c2 = 3.06 m/s, we get224

a LOS corresponding to Fruin categories (according to Kretz (2011)).225

Preprocessing of the data226

Experimental and field data were then processed to compare the average profile by degree227

of non-compliance. For experimental data, for each couple (S,R, the profiles of variables228

of interest against time are smoothed by a sliding mean (using a 4s window). We then229

took the average and standard deviation of the variable of interest over a given number of230

non-compliant passengers. For field data, the same treatment is performed over the three231

scenarios referenced in Table 2.232

3 Results233

In this section, the above-mentioned variables of interest from both experimental and field234

data are plotted and interpreted.235

Cumulative profile: differences that compensate236

First, the cumulative profile of alighting, boarding, and total (i.e. the sum of alighting237

and boarding) are plotted in Figure 1 with their confidence intervals (at 95% threshold)238

from experimental data (left) and field data (right). For alighting only and boarding only239

respectively, the small intersection between the confidence intervals shows good distinction240

between the profiles for different degrees of non-compliance. Both the alighting process241

duration and the boarding process duration are longer with increasing non-compliance. As242

expected, for lower non-compliance boarding starts later and alighting ends sooner, both243

suffering less hindrance. What is more interesting is the width of the confidence interval244

which also increases with non-compliance for both alighting and boarding (meaning more245

variability). If we focus on the total, the average profile is very similar for all the degrees246

of non-compliance with particularly little differences at the end of the process, meaning247

very close alighting and boarding times. Table 3 confirms this observation. Such little248

differences in alighting and boarding times, although already observed in the literature249

(Wahaballa et al., 2022; Seriani et al., 2022; Li et al., 2020), are counter-intuitive and250

suggest compensation somewhere in the process.The profiles from field data are similar to251

the experimental ones, this disproves an experimental bias as the origin of the pattern.252

The study of flows and densities helps to understand this compensation.253

Flows: uneven transitions between alighting and boarding processes254

Figure 2 shows the alighting, boarding and total passenger flows for the different degrees255

of non-compliance from both experimental and field data. On experimental data (left of256

Figure 2), for lower non-compliance, the alighting flow reaches a sharp and high peak at257

the beginning while the boarding flow reaches one at the end. As the non-compliance258

increases, both peaks in alighting and boarding flows flatten and widen meaning two more259

simultaneous but less effective flows. The total flow illustrates the compensation. For260

lower non-compliance, we see two peaks separated by a gap: both alighting and boarding261

flows are very effective but a latency is observed in between. By contrast, the total flow262

is roughly constant for higher non-compliance, lower at the beginning and the end but263
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Figure 1: Cumulative alighting (top), boarding (center), and total (bottom) average profiles
versus time from experimental data with confidence intervals at 95% (left) and field data
(right). A good distinction between degrees of non-compliance is possible for the alighting
and the boarding while there is little difference in the total profile.
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Figure 2: Alighting (top), boarding (center), and total (bottom) average flows versus time
from experimental data (left) and field data (right). Alighting flows and boarding flows
flatten as non-compliance increases. In the total flow, the observed drop in experimental
data corresponds to a transition between the alighting and the boarding. Such drop is not
observed for field data.
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Degree of non-compliance Average alighting and boarding time Standard deviation
[P] [s] [s]
0 19.1 0.89
3 20.1 0.94
6 20.6 1.03
9 21.3 1.92
12 21.3 2.11

Table 3: Means alighting and boarding time and their standard deviations measured for
each studied degree of non-compliance from experimental data. Little difference is observed
in the mean values while the standard deviation increases with non-compliance.

higher in between. In other words, the transition between the alighting and the boarding264

for lower non-compliance leads to a loss in flow overall, explaining such small differences265

in alighting and boarding times across degrees of non-compliance.266

Concerning the field flows (right of Figure 2), the pattern is not fully the same. On267

the one hand, the alighting flows and the boarding flows follow a similar pattern as for268

the experiment. On the other hand, the total flow does not undergo two clear peaks269

for lower non-compliance contrary to experimental flows. The total flow profile is more270

similar between degrees of non-compliance. One explanation could be the granularity of271

the field data where observations are reported with an interval often greater than one272

second, leading to an excessively smoothed curve. Another explanation comes from the273

definition of non-compliance chosen for field data: for lower non-compliance, a slightly274

better transition between the alighting and the boarding should be observed as boarding275

starts as soon as 90% of the alighting is complete. Yet, some compensation is still observed276

with a higher flow at the beginning and at the end for lower non-compliance while the flow277

is maximal at the middle of the exchange for higher non-compliance.278

Besides, one may notice that the total flow is on average less for field data than for ex-279

perimental ones while the door is larger for field data. This might be explained by flows280

lower than the capacity resulting from insufficient densities (more details in the sequel).281

These insufficient densities can be due to fewer people overall, or a propensity to keep more282

distance between each other in real-world scenarios compared to the experiment (where the283

participants generally know each other). Unfortunately, density data are not available from284

field alighting and boarding processes. Then, in the sequel, we only focus on experimental285

data to study density and its implications.286

Density: higher non-compliance means higher density287

Figure 3 shows the density in the vicinity of the door from experimental data, for only288

alighting people, only boarding people, and the total. Similar to flows, for lower non-289

compliance, the alighting density reaches a peak at the beginning and the boarding density290

at the end, coherent with the two phases of the scenario. When non-compliance increases,291

the alighting density is high for a longer duration whereas the emergence of a second292

peak at the beginning of the process is observed for boarding. The height of this second293

peak increases with non-compliance while the height of the original peak decreases. This294

pattern is coherent with the principle of the experiment: a given number of participants295

have to board as soon as possible which generates high densities at the beginning; after non-296

compliant participant have boarded, the density decreases until alighting is complete and297

boarding may resume. If we focus on the total density, higher non-compliance corresponds298

to higher density overall but does not necessarily lead to much lower flows as seen in Figure299

2.300
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Figure 3: Alighting (top left), boarding (top right), and total (bottom) average density
versus time from experimental data. The density is higher for boarding and for higher
non-compliance.
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Figure 4: Pedestrian fundamental diagrams in this experiment (dots) and parabolic fit
(line) for the five studied degrees of non-compliance. The five profiles are similar.

Degree of Critical density Critical density Capacity Capacity R2

non-compliance (raw) (fitted) (raw) (fitted) (fit)
[P] [P/m2] [P/m2] [P/s] [/s]
0 1.8 2.0 2.0 1.8 0.96
3 1.8 2.4 1.9 1.8 0.95
6 1.9 2.6 1.9 1.8 0.95
9 2.9 2.9 1.7 1.8 0.99
12 2.6 3.0 1.9 1.9 0.97

Table 4: Critical densities and capacities for each studied degree of non-compliance ex-
tracted from the fundamental diagrams with the two methods presented in Section 2. The
critical density seems to increase with non-compliance but the capacity is stable.

Capacity & compensation pattern explanation301

From the flows and densities, we plot the fundamental diagrams for the studied degrees302

of non-compliance (see Figure 4). As commonly observed in the literature, all the flow-303

density curves are concave parabolas. The observed profiles for the different degrees of304

non-compliance are quite similar but the data might be insufficient to spot differences. In305

particular, the observed densities are not high enough to study properly the decrease in306

flow at high density, and the measurement of the capacity (the maximal flow) and the307

critical density is quite imprecise.308

Table 4 presents the obtained critical densities and capacities for the different degrees of309

non-compliance along with the coefficients of determination of the fit (that show decent310

correspondence). The capacity does not vary with method and degree of non-compliance.311

By contrast, the estimated critical density might differ with the method (in particular for312

3, 6, and 12 non-compliant people). Besides, the critical density slightly increases with313

non-compliance (no matter the method) which could be explained by self-organization in314

the flow. Lanes formation is a commonly observed example where the bi-directional flow315

is made more efficient (see Section 4 for further discussion).316

The study of the fundamental diagram helps to explain the compensation observed in317

alighting and boarding times (see Section 3). For lower non-compliance, the total density318

drops (until 1-1.5 P/m2) at the transition between the alighting process and the boarding319

process. It leads to sub-maximal flows (between 1 P/s and 1.5 P/s), as seen in Figure 4.320

For higher non-compliance, the flow (around 1.5 P/s) remains close to maximum despite321
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Figure 5: Average level of services (LOS) versus degree of non-compliance. Colors corre-
spond to Fruin LOS. The discomfort increases with non-compliance.

higher densities. Then, in the studied context, non-compliance does not significantly affect322

the duration of the alighting and boarding process. Nevertheless, higher non-compliance323

increases the uncertainty in the alighting and boarding time and might decrease comfort.324

A quantitative assessment of comfort loss due to non-compliance325

In this section, we estimate the level of service (LOS) during the alighting and boarding326

process. The average LOS in the vicinity of the door is presented for each degree of327

non-compliance in Figure 5. We see that despite important spread, the average LOS328

increases with non-compliance. The size of the confidence interval also increases with329

non-compliance.330

From these experimental results, although the alighting and boarding time is relatively in-331

dependent of non-compliance, the LOS significantly increases with non-compliance. How-332

ever, the LOS is not measurable with the field data available for this study.333

4 Discussion and conclusion334

In this study, we designed an experiment to evaluate the influence of non-compliance on335

pedestrian flows in alighting and boarding processes. The experiment showed no significant336

impact on the alighting and boarding time, which is coherent with existing literature337

(Wahaballa et al., 2022; Seriani et al., 2022; Li et al., 2020). However, flows and densities338

over time had different profiles and this observation was confirmed by field data. This339

phenomenon was interpreted thanks to the fundamental diagram: a decrease in density340

during the transition between alighting and boarding for lower non-compliance extends the341

alighting and boarding time as much as the hindrance at higher non-compliance.342

Some processes at the microscopic level may explain this result but are not captured by343

the fundamental diagram. A well-documented example is the formation of lanes (Moussaïd344

et al., 2012). People from both directions (alighting and boarding) cross the door using a345

fraction of its width without hindering each other. Figure 6 shows an illustration from our346

experiment. Existing works show efficient bidirectional flows when lanes appear. Kretz,347

Grünebohm, Kaufman, et al. (2006) see such an example in a corridor. Helbing & Vicsek348

(1999) shows that the formation of lanes enhances the flow by decreasing the friction349
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Figure 6: Pictures showing the formation of lanes: an example of self-organization leading
to a more efficient process. Pictures captured from the experiment.

between pedestrians from both directions. This concurs in explaining the relatively high350

flows for higher densities in the fundamental diagrams no matter the non-compliance.351

Besides, for lower non-compliance, alighting flows drop at the end of the alighting process.352

Such a drop has already been discussed in the literature (Heinz, 2003). Two potential353

explanations were raised: either people in the main flow undergo stress within the crowd354

that leads them to hurry, or the several lanes during the process break down into one355

single lane at the end, reducing the density. These two potential explanations are not356

incompatible and could be true simultaneously.357

Concerning flow management, a common rule of thumb is to ask boarding passengers to358

wait for the alighting to be complete before boarding. Surprisingly, our results contradict359

this usage (as already mentioned). Nevertheless, this rule may be relevant to cases other360

than the one studied here. In this sense, notice that we considered:361

• A balanced flow (as many alighting people as boarding people),362

• Little to medium demand (16 alightings and 16 boardings in the experiment, 8 alight-363

ings and 8 boardings for field data),364

• An initial position where boarding passengers wait at both sides on the edge of the365

door (with no additional order).366
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Although the studied case represents most situations in the Paris suburban railway net-367

work, our conclusions are obtained in this specific context. Our conclusion should hold for368

lower demand or a more significant number of alighting (compared to boarding) since the369

non-compliance dynamic is not expected to change. By contrast, we cannot extend our370

conclusions for higher demand, more boarding compared to alighting, more load inside the371

train (see the results of Li et al. (2020)), or a more organized initial position (in organized372

lanes, for example).373

The studied initial position is known to be sub-optimal (Heinz, 2003). Yang et al. (2019)374

shows, for example, an improvement in alighting and boarding time by having all the375

boarding people waiting at one side of the door. Yet, several works observed the initial376

position in real-world scenarios (Wu & Ma, 2013; Dell’Asin & Hool, 2018) where people377

wait at both sides of the door, similarly to our experimental instructions. Our experimental378

protocol was adapted to fit real-world scenarios as well as possible.379

In conclusion, this study shows that, with a symmetric moderate total flow, the passengers’380

compliance with the rule “alighting before boarding” does not impact the alighting and381

boarding duration. By contrast, we showed significant improvement in comfort with lower382

non-compliance, which advocates for such a rule.383

Our future research includes designing another experiment to investigate cases where the384

alighting and boarding time could be increased by higher non-compliance. Given the385

above-discussed results, alighting and boarding time could be increased by a density that386

is high enough to decrease the total flow significantly (cf fundamental diagram). There is387

uncertainty on whether such a density is reachable in an alighting and boarding process:388

people could self-organize to avoid an excessively high density. Future work will aim to389

design an experiment that produces an appropriate environment for high enough densities390

to be observed. Besides, we faced two challenges in creating the experiment presented391

in this paper. The first was to assess only a few scenarios to perform enough replication392

for each scenario in a restricted time (including some margin). The second was to en-393

roll enough colleagues to participate in a non-paid experiment on a Saturday morning.394

Designing another experiment should meet these constraints while assessing the case for395

more participants overall or higher degrees of non-compliance. Such an experiment will be396

realized in future work.397
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