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Abstract
We study the process of suitably normalized successive return times to rare events in the setting of

infinite-measure preserving dynamical systems. Specifically, we consider small neighborhoods of points
whose measure tends to zero. We obtain two types of results. First, we conduct a detailed study of a
class of interval maps with a neutral fixed point and we fully characterize the limit processes for all points,
highlighting a trichotomy and the emergence of the fractional (possibly compound) Poisson process. This
is the first time that these processes have been explicitly identified in this context. Second, we prove an
abstract result that offers an explanation for the emergence of the fractional Poisson process, as the unique
fixed point of a functional equation, drawing a parallel with the well-established behavior of the Poisson
process in finite-measure preserving dynamical systems.
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1 Introduction
We consider a measure-theoretic dynamical system (X,B, µ, T ) where T acts on the phase space X and preserves
the measure µ which can be finite or infinite. We are interested in “asymptotically rare events”, meaning that
we consider sequences (Bn)n≥0 of measurable sets such that µ(Bn) → 0 as n → ∞. Denoting r(k)

Bn
the k-th

return to Bn, we want to find the asymptotic behavior of the point process

Nγ
Bn

:=
∑
k≥1

δ
γ(µ(Bn))r(k)

Bn

where γ is an appropriate scaling function. Such point processes are often called “Rare Event Point Processes”
(REPP for short). When µ is a probability measure, extensive research has focused on the limiting distribution
of the first hitting or return time, with contributions from many authors (see, e.g., [Sau09, Hay13] and references
therein), or the whole sequence of return times seen as a process (see [LFF+16] and references therein). For
differentiable dynamical systems, the measure µ is either absolutely continuous with respect to the Lebesgue
measure or, more broadly, is an SRB (Sinai-Ruelle-Bowen) measure; see, e.g., [CC13, SB22]. Due to Kač’s
theorem, the right scaling consists in taking γ = id. In this context, if mixing is sufficiently strong or correlations
decay sufficiently fast, when the sets Bn are either balls or cylinder sets shrinking to a point x in the phase
space and x is µ-generic, then N id

Bn
converges towards the Poisson point process (PPP for short), with this

convergence understood when N id
Bn

is considered as a random variable on the probability space (X,B, µ) or on
the restricted probability spaces (Bn,B ∩ Bn, µBn

). These cases are commonly referred to as “hitting REPP”
and “return REPP”, respectively.

Hitting and return REPPs are intrinsically tied, converging to the same limit (see [HLV05] for the first
hitting/return time relationship and [Mar17, Zwe16] for the point process version). The Poisson point process
is the unique fixed point of the equation connecting the two limits, thereby confirming its prominent role as the
anticipated limit point process for sufficiently mixing systems.

Yet, not all dynamical systems of interest preserve a probability measure, and some indeed preserve a σ-
finite measure with infinite mass. Examples include null-recurrent Markov chains and Markov shifts [Sar01],
interval maps with indifferent fixed points [Aar97, Tha80], Zd-extensions of probability preserving systems or
billiards with cusps. For conservative ergodic systems (see Section 2.1 for precise definitions), every set of
positive measure is visited infinitely often by almost every orbit. Consequently, Nγ

Bn
is well defined, and the

question of its limiting behavior arises naturally. Research on infinite measure systems has been more limited
but has seen significant growth in recent years. According to Kač’s formula, the mean return time to any finite
measure set is infinite, making the identity scaling γ = id inappropriate. Nevertheless, suitable scalings can
still be identified [RZ20]. The convergence of first hitting and return times has been investigated, revealing
non-exponential limiting laws for various infinite measure preserving dynamical systems and natural targets
[BZ01, PS10, RZ20, Yas18, Yas24], with fewer studies considering the whole sequence of successive returns
[PSZ17]. Recent work [PS24] has shed light on the limiting behavior of point processes for Z-extensions of
subshifts of finite type.

In this paper, we encompass both an in-depth analysis of a paradigmatic interval map with a neutral fixed
point and a general theoretical framework. We will now present our results in a fairly informal way, deferring
the precise statements until afterwards.

We choose to focus on the following class of interval maps with a neutral fixed point as it allows for a
clear illustration of our main results without the need for overly technical considerations. Namely, we consider
X = [0, 1] and

Tp(x) =
{
x+ 2pxp+1, 0 ≤ x < 1/2,
2x− 1, 1/2 ≤ x ≤ 1,

(1.1)

where 0 is the neutral fixed point, and p is a nonnegative parameter. This map preserves an absolutely continuous
measure which is finite for p < 1 and infinite for p ≥ 1 (see more details below). This map is commonly referred
to as Manneville-Pomeau map or LSV map in the literature, following Liverani, Saussol and Vaienti [LSV99].
This paradigmatic one-parameter family of maps displays a rich spectrum of statistical behaviors in both finite
(see e.g. [Gou04]) and infinite (see e.g. [Tha80, Tha83]) contexts.

Our first result establishes the fractional Poisson process as the limiting point process for cylinders shrinking
to generic points of the invariant measure in the infinite measure case (see Theorem 2.4, p.11 for the precise
statement).
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Theorem A. For the map (1.1) with p > 1, and for cylinders Bn shrinking to a point x which is generic for the
absolutely continuous invariant measure, the point process Nγ

Bn
converges in law towards a fractional Poisson

process (parametrized by p), both when one starts in Bn or off Bn (return and hitting REPPs, respectively).

The fractional Poisson process, which we will define below, was developed to extend the framework of the
Poisson process to systems exhibiting long-term temporal correlations, which prevent exponential behavior
[Las03] (see also [MS19] for related applications). The following result offers an abstract explanation for the
emergence of the fractional Poisson process, drawing a parallel with the well-established behavior of the Poisson
process in finite-measure preserving dynamical systems, as previously mentioned. It generalizes the results of
[Zwe16] to the infinite measure situation and builds up on [RZ20] where only the first return is considered.

Theorem B (Abstract result). Consider a dynamical system (X,B, µ, T ) preserving an infinite measure, and
let (Bn)n≥0 be a sequence of asymptotically rare events lying in a “good” subset of X. Then, Nγ

Bn
when one

starts off Bn (hitting REPP) converges in law if and only if Nγ
Bn

when one starts in Bn (return REPP) converges
in law. If convergence takes place, both limits determine one another through a functional equation whose unique
fixed point is the fractional Poisson process (with parameter related to γ).

For the precise statement, see Theorem 2.1, p.6. It is worth noting that restricting to “good” subsets is an
intrinsic limitation arising in infinite ergodic theory, and that the scaling function γ is directly linked to the
regularly varying function defining the correct normalizing sequence in the analogue of the ergodic theorem for
the infinite measure case, see Section 2.1 for further details.

In the context of finite-measure preserving dynamical systems, the study of non-generic points, especially
periodic points, has gained significant attention in recent years, particularly in the context of extreme value
theory. It is not surprising that these periodic points give rise to clustering phenomena leading to a compound
Poisson limit process for hitting and return times. The intensity and multiplicity of Poisson compound processes
are characterized by a parameter θ, lying between 0 and 1, known as the “extremal index” (see [LFF+16] and
references therein). Besides the generic points of the invariant measure under consideration and periodic points,
there also exist generic points for other invariant measures, as well as points that are not generic for any measure.
For several classes of probability-preserving dynamical systems with sufficiently rapid decay of correlations, a
dichotomy arises in the asymptotic behavior of points: periodic points lead to a compound Poisson limit process,
while all other points give rise to a Poisson limit process; see e.g., [LFF+16] (Rychlik and Gibbs-Markov maps),
[FFTV16] (for the map (1.1) with p < 1) and [BTF23, DT23] (quadratic maps with Misiurewicz parameters).

In the context of infinite measure preserving dynamical systems, the only existing study of certain non-
generic points is done for hyperbolic periodic points of prototypical null-recurrent interval maps [RZ20]. In this
paper, we conduct a thorough investigation of the application of the interval (1.1) and demonstrate that the
asymptotic behavior of successive return times exhibits not a dichotomy but a trichotomy, involving fractional
Poisson processes, compound fractional Poisson processes, and a third type of process (for which no standard
nomenclature has been established). This result represents a novel contribution to the theory of infinite-measure
dynamical systems.

Theorem C. Consider the map (1.1) with p =: 1/α > 1 with its (infinite) absolutely continuous invariant
measure. Let x ∈ (0, 1] and (Bn) be the cylinders shrinking to x. Then we have the following trichotomy:

• If x is a periodic point, then Nγ
Bn

converges in law towards a compound fractional Poisson process CFPPα
with an extremal index θ ∈ (0, 1) depending only on x (see Theorem 2.5, p.11).

• If x is a preimage of 0, then Nγ
Bn

converges in law towards a point process Nx depending on the point x
(see Theorem 2.7, p.12).

• Otherwise, Nγ
Bn

converges in law towards the fractional Poisson process FPPα (see Theorem 2.4, p.11).

This theorem generalizes Theorem A. As in that theorem, the parameter γ is determined by α, which in
turn is determined by p. In the case of finite measure, i.e., p < 1, prior results [FFTV16, Zwe19] have shown
that two types of limiting behavior emerge: a compound Poisson process appears around periodic points, while
a standard Poisson process describes almost all other points except for the fixed point at 0. This point, being
indifferent, is distinguished by an extremal index θ = 0, producing an infinite cluster. Interestingly, for shrinking
neighborhoods around 0, a different scaling allows the hitting time distribution to converge to the exponential
distribution. However, for p > 1, the limiting distribution deviates from the exponential law [Zwe08]. Notably,
unlike the finite measure case, as established in Theorem C, preimages of 0 give rise to limit point processes
that do not align with the expected fractional Poisson process FPPα. Instead, these processes are obtained
through thinning and rescaling of a specific renewal process.

Finally, in the “barely infinite case” (p = 1), we prove a similar dichotomy to that found in the finite-
measure case. Our approach parallels the method for p > 1, with the essential distinction that the preimages of
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0 demand specific handling, differing from that of other points. Here, however, we benefit from the persistence
of the exponential distribution as the limiting law, which continues to apply for neighborhoods around 0 that
are scaled down [CG93].

Theorem D. Consider the map (1.1) with p = 1 with its (infinite) Let x ∈ (0, 1] and (Bn) be the cylinders
shrinking to x. Then we have the following dichotomy:

• If x is a periodic point, then Nγ
Bn

converges in law towards a compound Poisson point process with an
extremal index θ ∈ (0, 1) depending only on x (see Theorem 2.5, p.11).

• If x is not a periodic point, then Nγ
Bn

converges in law towards the fractional Poisson process (see Theorems
2.4 p.11 and 2.9 p.13).

This paper is structured as follows: Section 2 states our main results, Section 3 provides proofs of the
abstract theorems relating hitting and return REPPs and establishes convergence to fractional and compound
fractional Poisson processes, Section 4 focuses on convergence for neighborhoods of all points for the map (1.1)
and Section 5 discusses related work and future research directions.

2 Statement of results
2.1 Preliminaries
Let (X,B, µ, T ) be a measure-theoretic dynamical system. This means that (X,B, µ) is a measure space and
the self-map T : X → X leaves the measure µ invariant (i.e., the push forward T#µ of µ by T is equal to µ).
Assume that µ is σ-finite and µ(X) = +∞. The transfer operator T̂ : L1(µ) → L1(µ) of the system is defined
via the following identity : ∀f ∈ L1(µ), ∀g ∈ L∞(µ),

∫
f · (g ◦ T ) dµ =

∫
(T̂ f) · g dµ. We say that (X,B, µ, T )

is a “conservative ergodic measure preserving transformation” (CEMPT for short) if
∑
k≥0 T̂

ku = +∞ µ- a.e.
for all u ∈ L1

+(µ) :=
{
u ∈ L1(µ) | u ≥ 0,

∫
udµ > 0

}
or, equivalently, if this is true for all u ∈ D(µ) :=

{
u ∈

L1(µ) | u ≥ 0,
∫
udµ = 1

}
(see [Aar97, Propostion 1.3.2]).

For A ∈ B and x ∈ X, let rA(x) = r
(1)
A (x) = inf{n ≥ 1 | Tnx ∈ A} be the first time the orbits of x hits A, and

for k ≥ 1, define inductively the (k + 1)-th return time to A, namely r(k+1)
A (x) := inf{n > r

(k)
A (x) | Tnx ∈ A},

with the convention that r(k)
A (x) = +∞ if A = ∅. If (X,B, µ, T ) is a CEMPT and µ(A) > 0, then r

(k)
A is finite

µ-almost everywhere, for each k ≥ 1.

Remark 2.1. It is also possible to work with inter-arrival times. Set r{1}A := rA = r
(1)
A and r{k+1}

A = rA ◦ T r
(k)
A

for k ≥ 1. By construction, we have r
{k}
A = r

(k)
A − r

(k−1)
A with the convention that r(0)

A = 0. To distinguish
between inter-arrival and return times, we use the super-scripts {k} and (k), respectively. Again, if (X,B, µ, T )
is a CEMPT and µ(A) > 0, then r

{k}
A is finite for every k ≥ 1, µ-almost everywhere.

Remark 2.2. Sometimes, we will consider return times on an induced system. For example, if A ⊂ Y ⊂ X,
we will write r

Y,(k)
A for the k-th return time to A in the induced dynamical system (Y,B ∩ Y, TY , µY ) where

TY (x) := T rY (x)(x) for x ∈ X and µY = µ(· ∩ Y )/µ(Y ). In particular, on Y ,

rA =
rY

A−1∑
k=0

rY ◦ T kY = r(rY
A )

Y .

We are now able to define the objects that we are going to study along this article.

Definition 2.1 (Process of hitting/return times). For A ∈ B, let

ΦA :=
(
r(1)
A , r(2)

A , . . .
)
.

Furthermore, for every d ≥ 1, we will write Φ[d]
A for

(
r(1)
A , r(2)

A , . . . , r(d)
A

)
.

Remark 2.3. For all A ∈ B and x ∈ X, ΦA(x) ∈ (R+)N where R+ := [0,+∞]. If µ(A) > 0 and (X,B, µ, T )
is a CEMPT, then ΦA ∈ (R+)N µ-almost everywhere. However, it is more convenient to see it as a function
taking values in the compact space (R+)N (see [Zwe16] for instance). On (R+)N one can take the product metric
d((xn)n≥1, (yn)n≥1) =

∑
n≥0 d1(xn, yn)/(2n(1 + d1(xn, yn))) where d1(s, t) := |e−s − e−t| is a standard distance

on R+. Furthermore, as we consider successive return times, ΦA is taking values inside the compact subset W
of (R+)N where

W :=
{

(ϕ(i))i≥1 ∈ (R+)N
∣∣ ∀i ≥ 0, ϕ(i) ≤ ϕ(i+1)

}
.
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For a non-decreasing function f : R+ → R+ and a process Φ = (ϕk)k≥1 taking values in (R+)N, we write
f(Φ) the process (f(ϕk))k≥1 with the convention that f(+∞) = +∞. Note that in this case, f(W) ⊆ W.

Definition 2.2 (Rare Event Point Process). For a set A ∈ B and a function γ : R+ → R+, the Rare Event
Point Process (REPP) is defined by

Nγ
A :=

∑
k≥1

δ
γ(µ(A))r(k)

A

.

For a CEMPT, if µ(A) > 0, Nγ
A is well defined for almost every point (all the points such that r(k)

A < +∞
for all k ≥ 1 or equivalently when ΦA ∈ (R+)N) and belongs to the set MRad

atom(R+) of Radon atomic measures
on R+. MRad

atom(R+) is endowed with the topology of vague convergence.
When µ(A) < +∞ and Nγ

A is treated as a random variable on the probability space (A,B ∩A,µA), we refer
to it as the return REPP. Conversely, when Nγ

A is considered as a random variable on (X,B, ν), where ν is a
probability measure absolutely continuous with respect to µ, it is termed the hitting REPP. For a fixed set A,
the hitting REPP depends on the specific choice of the probability measure ν. However, as our interest lies in
the behavior of Nγ

A as µ(A) → 0, [Zwe07b, Corollary 6] ensures that any limiting distribution, if it exists, is
independent of ν. This result justifies the use of the term “hitting REPP” without dependence on the particular
choice of ν.

For a CEMPT preserving a σ-finite measure µ with infinite mass, it is well-established that a direct analogue
of the Birkhoff theorem is unattainable, as no normalization exists such that the time average along an orbit
converges almost surely [Aar97, Theorem 2.4.1]. Nonetheless, many such systems exhibit a related property,
which provides insight into their asymptotic behavior.

Definition 2.3 (Pointwise dual ergodicity). A CEMPT (X,B, µ, T ) is said to be pointwise dual ergodic (PDE)
if there exists a sequence (an)n∈N such that

1
an

n−1∑
k=0

T̂ ku
µ−a.e.−−−−−→
n→+∞

∫
udµ , ∀u ∈ L1(µ). (2.1)

In this case (an)n∈N is called a normalizing sequence for (X,B, µ, T ).

For instance, examples include the Boole map [Aar97, §3.7], interval maps with a finite number of indifferent
fixed points [Zwe00] or null recurrent Markov shifts [Sar01]. In fact, the PDE property is equivalent to the
existence of a uniform subset on which the convergence is stronger. Such sets are of paramount importance in
the study of quantitative recurrence.

Definition 2.4 (Uniform set). A set Y ∈ B with µ(Y ) > 0 is said to be f -uniform for f ∈ L1(µ) if there exists
a sequence (an)n≥0 such that

1
an

n−1∑
k=0

T̂ kf
L∞(µY )−−−−−→
n→+∞

∫
f dµ .

We say that Y is uniform if it is f -uniform for some f ∈ L1(µ).

The existence of uniform sets from the PDE property is immediate by Egorov’s theorem. The proof of the
reciprocal can be found in [Aar97, Proposition 3.7.5].

Additionally, in order to get convergence results, we usually require more information on the normalizing
sequence through regular variation properties. A measurable function a : R+ → R+ is said to be regularly
varying of index α ∈ R at infinity if, for all y ∈ R+,

lim
x→+∞

a(xy)
a(x) = yα.

The notion of regular variation at infinity can be generalized for sequences (un)n≥0 by looking at the
function u : x 7→ u⌊x⌋. In both cases, we will write a ∈ RV(α) or (un)n≥0 ∈ RV(α). We also say that a function
b : R+ → R+ is regularly varying of index α at 0 if x 7→ b(1/x) is regularly varying of parameter α at infinity.
We write RV0+(α) the set of such functions or simply RV(α) when the limit 0 or +∞ is clear from the context.

Given a normalizing sequence (a(n))n≥0 ∈ RV(α), its asymptotic inverse b is defined by the property
b(a(s)) ∼ a(b(s)) ∼ s (see [BGT89] for more on regular variation). Furthermore, we define the scaling function

γ : s 7→ 1
b(1/s) , ∀s > 0. (2.2)

If a ∈ RV(α), then γ ∈ RV0+(1/α). The function γ will be used to scale return times.
We end this section with several notations.
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Notations. We write µ=⇒ for the convergence in law under the law µ. When the sequence of random variables

is defined on different probability spaces with probability measures µn, we will write µn==⇒ for the convergence
in law. For example, if Xn is a sequence of random variables defined on (Ωn,Bn, µn) and X is another random
variable, Xn

µn==⇒ X means that (Xn)#µn converges weakly towards the law of X. Finally, when the measure
µ is infinite, we cannot draw random variables from it. However, we can still set a convergence, that we will
write L(µ)===⇒ if we have ν=⇒ for every probability ν that is absolutely continuous with respect to µ. In this case,
we say that we have strong convergence in law (see [Aar97, § 3.6] for more details).

Notations. Every set equality is understood as an equality up to a set of 0 measure. Furthermore, we use ⊔
for a disjoint union. We will write (an)n≥0 or (a(n))n≥0 for sequence of real numbers, depending on the context.

We are now prepared to formally present our results. Section 2.2 is devoted to general, abstract findings
on quantitative recurrence for pointwise dual ergodic CEMPTs. Section 2.3 examines a specific family of maps
with an indifferent fixed point, where we determine the limiting behavior of shrinking targets around every
point in the phase space.

2.2 Abstract results
2.2.1 The general relationship between hitting and return REPPs

We say that a sequence (Bn)n≥0 ∈ BN is a sequence of asymptotically rare events with respect to a measure µ if
µ(Bn) −−−−−→

n→+∞
0. From now on, we shall consider that asymptotically rare events fulfill the following hypothesis.

(A0)α There exists a uniform set Y with normalizing sequence (an)n≥0 ∈ RV(α) such that Bn ⊂ Y for all
n ≥ 0.

We start by showing that, if (A0)α is satisfied, then the convergence of the hitting REPP implies the
convergence of the return REPP and reciprocally, each limit being determined by the other. In particular it
generalizes [RZ20, Theorem 4.3] where the authors only consider the first hitting or return.

Theorem 2.1. Let (X,B, µ, T ) be a PDE CEMPT with µ(X) = +∞. Let (Bn)n≥0 be a sequence of asymptotically
rare events satisfying (A0)α. Let Ψ, Ψ̃ be stochastic processes in (R+)N. Then, we have

γ(µ(En)) ΦEn

µEn=====⇒
n→+∞

Ψ̃ if and only if γ(µ(En)) ΦEn

L(µ)=====⇒
n→+∞

Ψ.

Moreover, the distributions of Ψ and Ψ̃ uniquely determine each other in the following way. For all d ≥ 1,
denoting F [d] (respectively F̃ [d]) the distribution function of the d first coordinates of Ψ (respectively Ψ̃), we
have, for all 0 ≤ t1 ≤ · · · ≤ td,

F [d](t1, . . . , td) = α

∫ t1

0

(
F̃ [d−1] (t2 − t1 + x, . . . , td − t1 + x)

− F̃ [d] (x, t2 − t1 + x, . . . , td − t1 + x)
)

(t1 − x)α−1 dx , (2.3)

with the convention F̃ [0] = 1.

Remark 2.4. Since, for all d ≥ 1, F [d] ≤ 1 and α
∫ t1

0 (t1 − x)α−1dx = tα1 , for all t2, . . . , td = t1, we necessarily
have

lim
x→+∞

F̃ [d](x, . . . , x) = lim
x→+∞

F [d−1](x, . . . , x) = 1,

justifying the fact that Ψ̃ belongs to (R+)N almost surely.

Remark 2.5. Theorem 2.1 considers stochastic processes of hitting/return times taking values in (R+)N.
However, point processes are more natural in our context. If the limits Ψ and Ψ̃ belong to a natural subset
of (R+)N, it will be enough to ensure the result for REPPs. Let

W ′ :=
{

(ϕ(i))i≥0 ∈ (R+)N
∣∣ ϕ(i) ≤ ϕ(i+1) and limϕ(i) = +∞

}
.
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and define the following map

Ξ :


W −→ MRad

atom(R+)

Ψ = (ψ(i))i≥1 7−−→

{∑
i≥1 δψ(i) if Ψ ∈ W ′

0 otherwise.

Then, Ξ is continuous on W ′ (see also [Zwe22, Remark 3.5]). Thus, by the extended continuous mapping
theorem, we immediately get the following corollary.
Corollary 2.1. Under the same assumptions as in Theorem 2.1. Assume furthermore that Ψ, Ψ̃ ∈ W ′ almost
surely. Then, for N = Ξ(Ψ) and Ñ = Ξ(Ψ̃), we have

Nγ
En

µEn=====⇒
n→+∞

Ñ and Nγ
En

L(µ)=====⇒
n→+∞

N.

The law of N determines the law of Ñ and reciprocally.
Remark 2.6. Here, and in the following, we have chosen to change the renormalization by taking γ. We could
have chosen to keep the normalization by the measure, but instead change the return random variable. As we
assumed α ∈ (0, 1], both result are equivalent (see [BZ01, Lemma 1] for example). The main difference is when
α = 0 (see [RZ20, Propostion 4.1]) but we do not consider this case here.

With the choice of scaling the stochastic process instead of scaling the measures, it gives the following
theorem, equivalent to Theorem 2.1.
Theorem 2.2. Under the same assumptions as in Theorem 2.1, we have

µ(En) a(ΦEn
) µEn=====⇒
n→+∞

Φ̃ if and only if µ(En) a(ΦEn
) L(µ)=====⇒
n→+∞

Φ.

Furthermore, the laws of Φ and Φ̃ determine one another through the distribution function of their marginals
by a change of variable in (2.3).

In particular, Theorem 2.1 gives back the equivalence result for the first hitting and return times if we take
the projection on the first component.
Corollary 2.2. [RZ20, Theorem 4.2] Under the same assumptions as in Theorem 2.1, we have for R, R̃ random
variables in R+,

γ(µ(Bn)) rBn

L(µ)=====⇒
n→+∞

R if and only if γ(µ(Bn)) rBn

µBn=====⇒
n→+∞

R̃.

If convergence takes place, then

P(R ≤ t) = α

∫ t

0

(
1 − P(R̃ ≤ u)

)
(t− u)α−1 du, ∀t ≥ 0. (2.4)

In terms of the Laplace transform, this equation can be rewritten as

E
[
e−sR

]
= Γ(1 + α)

sα

(
1 − E

[
e−sR̃

])
, ∀s > 0, (2.5)

where Γ : z 7→
∫ +∞

0 tz−1e−t dt is the standard Gamma function.
More generally, some properties of a point process N on R+ are defined throughout their evolution equation.

In our case, (2.3) can be used to find the evolution equation of the limit point process N from the one of the
point process Ñ . For a point process N and d ≥ 1, let PN (d, t) := P(N [0, t] = d). We see PN (d, ·) as a function
from R+ to [0, 1].

Before stating the results, we need to recall some basics notions of fractional calculus. For every β > 0, we
define the Riemann-Liouville integral Iβ as follows. For every Riemann integrable f and t ∈ R(

Iβf
)
(t) := (Iβ0+f)(t) := 1

Γ(β)

∫ t

0
f(x)(t− x)β−1 dx. (2.6)

Associated to this integral, we can go backwards and define the Caputo derivative for differentiable functions f
by

Cap
Dβf(t) :=

(
I1−βf ′

)
(t) , ∀t ∈ R, 0 < β < 1. (2.7)

Then, Theorem 2.1 implies the following result.
Corollary 2.3. Assume the same hypothesis as in Corollary 2.1. Then, we have

CapDαPN (d, ·) = Γ(1 + α)(P
Ñ

(d− 1, ·) − P
Ñ

(d, ·)) , ∀d ≥ 0, (2.8)
with the convention that P

Ñ
(−1, t) := 0 for all t ≥ 0 and PN (0, 0) = 1.
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2.2.2 The fractional Poisson process as a common limit law

We now focus on characterizing point processes that will serve as potential limits for hitting and return REPP.
As a preliminary step, we first revisit key concepts from renewal theory and present some properties of the
Fractional Poisson Process.

Definition 2.5 (Renewal point process). Let W be a non negative random variable such that P(W > 0) > 0,
and (Wi)i≥1 i.i.d. random variables having the same law as W . The renewal point process with waiting times
(Wi)i≥1 is defined by

RPP(W ) law=
+∞∑
i=1

δTi
,

where Ti+1 − Ti = Wi+1 for all i ≥ 0, with the convention T0 = 0. Note that RPP(W ) ∈ MRad
atom(R+).

Definition 2.6 (Fractional Poisson Process). The Fractional Poisson Process FPPα(λ) of parameters α ∈ (0, 1]
and λ > 0 is the renewal point process RPP(Hα(λ)) where Hα(λ) is a Mittag-Leffler law of the first type
characterized by its Laplace transform

E
[
e−sHα(λ)] := λ

λ+ sα
, ∀s ≥ 0.

Remark 2.7.

(i) When λ = 1, we will simply write FPPα and Hα.

(ii) We can easily see that Hα(λ) law= 1
λ1/αHα.

(iii) If α = 1, then H1(λ) is the exponential law of parameter λ and FPP1(λ) is the homogeneous Poisson point
process of parameter λ.

(iv) The first type Mittag-Leffler law Hα(λ) should not be confused with the second type Mittag-Leffler law
Yα commonly called Mittag-Leffler law in the context of infinite measure dynamical systems (see [Aar97,
§ 3.6] for a definition). 1

(v) When 0 < α < 1, E[Hα(λ)] = +∞.

Remark 2.8. The fractional Poisson process FPPα(λ) was introduced as a fractional generalization of the
standard Poisson process through its Kolmogorov-Feller equation [Las03]. In particular, a process N having the
law of FPPα(λ) is characterized by the independence of its waiting times and the generalized Kolmogorov-Feller
evolution equation

CapDαPN (d, ·) = λ(PN (d− 1, ·) − PN (d, ·)) , ∀d ≥ 0, (2.9)

with the convention PN (−1, ·) = 0 (see [Las03, Equation (19)] or [MS19, Equation (7.10) p. 207]).

For the majority of well-behaved rare events, we anticipate that the hitting REPP and return REPP converge
to the same limiting point process. Consequently, the point processes of primary interest are the fixed points
of (2.3). Here, we see that (2.9) is exactly (2.8) when N and Ñ have the same law and λ = Γ(1 + α) pointing
FPPα(Γ(1 + α)) as a potential fixed point. The following proposition confirms that this is indeed a fixed point
and further ensures its uniqueness.

Proposition 2.4. The fractional Poisson process FPPα(Γ(1 +α)) is the only process such that the distribution
functions of its finite-dimensional marginals are the fixed points of (2.3).

Remark 2.9. In Proposition 2.4, we took a slight liberty in stating that the fractional Poisson process is the
fixed point of the equation. It is in fact ΦFPPα(Γ(1+α)) := (ϕ(i))i≥1 taking values in R+ where for every i ≥ 1,
ϕ(i) =

∑i
k=1 Xk where (Xk)k≥1 are i.i.d. with common law that of Hα(Γ(1 + α)). However, if

W ′′ :=
{

(ϕ(i))i≥0 ∈ (R+)N
∣∣ ∀i ≥ 0, ϕ(i) < ϕ(i+1) and lim

i→+∞
ϕ(i) = +∞

}
,

we then have ΦFPPα(Γ(1+α)) ∈ W ′′ almost surely, so the law of ΦFPPα(Γ(1+α)) and FPPα(Γ(1 +α)) are uniquely
defined by one another. In the sequel, we will not distinguish between the point process, which takes values in
MRad

atom(R+), and the stochastic process, which takes values in (R+)N, hence both will be denoted by FPPα.
1Both are called Mittag-Leffler because they are defined from the Mittag-Leffler function Eα(z) :=

∑+∞
k=0

zp

Γ(αk+1) , but we have
E[ezYα ] = Eα(Γ(1 + α)z) for z ∈ R, whereas P(Hα > t) = Eα(−tα) for t ≥ 0.
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While the Fractional Point Process will act as the limit in most cases, other point processes naturally emerge.
To accommodate situations where the first waiting time differs from subsequent ones or the mass associated to
each point is random, we introduce delayed renewal point processes and compound point processes.

Definition 2.7 (Delayed renewal point process). Let V,W be two non negative random variables such that
P(V > 0),P(W > 0) > 0, and let (Wi)i≥1 be i.i.d. random variables with the same law as W . The delayed
renewal point process with delay V and waiting times (Wi)i≥1 is defined by

DRPP(V,W ) law=
+∞∑
i=1

δTi
,

where Ti+1 − Ti = Wi+1 for all i ≥ 1 and T1 = V . Note that DRPP(V,W ) ∈ MRad
atom(R+).

Definition 2.8 (Compound point process). For a simple point process P =
∑+∞
i=1 δTi , we define the associated

compound point process c(P )(π) of multiplicity π (where π is a probability distribution on N) as

c(P )(π) law=
+∞∑
i=1

XiδTi
,

where (Xi)i≥1 are i.i.d. random variables distributed according to π and independent of (Ti)i≥1.

Remark 2.10. This is not the standard approach to defining a compound process. Here, we utilize the structure
of R and the fact that the multiplicity π takes integer values. However, compound point processes are typically
constructed in a more general framework, particularly the compound Poisson process, as described in detail in
[LP18, Chapter 15].

Definition 2.9 (Compound Fractional Poisson Process). We define CFPPα(λ, π) as the compound process
with multiplicity π associated to the fractional Poisson process FPPα(λ).

Remark 2.11. In our setting, we do not impose the waiting time of a renewal process to be positive almost
surely, so compound processes can also be characterized as renewal processes. For instance, let Hα(λ) be the
waiting time of the fractional Poisson process. Let θ ∈ (0, 1] and let Wα,θ(λ) be a non- negative random variable
with distribution function

P(Wα,θ(λ) ≤ t) = 1 − θ + θ P(Hα(λ) ≤ t). (2.10)

It means that with probability 1−θ, Wα,θ(λ) = 0 and (Wα,θ(λ)|Wα,θ(λ) > 0) has the same law as Hα(λ). Then,

DRPP(Hα(λ),Wα,θ(λ)) law= CFPPα(λ,Geo(θ)),

where Geo(θ) is the positive geometric law, i.e. if Y law= Geo(θ), for all k ≥ 1, P(Y = k) = θ(1 − θ)k−1.

To prove convergence of the hitting REPP and the return REPPs, further conditions on the sequence of
targets (Bn)n≥0 are necessary.

Assumptions (A)α.
A sequence (Bn) ∈ BN of asymptotically rare events satisfies (A)α if it satisfies (A0)α and the following
conditions :

(A1)α For every n ≥ 1, we can write Bn = U(Bn) ⊔ Q(Bn), and limn→+∞ µ(Q(Bn))/µ(Bn) = θ ∈ (0, 1] (the
extremal index).

(A2)α There exists a sequence of measurable functions τn : Bn → N and a compact subset U of L1(µ) such that

T̂ τn

( 1Q(Bn)

µ(Q(Bn))

)
∈ U ,∀n ≥ 1.

(A3)α The sequence (τn)n≥0 satisfies γ(µ(Bn)) τn
µBn=====⇒

n→+∞
0, where γ is defined from (an)n≥0 by (2.2).

(A4)α The sequence (Q(Bn))n≥0 is such that µQ(Bn)(rBn
< τn) −−−−−→

n→+∞
0.

Furthermore, if U(Bn) ̸= ∅, we have

(A5)α The sequence (U(Bn))n≥0 is such that µU(Bn)(rBn > τn) −−−−−→
n→+∞

0
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(A6)α We have the following limit∥∥∥∥T̂Bn

( 1U(Bn)

µ(U(Bn))

)
− 1
µ(Bn)1Bn

∥∥∥∥
L∞(µBn )

−−−−−→
n→+∞

0.

Let us analyze these conditions. The assumptions (A)α are identical to those outlined in [RZ20, Theorem
7.2], where only the first return is considered. We show that these assumptions are sufficiently robust to
establish the convergence of the point process as well. Assumption (A0)α ensures that Theorem 2.1. can be
applied effectively.

Condition (A1)α serves two purposes: it identifies points that are likely to form clusters within U(Bn) and
points that escape the target Q(Bn), while also guaranteeing that the extremal index θ is well-defined.

Condition (A2)α specifies an appropriate waiting time τn such that the density within the target set
transforms into a desirable structure under the dynamics. However, τn must remain asymptotically negligible,
a requirement addressed by (A3)α.

Cluster compatibility is handled through (A4)α and (A5)α, ensuring that τn aligns with clustering behavior.
Finally, Condition (A6)α explains the geometric distribution of multiplicities. While this condition could be

generalized to allow for other multiplicity distributions, we retain it as stated, since the geometric law is the
only distribution arising in our examples.

We can now state our main theorem, which establishes that Assumptions (A)α are sufficient conditions for
convergence to the Compound Poisson Process.

Theorem 2.3. Let (X,B, µ, T ) be a PDE CEMPT with µ(X) = +∞. Let (Bn)n≥0 be a sequence of asymptotically
rare events satisfying (A)α. Then,

Nγ
Bn

L(µ)=====⇒
n→+∞

CFPPα(θΓ(1 + α),Geo(θ))

and

Nγ
Bn

µBn=====⇒
n→+∞

RPP(Wα,θ(θΓ(1 + α))).

In particular, if θ = 1, we have

Nγ
Bn

L(µ)=====⇒
n→+∞

FPPα(Γ(1 + α)) and Nγ
Bn

µBn=====⇒
n→+∞

FPPα(Γ(1 + α)).

The primary goal in the following is to apply Theorem 2.3 to interval maps with a single indifferent fixed
point, using shrinking cylinders as rare events. However, the theorem is broadly applicable to a wider range of
maps and asymptotically rare events, making it a versatile tool for many other contexts.

2.3 Rare event point processes in maps with an indifferent fixed point
We now focus on the specific case of interval maps with an indifferent fixed point, as defined by (1.1). Recall
that x ∈ [0, 1] and

Tp(x) =
{
x+ 2pxp+1, 0 ≤ x < 1/2,
2x− 1, 1/2 ≤ x ≤ 1.

We define α := p−1. Once p is fixed, for simplicity, we omit its dependence in the index and we will simply
write T instead of Tp. Let T1 and T2 be the two diffeomorphic branches of T (more precisely their extensions
to [0, 1/2] and [1/2, 1] respectively) and set cn := T−n1 1. In particular, c0 = 1 and c1 = 1/2.

For 0 ≤ p < 1, the absolutely continuous invariant measure µ is unique (up to scaling) and normalized to
a probability measure. In contrast, for p ≥ 1, µ remains unique but becomes infinite. Since we are interested
by the infinite case, we assume p ≥ 1 and fix a scaling so that µ([1/2, 1]) = 1. The density ρ = dµ/d Leb is the
following:

ρ(x) = h0(x) x

x− T−1
1 x

, x ∈ [0, 1], (2.11)

for some continuous function h0 bounded away from 0 and +∞. For more details about such dynamical systems,
see [LSV99],[You99] or [Alv20, Section 3.5] or [Tha80, Tha83].

The dynamical system ([0, 1], T, µ) is a PDE CEMPT with normalizing sequence (an)n∈N ∈ RV(α) and every
interval I = [c, 1] with c > 0 is uniform (see [Zwe00] for example).
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Set Y := [c1, c0] = [1/2, 1] and define ξ := {[ck+1, ck], k ≥ 0} = {Y }∪{Y c∩{rY = k}, n ≥ 1} the measurable
partition of [0, 1] defined from return times to Y . Then, for every n ≥ 1, let ξn =

∨n−1
i=0 T

−iξ. The partition ξ
dynamically generates the Borel σ-algebra B and for a point x ∈ [0, 1], we write ξn(x) the element of ξn that
contains x. If x is not a preimage of 0, it is easy to see that ξn(x) is well defined for every n ≥ 1.

In this case, ξn(x) shrinks to {x} as n goes to +∞ and will serve as our asymptotically rare events in the
study of the hitting and return REPP.

For the preimages of 0, such a definition for asymptotically rare events is not possible anymore. However, if
T kx = 0, the connected component Cnx of T−k[0, cn] containing x is a union of elements in ξk for all n ≥ 1. As
n goes to +∞, Cnx shrinks towards x and thus (Cnx )n≥1 will serve as our sequence of asymptotically rare events
associated to x in this case.

2.3.1 Points that are not preimages of the indifferent fixed point

If x is not a preimage of 0, as determined by the chosen partition ξ, we define the asymptotically rare events as
Bn := ξn(x) for all n ≥ 1. This setup results in two distinct behaviors depending on whether x is periodic. If x
is not periodic, both the hitting and return REPPs converge to the fractional Poisson process.
Theorem 2.4. Let p ≥ 1. Assume x ∈ [0, 1] is not periodic and not a preimage of 0. For all n ≥ 1, set
Bn := ξn(x). Then,

Nγ
Bn

L(µ)=====⇒
n→+∞

FPPα(Γ(1 + α)) and Nγ
Bn

µBn=====⇒
n→+∞

FPPα(Γ(1 + α)) .

When x is q-periodic, clusters of hittings appear and thus we get a compound fractional Poisson process in
the limit.
Theorem 2.5. Let p ≥ 1. Assume x ∈ (0, 1] is periodic of prime period q. For all n ≥ 1, set Bn := ξn(x).
Then,

Nγ
Bn

L(µ)=====⇒
n→+∞

CFPPα(θΓ(1 + α),Geo(θ)) and Nγ
Bn

µBn=====⇒
n→+∞

RPP(Wα,θ(θΓ(1 + α))) ,

where the extremal index θ = 1 − |(T q)′(x)|−1.

The framework closely mirrors that of the finite measure case, with the significant difference being that the
Poisson point process is replaced by the fractional Poisson process. Notably, in the barely infinite case where
p = 1, the limits are instead the standard Poisson point process and the compound Poisson point process,
characterized by parameters θ and multiplicity distributed as Geo(θ).

2.3.2 The indifferent fixed point and its preimages

If p > 0, the neutral fixed point 0 always requires a special treatment, because its extremal index θ = 0
as the neutrality gives a cluster of infinite length on average. In the finite measure context, for shrinking
neighborhoods (Bn)n≥1 of 0, µ(Bn)rBn converges almost surely to +∞ when one starts in Bn and to 0 when
one starts off Bn. However, the exponential law can be recovered with the scaling µ(Q(Bn)) instead of µ(Bn),
where Q(Bn) := Bn\T−1Bn.
Proposition 2.5. [FFTV16, Theorem 2], [Zwe19, Theorem 5.1] Assume 0 < p < 1 and let (Bn)n∈N be a nested
sequence of intervals neighborhoods of 0. Then, we have

µ(Q(Bn)) rBn

µ=====⇒
n→+∞

E ,

where E is an exponential random variable.

This highlights the robustness of the exponential law in the finite measure case. The key idea of [Zwe19,
Theorem 5.1] is to relate returns to 0 with returns to 1/2, the only other preimage of 0. Unlike 0, the point 1/2
is more favorable for analysis since it is not a fixed point and lies within the common inducing set Y = [1/2, 1].
Within this set, standard inducing techniques can be employed to establish the convergence of the return process
to the standard homogeneous Poisson point process for shrinking neighborhoods of 1/2. The result for shrinking
neighborhoods of 0 is then derived as a consequence of this approach.

When p ≥ 1, there are no established techniques to directly address the point 1/2. However, it is possible
to analyze hitting times for neighborhoods of 0 by viewing them as the apex of the tower constructed via the
induction Y = [1/2, 1]. At this stage, it becomes necessary to distinguish between two scenarios: the “proper
infinite case” (p > 1) and the “barely infinite case” (p = 1).

For p > 1, [Zwe08, Theorem 2] demonstrates that a non-degenerate limit can be achieved with an appropriately
chosen scaling. However, the resulting limit does not align with the exponential law observed in the finite
measure case or the Mittag- Leffler law Hα(Γ(1 + α)) typical for generic points.
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Theorem 2.6. [Zwe08, Theorem 2] Let p > 1. Let Bn := [0, ηn] such that ηn −−−−−→
n→+∞

0. Then,

1
I(ηn) rBn

L(µ)=====⇒
n→+∞

Jα,

where Jα is characterized by its Laplace transform

E
[
e−sJα

]
= 1
e−s + s

∫ 1
0 y
−αe−sy dy

, ∀s ≥ 0,

and

I(ηn) :=
∫ 1

ηn

dx
x− T−1

1 (x)
.

Using Lemma A.1, we can rewrite this result in our framework, using the scaling γ defined in (2.2).

Corollary 2.6. Under the same assumptions as in Theorem 2.6. Then,

γ(µ(T−1
2 (Bn))) rBn

L(µ)=====⇒
n→+∞

Jα,

where Jα := dαJα and dα := (Γ(1 + α)Γ(1 − α))−1/α = (sin(πα)/(πα))1/α.

Using (2.5), we can construct a random variable J̃α associated to Jα. In particular, the Laplace function of
J̃α is the following

E
[
e−sJ̃α

]
= 1 − sα

Γ(1 + α)

(
e−sdα + sdα

∫ 1

0
y−αe−dαsy dy

)−1

, s ≥ 0. (2.12)

The random variable J̃α plays a central role in characterizing the limiting point processes obtained for
shrinking targets around points that include 0 in their orbit. Specifically, any such limit can be represented
as a thinning and rescaling of the renewal point process RPP(J̃α). To formalize the concept of thinning and
rescaling a point process, we rely on the following definition.

Definition 2.10 (Thinning and rescaling). For a point process N =
∑+∞
i=1 δTi

, τ > 0 and v > 0, we call
τ -thinning and v-rescaling of N the point process

N (τ,v) law=
+∞∑
i=1

Xi δ(vTi) ,

where (Xi)i≥1 are i.i.d. random variables, independent from N and X1 ∼ Bernoulli(τ).

We are now able to state our theorem for shrinking neighborhoods of preimages of 0.

Theorem 2.7. Let p > 1. Let k ≥ 0 and assume x ∈ T−(k+1){0}. Let Bn := Cnx be the connected component
of T−(k+1)[0, cn] containing x. Then,

Nγ
Bn

µBn=====⇒
n→+∞

RPP(J̃α)(Qk(x),Qk(x)1/α) and Nγ
Bn

L(µ)=====⇒
n→+∞

DRPP(Jα, J̃α)(Qk(x),Qk(x)1/α) ,

where
Qk(x) := ρ(x)

ρ(1/2)(T k)′(x) .

Remark 2.12. For every k ≥ 0, Qk is a probability on T−(k+1){0} because ρ is a fixed point of the transfer
operator T̂ , whence

ρ(1/2) =
(
T̂ kρ

)
(1/2) =

∑
Tky= 1

2

ρ(y)
(T k)′(y) .

Theorem 2.7 reveals that points whose orbits include 0 exhibit markedly different behavior compared to
the cases outlined in Theorems 2.4 and 2.5, where the transition from the finite measure setting is more
straightforward. Specifically, in the finite measure case, preimages of 0 conform to the standard Poisson process.
However, in the infinite measure scenario, the interplay between extended excursions and visits to neighborhoods
of 0’s preimages disrupts similar outcomes. That said, points located farther from 0 are expected to exhibit a
diminishing dependence on 0. This phenomenon is explored further in the next proposition.
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Proposition 2.7. For every sequence of (xk)k≥1, with xk ∈ T−(k+1){0}, we have

RPP(J̃α)(Qk(xk),Qk(xk)1/α) =====⇒
k→+∞

FPPα(Γ(1 + α)),

and

DRPP(Jα, J̃α)(Qk(xk),Qk(xk)1/α) =====⇒
k→+∞

FPPα(Γ(1 + α)) .

For periodic points, the longer the period, the closer the extremal index θ approaches 1, resulting in the
limiting point process converging more closely to the fractional Poisson process. Similarly, Proposition 2.7
guarantees a parallel trend for preimages of 0: the farther a point lies from the neutral fixed point 0 (in the
sense of time iterations needed to hit 0), the more closely its limiting behavior aligns with that of the fractional
Poisson process.

2.3.2.1 Barely infinite case p = 1. When, p = 1, the picture is different. Indeed, for neighborhoods of 0
and a well-chosen scaling, the limit law obtained is again the exponential, as in the finite measure case.

Theorem 2.8. [CG93, Theorem 5], [CI95, Theorem 3.3] Let p = 1 and Bn = [0, cn] for n ≥ 0. Then,

EµY
[rBn ]−1 rBn

L(µ)=====⇒
n→+∞

E

where E is the exponential law.

As for Corollary 2.6 for p > 1, we need to make sure that the result can be written in our setting to make
the scaling gamma appear. This is ensured by the following lemma.

Lemma 2.8. With the same notation as in Theorem 2.8, we have

γ(µ(T−1
2 Bn)) ∼

n→+∞ EµY
[rBn ]−1.

Using this and applying the same approach as for p > 1, we get the following theorem

Theorem 2.9. Let p = 1, k ≥ 0 and x ∈ T−k+1{0}. Let Bn := Cnx . Then,

Nγ
Bn

µBn=====⇒
n→+∞

PPP(1) and Nγ
Bn

L(µ)=====⇒
n→+∞

PPP(1).

Therefore, in the special case p = 1, the preimages of 0 have the same limit behavior as any other non
periodic point and thus we only have a dichotomy.

3 Return and Hitting Rare Event Point Processes and the Fractional
Poisson Process

3.1 Equivalence between Hitting and Return Point Processes
This part is devoted to the proofs of Theorems 2.1 and 2.2 and their applications.

3.1.1 Proof of Theorems 2.1-2.2

As stated in Remark 2.6, Theorems 2.1 and 2.2 are equivalent since α ∈ (0, 1]. We are going in fact to prove
Theorem 2.2 and study the sequence of processes

(
µ(En) a(ΦEn

)
)
n≥0. For that, we introduce some more

notation. For A ∈ B, u ∈ L1(µ), u ≥ 0, d ≥ 1 and t1, . . . , td > 0, let

G
[d]
u,A(t1, . . . , td) := µu

(
µ(A) a

(
Φ[d]
A

)
≤ (t1, . . . , td)

)
,

where µu is the measure absolutely continuous with respect to µ with density u. In particular, if
∫
udµ = 1,

G
[d]
u,A is the distribution function of the random variable µ(A) a(Φ[d]

A ) under the probability µu. We also define

G̃
[d]
A (t1, . . . , td) = µA

(
µ(A) a

(
Φ[d]
A

)
≤ (t1, . . . , td)

)
∀d ≥ 1, t1, . . . , td ≥ 0,

as the distribution function of µ(A) a(Φ[d]
A ) under µA. Before delving into the proof, we first establish the

following lemma, an adaptation of [RZ20, Lemma 5.1], which provides a decomposition for multiple return
events.
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Lemma 3.1. For all A ∈ B, n1, . . . , nd ∈ N, we have the following decomposition:{
Φ[d]
A ≤ (n1, . . . , nd)

}
=

n1⊔
l=1

T−ℓ
(
A ∩

{
Φ[d−1]
A ≤ (n2 − ℓ, . . . , nd − ℓ)

}
∩
{

Φ[d]
A ≤ (n1 − ℓ, , . . . , nd − ℓ)

}c)
.

Remark 3.1. In fact, we also have the easier decomposition{
Φ[d]
A ≤ (n1, . . . , nd)

}
=

n1⋃
l=1

T−ℓ
(
A ∩

{
Φ[d−1]
A ≤ (n2 − ℓ, . . . , nd − ℓ)

})
,

but we will later take advantage of the disjointness.

Proof (of Lemma 3.1). For every ℓ ≥ 1, T−ℓ
(
A ∩

{
Φ[d−1]
A ≤ (n2 − ℓ, . . . , nd − ℓ)

})
⊂
{

Φ[d]
A ≤ (n1, . . . , nd)

}
,

hence we have the inclusion of the right member into the left one.
Now, let x ∈

{
Φ[d]
A ≤ (n1, . . . , nd)

}
. Consider ℓ := max

{
p ≤ n1 | x ∈ T−p(A∩{Φ[d−1]

A ≤ (n2 − p, . . . , nd − p)})
}

.
The maximum ℓ is well-defined, as the set is non-empty with rA(x) included as an element. By construction,
x ∈ T−ℓ

(
A ∩

{
Φ[d−1]
A ≤ (n2 − ℓ, . . . , nd − ℓ)

})
. If x ∈ T−ℓ

{
Φ[d]
A ≤ (n1 − ℓ, , . . . , nd − ℓ)

}
, then ℓ + rA(T ℓx) is

also in the set which is a contradiction by definition of ℓ.
The same approach shows that the union is disjoint. For 1 ≤ ℓ1 < ℓ2 ≤ n1, we have

T−ℓ1
(
A ∩

{
Φ[d−1]
A ≤ (n2 − ℓ1, . . . , nd − ℓ1)

}
∩
{

Φ[d]
A ≤ (n1 − ℓ1, , . . . , nd − ℓ1)

}c)
∩ T−ℓ2

(
A ∩

{
Φ[d−1]
A ≤ (n2 − ℓ2, . . . , nd − ℓ2)

}
∩
{

Φ[d]
A ≤ (n1 − ℓ2, , . . . , nd − ℓ2)

}c)
⊂ T−ℓ1

(
A ∩

{
Φ[d]
A ≤ (n1 − ℓ1, , . . . , nd − ℓ1)

}c
∩ T−(ℓ2−ℓ1)(A ∩

{
Φ[d−1]
A ≤ (n2 − ℓ2, . . . , nd − ℓ2)

}))
⊂ T ℓ1

(
A ∩

{
Φ[d]
A ≤ (n1 − ℓ1, , . . . , nd − ℓ1)

}c ∩
{

Φ[d]
A ≤ (ℓ2 − ℓ1, n2 − ℓ1, . . . , nd − ℓ1)

})
⊂ T−ℓ1

(
A ∩

{
Φ[d]
A ≤ (n1 − ℓ1, , . . . , nd − ℓ1)

}c ∩
{

Φ[d]
A ≤ (n1 − ℓ1, n2 − ℓ1, . . . , nd − ℓ1)

})
= ∅.

We are now ready to go on with the proof of Theorem 2.2.

Proof (of Theorem 2.2). Set Rn := µ(En) a(ΦEn
) and for all t ≥ 0, let p[t]

n be the integer such that{
µ(En)a(rEn

) ≤ t
}

=
{
rEn

≤ p[t]
n

}
.

Conversely, define for all 0 ≤ ℓ ≤ p
[t]
n , the number ϑ[t]

n,ℓ such that{
µ(En)a(rEn) ≤ ϑ

[t]
n,ℓ

}
=
{
rEn ≤ p[t]

n − ℓ
}
.

Thus, for all d ≥ 1 and t1, . . . , td ≥ 0 we get{
R[d]
n ≤ (t1, . . . , td)

}
=
{

Φ[d]
En

≤
(
p[t1]
n , . . . p[td]

n

)}
. (3.1)

and {
R[d]
n ≤ (ϑ[t1]

n,ℓ , . . . , ϑ
[td]
n,ℓ )

}
=
{

Φ[d]
En

≤
(
p[t1]
n − ℓ, . . . , p[td]

n − ℓ
)}
. (3.2)

The quantities p[t]
n and θ

[t]
n,ℓ can be computed using b the asymptotic inverse of a and a itself. We get

p[t]
n := b(t/µ(En)) and ϑ

[t]
n,ℓ = µ(En) a

(
p[t]
n − ℓ

)
.

First, assume the convergence of the return process, that is to say assume that Rn
µEn=====⇒

n→+∞
Φ̃. This is

equivalent to the convergence of R[d]
n for every d ≥ 1 and thus assume that G̃[d]

En
(t1, . . . , td) =⇒ G̃[d](t1, . . . , td)

at every point of continuity (t1, . . . , td) of G̃[d] such that t1((t2/t1)1/α − m/M)α for all 0 ≤ m ≤ M are also
continuity points of G̃[d]. Without loss of generality, we can assume that t1 ≤ · · · ≤ td as the sequence of returns
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is increasing. In the following, we write G̃[d]
n instead of G̃[d]

En
to ease the notations and we will do the same for G[d]

u .

Now, we have

G[d]
u,n(t1, . . . , td) =

∫{
R

[d]
n ≤(t1,...,td)

} udµ =
∫
{Φ[d]

En
≤(p[t1]

n ,...,p
[td]
n )}

udµ (by (3.1))

=
p

[t1]
n∑
ℓ=1

(∫
En∩

{
Φ[d−1]

En
≤
(
p

[t2]
n −ℓ,...,p[td]

n −ℓ
)}
∩
{

Φ[d]
En
≤
(
p

[t1]
n −ℓ,,...,p[td]

n −ℓ
)}c

T̂ ℓudµ
)

(by Lemma 3.1)

=
p

[t1]
n∑
ℓ=1

(∫
En∩

{
Φ[d−1]

En
≤
(
p

[t2]
n −ℓ,...,p[td]

n −ℓ
)} T̂ ℓudµ

−
∫
En∩

{
Φ[d]

En
≤
(
p

[t1]
n −ℓ,...,p[td]

n −ℓ
)} T̂ ℓudµ

)
(because p[ti]

n ≤ p[ti+1]
n )

=
M−1∑
m=0

⌊
m+1

M p
[t1]
n

⌋∑
ℓ=
⌊

m
M p

[t1]
n

⌋
+1

(∫
En∩

{
R

[d−1]
n ≤

(
ϑ

[t2]
n,ℓ

,...,ϑ
[td]
n,ℓ

)} T̂ ℓudµ

−
∫
En∩

{
R

[d]
n ≤
(
ϑ

[t1]
n,ℓ

,...,ϑ
[td]
n,ℓ

)} T̂ ℓudµ
)

(by (3.2))

≤
M−1∑
m=0

⌊
m+1

M p
[t1]
n

⌋∑
ℓ=
⌊

m
M p

[t1]
n

⌋
+1

(∫
En∩

{
R

[d−1]
n ≤

(
ϑ

[t2]

n,

⌊
m
M

p
[t1]
n

⌋,...,ϑ[td]

n,

⌊
m
M

p
[t1]
n

⌋)} T̂ ℓudµ

−
∫
En∩

{
R

[d]
n ≤

(
ϑ

[t1]

n,

⌊
m+1

M
p

[t1]
n

⌋,...,ϑ[td]

n,

⌊
m+1

M
p

[t1]
n

⌋)} T̂ ℓudµ
)

≤
M−1∑
m=0

∫
En∩

{
R

[d−1]
n ≤

(
ϑ

[t2]

n,

⌊
m
M

p
[t1]
n

⌋,...,ϑ[td]

n,

⌊
m
M

p
[t1]
n

⌋)}
⌊

m+1
M p

[t1]
n

⌋∑
ℓ=
⌊

m
M p

[t1]
n

⌋
+1

T̂ ℓudµ

−
∫
En∩

{
R

[d]
n ≤

(
ϑ

[t1]

n,

⌊
m+1

M
p

[t1]
n

⌋,...,ϑ[td]

n,

⌊
m+1

M
p

[t1]
n

⌋)}
⌊

m+1
M p

[t1]
n

⌋∑
ℓ=
⌊

m
M p

[t1]
n

⌋
+1

T̂ ℓudµ .

At this point, we can take advantage of the fact that Y is uniform for u. In particular, it means that of all
0 ≤ c1 < c2, we have

c2k−1∑
ℓ=c1k

T̂ ℓu ∼ (cα2 − cα1 ) ak uniformly mod µ on Y ,

and thus ⌊
m+1

M p
[t1]
n

⌋∑
ℓ=
⌊

m
M p

[t1]
n

⌋
+1

T̂ ℓu ∼
((

m+ 1
M

)α
−
(
m+ 1
M

)α)
a
p

[t1]
n

uniformly mod µ on Y ,

meaning that for all ε > 0 and n large enough,⌊
m+1

M p
[t1]
n

⌋∑
ℓ=
⌊

m
M p

[t1]
n

⌋
+1

T̂ ℓu ≤ (1 + ε)
((

m+ 1
M

)α
−
(
m+ 1
M

)α)
a
p

[t1]
n

.

By definition, a
p

[t1]
n

= a(b(t1/µ(En))) ∼ t1/µ(En) and by the mean value theorem ((m+ 1)/M)α − (m/M)α ≤
αmα−1/Mα. Hence, for n large enough, we get

G[d]
u,n(t1, . . . , td) ≤ (1 + ε)α t1

M−1∑
m=0

1
M

(m
M

)α−1
[
µEn

(
R[d−1]
n ≤

(
ϑ

[t2]
n,
⌊

m
M p

[t1]
n

⌋, . . . , ϑ[td]
k,
⌊

m
M p

[t1]
n

⌋))
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−µEn

(
R[d]
n ≤

(
ϑ

[t1]
k,
⌊

m+1
M p

[t1]
n

⌋, . . . , ϑ[td]
n,
⌊

m+1
M p

[t1]
n

⌋))]
≤ (1 + ε)α t1

M−1∑
m=0

1
M

(m
M

)α−1
[
G̃

[d−1]
k

(
ϑ

[t2]
k,
⌊

m
M p

[t1]
n

⌋, . . . , ϑ[td]
n,
⌊

m
M p

[t1]
n

⌋)
−G̃[d]

n

(
ϑ

[t1]
n,
⌊

m+1
M p

[t1]
n

⌋, . . . , ϑ[td]
n,
⌊

m+1
M p

[t1]
n

⌋)] . (3.3)

The lower bound is obtained similarly. Now, ∀t2 ≥ t1 > 0,∀0 < c < 1, we have

ϑ
[t2]
n,cp

[t1]
n

= µ(En) a
(
p[t2]
n − cp[t1]

n

)
= µ(En) a

(
b
( t2
µ(En)

)
− cb

( t1
µ(En)

))
= µ(En) a

(
b
( t1
µ(En)

)(
b(t2/µ(En))/b(t1/µ(En)) − c

))
∼ µ(En) a

(
b(t1/µ(En))

((
t2
t1

)1/α
− c

))

∼ t1

((
t2
t1

)
− c

)α
,

where we use the hypothesis a ∈ RV(α) which implies b ∈ RV(α−1). Since we assumed the convergence for the
return time process, it yields

G̃[d−1]
n

(
ϑ

[t2]
n,
⌊

m
M p

[t1]
n

⌋, . . . , ϑ[td]
n,
⌊

m
M p

[t1]
n

⌋)
−−−−−→
n→+∞

G̃[d−1]
(
t1

(( t2
t1

)1/α
− m

M

)α
, . . . , t1

(( td
t1

)1/α
− m

M

)α)
and

G̃[d]
n

(
ϑ

[t1]
n,
⌊

m+1
M p

[t1]
n

⌋, . . . , ϑ[td]
n,
⌊

m+1
M p

[t1]
n

⌋)
−−−−−→
n→+∞

G̃[d]
(
t1

(
1 − m+ 1

M

)α
, . . . , t1

(( td
t1

)1/α
− m+ 1

M

)α)
.

Thus, together with (3.3), recognizing a Riemann integral and letting ε go to 0, we get

G[d]
u,n(t1, . . . , td) −−−−−→

k→+∞
α t1

∫ 1

0

[
G̃[d−1]

((
t
1/α
2 − t

1/α
1 r

)α
, . . . ,

(
t
1/α
d − t

1/α
1 r

)α)
− G̃[d]

(
t1 (1 − r)α ,

(
t
1/α
2 − t

1/α
1 r

)α
, . . . ,

(
t
1/α
d − t

1/α
1 r

)α)]
rα−1 dr.

This means that we have convergence of the normalized hitting time point process with distribution functions

G[d](t1, . . . , td) := α t1

∫ 1

0

[
G̃[d−1]

((
t
1/α
2 − t

1/α
1 r

)α
, . . . ,

(
t
1/α
d − t

1/α
1 r

)α)
− G̃[d]

(
t1 (1 − r)α ,

(
t
1/α
2 − t

1/α
1 r

)α
, . . . ,

(
t
1/α
d − t

1/α
1 r

)α)]
rα−1 dr . (3.4)

Now, assume conversely the convergence of the hitting process. By Helly selection theorem in Rd (see
[Kal02, Theorem 5.19]) and diagonal extraction, we can find a subsequence (nk) such that G̃[d]

nk converges
pointwise towards G̃[d]

∗ for every d ≥ 0. But, in this case, alongside this subsequence we have G
[d]
u,nk that

converges pointwise towards G[d]
∗ defined by (3.4) from G̃

[d]
∗ . Since the equation defines uniquely G̃

[d]
∗ from

G
[d]
∗ = G[d] by Lemma 3.2, it gives the wanted convergence.

It remains to prove the following Lemma ensuring that the relationship found determines uniquely the law
of one limit process from the laws of the other.

Lemma 3.2. Let Φ and Φ̃ be two processes on the phase space R+. For all d ≥ 1, write G[d] and G̃[d] the
distribution functions of their marginals. By convention let G[0] = G̃[0] = 1. Then, the equation ∀d ≥ 1,
∀0 ≤ t1 ≤ · · · ≤ td,

G[d](t1, . . . , td) := α t1

∫ 1

0

[
G̃[d−1]

((
t
1/α
2 − t

1/α
1 s

)α
, . . . ,

(
t
1/α
d − t

1/α
1 s

)α)
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− G̃[d]
(
t1 (1 − s)α ,

(
t
1/α
2 − t

1/α
1 s

)α
, . . . ,

(
t
1/α
d − t

1/α
1 s

)α)]
sα−1 ds,

defines uniquely the law of Φ from the law of Φ̃ and conversely.

Remark 3.2. When α ∈ (0, 1], instead of looking at the distribution function G[d], we can look at F [d] defined
by

F [d](t1, . . . , td) := G[d](tα1 , . . . , tαd ) ,∀t1, . . . , td > 0.

In fact, F is exactly the family of distribution functions of the limit point processes Ψ and Ψ̃ of Theorem 2.1 by
Remark 2.6. Thus, Lemma 3.2 is equivalent to Lemma 3.3 (below), and the equation in Lemma 3.3 gives (2.3),
concluding the proof of Theorems 2.1-2.2.

Lemma 3.3. Let Φ and Φ̃ be two process on the phase space R+. For all d ≥ 1, write F [d] and F̃ [d] the
distribution of their marginals. By convention, let F [0] = F̃ [0] = 1. Then, the equations

F [d](t1, . . . , td) = α

∫ t1

0

(
F̃ [d−1] (t2 − t1 + x, . . . , td − t1 + x)

− F̃ [d] (x, t2 − t1 + x, . . . , td − t1 + x)
)

(t1 − x)α−1 dx,

where d ≥ 1 and one takes any d-uplet 0 ≤ t1 ≤ · · · ≤ td, uniquely determines the law of Φ from the law of Φ̃,
and vice versa.

Proof (of Lemma 3.3). It is immediate that the law of Φ is uniquely determined by the law of Φ̃. Now, assume
that there are two stochastic processes Φ̃1 and Φ̃2 leading to the same Φ. We will argue by induction. The case
d = 1 corresponds to the equivalence between hitting and return for the first return and has already been dealt
in [RZ20, Remark 4.2.b)]. For d ≥ 1, assuming the distribution functions are equal up to d − 1, it means that
for all 0 ≤ t1 ≤ · · · ≤ td,

α

∫ t1

0
F̃

[d]
1 (x, t2 − t1 + x, . . . , td − t1 + x)(t1 − x)α−1 dx

= α

∫ t1

0
F̃

[d]
2 (x, t2 − t1 + x, . . . , td − t1 + x)(t1 − x)α−1 dx .

Taking s2, . . . , sd such that ti − t1 = si for 2 ≤ i ≤ d, we obtain, for all t1, sd, . . . , sd ≥ 0,

α

∫ t1

0
F̃

[d]
1 (x, x+ s2, . . . , x+ sd)(t1 − x)α−1 dx

= α

∫ t1

0
F̃

[d]
2 (x, x+ s2, . . . , x+ sd)(t1 − x)α−1 dx.

Thus, if we define

f : x 7→ F̃
[d]
1 (x, x+ s2, . . . , x+ sd) − F̃

[d]
2 (x, x+ s2, . . . , x+ sd) ,

we then have ∫ t1

0
f(x)(t1 − x)α−1 dx = 0 , ∀t1 ≥ 0.

Thus, by definition of the Riemann-Liouville integral (2.6), we have Iαf = 0 which implies that f = 0,
meaning that F̃ [d]

1 = F̃
[d]
2 . It completes the induction and the proof.

We turn now to the proof of Corollaries 2.2-2.3

Proof (of Corollary 2.2). This is immediate by looking at the projection on the first coordinate, i.e. d = 1, in
(2.3). With F̃ [0] = 1, we get

F [1](t) = α

∫ 1

0
(1 − F̃ [1](u)(t− u)α−1 du, t ≥ 0,

which is exactly (2.4). Equation (2.5) can be found by the same method as in [PSZ13, Lemma 7].
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Proof (of Corollary 2.3). Recall the definition of PN (d, t) = P(N [0, t] = d) for a point process N , d ≥ 0 and
t ∈ R. Let d ≥ 1 and t ≥ 0. Then, (2.3) with t1, . . . , td = t is

F [d](t, . . . , t) = α

∫ t

0

(
F̃ [d−1](x, . . . , x) − F̃ [d](x, . . . , x)

)
(t− x)α−1 dx.

Since F [d](t, . . . , t) = P(N [0, t] ≥ d) and F̃ [d](t, . . . , t) = P(Ñ [0, t] ≥ d) for all d ≥ 0, it yields

P(N [0, t] ≥ d) = α

∫ t

0
P(Ñ [0, t] = d− 1)(t− x)α−1 dx .

Thus, for every d ≥ 1, we get

1 −
d∑
k=0

PN (k, ·) = Γ(1 + α) Iα
(
P
Ñ

(d, ·)
)
,

whence

PN (d, ·) = Γ(1 + α) Iα
(
P
Ñ

(d, ·) − P
Ñ

(d− 1, ·)
)

which is the integral formulation of (2.8). Similarly, for d = 0, we obtain

PN (0, ·) = 1 − Γ(1 + α)Iα
(
P
Ñ

(0, ·)
)
.

3.1.2 Proof of Proposition 2.4

As suggested in Remark 2.9, we actually prove the characterization of the law and its uniqueness for the
stochastic process. It entails the uniqueness of the point process via the composition by Ξ. The process
ΦFPPα(Γ(1+α))

law= (ϕ(i))i≥1 with ϕ(i) =
∑i
k=1 Xk and (Xk)k≥1 i.i.d with common law Hα(Γ(1 +α)), is such that

Ξ(ΦFPPα(Γ(1+α)))
law= FPPα(Γ(1 + α)).

We can do the same with ΦRPP(Wα,θ(θΓ(1+α))) = (ψ(i))i≥1 where ψ(i) =
∑i
k=1 Wk and (Wk)k≥1 are i.i.d

having as a common law Wα,θ(θΓ(1 + α)) (see (2.10) for the definition of these random variables). Then,
Ξ(ΦRPP(Wα,θ(θΓ(1+α)))

law= RPP(Wα,θ(θΓ(1 + α))).

Proof (of Proposition 2.4). We will actually prove that for θ ∈ (0, 1], ΦRPP(Wα,θ(θΓ(1+α))) is the only stochastic
process such that for all d ≥ 1 and t1 ≤ · · · ≤ td,

F̃ [d](t1, . . . , td) = (1 − θ)F̃ [d−1](t1, . . . , td)

+ θα

∫ t1

0

(
F̃ [d−1] (t2 − t1 + x, . . . , td − t1 + x) (3.5)

− F̃ [d] (x, t2 − t1 + x, . . . , td − t1 + x)
)

(t1 − x)α−1 dx.

In particular, when θ = 1, we will get that FPPα(Γ(1 + α)) is the only process such that its finite-dimensional
marginals are fixed points of the transformation from return times to hitting times.

As in Lemma 3.3, we show by induction on d that there is at most a one fixed distribution F [d]. For
d = 1, (2.5) in Corollary 2.2 clearly ensures that there is a unique fixed law and using the Laplace transform,
Wα,θ(θΓ(1 + α)) can be identified as the fixed law2.

Now assume d ≥ 2 and that the result is true for d − 1. Let F [d]
1 and F

[d]
2 be two distribution functions

compatible with F
[d−1]
1 and F

[d]
2 satisfying (3.5). Since F [d−1]

1 = F
[d−1]
2 by hypothesis, for all t1, s2, . . . , sd ≥ 0,

we have

F
[d]
1 (t1, t1 + s2, . . . , t1 + sd) − F

[d]
2 (t1, t1 + s2, . . . , t1 + sd)

= α

∫ t1

0

(
F

[d]
2 (x, x+ s2, . . . , s+ sd) − F

[d]
1 (x, x+ s2, . . . , s+ sd)

)
(t1 − x)α−1 dx.

2This result corresponds to [RZ20, Lemma 7.1] and Wα,θ(θΓ(1 + α)) corresponds to the law H̃α,θ in the article. However, in
[RZ20], the constant Γ(1 + α) has been forgotten in the identification.
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Letting

h : x 7→ F
[d]
1 (x, x+ s2, . . . , x+ sd) − F

[d]
2 (x, x+ s2, . . . , x+ sd)

the equation can be rewritten as

h = −Γ(1 + α) Iαh .

Going into the Laplace domain (which is possible because h is locally integrable as its absolute value is bounded
by 1), we get h = 0 and thus F [d]

1 = F
[d]
2 .

Thus, there can be at most one process whose distribution functions are fixed points of (3.5). It remains
to demonstrate the existence of at least one fixed point for this equation. Fortunately, the theory applies to
certain examples of null-recurrent Markov chains for which results concerning first hitting and return times are
well-established (see [BZ01, PSZ17] for the case θ = 1, and [RZ20] for the general case).

By leveraging the strong Markov property, these results extend to the point process level in cases where the
waiting times are independent. In such scenarios, the process ΦRPP(Wα,θ(θΓ(1+α))) emerges naturally and must
satisfy (3.5). This demonstrates that a fixed point indeed exists.

Consequently, the fixed point is both unique and well-defined3.

3.2 Sufficient conditions for convergence towards FPPα and CFPPα

In this section, we prove Theorem 2.3. We first need to recall the following lemma giving a uniform control of
the convergence to 0 for the average of the iterations by the transfer operator for functions in a compact subset
of L1(µ).

Lemma 3.4. [Zwe07a, Theorem 3.1] Let (X,B, µ, T ) be a CEMPT and U a compact subset of L1(µ) such that∫
udµ = 1 for all u ∈ U . Then, uniformly in u, u∗ ∈ U , we have∥∥∥∥∥∥ 1

M

M−1∑
j=0

T̂ ju− 1
M

M−1∑
j=0

T̂ ju∗

∥∥∥∥∥∥
L1(µ)

−−−−−→
M→+∞

0.

Now, we can dive into the proof of Theorem 2.3.

Proof (of Theorem 2.3). As discussed in Remark 2.9 and in the proof of Proposition 2.4, we will actually show
the convergence of the process. Then, the application of Ξ and the extended continuous mapping theorem give
the convergence of the point process.
We consider the sequence of stochastic processes (γ(µ(Bn))ΦBn

)n≥0 on R+ and the sequence of probability
spaces (Bn, µBn

), i.e we look at the succesive return times. As (R+)Nis compact, this sequence is tight so
up to a subsequence and that the convergence of the stochastic process is characterized by the convergence of
its finite-dimensional marginals, we can assume that the familly of distribution functions (F̃ [d]

Bn
)d≥1 converges

towards the family of functions (F̃ [d])d≥0 (meaning that we have pointwise convergence for each one of them at
the continuity points of F̃ [d]). We are going to show that the only possible limits are the distribution functions of
the successive return times of the stochastic process ΦRPP(Wα,θ(θΓ(1+α))), which is enough to get the convergence
towards this process. By Theorem 2.1, for any given density u, let (F [d]

Bn,v
)d≥1 denote the family of distribution

functions corresponding to the finite-dimensional marginals of the stochastic process (γ(µ(Bn))ΦBn
) on the

probability space (X,µv), where µv is a probability measure absolutely continuous with respect to µ, having
density v. Then, the family of renormalized distribution functions (F̃ [d]

Bn,v
)d≥1 converges to the family of functions

(F [d])d≥1. Both (F̃ [d]
Bn,v

)d≥1 and (F [d])d≥1 satisfy the relationship given in (2.3).
For all d ≥ 1 and 0 ≤ t1 ≤ · · · ≤ td such that (t1, . . . , td) is a continuity point of F̃ [d], we have

F̃
[d]
Bn

(t1, . . . , td) =µ(U(Bn))
µ(Bn) µU(Bn)

(
γ(µBn

) rBn
≤ t1, . . . , γ(µ(Bn)) r(d)

Bn
≤ td

)
+ µ(Q(Bn))

µ(Bn) µQ(Bn)
(
γ(µBn) rBn ≤ t1, . . . , γ(µ(Bn)) r(d)

Bn
≤ td

)
. (3.6)

We are going to study the two members separately, in Lemma 3.5 and Lemma 3.6. When U(Bn) = ∅ the first
term is trivially equal to 0 by convention and we can jump to Lemma 3.6 directly.

3In [RZ20], the first-return case confirms this fixed point, although it omits the constant Γ(1 + α).

19



Lemma 3.5. Assume U(Bn) ̸= ∅. For all d ≥ 1 and 0 ≤ t1 ≤ · · · ≤ td such that (t2, . . . , td) is a continuity
point of F̃ [d−1], we have

µ(U(Bn))
µ(Bn) µU(Bn)

(
γ(µ(Bn)) rBn

≤ t1, . . . , γ(µ(Bn)) r(d)
Bn

≤ td
)

−−−−−→
n→+∞

(1 − θ)F̃ [d−1](t2, . . . , td).

Proof (of Lemma 3.5). By (A1)α, we have µ(U(Bn))/µ(Bn) −−−−−→
n→+∞

1 − θ . It vanishes when θ = 1 and else we
have

µU(Bn)
(
γ(µ(Bn)) rBn

≤ t1, . . . , γ(µ(Bn)) r(d)
Bn

≤ td
)

≤ µU(Bn)

(
d−1⋂
i=1

{
γ(µ(Bn)) r(i)

Bn
◦ TBn

≤ ti+1

})

≤ µ(Bn)
∫
Bn

1U(Bn)

µ(U(Bn))

(
d−1∏
i=1

1{γ(µ(Bn))r(i)
Bn
≤ti+1}

)
◦ TBn dµBn

≤ µ(Bn)
∫
Bn

T̂Bn

( 1U(Bn)

µ(U(Bn))

)(d−1∏
i=1

1{γ(µ(Bn)) r(i)
Bn
≤ti+1}

)
dµBn

−−−−−→
n→+∞

∫
Bn

d−1∏
i=1

1{γ(µ(Bn))r(i)
Bn
≤ti+1}

dµBn
= F̃ [d−1](t2, . . . , td) (by (A6)α).

On the other hand, we have

µU(Bn)
(
γ(µ(Bn)) rBn ≤ t1, . . . , γ(µ(Bn)) r(d)

Bn
≤ td

)
= µU(Bn))

({
γ(µ(Bn)) rBn

≤ t1
}

∩
d−1⋂
i=1

{
γ(µ(Bn)) r(i)

Bn
◦ TBn

≤ td − γ(µ(Bn)) rBn

})

and for all ε > 0 such that (t2 − ε, . . . , td − ε) is a continuity point of F̃ [d−1], we have

µU(Bn)(γ(µ(Bn)) rBn ≤ t1, . . . , γ(µ(Bn)) r(d)
Bn

≤ td)

≥ µU(Bn)

(
d−1⋂
i=1

{
γ(µ(Bn)) r(i)

Bn
◦ TBn

≤ ti+1 − ε
})

− µU(Bn)(γ(µ(Bn)) rBn ≥ t1) − µ(γ(µ(Bn)) rBn ≥ ε).

Again by (A6)α, the first term converges towards F̃ [d](t2 − ε, . . . , td − ε). For the two other terms, by (A3)α we
have µBn

(γ(µ(Bn))τn ≥ ε) −−−−−→
n→+∞

0 and thus µUn
(γ(µ(Bn))τn ≥ ε) −−−−−→

n→+∞
0 because θ < 1. Together with

(A5)α it ensures the convergence to 0. Since (t1, . . . , td) is a continuity point of F̃ [d−1], letting ε → 0 gives the
result.

Lemma 3.6. For every d ≥ 1 and 0 ≤ t1 ≤ · · · ≤ td such that (t1, . . . , td) is a continuity point of F [d], we have

µ(Q(Bn))
µ(Bn) µQBn

(
γ(µ(Bn)) rBn

≤ t1, . . . , γ(µ(Bn)) r(d)
Bn

≤ td
)

−−−−−→
n→+∞

θF [d](t1, . . . , td) .

Proof (of Lemma 3.6). This time (A1)α gives µ(Q(Bn))/µ(Bn) −−−−−→
n→+∞

θ. By (A0)α, there exist a function
u ∈ L1(µ) such that Y is u-uniform (without loss of generality we assume

∫
udµ = 1). We consider µvn

the
probability absolutely continuous with respect to µ and of density vn := T̂ τn(1Q(Bn)/µ(Q(Bn))) and write
(F [d]
Bn,vn

)d≥1 the family of distribution functions of γ(µ(Bn))ΦBn
drawn from µvn

. By (A2)α, for all n ≥ 1,
vn ∈ U .

By definition of vn, we have (γ(µ(Bn))ΦBn
)#µvn

= (γ(µ(Bn))ΦBn
◦ T τn)#µQ(Bn). On {rBn

> τn}, we have
γ(µ(Bn))ΦBn = γ(µ(Bn))ΦBn ◦ T τn + γ(µ(Bn))τn, so by (A3)α- (A4)α we get d(γ(µ(Bn))ΦBn , γ(µ(Bn))ΦBn ◦
T τn)

µQ(Bn)−−−−−→
n→+∞

0. In particular, for all d ≥ 1, we have

µQ(Bn)(γ(µ(Bn)) rBn ≤ t1, . . . , γ(µ(Bn)) r(d)
Bn

≤ td) − F
[d]
Bn,vn

(t1, . . . , td) −−−−−→
n→+∞

0. (3.7)
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Now, we show that the stochastic processes (γ(µ(Bn))ΦBn drawn from µvn and µv share the same limit.
We denote (F [d]

Bn,vn
)d≥1 and (F [d]

Bn,v
)d≥1 their respective family of distribution functions of the finite-dimensional

marginals. For every d ≥ 1, consider a bounded Lipschitz function ψ : Rd → Rd. We are going to show that∫
ψ ◦ (γ(µ(Bn))Φ[d]

Bn
)udµ−

∫
ψ ◦ (γ(µ(Bn))Φ[d]

Bn
)u∗ dµ −−−−−→

n→+∞
0 uniformly in u, u∗ ∈ U .

Let ε > 0 and consider M large enough so that the quantity in Lemma 3.4 is smaller than ε. It yields,∣∣∣∣∣∣
∫
ψ ◦

(
γ(µ(Bn))Φ[d]

Bn

)
· 1
M

M−1∑
j=0

(
T̂ ju− T̂ ju∗

)
dµ

∣∣∣∣∣∣ ≤ sup |ψ|

∥∥∥∥∥∥ 1
M

M−1∑
j=0

(
T̂ ju− T̂ ju∗

)∥∥∥∥∥∥
L1(µ)

≤ ε sup |ψ|.

Furthermore, we also have∣∣∣∣∣∣
∫
ψ ◦

(
γ(µ(Bn))Φ[d]

Bn

)(
u− 1

M

M−1∑
j=0

T̂ ju
)

dµ

∣∣∣∣∣∣
≤ 1
M

M−1∑
j=0

∫ ∣∣∣ψ ◦ (γ(µ(Bn))Φ[d]
Bn

) − ψ ◦
(
γ(µ(Bn))Φ[d]

Bn

)
◦ T j

∣∣∣udµ

≤ 1
M

M−1∑
j=0

(
2 sup |ψ|

∫
{rBn≤j}

udµ+ Lip(ψ) γ(µ(Bn))j
)

≤ 2 sup |ψ|
∫
{rBn≤M}

udµ+ Lip(ψ) γ(µ(Bn))M

≤ ε for n large enough and uniformly on u ∈ U since U is uniformly integrable.

Thus, by Portemanteau theorem, for every d ≥ 1

F
[d]
Bn,vn

(t1, . . . , td) − F
[d]
Bn,v

(t1, . . . , td) −−−−−→
n→+∞

0. (3.8)

Since F [d]
Bn,v

(t1, . . . , td) converges towards F [d](t1, . . . , td), (3.7) and (3.8) together give the desired result.

Now, going back to (3.6) and with Lemmas 3.5 and 3.6, we get, for all d ≥ 1 and t1 ≤ · · · ≤ td such that
(t1, . . . , td) and (t2, . . . , td) are continuity points of F̃ [d], F [d] and F̃ [d−1] we have

F̃
[d]
Bn

(t1, . . . , td) −−−−−→
n→+∞

(1 − θ)F̃ [d−1](t2, . . . , td) + θF [d](t1, . . . , td) .

But we assumed that F̃ [d]
Bn

(t1, . . . , td) −−−−−→
n→+∞

F̃ [d](t1, . . . , td). Hence, we get the following equality

F̃ [d](t1, . . . , td) = (1 − θ)F̃ [d−1](t2, . . . , td) + θF [d](t1, . . . , td).

Using Theorem 2.1, we can express F [d] from F̃ [d] and F̃ [d−1] by (2.3) we get

F̃ [d](t1, . . . , td) = (1 − θ)F̃ [d−1](t1, . . . , td)

+ θα

∫ t1

0

(
F̃ [d−1] (t2 − t1 + x, . . . , td − t1 + x)

− F̃ [d] (x, t2 − t1 + x, . . . , td − t1 + x)
)

(t1 − x)α−1 dx ,

which is exactly (3.5). In the proof of Proposition 2.4, we showed that the only process such that the distribution
functions of its marginals satisfy (3.5) is ΦRPP(Wα,θ(θΓ(1+α))). Thus, we get the convergence

Nγ
Bn

µBn=====⇒
n→+∞

RPP(Wα,θ(θΓ(1 + α))) .

By (2.3) and Corollary 2.1, we also obtain

Nγ
Bn

L(µ)=====⇒
n→+∞

CFPPα(θΓ(1 + α),Geo(θ)).
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4 Quantitative recurrence for maps with an indifferent fixed point
We now focus on the family of maps with one indifferent fixed point with LSV parameters and prove the results
presented in Section 2.3.

4.1 Additional properties
We recall the basic properties of the map T defined in (1.1) where p ≥ 1. Recall that there is a unique absolutely
continuous invariant measure µ and µ([0, 1]) = +∞ if and only if p ≥ 1. Recall the definitions of cn = T−n1 1,
where T1 is the first branch of T , and of the partitions ξ = {[cn+1, cn], n ≥ 0} and ξk =

∨k−1
j=0 T

−jξ.

Although we will not directly use the coding of the map by a renewal shift, we will take advantage of this
perspective and use symbolic notations in what follows.

For all n ≥ 0, let [n] := [cn+1, cn]. In particular, ξ = {[n], n ≥ 0}. By definition of T , for n ≥ 1,
T|[n] : [n] → [n− 1] and T|[0] : [0] → [0, 1] are diffeomorphisms. Similarly, the partition ξk can be expressed with
cylinder notations.

Lemma 4.1. For all k ≥ 0, we have

ξk =
k−1∨
j=0

T−jξ =
{

[ak−1
0 ]

∣∣ (ak−1
0 ) ∈ Nk, ∀0 ≤ i ≤ k − 2, ai+1 = ai − 1 or ai = 0

}
,

where [ak−1
0 ] = {x ∈ [0, 1] | T j(x) ∈ [aj ] ∀ 0 ≤ j ≤ k − 1}.

Using the terminology of symbolic dynamics, we will say that (ak−1
0 ) is admissible if [ak−1

0 ] ̸= ∅.

Proof (of Lemma 4.1). This can be easily seen by induction. When k = 1, this is the definition of ξ. Now,
ξk+1 = ξk ∨ T−1ξk. Consider an element [ak−1

0 ] in ξk. Then, T−1[ak−1
0 ] = T−1

1 [ak−1
0 ] ⊔ T−1

2 [ak−1
0 ]. By definition

T−1
2 [ak−1

0 ] = [0ak−1
0 ] and since T−1

1 [a0] = [a0 + 1], we have T−1
1 [ak−1

0 ] = [(a0 + 1)ak−1
0 ] and (0ak−1

0 ) and
((a0 + 1)ak−1

0 ) are admissible. Reciprocally, for an admissible sequence, we have

[ak−1
0 ] = T−1

σ(a0) · · ·T−1
σ(ak−2)[ak−1] ∈ ξk, (4.1)

where σ(0) := 2 and σ(k) := 1 for all k ≥ 1.

Remark 4.1. Due to the Markov property of the partition, for all k ≥ 1 and all (ak−1
0 ) ∈ Nk admissible,

T j : [ak−1
0 ] → [ak−1

j ] is a homeomorphism. Furthermore, we always have [ak0 ] = [ak0(ak − 1)(ak − 2) . . . 0].

For all 0 ≤ n ≤ q ≤ ∞, we define the sets

[[n, q]] :=
⊔

n≤k≤q

[k] = [cq+1, cn].

When q = ∞, we simply write [(≥ n)] := [[n,∞]] = [0, cn] and when n = 0, [(≤ q)] := [[0, q]] = [cq+1, 1].

Lemma 4.2. For all k ≥ 1 and (ak−1
0 ) ∈ Nk admissible, [ak−1

0 ] is an interval. If furthermore ak−1 = 0, then,
for all 0 ≤ n ≤ q ≤ ∞, [ak−1

0 [n, q]] is also an interval.

Proof (of Lemma 4.2). This is immediate from (4.1) and because [[n, q]] are intervals for every 0 ≤ n ≤ q ≤
∞.

For every j ≥ 0, it is known that the induced map on Y := [cj+1, 1] has a Gibbs-Markov structure. Indeed,
define

ξY := ξY1 = {[i], 1 ≤ i ≤ j} ⊔ {[0i], i ≥ 0},

and for all k ≥ 1

ξYk :=
k−1∨
i=0

T−iY ξY1 .

Then, (Y, TY , µY ) is Gibbs-Markov with respect to the partition ξY . We can also define

ξY0 := TY ξ
Y = ξ ∩ Y = {[i], 0 ≤ i ≤ j} = {[ci+1, ci], 0 ≤ i ≤ j]}.
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Remark 4.2. If j = 0, i.e. Y = [1/2, 1], the system is full-branched Gibbs-Markov. Otherwise, it is Gibbs-
Markov with the “big image” property.

We also recall some useful estimates. This can be found in [You99] or [LSV99] for example.

Lemma 4.3. We have the following asymptotic results

µ[0(≥ n)] ≍ 1
nα

(4.2)

and

µ[0n] ≍ 1
nα+1 , (4.3)

where an ≍ bn means that there exists C > 1 such that C−1bn ≤ an ≤ Cbn, for all n ≥ 1.

Finally, we recall the following lemma (see [PSZ17] p.31 and [Tha80, Tha83]) giving a distortion bound for
good subsets (this lemma is true for the bigger class of AFN-maps).

Lemma 4.4. Let Y be of the form [cj+1, 1] for some j ≥ 0. Then, if V,W ⊂ Y are intervals such that there
exists m ∈ N with Tm : V → W being a homeomorphism onto W , then T̂m1V ∈ CC(W ) for some C > 0
depending only on Y , where

CC(W ) := {f : Y → [0,+∞) | |f(x)/f(y) − 1| ≤ Cd(x, y) ∀x, y ∈ W}.

From this lemma we are able to derive the following corollary that is going to be of crucial importance in
the proof of Theorem 2.7.

Corollary 4.5. There exists a constant C > 0 such that for all k, ℓ,m ≥ 0, for all (ak−1
0 ), (bℓ−1

0 ), (cm−1
0 )

admissible (with the possibility that bℓ−1 and cm−1 are of the form [i, j] for some 0 ≤ i ≤ j ≤ ∞) such that
[0ak−1

0 0bℓ−1
0 ] ̸= ∅ and [0ak−1

0 0cm−1
0 ] ̸= ∅, we get

µ[0ak−1
0 0bℓ−1

0 ]
µ[0ak−1

0 0cm−1
0 ]

=
(
1 ± C diam([0bℓ−1

0 ] ∪ [0cm−1
0 ])

) µ[0bℓ−1
0 ]

µ[0cm−1
0 ]

,

where x = (1 ± C)y means that (1 − C)y ≤ x ≤ (1 + C)y.

Proof (of Corollary 4.5). Consider the constant C from Lemma 4.4 with Y = [1/2, 1] = [0]. Let j := min{k ≥
0 | bk ̸= ck} with the convention that j := min{ℓ,m} − 1 if bmin{ℓ,m}−1

0 = c
min{ℓ,m}−1
0 . In particular, we have

diam([0bℓ−1
0 ] ∪ [0cm−1

0 ]) = diam([0bj−1
0 ]). By a property of the map T , we know that T k+1 : [0ak−1

0 0bj−1
0 ] 7→

[0bj−1
0 ] is an homeomorphism with both [0ak−1

0 0bj−1
0 ] and [0bj−1

0 ] being intervals of Y . Thus, by Lemma 4.4,
we have T̂ k+11[0ak−1

0 0bj−1
0 ] ∈ CC([0bj−1

0 ]). Consequently,

µ[0ak−1
0 0bℓ−1

0 ] =
∫

1[0ak−1
0 0bℓ−1

0 ] dµ =
∫
T̂ k+11[0ak−1

0 0bℓ−1
0 ]dµ

=
∫

1[0bℓ−1
0 ] · T̂ k+11[0ak−1

0 0bj−1
0 ] dµ

= T̂ k+11[0ak−1
0 0bj−1

0 ](y)
∫

1[0bℓ−1
0 ](x) ·

T̂ k+11[0ak−1
0 0bj−1

0 ](x)

T̂ k+11[0ak−1
0 0bj−1

0 ](y)
dµ (∀y ∈ [0cm−1

0 ])

= (1 ± Cd(x, y)) T̂ k+11[0ak−1
0 0bj−1

0 ](y)
∫

1[0bℓ−1
0 ]dµ ∀y ∈ [0cm−1

0 ]

=
(

1 ± C diam([0bj−1
0 ])

)
µ[0bℓ−1

0 ]Eµ
[0c

m−1
0 ]

[
T̂ k+11[0ak−1

0 0bj−1
0 ]

]
=
(

1 ± C diam([0bj−1
0 ])

) µ[0bℓ−1
0 ]

µ[0cm−1
0 ]

∫
1[0cm−1

0 ] T̂
k+11[0ak−1

0 0bj−1
0 ] dµ

=
(

1 ± C diam([0bj−1
0 ])

) µ[0bℓ−1
0 ]

µ[0cm−1
0 ]

µ[0ak−1
0 0cm−1

0 ].

Remark 4.3. Although we are using notations coming from the symbolic dynamics, we are still working on the
interval with its topology. For example, diam([0(≥ p)]) −−−−−→

p→+∞
0 in our case, whereas diam([0(≥ p)]) = 1/4 for

all p ≥ 0 with the usual geometric topology of countable Markov shifts.
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4.2 Proof of Theorems 2.4-2.5
Once x ∈ [0, 1]\

⋃
k≥0 T

−k{0} is chosen, we fix Y of the form [cj+1, 1] such that x ∈ Y . Furthermore, there
exists a sequence of integers (ak)k≥0 such that (an−1

0 ) is admissible for all n and Bn = ξn(x) = [an−1
0 ]. Set

sn := Sn−11Y (x) the number of visits to Y before n (note that sn ≥ 1 for n ≥ 2 since we assumed x ∈ Y ).

Lemma 4.6. For all n ≥ 0, we have

Bn = ξYsn
(x).

Proof (of Lemma 4.6). We have B1 = ξ(x) = ξY0 (x) and s1 = S01Y (x) = 0. Assume that the result is
true for some n ≥ 1. We have Bn = ξn(x) = [an−1

0 ] and Bn+1 = ξn+1(x) = [an0 ]. There are three cases,
if an−1 > j, Bn+1 = [an−1

0 (an−1 − 1)] = [an−1
0 ] = Bn et sn+1 = Sn1Y (x) = Sn−11Y (x) = sn meaning

that ξYsn+1
(x) = ξYsn

(x) = Bn = Bn+1. If 1 ≤ an−1 ≤ j, sn+1 = sn + 1 but ξYsn+1(x) = ξYsn
(x) and again

ξYsn+1
(x) = ξYsn

(x) = Bn = Bn+1.
Finally, if an−1 = 0, then sn+1 = sn + 1 and ξYsn+1(x) = [an0 ] = Bn+1 .

4.2.0.1 Proof of Theorem 2.4: Non periodic points.

Proof (of Theorem 2.4). Let x ∈ [0, 1] be non periodic and not a preimage of 0. Let τn := min{i ≥ n−1 | T ix ∈
Y }. Thus sn = Sn−11Y (x) = Sτn

1Y (x) and Bn = ξn(x) = ξYsn
(x) for n ≥ 1 by Lemma 4.6. Since (Y, TY , µY , ξY )

is Gibbs-Markov, there exists κ, c > 0 such that µ(Bn) ≤ κe−csn .
We will use Theorem 2.3 to get the result. Thus, we need to prove conditions (A0)α-(A6)α. (A0)α is immediate
since Y is a uniform set. Since there is no appearance of clusters in the non periodic case, we set U(Bn) = ∅
and Q(Bn) = 1 for (A1)α. It remains to show (A2)α-(A4)α for our particular deterministic choice τn. We start
with condition (A3)α. In fact, we will even show the stronger result τnµ(Bn) µBn−−−−−→

n→+∞
0. For that there are two

cases, either x is a "well-behaved" point, meaning is will return to Y often enough, or x does not come back
sufficiently often to Y . In the first case, the exponential decay of the cylinder measures for the induced map is
enough to get the result. In the second case, since x is a special point, the measure of its cylinder will already
be small enough. Consider a sequence (nk) such that limk→+∞ τnk

µ(Bnk
) = lim supn→+∞ τnµ(Bn). Without

loss of generality, we can assume that (Sτnk
1Y (x)/ log(τnk

))k≥0 is either bounded or diverges to +∞.
If it diverges to +∞, we have

τnk
µ(Bnk

) ≤ τnk
κ e−csnk = τnk

κ e−cSτnk
1Y (x) −−−−−→

k→+∞
0.

Otherwise, if the sequence is bounded by K > 0, we have Sτnk
1Y (x) ≤ K log(τnk

) and thus, there exists some
j ≤ K log(τnk

) such that r{j}Y (x) ≥ τnk
/(K log(τnk

)). It yields,

τnk
µ(Bnk

) ≤ τnk
µ
(
Y ∩ T−j+1

Y {rY = r
{j}
Y (x)}

)
≤ τnk

µ
(
Y ∩ {rY = r

{j}
Y (x)}

)
≤ Cτnk

1
r
{j}
Y (x)α+1

≤ CKα τnk
log(τnk

)α+1

τα+1
nk

−−−−−→
k→+∞

0 (using (4.3)).

Hence condition (A3)α is satisfied. For condition (A4)α, we can use (A3)α and the fact that we have return
time statistics towards the exponential law for the induced map (because it is Gibbs-Markov). We get

µBn
(rBn

< τn) ≤ µBn

(
r

(rY
Bn

)
Y < τn

)
≤ µBn

(
Sτn

1Y > rYBn

)
≤ µBn

(
µY (Bn) rYBn

< µY (Bn)Sτn
1Y )

≤ µBn
(µY (Bn) rYBn

< t) + µBn

(
µY (Bn)Sτn

1Y > t
)
,

for all t > 0. Fix ε > 0. Since Bn has return time statistics for the induced map, we can take t small enough
so that lim supn→+∞ µBn

(µY (Bn)rYBn
< t) ≤ ε. On the other hand, Sτn

1Y ≤ τn and using µ(Bn)τn
µBn−−−−−→

n→+∞
0,

it yields

lim sup
n→+∞

µBn
(rBn

< τn) ≤ ε,

proving (A4)α.

It remains to show (A2)α. Since Bn = ξYsn
(x), we have

T̂ τn(1Bn
/µ(Bn)) = T̂ sn

Y (1ξY
sn

(x)/µ(ξYsn
(x))) .
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As the return map to Y is Gibbs-Markov, by [Aar97, §4.7] (see also [Zwe22, Section 10.2]), there exists some U
compact in L1(µ) such that T̂ τn(1Bn

/µ(Bn)) ∈ U for every n ≥ 1.
Thus, since every condition of Theorem 2.3 in the case U(Bn) = ∅ is satisfied, it gives us the wanted

result.

4.2.0.2 Proof of Theorem 2.5: Periodic points.

Proof (of Theorem 2.5). Assume now that x ∈ [0, 1]\
⋃
k≥0 T

−k{0} is periodic of prime period q. Again, we
want to use Theorem 2.3 and thus we have to show (A0)α-(A6)α. (A0)α is immediate since Y is a uniform set.
Recall that Bn = ξn(x) = ξYsn

(x) with sn = Sn−11Y (x). Let Q(Bn) := Bn ∩ T−qBcn be the escape annulus and
U(Bn) = Bn\Q(Bn) = Bn ∩ T−qBn. We start by conditions (A1)αand (A6)α. We have

µ(U(Bn)) = µ(Bn ∩ T−qBn) =
∫

1Bn · 1Bn ◦ T q dµ =
∫

1Bn · 1Bn ◦ T qρd Leb .

For n large enough such that T jBn ∩Bn = ∅ for 1 ≤ j < q and by construction of U(Bn), TBn
= T q on U(Bn)

and T q : U(Bn) → Bn is a diffeomorphism. Thus, for every y ∈ Bn

T̂Bn
1U(Bn)(y) = T̂ q1U(Bn)(y)1Bn

(y) = 1
(T q)′(T−qU(Bn)y)

where T−qU(Bn)y is the only q-preimage of y in U(Bn). Since T ′ is continuous at x (and T ′(x) > 0), ∥1/(T ′ ◦
T−qU(Bn)) − 1/(T ′)(x)∥L∞(µBn ) −−−−−→

n→+∞
0. Thus, using that T̂Bn

(
1U(Bn)
µ(Bn)

)
and 1Bn

µ(Bn) are probability densities, we
have ∥∥∥∥ T̂Bn

(1U(Bn)

µ(Bn)

)
− 1Bn

µ(Bn)

∥∥∥∥
L∞(µBn )

−−−−−→
n→+∞

0

and
µ(U(Bn))
µ(Bn) −−−−−→

n→+∞

1
(T q)′(x) ,

proving conditions (A1)α and (A6)α with

θ = 1 − 1
(T q)′(x) .

For (A5)α, by construction, we have U(Bn) = Bn+q = ξYsn+q
(x) and we set τn := min{i ≥ n+q−1 | T ix ∈ Y }

so that sn+q = Sτn1Y (x). First, since rBn = q on U(Bn), we immediately get
µU(Bn)(rBn

> τn) = µU(Bn)(q > τn) −−−−−→
n→+∞

0.

Furthermore, since x is a periodic point, Sn1Y (x)/ log(n) −−−−−→
n→+∞

+∞. Thus, since the measure of cylinders in
Gibbs-Markov maps decays exponentially and sn+q ≤ sn + q

τn µ(Bn) ≤ τnκ e
−csn ≤ τn κe

qe−csn+q = (κeq)τneSτn 1Y (x) −−−−−→
n→+∞

0,

which proves (A3)α. For (A4)α, as in the non periodic case, we can take advantage of the return time statistics
for the induced Gibbs-Markov system. This time, the convergence of µY (Bn)rYBn

is not to an exponential law
but to a law with distribution function t 7→ (1 − θ) + θ(1 − e−θt). However, starting from Q(Bn) instead of Bn
implies that we do not have the cluster at 0 and a convergence to the same law as for the hitting time, that
is to say the law with distribution function t 7→ 1 − e−θt [Zwe22, Theorem 3.2]. Thus we can use the same
decomposition as before to get

µQ(Bn)(rBn
< τn) ≤ µQ(Bn)(µY (Bn) rYBn

< t) + µQ(Bn)(µY (Bn)Sτn
1Y > t)

for every t > 0. Fix ε > 0. By the convergence for the induced map, the first term will be smaller than ε if t
is chosen small enough. For the second term, Sτn

1Y ≤ τn and we already proved that τnµ(Bn) µBn−−−−−→
n→+∞

0 and
thus, for all t > 0,

µQ(Bn)(µ(Bn) τn > t) = 1
µ(Q(Bn))

∫
Q(Bn)

1{µ(Bn) τn>t} dµ

≤ µ(Bn)
µ(Q(Bn)) µBn(µ(Bn)τn > t) −−−−−→

n→+∞
θ−1 × 0 = 0.

For the remaining condition (A2)α, we can again use [Aar97, §4.7] (see also [Zwe22, Section 10.2]), to ensure
the existence of some U compact (and convex) in L1(µ) such that T̂ τn(1Q(Bn)/µ(Q(Bn)) ∈ U for every n ≥ 1
because Q(Bn) is a finite union of ξsn+q

-cylinders.
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4.3 Proofs of Theorems 2.7 and 2.9
4.3.1 The case x = 1/2

Proposition 4.7. Let Bn := [0(≥ n)] = [1/2, δn] be a sequence of nested balls shrinking towards 1/2, where
δn = (1 + cn)/2. Then,

γ(µ(Bn)) rBn

L(µ)=====⇒
n→+∞

Jα (4.4)

and
γ(µ(Bn)) rBn

µBn=====⇒
n→+∞

J̃α . (4.5)

Proof (of Proposition 4.7). Since Bn is uniformly bounded away from 0, it lies inside a uniform set for all n and
thus Corollary 2.2-2) ensures that (4.4) and (4.5) are equivalent. Furthermore, with the strong distributional
convergence [RZ20, Lemma 4.1], (4.4) is equivalent to γ(µ(Bn)) rBn

µ[3/4,1]=====⇒
n→+∞

Jα. Notice that T (Bn) = [0, cn] is
a right neighborhood of 0 and that on [3/4, 1], we have rBn

= rT (Bn) − 1. Using 2.6, we obtain

γ
(
µ(T−1

2 (T (Bn)))
)
rT (Bn)

µ[3/4,1]=====⇒
n→+∞

Jα.

Since T−1
2 (T (Bn)) = Bn, it concludes the proof.

Proposition 4.8. Let Bn := [1/2, δn] be as in Proposition 4.7. Then,

Nγ
Bn

L(µ)=====⇒
n→+∞

DRPP(Jα, J̃α), (4.6)

and
Nγ
Bn

µBn=====⇒
n→+∞

RPP(J̃α). (4.7)

Proof (of Proposition 4.8). To show the convergence, it is enough to prove that the stochastic process of the
waiting times converges towards the stochastic process (Wk)k≥1 of independent waiting times with W1

law= Jα

and Wi
law= J̃α for i ≥ 2 when the convergence is under L(µ) and the i.i.d sequence of J̃α when the convergence

is under µBn . This is enough to get the convergence of the point processes, as discussed in Remark 2.9. We
will focus only on the return REPP as the proof is similar for the hitting REPP. It follows the argument
used in [PSZ17, (xii)-(xiii)] and we proceed by induction on successive returns. The initialization is exactly
Proposition 4.7. Consider now d ≥ 1. Our goal is to show that the distribution of the (d + 1)-interarrival
time is independent of the previous interarrivals and the law is the same. Let t0, . . . , td−1, td ∈ R∗+ and let
Mn := Bn ∩

⋂d−1
i=0 {γ(µ(Bn)) rBn ◦ T iBn

≤ ti}. We have

µBn

(
Mn ∩ {γ(µ(Bn)) rBn ◦ T dBn

≤ td}
)

=
µ
(
Mn ∩ {γ(µ(Bn)) rBn

◦ T dBn
≤ td}

)
µ(Bn)

= µBn(Mn)µMn(γ(µ(Bn)) rBn ◦ T dBn
≤ td) .

By assumption, we know the limit of µBn(Mn). Hence, we need to prove the convergence of γ(µ(Bn)) rBn ◦T dBn

under µMn . We have

µMn

(
γ(µ(Bn)) rBn

◦ T dBn
≤ td

)
= µ(Bn)
µ(Mn)

∫
Bn

1Mn
1{γ(µ(Bn)) rBn≤td} ◦ T dBn

dµBn

=
∫
Bn

µ(Bn) T̂ dBn

(
1Mn

µ(Mn)

)
1{γ(µ(Bn)) rBn≤td} dµBn

.

Since Bn = [0(≥ n)] is an interval and a union of cylinders build from ξ, the induced map is piecewise and
a partition ξBn

of Bn can naturally be defined. On each element of ξBn
, rBn

is constant. Furthermore, for
all i ≥ 1, we can define ξBn,i =

∨i−1
k=0 T

−k
Bn
ξBn . In particular, Mn is ξBn,d−1 measurable. We write κn for the

element of ξBn,d−1 contained in Mn. On each V ∈ κn, there exists some mV such that T dBn
|V = TmV : V → Bn

is an homeomorphism and thus, T̂mV 1V ∈ Cr(Bn) by Lemma 4.4. Hence,

T̂ dBn

(
1Mn

µ(Mn)

)
= 1
µ(Mn)

∑
V ∈κn

T̂ dBn
1V = 1

µ(Mn)
∑
V ∈κn

T̂mV 1V ∈ Cr(Bn).
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Now, writing un := µ(Bn) T̂ dBn

(
1Mn

µ(Mn)

)
and remarking that

∫
undµ = µ(Bn), it gives, since supp(un) ⊂ Bn,

that infBn
un ≤ 1 ≤ supBn

un. Since un ∈ Cr(Bn) we have, for every x, y ∈ Bn,

un(y)(1 − r diam(Bn)) ≤ un(x) ≤ un(y)(1 + r diam(Bn)) .

Hence,

1 − r diam(Bn) ≤ inf
Bn

un ≤ sup
Bn

un ≤ 1 + r diam(Bn) ,

which, since diam(Bn) −−−−−→
n→+∞

0, implies

∥∥∥∥µ(Bn) T̂ dBn

(
1Mn

µ(Mn)

)
− 1Bn

∥∥∥∥
L∞(µBn )

−−−−−→
n→+∞

0. (4.8)

Thus

µMn

(
γ(µ(Bn)) rBn ◦ T dBn

≤ td
) ∼
n→+∞

∫
1{γ(µ(Bn)) rBn≤td} dµBn

−−−−−→
n→+∞

P(J̃α ≤ td) ,

where we used again Proposition 4.7 to get the convergence and this concludes the proof.

In particular, Proposition 4.8 is Theorem 2.7 for 1/2 or, otherwise stated, for k = 0. We will now capitalize
on the convergence for 1/2 and go backwards for the further preimages of 0.

4.3.2 Preimages of 1/2

Fix Y = [1/2, 1] and for all n ≥ 1, let En = T−1
2 [0, cn] = [0(≥ n)] = [1/2, δn] where δn := (1 + cn)/2. In

particular, with the notations chosen, we have for all 0 ≤ p ≤ n, [0[p, n]] = [δn+1, δp] = Y ∩{p+1 ≤ rY ≤ n+1}.
Fix k ≥ 1 and let Bn := T−kEn. By invariance of µ we have µ(En) = µ(Bn). By definition of the map T , for
n large enough, we have

Bn =
⊔

z∈T−k{1/2}

Bz,n,

whereBz,n = [z, z+ηz,n]. With symbolic notations, we haveBz,n = [zk−1
0 0(≥ n)], where z = T−1

σ(a0) · · ·T−1
σ(ak−1)1/2.

So, to an element z ∈ T−k{1/2}, we can associate a unique sequence (zk−1
0 ) such that (zk−1

0 0) is admissible
and reciprocally, for every admissible (zk−1

0 0) we can associate z ∈ T−k{1/2}. We define the localization map
ϕn : Bn → T−k{1/2} by ϕn(x) = z if x ∈ Bz,n. In fact, if n0 ≥ 1 is such that (Bz,n0)z are disjoint, then
ϕn = ϕn0 |Bn

for all n ≥ n0 and thus we can consider ϕ := ϕn0 .

Let Ψγ,k
n be a point process on R × T−k{1/2} defined by

Ψγ,k
n :=

∑
j≥1

δ(γ(µ(Bn))r(j)
Bn

, ϕ◦T j
Bn

).

Theorem 4.1. Let k ≥ 1 and Ψγ,k
n be defined as previously, then we have

Ψγ,k
n

µEn=====⇒
n→+∞

Pk,

where Pk is an independent Qk-marking of RPP(J̃α).

Recall that Qk is the probability on T−k{1/2} such that for ρ the density of µ and all z ∈ T−k{1/2},

Qk(z) = ρ(z)
ρ(1/2)(T k)′(z) ∀z ∈ T−k{1/2}.

4.3.3 Proof of Theorem 4.1

We start with the following easy observations.

Lemma 4.9. For all k ≥ 1, z ∈ T−k{1/2} and all d ≥ 0, we have µBn
(ϕ ◦ T dBn

= z) ∼ Qk(z).

27



Proof (of Lemma 4.9). By invariance of the induced measure on Bn, for all d ≥ 0, we have

µBn
(ϕ ◦ T dBn

= z) = µBn
(ϕ = z) = µBn

(Bz,n) = µ(Bz,n)
µ(En)

∼
n→+∞

ρ(z) Leb(Bz,n)
ρ(1/2) Leb(En)

∼
n→+∞

ρ(z)
ρ(1/2)(T k)′(z) .

Lemma 4.10. We have

γ(µ(Bn)) rBn

µEn=====⇒
n→+∞

J̃α .

Proof (of Lemma 4.10). On En, by definition of Bn, we have rBn
= rEn

− k. Thus, for all t > 0 and by
Proposition 4.7,

µEn
(γ(µ(Bn)) rBn

≤ t) = µEn
(γ(µ(Bn)) rEn

≤ t) + µEn
(t ≤ γ(µ(Bn)) rEn

≤ t+ kγ(µ(Bn)))
−−−−−→
n→+∞

P(J̃α ≤ t).

To establish Theorem 4.1, the strategy is to analyze the last visit to the interval [0[p, n)] = [δn, δp] before
the system returns to En. Leveraging the bounded distortion property (Corollary 4.5), we obtain accurate
estimates for the limiting process. Throughout this analysis, it is essential to ensure that the errors introduced
by approximations diminish in the limit. This concern is addressed through a series of supporting lemmas and
the pivotal Proposition 4.13. To proceed systematically, we begin by introducing the necessary notations.

Fix k ≥ 1. Let t > 0 and take p ≥ 1 large enough so that [1/2, δp] ∩
⋃k
j=1 T

−j{1/2} = ∅. In particular, it
implies that for all z ∈ T−k{1/2} and 0 ≤ i ≤ k− 1, zi < p (recall that (zk−1

0 ) is the path in symbolic notations
that corresponds to z as a k-preimage of 1/2). Let

Dp
n(t) := En ∩

{
r[δn,δp] ≤ t

γ(µ(Bn))

}
∩
{
r[δn,δp] ≤ rEn

}
,

and let κpn(t) be a collection of branches belonging to Dp
n(t) defined as follows

κpn(t) := {V ⊂ W ∈ ξm ∩ En
∣∣ Tm(V ) = [δn, δp], m ≤ t/γ(µ(Bn)) and µ(T jV ∩ En) = 0 ∀0 ≤ j ≤ m}

= {[0am−2
0 0[p, n)]

∣∣ 2 ≤ m ≤ t/γ(µ(Bn)), a0 ≥ n, and ∃! 0 ≤ j ≤ m− 2, aj = n}.

For V ∈ κpn(t), we write mV its associated m coming from the definition of V and κpn(t). Note that κpn(t) is not
a partition of Dp

n(t) as multiple returns to [δn, δp] are possible but we can build a partition of the sets

Dp
n,z(t) = Dp

n(t) ∩
{

max
k≥1

{
r

(k)
[δn,δp] | r(k)

[δn,δp] < rEn

}
≤ t

γ(µ(Bn)

}
∩ {rEn = rBn,z + k}, z ∈ T−k{1/2}.

Indeed, for V ∈ κpn(t) and z ∈ T−k{1/2}, define

Vz :=
{
x ∈ V | rBn,z

(TmV x) = rBn
(TmV x) < r[δn,δp](TmV x)

}
.

Then κpn,z(t) := {Vz, V ∈ κpn(t)} is a partition of Dp
n,z(t). To be more precise, for all V = [0amV −2

0 0[p, n)] ∈
κpn(t), we have

Vz =
⊔
b∈Ip

z

[0amV −2
0 0bzk−1

0 0(≥ n)]

with Ipz := {b := (bℓ−1
0 ) | ℓ ≥ 1, (0bℓ−1

0 z0) admissible, b0 ∈ [p, n) and ∃! 0 ≤ j < ℓ, bj = p}.

The following lemma ensures that the measure of the image TmV Vz will be comparable to the one of Bn,z
for all Vz ∈ κpn,z(t).
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Lemma 4.11. For all n > p, z ∈ T−k{1/2} and Vz ∈ κpn,z(t),

µ(TmV (Vz)) = µ(Bn,z) +O(µ(Bn)2)

Furthermore, (TmV Vz)z are disjoint and for V1 :=
⊔
z∈T−k{1/2} Vz, we have

µ(TmV V1) = µ(Bn) +O(µ(Bn)2).

Proof (of Lemma 4.11). For all n > p and z ∈ T−k{1/2}, we have by ergodicity and conservativity

µ(Bn,z) =
+∞∑
k=0

µ
(
[δn, δp] ∩ {r[δn,δp] > k} ∩ T−kBn,z

)
=

+∞∑
k=0

+∞∑
ℓ=k+1

µ
(
[δn, δp] ∩ {r[δn,δp] = ℓ} ∩ T−kBn,z

)
=

+∞∑
ℓ=1

ℓ−1∑
k=0

µ
(
[δn, δp] ∩ {r[δn,δp] = ℓ} ∩ T−kBn,z

)
.

On another hand, we have

µ(TmV Vz) = µ
(
[δn, δp] ∩ {rBn = rBn,z < r[δn,δp]}

)
= µ

(
[δn, δp] ∩ {rBn,z < r[δn,δp]}

)
− µ

(
[δp, δn] ∩ {rBn

< rBn,z
< r[δp,δn]}

)
=

+∞∑
ℓ=1

µ

(
ℓ−1⋃
k=0

[δn, δp] ∩ {r[δn,δp] = ℓ} ∩ T−kBn,z

)
− µ

(
[δp, δn] ∩ {rBn

< rBn,z
< r[δp,δn]}

)
.

We have

µ
(
[δp, δn] ∩ {rBn

< rBn,z
< r[δp,δn]}

)
≤ µ

(
[δp, δn] ∩ {r(2)

Bn
< r[δn,δp]}

)
.

Consider the partition of [δp, δn] ∩ {r(2)
Bn

< r[δp,δn]} = [δp, δn] ∩ {r(2)
En

< r[δp,δn]} defined as follows

Gpn :=
{
W ⊂ [δp, δn] | ∃q ≥ 0, T qW = [1/2, δn],
∃! 1 ≤ j < q, T jW ∈ [1/2, δn], ∀1 ≤ ℓ ≤ q, T ℓW ∩ [δn, δp] = ∅

}
=
{

[0bℓ−1
0 0cm−1

0 0(≥ n)] | ℓ,m ≥ 1, b0 ∈ [p, n),
c0 ≥ n, ∃! 0 ≤ j < ℓ bj = p, ∃! 0 ≤ i < m ci = p

}
.

Then, for every W = [0bℓ−1
0 0cm−1

0 0(≥ n)] ∈ Gpn, we can use Corollary 4.5 to get

µ(W ) = µ[0bℓ−1
0 0cm−1

0 0(≥ n)] ≤ C
µ[0bℓ−1

0 0cm−1
0 0]µ[0(≥ n)]
µ[0]

≤ C2µ(Bn)
µ[0bℓ−1

0 0cm−1
i+p+10]µ[0cm−1

0 0]
µ[0cm−1

i+p+10]

≤ C2µ(Bn)
µ[0bℓ−1

0 0cm−1
i+p+10]

µ[0cm−1
i+p+10]

C
µ[0cm−1

i+p+10]µ[0ci+p−1
0 0]

µ[0]

≤ C3µ(Bn)µ[0bℓ−1
0 0cm−1

i+p+10]µ[0ci+p−1
0 0].

Thus, summing on W ∈ Gpn we get

µ
(

[δn, δp] ∩ {r(2)
Bn

< r[δn,δp]}
)

=
∑

W∈Gp
n

µ(W )

≤
∑

C3µ(Bn)µ[0bℓ−1
0 0cm−1

i+p+10]µ[0ci+p−1
0 0]

≤ C3µ(Bn)2µ([δn, δp]) = O(µ(Bn)2) .

Going back to the computation of µ(Bn,z) − µ(TmV Vz), we have

µ(Bn,z) − µ(TmV Vz) =
+∞∑
ℓ=1

µ

 ⋃
0≤j<k≤ℓ−1

[δn, δp] ∩ {r[δn,δp] = ℓ} ∩ T−jBn,z ∩ T−kBn,z

+O(µ(Bn)2)
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= µ
(

[δn, δp] ∩ {r(2)
Bn,z

< r[δn,δp]}
)

+O(µ(Bn)2) = O(µ(Bn)2),

using the same argument and Corollary 4.5 as before.

Now, by definition and by the Markov property, we have for all V = [0am−2
0 0[p, n)] ∈ κpn(t)

TmV Vz =
⊔
b∈Ip

z

[0bzk−1
0 0(≥ n)].

It is easy to see that (TmV Vz)z are all disjoint and thus

µ(TmV V1) =
∑

z∈T−k{1/2}

µ(TmV Vz) =
∑

z∈T−k{1/2}

µ(Bn,z) +O(µ(Bn)2)

= µ(Bn) +O(µ(Bn)2).

Now, let Mn,z(t) := En ∩ {rBn
≤ t/γ(µ(Bn))} ∩ T−1

Bn
(Bn,z) be the quantity we want to control. The next

lemma ensures that we can approximate it well by Dp
n,z(t).

Lemma 4.12. For all t > 0, p ≥ 1 large enough so that [1/2, δp] ∩
⋃k
j=1 T

−j{1/2} and z ∈ T−k{1/2} we have

µ
(
Dp
n,z(t) △Mn,z(t)

)
+ o(µ(Bn)) .

Proof (of Lemma 4.12). We have the following partition ηn,z(t) of our set Mn,z(t)

ηn,z(t) :=
{
V ⊂ W ∈ ξm+1 ∩ En

∣∣∣∣ m ≤ t/γ(µ(Bn)),

TmV = Bn,z, µ(T kV ∩ [1/2, δn]) = 0 ∀1 ≤ k < m

}
=
{

[0am−2
0 zk−1

0 0(≥ n)]
∣∣∣∣ m ≤ t/γ(µ(Bn)),

a0 ≥ n, (am−2
0 z0) admissible and ∃! 0 ≤ j ≤ m− 2, aj = n

}
.

On the other side, recall that

κpn,z(t) =
{

[0am−2
0 0[p, n)] ∩ T−m{rBn,z

= rBn
< r[0[p,n)]}

∣∣∣∣
m ≤ t/γ(µ(Bn)), a0 ≥ n and ∃! 0 ≤ j ≤ m− 2, aj = n

}
.

We start by controlling Mn,z(t)\Dp
n,z(t). For V = [0am−2

0 zk−1
0 0(≥ n)] ∈ ηn,z(t) such that r[δn,δp] < rBn

=
rBn,z

= m, let j = max{i ≤ m | T ix ∈ [δn, δp]}. Then V ⊂ W = [0aj−2
0 0[p, n)} ∩ T−j{rBn,z

= rBn
< r[δn,δp]} ∈

κpn,z(t). Thus, it only remains the intervals for which r[δn,δp] > rBn , i.e.

Mn,z(t)\Dp
n,z(t) ⊂ Mn,z(t) ∩

{
rBn < r[δn,δp]

}
⊂ En ∩ {rEn < r[δn,δp]} .

We already know that µEn(rEn < r[δn,δp]) = o(1), so

µ
(
Mn,z(t)\Dp

n,z(t)
)

= o(µ(Bn)).

Now, we need to control Dp
n,z(t)\Mn,z(t). This is more difficult as we allow for more branches in Dp

n,z(t)
because we do not impose any time control for returns to Bn. For every Vz = [0am−2

0 0[p, n)] ∩ T−m{rBn,z =
rBn < r[0[p,n)]} ∈ κpn,z(t), we can build a partition κp,Vz

n,z (t) of Vz taking cylinders up to the return time to Bn,z.

κp,Vz
n,z (t) :=

{
[0am−2

0 0bj−1
0 zk−1

0 0(≥ n)]
∣∣∣∣ m ≤ t

γ(µ(Bn)) ,

b0 ∈ [p, n), (bj−1
0 zk−1

0 ) admissible, ∃! 0 ≤ ℓ < j, bℓ = p

}
.

30



Observe that W ∈ κp,Vz
n,z (t) is an interval included in En. Then, it gives another partition κp,exn,z (t) of Dp

n,z(t) by

κp,exn,z (t) :=
⋃

Vz∈κp
n,z(t)

κp,Vz
n,z (t).

Consider the subset κp,longn,z (t) of κp,exn,z (t) defined by

κp,longn,z (t) :=
{
W = [0am−2

0 0bj−1
0 zk−1

0 0(≥ n)] ∈ κp,exn,z (t)
∣∣∣∣ m+ j + 1 > t/γ(µ(Bn))

}
.

By construction, we have

Dp
n,z(t)\Mn,z(t) =

⊔
W∈κp,long

n,z (t)

W.

For every sequence (yn)n going to +∞ such that yn = o(γ(µ(Bn))−1), we have

µ(Dp
n,z(t)\Mn,z(t)) =

∑
W∈κp,long

n,z (t), rEn−m>yn

µ(W ) +
∑

W∈κp,long
n,z (t), rEn−m≤yn

µ(W )

≤
∑

W∈κp,long
n,z (t),

rEn
−m>yn

µ[0am−2
0 0bj−1

0 zk−1
0 0(≥ n)]

+ µ
(
En ∩ {t/γ(µ(Bn)) ≤ rEn

≤ t/γ(µ(Bn)) + yn}
)

≤ C
∑

W∈κp,long
n,z (t),

rEn
−m>yn

µ[0am−2
0 0(≥ n)]µ[0bj−1

0 zk−1
0 0(≥ n)]

µ[0(≥ n)] + o(µ(Bn)) ,

where we used Corollary 4.5 and Proposition 4.7. Again with Corollary 4.5, we get

µ(Dp
n,z(t)\Mn,z(t)) ≤ C2

∑
W∈κp,long

n,z (t),
rEn

−m>yn

µ[0am−2
0 0(≥ n)]
µ[0(≥ n)]

µ[0bj−1
0 zk−1

0 0]µ[0(≥ n)]
µ[0] + o(µ(Bn))

≤ C2
∑

W∈κp,long
n,z (t),

rEn
−m>yn

µ[0am−2
0 0(≥ n)]µ[0bj−1

0 zk−1
0 0] + o(µ(Bn)).

At this point, we can split the sum into two sums on the possible am−2
0 and the possible bj−1

0 . (bj−1
0 ) is such

that b0 ∈ [p, n), (bj−1
0 zk−1

0 ) is admissible and ∃! 0 ≤ ℓ < j, bℓ = p. Since rEn −m > yn, this implies∑
bj−1

0

µ[0bj−1
0 zk−1

0 0] ≤ µ
(
[δn, δp] ∩ {r[δn,δp] > yn}

)
.

Yet, for all n > p, µ[δn, δp] > µ([δp+1, δp]) > 0 and thus [RZ20, Proposition 2.1 b)] ensures that µ([δn, δp] ∩
{r[δn,δp] > yn}) = o(1) as yn −−−−−→

n→+∞
+∞.

On the other side, we have (am−2
0 ) that must be such that (am−2

0 0) is admissible, m ≤ t/γ(µ(Bn)), a0 ≥ n
and ∃! 0 ≤ ℓ < m− 1, aℓ = n. Thus,∑

am−2
0

µ[0am−2
0 0(≥ n)] ≤ µ

(
En ∩

{
rEn

≤ t

γ(µ(Bn))

})
.

By Proposition 4.7, since t > 0, we know that

µ

(
En ∩

{
rEn

≤ t

γ(µ(Bn))

})
≲ µ(En) = µ(Bn).

Hence, we have

µ(Dp
n,z(t)\Mn,z(t)) ≲ C2µ([δn, δp] ∩ {r[δn,δp] > yn}µ(Bn) + o(µ(Bn))

= o(µ(Bn))

and it concludes the proof of the lemma.
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Let Mn(t) := En ∩ {γ(µ(Bn)) rBn ≤ t} =
⊔
z∈T−k{1/2}Mn,z(t).

Proposition 4.13. For z ∈ T−k{1/2} and all t > 0, we have

µMn(t)
(
T−1
Bn
Bn,z

)
= µ(Mn,z(t))

µ(Mn(t)) −−−−−→
n→+∞

Qk(z) .

Proof (of Proposition 4.13). For every V ∈ κpn(t), let V1 :=
⊔
z∈T−k{1/2} Vz. By Lemma 4.12, for all p ≥ 1 large

enough, n ≥ p and z ∈ T−k{1/2}, we have

µ(Mn,z(t)) + o(µ(Bn)) = µ(Dp
n,z(t)) =

∑
V ∈κp

n(t)

µ(Vz)

= (1 ± C diam([δn, δp]))
∑

V ∈κp
n(t)

µ(V1)µ(TmV Vz)
µ(TmV V1) ,

where we use the bounded distortion Corollary 4.5 for the last inequality. Hence, using Lemma 4.11, for all
z ∈ T−k{1/2}

µ(Mn,z(t)) + o(µ(Bn)) = (1 ± C diam([δn, δp]))
∑

V ∈κp
n(t)

µ(V1)µ(Bn,z) +O(µ(Bn)2)
µ(Bn) +O(µ(Bn)2)

and ∑
V ∈κp

n(t)

µ(V1) =
∑

z′∈T−k{1/2}

∑
Vz′∈κp

n,z′ (t)

µ(Vz′)

=
∑

z′∈T−k{1/2}

µ(Dp
n,z′(t))

=
∑

z′∈T−k{1/2}

(µ(Mn,z′(t)) + o(µ(Bn)))

= (µ(Mn(t)) + o(µ(Bn))) .

Thus, with Lemma 4.9, for all p large enough, we have

µ(Mn,z(t))/µ(Mn(t)) + o(1) = (1 ± C diam([δn, δp]))
µ(Bn,z) +O(µ(Bn)2)
µ(Bn) +O(µ(Bn)2) (1 + o(1))

using Lemma 4.10 to ensure that o(µ(Bn)) = o(µ(Mn(t))).
Hence, for all t > 0, we have

lim sup
n→+∞

Mn,z(t)
Mn(t) ≤ (1 + C diam([1/2, δp])) lim

n→+∞

µ(Bn,z)
µ(Bn) ≤ (1 + C diam([1/2, δp]))Qk(z).

We have a similar control for the lim inf. Since it was true for p large enough, taking p → +∞ concludes the
proof of Proposition 4.13.

Building up on all these lemmas, we are now able to prove Theorem 4.1.

Proof (of Theorem 4.1). To get the convergence of the marking process, it is enough to get the convergence of
the finite dimensional marginal of the stochastic process(

(γ(µ(Bn))) rBn ◦ T iBn
, ϕ ◦ T i+1

Bn
)
)
i≥0 .

Let d ≥ 1. We want to show(
(γ(µ(Bn))) rBn ◦ T iBn

, ϕ ◦ T i+1
Bn

)
)

0≤i≤d
µEn=====⇒

n→+∞

(
(J̃(i)
α , Y (i))

)
0≤i≤d

, (4.9)

where
(

(J̃(i)
α , Y (i))

)
0≤i≤d

are i.i.d, J̃(1)
α

law= J̃α, Y (1) law= Qk and J̃
(1)
α and Y (1) are independent.

As we did for the point 1/2 in Proposition 4.8 and building up again on [PSZ17, (xii)-(xiii)], we prove the
result by induction. Proposition 4.13 together with Lemma 4.10 gives

(γ(µ(Bn)) rBn
, ϕ ◦ TBn

) µEn=====⇒
n→+∞

(J̃α, Y ) , (4.10)
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where Y law= Q and J̃α and Y are independent, proving the result for d = 0.
Now, we do the inductive step from d to d+ 1. By invariance of the measure, for all k ≥ 1, we have

(γ(µ(Bn)) rBn
◦ T kEn

, ϕ ◦ T k+1
Bn

) µEn=====⇒
n→+∞

(J̃α, Y ),

using that TBn ◦ T iEn
= T i+1

Bn
on En for all i ≥ 0. Let t0, . . . , td > 0 and z(0), . . . , z(d) ∈ T−k{1/2}. Let

Mn := En ∩
d⋂
i=0

{γ(µ(Bn)) rBn
◦ T iEn

≤ ti} ∩ {ϕ ◦ T i+1
Bn

= z(i)}.

Let t > 0 and z(d+1) ∈ T−k{1/2}. We show

µMn

(
{γ(µ(Bn)) rBn ◦ T d+1

En
≤ t} ∩ {ϕ ◦ T d+2

Bn
= z(d+1)}

)
−−−−−→
n→+∞

P(J̃α ≤ t)Qk(z(d+1)).

Because En is an union of 1-cylinders, we can give a partition ηn in cylinders of Mn and a partition η′n of
Nn := Mn ∩ {γ(µ(Bn)) rBn

◦ T d+1
En

≤ t} ∩ {ϕ ◦ T d+2
Bn

= z(d+1)}. Furthermore, associated to the partition ηn, we
set In such that

ηn = {V := [0am−1
0 0(≥ n)] | (am−1

0 ) ∈ In}.

This yields

η′n =
{

[0am−1
0 0bj−1

0 0(≥ n)]
∣∣∣∣ am−1

0 ∈ In, b0 ≥ n,

∃!i bi = n, j ≤ t/γ(µ(Bn)), bj−1
j−1−k = (z(d+1))k−1

0

}
.

Thus,

µ(Nn) =
∑

[0am−1
0 0bj−1

0 0(≥n)]∈η′
n

µ[0am−1
0 0bj−1

0 0(≥ n)]

= (1 ± C diam(En))
∑

[0am−1
0 0bj−1

0 0(≥n)]∈η′
n

µ[0am−1
0 0(≥ n)]µ[0bj−1

0 0(≥ n)]
µ(En)

= (1 ± C diam(En))µEn
({γ(µ(Bn)) rBn

≤ t} ∩ {ϕ ◦ TBn
= z(d+1)})µ(Mn) ,

where we used Corollary 4.5, meaning that

µMn(Nn) −−−−−→
n→+∞

P(J̃α ≤ t)Qk(z(d+1)).

Since rBn
◦ T iEn

= rBn
◦ T iBn

− k for i ≥ 1 on En and γ(µ(Bn))k −−−−−→
n→+∞

0, it is sufficient to get (4.9) and it
concludes the proof of Theorem 4.1.

4.3.4 Proof of Theorems 2.7 and 2.9

Proof (of Theorem 2.7). By Theorem 4.1, we have

ψγ,kn =
∑
j≥1

δ(γ(µ(Bn)) r(j)
Bn

,ϕ◦T j+1
Bn

)
µEn=====⇒

n→+∞
Pk.

Furthermore, for all z ∈ T−k{1/2}, we have∥∥∥∥T̂ k ( 1Bn,z

µ(Bn,z)

)
− 1
µ(En)1En

∥∥∥∥
L∞(µEn )

−−−−−→
n→+∞

0.

Together with kγ(µ(Bn)) −−−−−→
n→+∞

0 and rBn ◦ T k = rBn − k on Bn, this is enough to ensure

Ψγ,k
n

µBn,z=====⇒
n→+∞

Pk.
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Thus, we get∑
j≥1

δ
γ(µ(Bn)) r(j)

Bn,z

=
∑
j≥1

δ(γ(µ(Bn)) r(j)
Bn

,ϕ◦T j+1
Bn

)1{ϕ◦T j+1
Bn

=z}
µBn,z=====⇒
n→+∞

Pk(· × {z}) law= RPP(J̃α)(Qk(z),1)

Finally, using that

lim
n→+∞

γ(µ(Bn,z))/γ(µ(Bn)) = lim
n→+∞

(µ(Bn,z)/µ(Bn))1/α = Qk(z)1/α,

we get, for every k ≥ 1 and z ∈ T−k{1/2},

Nγ
Bn,z

µBn,z=====⇒
n→+∞

RPP(J̃α)(Qk(z),Qk(z)1/α).

Therefore, by Corollary 2.1, it also gives

Nγ
Bn,z

L(µ)=====⇒
n→+∞

DRPP(Jα, J̃α)(Qk(z),Qk(z)1/α).

Proof (of Theorem 2.9). The proof of Theorem 2.9 is similar to the proof of Theorem 2.7. The laws Jα and J̃α
must be changed to the exponential law E but, apart from that, the proof stays identical and especially within
the key Theorem 4.1. Indeed, from Theorem 2.8 and Lemma 2.8, the same proof as for Proposition 4.8, gives
this time a renewal point process of exponential waiting times, i.e. the homogeneous Poisson process. Building
up on it, an equivalent of Theorem 4.1 can be proven the same way. Finally, since the Poisson point process is
stable through thinning and rescaling by the same parameter, i.e. if N is a Poisson point process and τ > 0,
N (τ,τ) is again a Poisson process, and since α = 1, the limit for the preimages of 1/2 are again Poisson point
processes.

4.3.5 Proof of Proposition 2.7

Proof (of Proposition 2.7). Recall the formula (2.12) for the Laplace transform of the law J̃α.

E
[
e−sJ̃α

]
= 1 − sα

Γ(1 + α)

(
e−sdα + sdα

∫ 1

0
y−αe−dαsy dy

)−1

, s ≥ 0.

In particular, we have

E
[
e−sJ̃α

]
= 1 − sα

Γ(1 + α) + o(sα).

However, for a renewal process RPP(X) with E[e−sX ] = 1 − λsα + o(sα), we have

RPP(X)(τ,τα) ===⇒
τ→0

FPPα(λ−1).

This can be found for example in [GKMR20, §10.4.4 p.355]. Hence, it remains to show that for every sequence
(xk)k≥0 with xk ∈ T−k{1/2}, Qk(xk) −−−−−→

k→+∞
0 which is equivalent to ρ(xk)/(T k)′(xk) −−−−−→

k→+∞
0. Since on

every interval on the form [ε, 1], ρ is bounded away from +∞ and T ′ ≥ c(ε) > 1, this is enough to show it when
xk −−−−−→

k→+∞
0. We consider the case xk = T−k1 1/2 = ck+1, the other cases can be considered similarly. Since

the return map Y is full-branched Gibbs-Markov, for each branch T k+1 : [δk+1, δk] is such that there exists y ∈
[δk+1, δk] with (T k+1)′(y) = (2(δk−δk+1))−1 = (ck−ck+1)−1 by the mean value theorem. By bounded distortion,
it yields (T k+1)′(δk+1) ≍ (ck − ck+1)−1 and since T ′(δk+1) = 1/2, we obtain (T k)′(ck+1) ≍ (ck − ck+1)−1. On
the other side, by (2.11), we have ρ(ck) ≍ ck+1(ck+1 − ck+2)−1 and implying ρ(ck)/(T k)′(ck) −−−−−→

k→+∞
0.

5 Fractional Poisson processes in infinite ergodic theory: a concluding
perspective

In the recent article [PS24] ([Yas18] for the first return), the authors showed a convergence for a recurrence
REPP in the infinite measure preserving context. They consider a Z-extension over a one-sided subshift of finite
type, defined as follows: let (Ω, σ, ν) be a topologically mixing subshift of finite type endowed with a Gibbs
measure ν and let h : Ω → Z be a centered integrable Hölder observable. On the phase space X := Ω × Z, we
define the dynamics T by

T : (x, a) 7→ (σ(x), a+ h(x)), x ∈ Ω, a ∈ Z.

The σ-finite measure µ := ν ⊗
(∑

z∈Z δz
)

is preserved by T .
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Theorem 5.1. [PS24, Theorem 3.10] For all r > 0, let Nr be the point process defined as follows

Nr(x) :=
∑
k≥1

δ
ν(B(x,r))2r

(k)
B(x,r)×{0}

∀x ∈ X .

Then, for the vague convergence,

Nr
µ===⇒

r→0
N ◦ L0 and Nr

µB(x,r)×{0}========⇒
r→0

Ñ ◦ L̃0,

where N, Ñ are standard Poisson process and L0, L̃0 is are local times at 0 of the standard Brownian motion,
independent of N, Ñ .

Here, the target set depends on the point x considered. However, the techniques developed could have also
given the convergence of the hitting REPP for generic points x and shrinking balls Bn = B(x, ηn) for some
ηn −−−−−→

n→+∞
0. We justify that both results are linked and we think combining the two approaches could provide

fruitful insights for future developments.

For simplicity, consider the subshift of finite type on Ω := {−b, . . . , b}N for some b > 0, ν = m⊗N a Bernoulli
measure on Ω with m a probability of mean 0 and variance σ2 = 1 and h := pr0 the projection onto the
first coordinate. Then the Z-extension (X,T ) of (Ω, σ) models the usual random walk on Z and we assume
furthermore that it is aperiodic. By inducing on Y := Ω × {0} and using [Aar97, Lemma 3.7.4], it is possible to
show that the system is PDE. Furthermore, using classical estimates for random walks, we easily an equivalent
of the wandering rate wn(Y ) := µ(Y )EµY

[rY ∧ n] =
∑n−1
k=0 µ(Y ∩ {rY > n}) when n → +∞.

Lemma 5.1. For Y := Ω × {0}, we have

wn(Y ) ∼
n→+∞

2
√

2√
π

√
n.

Proof (of Lemma 5.1). Using classical local limit theorems for random walks, we know that µY (rY > k) =
P0(r0 > k) ∼

n→+∞

√
2
πk . Since it is not summable, we get

wn(Y ) = µ(Y )
n−1∑
k=0

µY (rY > k) ∼
n→+∞

n−1∑
k=0

√
2
πk

∼
n→+∞

2
√

2√
π

√
n.

Then, by [Aar97, Proposition 3.8.7 p.137], we can identify the normalizing sequence (an)n≥0 as we have

an ∼
n→+∞

1
Γ(2 − α)Γ(1 + α)

n

wn(Y ) .

Since wn(Y ) ∈ RV(1/2) we have α = 1/2 and thus, using Lemma 5.1, we have

an ∼
n→+∞

√
π

2
√

2Γ(3/2)2

√
n = 4

π

√
π

2
√

2
√
n =

√
2
πn

,

using that Γ(3/2) = Γ(1/2)/2 and Γ(1/2)2 = π. Now, by definition (2.2) of γ, γ : s 7→ 2s2/π is a suitable
scaling. Thus, Theorem 5.1 implies the following, for x generic in Ω × {0} and Bn := B(x, rn) × {0} with
rn −−−−−→

n→+∞
0,

∑
k≥1

δ
γ(µ(Bn))r(k)

Bn

=
∑
k≥1

δ 2
πµ(Bn)2 r(k)

Bn

µ=====⇒
n→+∞

N ◦ L0

(
2
π

·
)
.

It turns out this point process is in fact equal to the limit process we expect with the methods developed in
the previous sections.

Lemma 5.2. Let N be a standard Poisson point process and L0 be the local time at 0 of a standard Brownian
motion. Then,

N ◦ L0

(
2
π

·
)

law= FPP1/2(Γ(1 + 1/2)).
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In Definition 2.6, the fractional Poisson process is introduced as a specific type of renewal point process.
However, this is not the only perspective; alternative definitions have been shown to be equivalent. One such
approach characterizes it as a classical Poisson process where the time parameter is randomly rescaled, as we
now explain. Let α ∈ (0, 1] and let Dα be the standard α-stable subordinator, that is to say an increasing Lévy
process such that for all s, t ≥ 0, E[e−sDα(t)] = exp(−tsα) (see [Ber96] for more details on Lévy processes and
subordinators). Let Eα be the inverse stable subordinator defined as the generalized inverse of Dα, i.e.

Eα(t) = D←α (t) := inf{u > 0 | Dα(u) > t} for t ≥ 0.

This process Eα is also non decreasing and is the correct random time scaling to define the fractional Poisson
process.

Remark 5.1. In infinite ergodic theory, this process is also defined as the Mittag-Leffler process and appears
as a functional limit for averages of integrable observables for infinite CEMPT [OS15, Ser20].

Proposition 5.3. [MNV11, Theorem 2.2] Let N be a standard Poisson point process of parameter λ > 0 and
Eα an inverse stable subordinator independent of N . Then, N ◦Eα is a fractional Poisson process of parameter
α and λ.

In particular, for α = 1/2, E1/2 has the same law as
√

2 B̄ where B̄ is the supremum of the Brownian motion
[App09, Theorem 2.2.9 p.95]. We are now able to show Lemma 5.2 showing that the point process obtained in
[PS24, Theorem 3.10] is the fractional Poisson process of parameter 1/2.

Proof (of Lemma 5.2). We have

N ◦ L0

(
2
π

·
)

law= N ◦ B̄
(

2
π

·
)

law= N ◦
√
π

2 B̄
law= N√

π
2

◦
√

2 B̄

law= NΓ(3/2) ◦ E1/2 law= FPP1/2(Γ(1 + 1/2)) ,

where Nλ is a Poisson point process of parameter λ and every processes and point processes are assumed to be
independent.

This closes the gap between the two approaches when α = 1/2, the right scale when considering a Z-
extension. However, as we have seen, the construction of the fractional Poisson point process N ◦ Eα could
provide a useful approach for α ̸= 1/2 in future works.
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A Additional proofs
A.1 Proof of Corollary 2.6
Corollary 2.6 can be easily deduced from Theorem 2.6 and the following Lemma A.1.

Lemma A.1. Let (Bn)n∈N and (ηn)n∈N be defined as in Theorem 2.6. Let Q(Bn) := Bn ∩ T−1(Bcn). Then we
have

γ(µ(T−1
2 Bn)) = γ (µ(Q(Bn))) ∼

n→+∞

(
1

Γ(1 + α)Γ(1 − α)

)1/α 1
I(ηn) . (A.1)
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Proof (of Lemma A.1). The first equality follows directly from the T -invariance of µ. Recall (2.11) stating that
the density ρ := dµ/d Leb is of the special form

ρ(x) = h0(x) × x

x− T−1
1 x

, ∀x ∈ (0, 1],

where h0 : [0, 1] → R is a positive continuous function (see for example [Tha83, Lemma 4]). Furthermore, recall
that γ : s 7→ 1/b(1/s) where b is the asymptotic inverse of a. Since we are studying a special AFN-map we
know that (see [Zwe00, Theorem 4]):

an ∼
n→+∞

2(1 − α)
h0(0)Γ(1 + α)Γ(2 − α)ααn

α.

Hence, we can choose

γ(s) =
(

2(1 − α)
h0(0)Γ(1 + α)Γ(2 − α)αα

)1/α
s1/α , ∀s ≥ 0.

On the other part, we have

µ(Q(Bn)) =
∫ ηn

T−1
1 ηn

ρ(x)dx ∼
n→+∞ h0(0)

∫ ηn

T−1
1 ηn

x

x− T−1
1 x

dx = h0(0)ξn
ηn − T−1

1 ηn

ξn − T−1
1 ξn

for some ξn ∈ [T−1
1 ηn, ηn]

∼
n→+∞ h0(0)ξn ∼

n→+∞ h0(0)ηn.

Hence,

γ(µ(Q(Bn)) ∼
n→+∞

(
2(1 − α)

Γ(1 + α)Γ(2 − α)αα

)1/α
η1/α
n . (A.2)

On the other side, we have

I(ηn) =
∫ 1

ηn

dx
x− T−1

1 x
∼

n→+∞

∫ 1

ηn

dx
21/αx1/α+1 = α

21/α

(
1

η
1/α
n

− 1
)

∼
n→+∞

α

21/αη
1/α
n

, (A.3)

where we use the fact that x−T−1
1 x ∼

x→0+ 21/αx1/α+1 since T−1
1 x = x−21/αx1/α+1 +o(x1/α). Putting together

(A.2) and (A.3) gives (A.1) using that Γ(2 − α) = (1 − α)Γ(1 − α).

A.2 Proof of Lemma 2.8
Recall that Bn = [0, cn] and let En := T−1

2 Bn = Y ∩ {rY > n} = [1/2, δn]. Recall that we have chosen the
renormalization of µ so that µ(Y ) = 1. We know by [Zwe00, Theorem 4] that, in the barely infinite case, we have
an ∼ 2n

h0(0) log(n) and thus bn := h0(0)
2 n log(n) is an asymptotic inverse of (an)n≥0 (recall that γ(s) := b(s−1)−1).

Fix some p ≥ 0 and assume n ≥ p (this is no issue as we are interested by the limit on n). Let r̃(p)
Bn

be the
random variable defined as follows:

r̃
(p)
Bn

:= hEn ◦ TEp1En ,

where hA(x) := inf{n ≥ 0 | Tn(x) ∈ A}.

Lemma A.2. There exist a constant Cp, with Cp −−−−−→
p→+∞

1 such that for all n ≥ p,

C−1
p µ(En) ≤

EµY
[r̃(p)
Bn

]
EµEp

[rBn
] ≤ Cpµ(En) .

Proof (of Lemma A.2). As usual, we use the bounded distortion result Corollary 4.5 and work branch by branch.
Let

An := {[0aj−1
0 bk0 ], a0 > n,∃!i ai = p, b0 = 0, b1 > p, bk−1 = 0, bk > n, ∀0 ≤ ℓ ≤ k − 1 bk ≤ n}

be a partition in branches of 1En
for r̃(p)

Bn
. Then, we have
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EµY
[r̃(p)
Bn

] =
∑

[0aj−1
0 bk

0 ]∈An

(k − 1)µ[0aj−1
0 bk0 ]

≤ (1 + C diam(Ep))
∑

[0aj−1
0 bk

0 ]∈An

(k − 1)µ[0aj−1
0 0(> p)]µ[bk0 ]
µ[0(> p)]

≤ C ′p
µ(En)
µ(Ep)

EµY
[hEn

1Ep
]

≤ C ′p
µ(En)
µ(Ep)

EµY
[(rBn − 1)1Ep ]

≤ Cp
µ(En)
µ(Ep)

EµY
[rBn1Ep ].

The lower bound is obtained similarly. Since diam(Ep) −−−−−→
p→+∞

, we have Cp −−−−−→
p→+∞

1.

Lemma A.3. For a fixed p ≥ 0, we have the following asymptotic result:

EµY
[r̃(p)
Bn

] ∼
∫

(rY ∧ n) dµY = wn(Y ).

Proof (of Lemma A.3). We look at the Birkhoff’s sums for the induced map on Y and consider the map ℓn :=
rY 1Ec

n
= rY 1{rY ≤n}. Let j ≥ 1, x ∈ Y and assume for simplicity that T jY x ∈ En. Write k(j) := sup{i ≥

0 | rY,(i)En
< j} (in particular, with the hypothesis we made, we have j = r

Y,(k(i)+1)
En

). We have

1
j
SYj ℓn(x) = 1

j

j−1∑
k=0

rY (T kY x)1Ec
n
(T kY x)

= 1
j

k(j)∑
k=1

rY
En
◦Tk

En
(x)−1∑

i=1
rY (T iY ◦ T kEn

x) + 1
j
hEn

= 1
j

k(j)∑
k=1

rY
En
◦Tk

En
(x)−1∑

i=rY
Ep
◦Tk

En
(x)

rY (T iY ◦ T kEn
x) +

rY
Ep
◦Tk

En
(x)−1∑

i=1
rY (T iY ◦ T kEn

x)

+ 1
j
hEn

.

On one side, we have

1
j

k(j)∑
k=1

rY
Ep
◦Tk

En
(x)−1∑

i=1
rY (T iY ◦ T kEn

x) = 1
j

k(j)∑
k=1

hEp
◦ TY ◦ T kEn

(x)

= 1
j

j−1∑
k=1

(
1En

hEp
◦ TY

)
◦ T kY (x)

∼ 1
j
SYj
(
1En

hEp
◦ TY

) µY a.e.−−−−−→
j→+∞

EµY
[1En

hEp
◦ TY ]

On the other side, we have

1
j

k(j)∑
k=1

rY
En
◦Tk

En
(x)−1∑

i=rY
Ep
◦Tk

En
(x)

rY ◦ T iY ◦ T kEn
(x) = 1

j

k(j)∑
k=1

hEn ◦ TEp ◦ T kEn
(x) using En ⊂ Ep

The hEn instead of rEn comes from the possibility that the sum is empty if rYEp
= rYEn

and the 0 we get is
exactly hEn in that case.

For r̃(p)
Bn

, we have

1
j
SYj r̃

(p)
Bn

(x) = 1
j

j−1∑
k=0

r̃
(p)
Bn

◦ T kY (x)
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= 1
j

k(j)∑
k=1

hEn
◦ TEp

◦ T kEn
(x) by definition of r̃(p)

Bn
.

Putting everything together, we get by Birkhoff’s theorem,

EµY
[r̃(p)
Bn

] = EµY
[ℓn] − EµY

[1En
hEp

◦ TY ].

In particular, when n goes to +∞, we have the asymptotic equivalence

EµY

[
r̃

(p)
Bn

] ∼
n→+∞ EµY

[ℓn].

Finally, we have

EµY
[ℓn] =

∫
Y

rY 1{rY ≤n} dµY = wn(Y ) − nµY (rY > n).

However, in the particular barely infinite case, we have µY (rY > n) ≍ 1/n whereas wn(Y ) ≍ log(n). Thus,

EµY
[ℓn] ∼

n→+∞ wn(Y ).

This yields the wanted result EµY

[
r̃

(p)
Bn

] ∼
n→+∞ wn(Y ).

Proof (of Lemma 2.8). With Lemma A.2 and A.3, we obtain

C−1
p µ(En) ≲ wn(Y )

EµEp
[rBn ] ≲ Cpµ(En)

C−1
p ≲

EµY
[rBn

]−1wn(Y )/µ(En)
EµY

[rBn
]−1EµEp

[rBn
] ≲ Cp,

where un ≲ vn means that lim supn→+∞ un/vn ≤ 1.

Taking the limit in n (lim sup and lim inf) and since the convergence in Theorem 2.8 is true µEp
∈ L(µ), we

get, taking finally the limit p → +∞,

C−1
p ≲

wn(Y )
µ(En) EµY

[rBn
]−1 ≲ Cp.

Taking afterwards p → +∞, it yields
wn(Y )
µ(En) ∼

n→+∞ EµY
[rBn

].

However,

γ(µ(En))−1 = b(µ(En)−1) ∼
n→+∞

h0(0)
2µ(En) log(µ(En)−1)

∼
n→+∞

h0(0)
2µ(En) log(n) ∼

n→+∞ wn(Y )/µ(En).

Remark A.1. In fact, in Lemma A.3, we actually showed that EµY
[r̃(p)
Bn

] ∼
n→+∞ wn(Y ) − nµY (Y ∩ {rY > n}),

whenever p > 1. In the case p > 1, both terms are of same order. Since we also have

wn(Y ) =
n−1∑
k=0

µ(Y ∩ {rY > k})

and we know that µ(Y ∩ {rY > n}) ∼
n→+∞ Cn−α for some constant α, we obtain

EµY
[rBn ] ∼

n→+∞
α

1 − α
n,

which can also be proven with Theorem 2.6 which implies
1
n
rBn

µY=====⇒
n→+∞

Jα (A.4)

In particular, since E[Jα] = α/(1 − α), it also gives EµY
[rBn

] ∼
n→+∞ αn/(1 − α).
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