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Abstract

We study the process of suitably normalized successive return times to rare events in the setting of
infinite-measure preserving dynamical systems. Specifically, we consider small neighborhoods of points
whose measure tends to zero. We obtain two types of results. First, we conduct a detailed study of a
class of interval maps with a neutral fixed point and we fully characterize the limit processes for all points,
highlighting a trichotomy and the emergence of the fractional (possibly compound) Poisson process. This
is the first time that these processes have been explicitly identified in this context. Second, we prove an
abstract result that offers an explanation for the emergence of the fractional Poisson process, as the unique
fixed point of a functional equation, drawing a parallel with the well-established behavior of the Poisson
process in finite-measure preserving dynamical systems.
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1 Introduction

We consider a measure-theoretic dynamical system (X, %, u, T') where T acts on the phase space X and preserves
the measure p which can be finite or infinite. We are interested in “asymptotically rare events”, meaning that
we consider sequences (Bj,)n,>0 of measurable sets such that p(B,) — 0 as n — oo. Denoting 7“5;2 the k-th
return to B,,, we want to find the asymptotic behavior of the point process

S
Ng, = Z‘Sv(wn))ri;ii
E>1

where v is an appropriate scaling function. Such point processes are often called “Rare Event Point Processes”
(REPP for short). When u is a probability measure, extensive research has focused on the limiting distribution
of the first hitting or return time, with contributions from many authors (see, e.g., [Sau09, Hay13] and references
therein), or the whole sequence of return times seen as a process (see [LFF'16] and references therein). For
differentiable dynamical systems, the measure u is either absolutely continuous with respect to the Lebesgue
measure or, more broadly, is an SRB (Sinai-Ruelle-Bowen) measure; see, e.g., [CC13, SB22]. Due to Kad’s
theorem, the right scaling consists in taking v = id. In this context, if mixing is sufficiently strong or correlations
decay sufficiently fast, when the sets B,, are either balls or cylinder sets shrinking to a point x in the phase
space and x is p-generic, then N}Bdn converges towards the Poisson point process (PPP for short), with this
convergence understood when N,g,dn is considered as a random variable on the probability space (X, %, ) or on
the restricted probability spaces (B, Z N By, up, ). These cases are commonly referred to as “hitting REPP”
and “return REPP”, respectively.

Hitting and return REPPs are intrinsically tied, converging to the same limit (see [HLV05] for the first
hitting/return time relationship and [Mar17, Zwel6] for the point process version). The Poisson point process
is the unique fixed point of the equation connecting the two limits, thereby confirming its prominent role as the
anticipated limit point process for sufficiently mixing systems.

Yet, not all dynamical systems of interest preserve a probability measure, and some indeed preserve a o-
finite measure with infinite mass. Examples include null-recurrent Markov chains and Markov shifts [Sar01],
interval maps with indifferent fixed points [Aar97, Tha80], Z%-extensions of probability preserving systems or
billiards with cusps. For conservative ergodic systems (see Section 2.1 for precise definitions), every set of
positive measure is visited infinitely often by almost every orbit. Consequently, Ngn is well defined, and the
question of its limiting behavior arises naturally. Research on infinite measure systems has been more limited
but has seen significant growth in recent years. According to Kac¢’s formula, the mean return time to any finite
measure set is infinite, making the identity scaling v = id inappropriate. Nevertheless, suitable scalings can
still be identified [RZ20]. The convergence of first hitting and return times has been investigated, revealing
non-exponential limiting laws for various infinite measure preserving dynamical systems and natural targets
[BZ01, PS10, RZ20, Yasl8, Yas24], with fewer studies considering the whole sequence of successive returns
[PSZ17]. Recent work [PS24] has shed light on the limiting behavior of point processes for Z-extensions of
subshifts of finite type.

In this paper, we encompass both an in-depth analysis of a paradigmatic interval map with a neutral fixed
point and a general theoretical framework. We will now present our results in a fairly informal way, deferring
the precise statements until afterwards.

We choose to focus on the following class of interval maps with a neutral fixed point as it allows for a
clear illustration of our main results without the need for overly technical considerations. Namely, we consider
X =[0,1] and

T,(x) = (L1)

x4+ 2PxPt 0 <2 <1/2,

where 0 is the neutral fixed point, and p is a nonnegative parameter. This map preserves an absolutely continuous
measure which is finite for p < 1 and infinite for p > 1 (see more details below). This map is commonly referred
to as Manneville-Pomeau map or LSV map in the literature, following Liverani, Saussol and Vaienti [LSV99].
This paradigmatic one-parameter family of maps displays a rich spectrum of statistical behaviors in both finite
(see e.g. [Gou04]) and infinite (see e.g. [Tha80, Tha83]) contexts.

Our first result establishes the fractional Poisson process as the limiting point process for cylinders shrinking
to generic points of the invariant measure in the infinite measure case (see Theorem 2.4, p.11 for the precise
statement).



Theorem A. For the map (1.1) with p > 1, and for cylinders B,, shrinking to a point x which is generic for the
absolutely continuous invariant measure, the point process Ngn converges in law towards a fractional Poisson
process (parametrized by p), both when one starts in B, or off By (return and hitting REPPs, respectively).

The fractional Poisson process, which we will define below, was developed to extend the framework of the
Poisson process to systems exhibiting long-term temporal correlations, which prevent exponential behavior
[Las03] (see also [MS19] for related applications). The following result offers an abstract explanation for the
emergence of the fractional Poisson process, drawing a parallel with the well-established behavior of the Poisson
process in finite-measure preserving dynamical systems, as previously mentioned. It generalizes the results of
[Zwel6] to the infinite measure situation and builds up on [RZ20] where only the first return is considered.

Theorem B (Abstract result). Consider a dynamical system (X, B, u,T) preserving an infinite measure, and
let (Bp)n>0 be a sequence of asymptotically rare events lying in a “good” subset of X. Then, Ng” when one
starts off By, (hitting REPP) converges in law if and only if Ngn when one starts in B, (return REPP) converges
in law. If convergence takes place, both limits determine one another through a functional equation whose unique
fized point is the fractional Poisson process (with parameter related to ).

For the precise statement, see Theorem 2.1, p.6. It is worth noting that restricting to “good” subsets is an
intrinsic limitation arising in infinite ergodic theory, and that the scaling function ~y is directly linked to the
regularly varying function defining the correct normalizing sequence in the analogue of the ergodic theorem for
the infinite measure case, see Section 2.1 for further details.

In the context of finite-measure preserving dynamical systems, the study of non-generic points, especially
periodic points, has gained significant attention in recent years, particularly in the context of extreme value
theory. It is not surprising that these periodic points give rise to clustering phenomena leading to a compound
Poisson limit process for hitting and return times. The intensity and multiplicity of Poisson compound processes
are characterized by a parameter 6, lying between 0 and 1, known as the “extremal index” (see [LFFT16] and
references therein). Besides the generic points of the invariant measure under consideration and periodic points,
there also exist generic points for other invariant measures, as well as points that are not generic for any measure.
For several classes of probability-preserving dynamical systems with sufficiently rapid decay of correlations, a
dichotomy arises in the asymptotic behavior of points: periodic points lead to a compound Poisson limit process,
while all other points give rise to a Poisson limit process; see e.g., [LFF*16] (Rychlik and Gibbs-Markov maps),
[FFTV16] (for the map (1.1) with p < 1) and [BTF23, DT23] (quadratic maps with Misiurewicz parameters).

In the context of infinite measure preserving dynamical systems, the only existing study of certain non-
generic points is done for hyperbolic periodic points of prototypical null-recurrent interval maps [RZ20]. In this
paper, we conduct a thorough investigation of the application of the interval (1.1) and demonstrate that the
asymptotic behavior of successive return times exhibits not a dichotomy but a trichotomy, involving fractional
Poisson processes, compound fractional Poisson processes, and a third type of process (for which no standard
nomenclature has been established). This result represents a novel contribution to the theory of infinite-measure
dynamical systems.

Theorem C. Consider the map (1.1) with p =: 1/a > 1 with its (infinite) absolutely continuous invariant
measure. Let x € (0,1] and (By,) be the cylinders shrinking to x. Then we have the following trichotomy:

o Ifx is a periodic point, then Ngn converges in law towards a compound fractional Poisson process CFPP,,
with an extremal index 0 € (0,1) depending only on x (see Theorem 2.5, p.11).

e If x is a preimage of 0, then Ngn converges in law towards a point process N, depending on the point x

(see Theorem 2.7, p.12).
o Otherwise, Ngn converges in law towards the fractional Poisson process FPP,, (see Theorem 2.4, p.11).

This theorem generalizes Theorem A. As in that theorem, the parameter v is determined by «, which in
turn is determined by p. In the case of finite measure, i.e., p < 1, prior results [FFTV16, Zwel9] have shown
that two types of limiting behavior emerge: a compound Poisson process appears around periodic points, while
a standard Poisson process describes almost all other points except for the fixed point at 0. This point, being
indifferent, is distinguished by an extremal index 6 = 0, producing an infinite cluster. Interestingly, for shrinking
neighborhoods around 0, a different scaling allows the hitting time distribution to converge to the exponential
distribution. However, for p > 1, the limiting distribution deviates from the exponential law [Zwe08]. Notably,
unlike the finite measure case, as established in Theorem C, preimages of 0 give rise to limit point processes
that do not align with the expected fractional Poisson process FPP,. Instead, these processes are obtained
through thinning and rescaling of a specific renewal process.

Finally, in the “barely infinite case” (p = 1), we prove a similar dichotomy to that found in the finite-
measure case. Our approach parallels the method for p > 1, with the essential distinction that the preimages of



0 demand specific handling, differing from that of other points. Here, however, we benefit from the persistence
of the exponential distribution as the limiting law, which continues to apply for neighborhoods around 0 that
are scaled down [CG93].

Theorem D. Consider the map (1.1) with p = 1 with its (infinite) Let x € (0,1] and (B,) be the cylinders
shrinking to x. Then we have the following dichotomy:

e If x is a periodic point, then Ng,n converges in law towards a compound Poisson point process with an
extremal index 0 € (0,1) depending only on x (see Theorem 2.5, p.11).

o Ifx is not a periodic point, then Ngn converges in law towards the fractional Poisson process (see Theorems
2.4 p.11 and 2.9 p.13).

This paper is structured as follows: Section 2 states our main results, Section 3 provides proofs of the
abstract theorems relating hitting and return REPPs and establishes convergence to fractional and compound
fractional Poisson processes, Section 4 focuses on convergence for neighborhoods of all points for the map (1.1)
and Section 5 discusses related work and future research directions.

2 Statement of results

2.1 Preliminaries

Let (X, %, 1, T) be a measure-theoretic dynamical system. This means that (X, %, u) is a measure space and
the self-map T : X — X leaves the measure p invariant (i.e., the push forward T of p by T is equal to ).
Assume that p is o-finite and (X) = 4o00. The transfer operator T : L'(11) — L*(p) of the system is defined
via the following identity : Vf € L*(u), Vg € L>(u), [ f-(goT)du = f(ff) - gdp. We say that (X, 2, u,T)
is a “conservative ergodic measure preserving transformation” (CEMPT for short) if >, Tru = 400 - a.e.
for all w € LY (u) == {u € L*(p) | u > 0, [udp > 0} or, equivalently, if this is true for all u € D(p) = {ue
LY(p) [u >0, fudp =1} (see [Aar97, Propostion 1.3.2]).

ForAe Bandz € X,letra(z) = rfj)(x) = inf{n > 1| T™z € A} be the first time the orbits of x hits A, and
for k > 1, define inductively the (k + 1)-th return time to A, namely rgﬁ_l)(m) = inf{n > rf) (x) | Tz € A},
with the convention that rl(f)(gc) =+4o0if A=0. If (X,AB,1,T)is a CEMPT and u(A) > 0, then rff) is finite
p-almost everywhere, for each k£ > 1.

Remark 2.1. It is also possible to work with inter-arrival times. Set 7’1{41} =1y = TS) and Tik-H} =710 TT(A]C)
for k > 1. By construction, we have 7“1{4]“} = rl(f) — rff_l) with the convention that rff) = 0. To distinguish

between inter-arrival and return times, we use the super-scripts {k} and (k), respectively. Again, if (X, B, u,T)
is a CEMPT and p(A) > 0, then rilk} is finite for every k > 1, p-almost everywhere.

Remark 2.2. Sometimes, we will consider return times on an induced system. For example, if A CY C X,

we will write T’X’(k) for the k-th return time to A in the induced dynamical system (Y, B NY, Ty, uy) where
Ty (z) =T @) (x) for x € X and py = p(- NY)/u(Y). In particular, on'Y,

ri—1
_ ko (k)
T4 = ry oIy =1yt
k=0

We are now able to define the objects that we are going to study along this article.

Definition 2.1 (Process of hitting/return times). For A € 2, let
by = (rfj),r(j),...).

Furthermore, for every d > 1, we will write @EZ] for (7“541), 7"542), e ,Tff)).

Remark 2.3. For all A€ # and x € X, ®a(x) € (Ry)N where Ry := [0, +00]. If u(A) > 0 and (X, B, u,T)
is a CEMPT, then ®4 € (Ry)Y u-almost everywhere. However, it is more convenient to see it as a function
taking values in the compact space (Ry)N (see [Zwel6] for instance). On (RN one can take the product metric
d((Zn)n>15 Un)n>1) = 2ons0 d1(@n, yn)/(2"(1 + di (Tn, yn))) where di(s,t) :=|e™5 —e~"| is a standard distance
on R. Furthermore, as we consider successive return times, ® 4 is taking values inside the compact subset VW
of (Ry)N where

W= {(qb(z'))m e RV |Vi>0, o) < ¢(i+1)}.



For a non-decreasing function f : R, — R, and a process ® = (¢)r>1 taking values in (Ry)N, we write
f(®) the process (f(¢r))k>1 with the convention that f(+00) = +o0. Note that in this case, f(W) C W.

Definition 2.2 (Rare Event Point Process). For a set A € 2 and a function v : Ry — R, the Rare Event
Point Process (REPP) is defined by

Y .
Ny = Zav(u(A))T(Ak)'
E>1

For a CEMPT, if pu(A) > 0, N is well defined for almost every point (all the points such that rj(f) < 400

for all k > 1 or equivalently when ®4 € (R )Y) and belongs to the set ME2d (R, ) of Radon atomic measures
on R,. ME2d (R,) is endowed with the topology of vague convergence.

When (A) < +o00 and N7 is treated as a random variable on the probability space (A, ZN A, pa), we refer
to it as the return REPP. Conversely, when N} is considered as a random variable on (X, %, v), where v is a
probability measure absolutely continuous with respect to p, it is termed the hitting REPP. For a fixed set A,
the hitting REPP depends on the specific choice of the probability measure v. However, as our interest lies in
the behavior of N} as pu(A) — 0, [Zwe07b, Corollary 6] ensures that any limiting distribution, if it exists, is
independent of v. This result justifies the use of the term “hitting REPP” without dependence on the particular
choice of v.

For a CEMPT preserving a o-finite measure p with infinite mass, it is well-established that a direct analogue
of the Birkhoff theorem is unattainable, as no normalization exists such that the time average along an orbit
converges almost surely [Aar97, Theorem 2.4.1]. Nonetheless, many such systems exhibit a related property,
which provides insight into their asymptotic behavior.

Definition 2.3 (Pointwise dual ergodicity). A CEMPT (X, %, i, T) is said to be pointwise dual ergodic (PDE)
if there exists a sequence (a,)nen such that

n—1
1 e —a.e.
— E Thy 222 /udu7 Yu € L (). (2.1)
(o7 P n—-+o0o

In this case (an)nen is called a normalizing sequence for (X, B, u, T).

For instance, examples include the Boole map [Aar97, §3.7], interval maps with a finite number of indifferent
fixed points [Zwe00] or null recurrent Markov shifts [Sar01]. In fact, the PDE property is equivalent to the
existence of a uniform subset on which the convergence is stronger. Such sets are of paramount importance in
the study of quantitative recurrence.

Definition 2.4 (Uniform set). A set Y € 2 with u(Y) > 0 is said to be f-uniform for f € L!(u) if there exists
a sequence (ap)n>o such that

n—1
1A, L™
72 :T’“fw/fd,u.
ank 0 n—-+oo

We say that Y is uniform if it is f-uniform for some f € L'(p).

The existence of uniform sets from the PDE property is immediate by Egorov’s theorem. The proof of the
reciprocal can be found in [Aar97, Proposition 3.7.5].

Additionally, in order to get convergence results, we usually require more information on the normalizing
sequence through regular variation properties. A measurable function a : Ry — R, is said to be regularly
varying of index a € R at infinity if, for all y € Ry,

aly) o

zgrfoo a(x)

The notion of regular variation at infinity can be generalized for sequences (uy)n>o by looking at the
function u : & + u|,|. In both cases, we will write a € RV(«a) or (un)n>0 € RV(a). We also say that a function
b: R, — R, is regularly varying of index « at 0 if = — b(1/z) is regularly varying of parameter « at infinity.
We write RV («) the set of such functions or simply RV («) when the limit 0 or +00 is clear from the context.
Given a normalizing sequence (a(n)),>o € RV(«), its asymptotic inverse b is defined by the property
b(a(s)) ~ a(b(s)) ~ s (see [BGT89] for more on regular variation). Furthermore, we define the scaling function

1
b(1/s)

If @ € RV(«), then v € RVg4 (1/a). The function v will be used to scale return times.
We end this section with several notations.

S

, Vs > 0. (2.2)



Notations. We write = for the convergence in law under the law p. When the sequence of random variables

is defined on different probability spaces with probability measures u,,, we will write £y for the convergence

in law. For example, if X,, is a sequence of random variables defined on (., %y, i1n) and X is another random

variable, X,, 2% X means that (Xn)#pn converges weakly towards the law of X. Finally, when the measure

1 is infinite, we cannot draw random variables from it. However, we can still set a convergence, that we will
c

write % if we have = for every probability v that is absolutely continuous with respect to . In this case,

we say that we have strong convergence in law (see [Aar97, § 3.6] for more details).

Notations. Every set equality is understood as an equality up to a set of 0 measure. Furthermore, we use LI
for a disjoint union. We will write (an)n>0 or (a(n)),>o for sequence of real numbers, depending on the context.

We are now prepared to formally present our results. Section 2.2 is devoted to general, abstract findings
on quantitative recurrence for pointwise dual ergodic CEMPTs. Section 2.3 examines a specific family of maps
with an indifferent fixed point, where we determine the limiting behavior of shrinking targets around every
point in the phase space.

2.2 Abstract results
2.2.1 The general relationship between hitting and return REPPs
We say that a sequence (By,)n>0 € PN is a sequence of asymptotically rare events with respect to a measure y if

w(By) —+> 0. From now on, we shall consider that asymptotically rare events fulfill the following hypothesis.
n—-+0oo

(A0), There exists a uniform set Y with normalizing sequence (a,)n,>0 € RV(a) such that B, C Y for all
n > 0.

We start by showing that, if (A0), is satisfied, then the convergence of the hitting REPP implies the
convergence of the return REPP and reciprocally, each limit being determined by the other. In particular it
generalizes [RZ20, Theorem 4.3] where the authors only consider the first hitting or return.

Theorem 2.1. Let (X, %, u,T) be a PDE CEMPT with u(X) = +00. Let (By,)n>0 be a sequence of asymptotically
rare events satisfying (A0),. Let W, W be stochastic processes in (R )N. Then, we have

V(U En)) g, =22 & if and only if Y(u(En)) D, —2s U
n—-+4oo n—-4oo

Moreover, the distributions of ¥ and T uniquely determine each other in the following way. For all d > 1,
denoting F'4 (respectively F\¥) the distribution function of the d first coordinates of ¥ (respectively W), we
have, for all 0 <t; <--- <tg,

t1 -
Fldl(t, ... ty) :a/ (F[d—” (ty—ty+x,... . tg—t, + )
0

— Fl (zty —ty +a,. . tg—t1 + :r)) (t; —2)* tdx, (2.3)

with the convention FIO = 1.

Remark 2.4. Since, for alld > 1, Fl4 <1 and ozfgl(tl —2)* Yz = t§, for all ta, ... tq = t1, we necessarily
have

lim ﬁ[d](%...,x): lim F[d_l](;v,...,ac):L

Tr——+00 Tr—+o0

justifying the fact that v belongs to (RN almost surely.

Remark 2.5. Theorem 2.1 considers stochastic processes of hitting/return times taking values in (R, )N.

However, point processes are more natural in our context. If the limits ¥ and T belong to a natural subset
of (RN, it will be enough to ensure the result for REPPs. Let

W= {(¢(i))i20 € (R | ¢ < ¢t and lim ') = +OO} '



and define the following map

w — MEL(Ry)
= . 00 W /
U=")is — iz Oy T E W
- 0 otherwise.

Then, = is continuous on W' (see also [Zwe22, Remark 3.5]). Thus, by the extended continuous mapping
theorem, we immediately get the following corollary.

Corollary 2.1. Under the same assumptions as in Theorem 2.1. Assume furthermore that W, U e W almost
surely. Then, for N = Z(¥) and N = Z(V), we have

HE, ~ L(p
Ny Ey N and N ==
" n——+oo " n—+oo

The law of N determines the law ofﬁ and reciprocally.

Remark 2.6. Here, and in the following, we have chosen to change the renormalization by taking v. We could
have chosen to keep the normalization by the measure, but instead change the return random variable. As we
assumed « € (0,1], both result are equivalent (see [BZ01, Lemma 1] for example). The main difference is when
a =0 (see [RZ20, Propostion 4.1]) but we do not consider this case here.

With the choice of scaling the stochastic process instead of scaling the measures, it gives the following
theorem, equivalent to Theorem 2.1.

Theorem 2.2. Under the same assumptions as in Theorem 2.1, we have

wEy)a(®g,) “E:J: & if and only if w(E,)a(®g,) % o.
n—-+0o0 n—-+0oQo

Furthermore, the laws of ® and & determine one another through the distribution function of their marginals
by a change of variable in (2.3).

In particular, Theorem 2.1 gives back the equivalence result for the first hitting and return times if we take
the projection on the first component.

Corollary 2.2. [RZ20, Theorem 4.2] Under the same assumptions as in Theorem 2.1, we have for R, R random
variables in Ry,

Yu(Ba)) T8, == R if and only if +(u(Ba)) 15, =2 .
n——+0o n—-+o0o
If convergence takes place, then
t
P(R<t)= a/ (1-P(R<w)(t—u)*"du, Vt > 0. (2.4)
0
In terms of the Laplace transform, this equation can be rewritten as
ra 7
E[er] = 1Lt (1-E[e]), vs >0, (2.5)
s

where I : 2 — fo+°° t*~le=tdt is the standard Gamma function.

More generally, some properties of a point process N on R are defined throughout their evolution equation.
In our case, (2.3) can be used to find the evolution equation of the limit point process N from the one of the
point process N. For a point process N and d > 1, let Py(d, t) := P(N[0,t] = d). We sce Py (d,-) as a function
from Ry to [0, 1].

Before stating the results, we need to recall some basics notions of fractional calculus. For every g > 0, we
define the Riemann-Liouville integral I° as follows. For every Riemann integrable f and t € R

! _
(P00 = T D0 = 5 [ f@e -2 o (26)
L'(8) Jo
Associated to this integral, we can go backwards and define the Caputo derivative for differentiable functions f

by

CPDBE() = (1P (), EER, 0< B < 1. (2.7)

Then, Theorem 2.1 implies the following result.
Corollary 2.3. Assume the same hypothesis as in Corollary 2.1. Then, we have

CPD*Py(d, ) =T(1+ o) (Py(d—1,7) — P(d,-)), Vd >0, (2.8)
with the convention that Py(—1,t) :=0 for allt > 0 and Pn(0,0) = 1.



2.2.2 The fractional Poisson process as a common limit law

We now focus on characterizing point processes that will serve as potential limits for hitting and return REPP.
As a preliminary step, we first revisit key concepts from renewal theory and present some properties of the
Fractional Poisson Process.

Definition 2.5 (Renewal point process). Let W be a non negative random variable such that P(W > 0) > 0,
and (W;);>1 i.i.d. random variables having the same law as W. The renewal point process with waiting times
(W3)i>1 is defined by

+oo
RPP(W) = > or,,
i=1

where T 41 — T; = W,y for all i > 0, with the convention Ty = 0. Note that RPP(W) € MEad (R ).

Definition 2.6 (Fractional Poisson Process). The Fractional Poisson Process FPP,, () of parameters a € (0, 1]
and A > 0 is the renewal point process RPP(H,(\)) where H,(\) is a Mittag-Leffler law of the first type
characterized by its Laplace transform

E[e_SH"O‘)} = A

= Vs > 0.
A+ s’ y

Remark 2.7.
(i) When XA =1, we will simply write FPP,, and H,.

(i) We can easily see that Ho(\) = ﬁHa
(iii) If a« = 1, then Hy(\) is the exponential law of parameter A and FPP1(\) is the homogeneous Poisson point
process of parameter .

(iv) The first type Mittag-Leffler law H, () should not be confused with the second type Mittag-Leffler law
Y, commonly called Mittag-Leffler law in the context of infinite measure dynamical systems (see [Aar97,
§3.6] for a definition). *

(v) When 0 < a <1, E[Hy(N)] = +00.

Remark 2.8. The fractional Poisson process FPP, () was introduced as a fractional generalization of the
standard Poisson process through its Kolmogorov-Feller equation [Las03]. In particular, a process N having the
law of FPP,()) is characterized by the independence of its waiting times and the generalized Kolmogorov-Feller
evolution equation

CaP D Py (d,-) = A(Px(d —1,-) — Px(d,-)), Vd > 0, (2.9)
with the convention Pn(—1,-) =0 (see [Las03, Equation (19)] or [MS19, Equation (7.10) p. 207]).

For the majority of well-behaved rare events, we anticipate that the hitting REPP and return REPP converge
to the same limiting point process. Consequently, the point processes of primary interest are the fixed points
of (2.3). Here, we see that (2.9) is exactly (2.8) when N and N have the same law and A = I'(1 4+ «) pointing
FPP,(I'(1 + «)) as a potential fixed point. The following proposition confirms that this is indeed a fixed point
and further ensures its uniqueness.

Proposition 2.4. The fractional Poisson process FPP,(I'(1+ «)) is the only process such that the distribution
functions of its finite-dimensional marginals are the fized points of (2.3).

Remark 2.9. In Proposition 2.4, we took a slight liberty in stating that the fractional Poisson process is the
fized point of the equation. It is in fact Prpp, (r(14a)) = (gb(i))izl taking values in Ry where for every i > 1,
oW =37, _, Xy where (Xg)p>1 are i.i.d. with common law that of He(T'(1 + «)). However, if

W= {(@")iz0 € R)™ | ¥i 20, ¢ < 6 and lim 60 = +oo},
- 1—>+00

we then have ®rpp, (r(1+a)) € W almost surely, so the law of Pppp_ (r(1+a)) and FPP(T'(1+«)) are uniquely
defined by one another. In the sequel, we will not distinguish between the point process, which takes values in
MEBad (R ) and the stochastic process, which takes values in (Ry)N, hence both will be denoted by FPP,,.

atom

+oo 2P

1Both are called Mittag-Leffler because they are defined from the Mittag-Leffler function Eq(2) := Zk:o ks but we have
E[e?Ye] = Eo(T'(1 4 a)2) for z € R, whereas P(Hq > t) = Eq(—t®) for t > 0.



While the Fractional Point Process will act as the limit in most cases, other point processes naturally emerge.
To accommodate situations where the first waiting time differs from subsequent ones or the mass associated to
each point is random, we introduce delayed renewal point processes and compound point processes.

Definition 2.7 (Delayed renewal point process). Let V, W be two non negative random variables such that
P(V > 0),P(W > 0) > 0, and let (W;);>1 be i.i.d. random variables with the same law as W. The delayed
renewal point process with delay V' and waiting times (W;);>1 is defined by

“+o0
i=1

where T, — T; = Wiy for all i > 1 and Ty = V. Note that DRPP(V, W) € MEad (R,).

atom

Definition 2.8 (Compound point process). For a simple point process P = z;of or,, we define the associated
compound point process ¢(P)(m) of multiplicity 7 (where 7 is a probability distribution on N) as

+oo
co(P)(m) = Z Xio,,
i=1

where (X;);>1 are i.i.d. random variables distributed according to 7 and independent of (T5);>1.

Remark 2.10. This is not the standard approach to defining a compound process. Here, we utilize the structure
of R and the fact that the multiplicity w takes integer values. However, compound point processes are typically
constructed in a more general framework, particularly the compound Poisson process, as described in detail in
[LP18, Chapter 15].

Definition 2.9 (Compound Fractional Poisson Process). We define CFPP, (), m) as the compound process
with multiplicity 7 associated to the fractional Poisson process FPP,(\).

Remark 2.11. In our setting, we do not impose the waiting time of a renewal process to be positive almost
surely, so compound processes can also be characterized as renewal processes. For instance, let Hy(\) be the
waiting time of the fractional Poisson process. Let 6 € (0,1] and let Wy, 9()\) be a non- negative random variable
with distribution function

P(Wao(N\) <t)=1—0+0P(H,(\) <1). (2.10)
It means that with probability 1 —0, W, g(A) = 0 and (Wa,9(X)|[Wa,e(X) > 0) has the same law as Hy(N). Then,
DRPP(H,(A), Wa(N) = CFPP, (X, Geo(0)),

where Geo() is the positive geometric law, i.e. if Y = Geo(6), for all k> 1, P(Y = k) = (1 — §)* 1.

To prove convergence of the hitting REPP and the return REPPs, further conditions on the sequence of
targets (By)n>0 are necessary.

Assumptions (A),.
A sequence (B,) € %" of asymptotically rare events satisfies (A), if it satisfies (40), and the following
conditions :

(A1), For every n > 1, we can write B,, = U(B,,) U Q(By), and lim,,_, o u(Q(By))/u(By) = 6 € (0,1] (the

extremal index).

(A2), There exists a sequence of measurable functions 7, : B, — N and a compact subset U of L'(u1) such that

= 1Q(Bn)> Vin
g (M(Q(Bn)) cu, =t

(A3)a The sequence (7,,)n>0 satisfies y(u(By)) Tn =25 (), where v is defined from (an)n>0 by (2.2).

n—-+oo

(A4)q The sequence (Q(By,))n>0 is such that pgg,)(Ts, < 1) ——— 0.

n—-+o0o

Furthermore, if U(B,,) # 0, we have

(A5)a The sequence (U(By,))n>0 is such that uy (g, )(TB, > ) —— 0

n—-+oo



(A6), We have the following limit

la

—( lvs,y \ 1
() ~ e

Let us analyze these conditions. The assumptions (A4), are identical to those outlined in [RZ20, Theorem
7.2], where only the first return is considered. We show that these assumptions are sufficiently robust to
establish the convergence of the point process as well. Assumption (A0), ensures that Theorem 2.1. can be
applied effectively.

Condition (A1), serves two purposes: it identifies points that are likely to form clusters within U(B,,) and
points that escape the target Q(B,,), while also guaranteeing that the extremal index 6 is well-defined.

Condition (A2), specifies an appropriate waiting time 7,, such that the density within the target set
transforms into a desirable structure under the dynamics. However, 7,, must remain asymptotically negligible,
a requirement addressed by (A3),.

Cluster compatibility is handled through (A44), and (A5),, ensuring that 7,, aligns with clustering behavior.

Finally, Condition (A6), explains the geometric distribution of multiplicities. While this condition could be
generalized to allow for other multiplicity distributions, we retain it as stated, since the geometric law is the
only distribution arising in our examples.

We can now state our main theorem, which establishes that Assumptions (A), are sufficient conditions for
convergence to the Compound Poisson Process.

— 0.
n—-+4oo

Lo (upy,)

Theorem 2.3. Let (X, %, u,T) be a PDE CEMPT with ;1(X) = +o00. Let (Bp)n>0 be a sequence of asymptotically
rare events satisfying (A)q. Then,

Ny, ==Y CFPP, (4T(1 + a), Geo(d))

" n—4o00

and

KBy

N} ——= RPP(Wa (0T (1 + @))).

In particular, if 6 = 1, we have

Y L£(1) v KBy
NBn ﬁ FPP,(T'(1+«)) and NBn ﬁ FPP,(T(1+ «)).
The primary goal in the following is to apply Theorem 2.3 to interval maps with a single indifferent fixed
point, using shrinking cylinders as rare events. However, the theorem is broadly applicable to a wider range of
maps and asymptotically rare events, making it a versatile tool for many other contexts.

2.3 Rare event point processes in maps with an indifferent fixed point

We now focus on the specific case of interval maps with an indifferent fixed point, as defined by (1.1). Recall
that = € [0,1] and

T,(x) x4+ 2P2PT 0 <2 <1/2,
€Tr) =
P 2z — 1, 1/2<z<1.

We define o := p~!. Once p is fixed, for simplicity, we omit its dependence in the index and we will simply

write T instead of T},. Let T7 and T5 be the two diffeomorphic branches of T' (more precisely their extensions
to [0,1/2] and [1/2,1] respectively) and set ¢, := T} "1. In particular, co = 1 and ¢; = 1/2.

For 0 < p < 1, the absolutely continuous invariant measure 4 is unique (up to scaling) and normalized to
a probability measure. In contrast, for p > 1, p remains unique but becomes infinite. Since we are interested
by the infinite case, we assume p > 1 and fix a scaling so that p([1/2,1]) = 1. The density p = du/d Leb is the
following:

T

p(x) = ho(x)m, z € 0,1], (2.11)

for some continuous function hy bounded away from 0 and 4+oo. For more details about such dynamical systems,
see [LSV99],[You99] or [Alv20, Section 3.5] or [Tha80, Tha83].

The dynamical system ([0, 1], T, i) is a PDE CEMPT with normalizing sequence (ay,)neny € RV () and every
interval I = [¢, 1] with ¢ > 0 is uniform (see [Zwe00] for example).
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Set Y := [c1, o] = [1/2,1] and define & := {[ckt1,¢x], &k > 0} = {YIu{Y°N{ry = k},n > 1} the measurable
partition of [0,1] defined from return times to Y. Then, for every n > 1, let &, = \/?;01 T—€. The partition &
dynamically generates the Borel og-algebra Z and for a point z € [0, 1], we write &,(x) the element of &, that
contains x. If z is not a preimage of 0, it is easy to see that &, (x) is well defined for every n > 1.

In this case, &, (z) shrinks to {2} as n goes to +00 and will serve as our asymptotically rare events in the
study of the hitting and return REPP.

For the preimages of 0, such a definition for asymptotically rare events is not possible anymore. However, if
T*z = 0, the connected component C? of T~F[0, ¢,,] containing z is a union of elements in &, for all n > 1. As
n goes to +oo, C7 shrinks towards = and thus (C7'),>1 will serve as our sequence of asymptotically rare events
associated to x in this case.

2.3.1 Points that are not preimages of the indifferent fixed point

If z is not a preimage of 0, as determined by the chosen partition &, we define the asymptotically rare events as
B,, := &, (z) for all n > 1. This setup results in two distinct behaviors depending on whether x is periodic. If x
is not periodic, both the hitting and return REPPs converge to the fractional Poisson process.

Theorem 2.4. Let p > 1. Assume x € [0,1] is not periodic and not a preimage of 0. For all n > 1, set
B, :=&,(x). Then,

Ny, %FPPQ(P(HQ)) and N}, =22 FPP,(D(1 + a)).
" n—+oo ™ n—+o0

When x is g-periodic, clusters of hittings appear and thus we get a compound fractional Poisson process in
the limit.

Theorem 2.5. Let p > 1. Assume x € (0,1] is periodic of prime period q. For all n > 1, set By := &,(x).
Then,

L(p)

N, === CFPP,(fT(1 + a),Geo(6)) and N} % RPP(W,.0(00(1 + a))),

where the extremal index =1 — |(T?) (x)| 1.

The framework closely mirrors that of the finite measure case, with the significant difference being that the
Poisson point process is replaced by the fractional Poisson process. Notably, in the barely infinite case where
p = 1, the limits are instead the standard Poisson point process and the compound Poisson point process,
characterized by parameters 6 and multiplicity distributed as Geo(6).

2.3.2 The indifferent fixed point and its preimages

If p > 0, the neutral fixed point 0 always requires a special treatment, because its extremal index 8 = 0
as the neutrality gives a cluster of infinite length on average. In the finite measure context, for shrinking
neighborhoods (By,),>1 of 0, u(By,)rp, converges almost surely to +oco when one starts in B,, and to 0 when
one starts off B,,. However, the exponential law can be recovered with the scaling u(Q(By,)) instead of u(By),
where Q(B,,) := B,\T"'B,.

Proposition 2.5. [FFTV16, Theorem 2], [Zwel9, Theorem 5.1] Assume 0 < p < 1 and let (B, )nen be a nested
sequence of intervals neighborhoods of 0. Then, we have

w(Q(Bn)) 5, === ¢,

where € is an exponential random variable.

This highlights the robustness of the exponential law in the finite measure case. The key idea of [Zwel9,
Theorem 5.1] is to relate returns to 0 with returns to 1/2, the only other preimage of 0. Unlike 0, the point 1/2
is more favorable for analysis since it is not a fixed point and lies within the common inducing set Y = [1/2, 1].
Within this set, standard inducing techniques can be employed to establish the convergence of the return process
to the standard homogeneous Poisson point process for shrinking neighborhoods of 1/2. The result for shrinking
neighborhoods of 0 is then derived as a consequence of this approach.

When p > 1, there are no established techniques to directly address the point 1/2. However, it is possible
to analyze hitting times for neighborhoods of 0 by viewing them as the apex of the tower constructed via the
induction Y = [1/2,1]. At this stage, it becomes necessary to distinguish between two scenarios: the “proper
infinite case” (p > 1) and the “barely infinite case” (p = 1).

For p > 1, [Zwe08, Theorem 2] demonstrates that a non-degenerate limit can be achieved with an appropriately
chosen scaling. However, the resulting limit does not align with the exponential law observed in the finite
measure case or the Mittag- Leffler law H,(I'(1 + «)) typical for generic points.
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Theorem 2.6. [Zwe08, Theorem 2] Let p > 1. Let B, := [0,1n,] such that n, ——— 0. Then,

n—-+oo

L)
_— e
) "B ot Ja

where J, is characterized by its Laplace transform

Ele 7] = 11 , Vs >0,
e~s + sfo y~e=sv dy

and

! dx
0= ],

Using Lemma A.1, we can rewrite this result in our framework, using the scaling v defined in (2.2).

Corollary 2.6. Under the same assumptions as in Theorem 2.6. Then,

where Jo = doJn and dy = (T(1 4+ a)T(1 — @)~ = (sin(ra)/(ra))/*.
Using (2.5), we can construct a random variable ?ja associated to J,. In particular, the Laplace function of
Ja is the following

-1
S

~ o 1
—5Ja . —sdg —a ,—dasy >
E [e } 1 Tita) <e + sda/O y %e dy) , s>0. (2.12)

The random variable ?ja plays a central role in characterizing the limiting point processes obtained for
shrinking targets around points that include 0 in their orbit. Specifically, any such limit can be represented
as a thinning and rescaling of the renewal point process RPP(J,). To formalize the concept of thinning and
rescaling a point process, we rely on the following definition.

Definition 2.10 (Thinning and rescaling). For a point process N = Zj:f or,, 7 > 0 and v > 0, we call
7-thinning and v-rescaling of NV the point process

+oo

N () law Z X 80ury) »
i=1

where (X;);>1 are i.i.d. random variables, independent from N and X; ~ Bernoulli(7).
We are now able to state our theorem for shrinking neighborhoods of preimages of 0.

Theorem 2.7. Let p > 1. Let k > 0 and assume x € T-*+D{0}. Let B, := C? be the connected component
of T=*+10, ¢,] containing z. Then,

Ny =2 RPP(F,) @@ @@ gng Ny EY . DRPP(J,, Ja) @@ Q@)
" n—+400 ™ n—+oo

where

p(z)
Qk JJ) = .
W= T @)
Remark 2.12. For every k > 0, Q is a probability on T~*+1D{0} because p is a fived point of the transfer
operator T, whence

o172 = o)1/ = Y LU

Tky:%

Theorem 2.7 reveals that points whose orbits include 0 exhibit markedly different behavior compared to
the cases outlined in Theorems 2.4 and 2.5, where the transition from the finite measure setting is more
straightforward. Specifically, in the finite measure case, preimages of 0 conform to the standard Poisson process.
However, in the infinite measure scenario, the interplay between extended excursions and visits to neighborhoods
of 0’s preimages disrupts similar outcomes. That said, points located farther from 0 are expected to exhibit a
diminishing dependence on 0. This phenomenon is explored further in the next proposition.

12



Proposition 2.7. For every sequence of (x)r>1, with x;, € T~*+1D{0}, we have

RPP (3, )(@ @) Q@) ——— FPP,(I(1 + ),

k—+oo

and

k— oo

For periodic points, the longer the period, the closer the extremal index 6 approaches 1, resulting in the
limiting point process converging more closely to the fractional Poisson process. Similarly, Proposition 2.7
guarantees a parallel trend for preimages of 0: the farther a point lies from the neutral fixed point 0 (in the
sense of time iterations needed to hit 0), the more closely its limiting behavior aligns with that of the fractional
Poisson process.

2.3.2.1 Barely infinite case p = 1. When, p = 1, the picture is different. Indeed, for neighborhoods of 0
and a well-chosen scaling, the limit law obtained is again the exponential, as in the finite measure case.
Theorem 2.8. [CG93, Theorem 5], [C195, Theorem 3.3] Let p =1 and B, = [0,¢,] for n > 0. Then,

Euy [T8,] " 7B, el

n—-4o0o
where & is the exponential law.

As for Corollary 2.6 for p > 1, we need to make sure that the result can be written in our setting to make
the scaling gamma appear. This is ensured by the following lemma.

Lemma 2.8. With the same notation as in Theorem 2.8, we have

’Y(M(Tz_an)) E., [TBn]il.

n:J+oo
Using this and applying the same approach as for p > 1, we get the following theorem
Theorem 2.9. Letp=1, k>0 and x € T~**1{0}. Let B, := C™. Then,

N}, =222 PPP(1) and Nj ==L ppp(1).
n p—+o00 ™ n—-+00

Therefore, in the special case p = 1, the preimages of 0 have the same limit behavior as any other non
periodic point and thus we only have a dichotomy.

3 Return and Hitting Rare Event Point Processes and the Fractional
Poisson Process

3.1 Equivalence between Hitting and Return Point Processes

This part is devoted to the proofs of Theorems 2.1 and 2.2 and their applications.

3.1.1 Proof of Theorems 2.1-2.2

As stated in Remark 2.6, Theorems 2.1 and 2.2 are equivalent since a € (0,1]. We are going in fact to prove
Theorem 2.2 and study the sequence of processes (u(En)a((bEn)) For that, we introduce some more

notation. For A € B, u € L*(u), u>0, d>1and t1,...,tq >0, let

n>0"

Gt ta) = o (p(A) (@) < (1, t)

where y,, is the measure absolutely continuous with respect to 1 with density w. In particular, if [wdy =1,
GLd’ ] ', is the distribution function of the random variable p(A) a(@f]) under the probability p,. We also define

é‘[:‘i](tla"wtd) = HaA (/’L(A)a(q)‘[jb < <t17"'7td)) Vd > 1, t1,...,tq 20,

as the distribution function of u(A)a(‘I)f]) under 4. Before delving into the proof, we first establish the
following lemma, an adaptation of [RZ20, Lemma 5.1], which provides a decomposition for multiple return
events.
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Lemma 3.1. For all A € A, ny,...,nqg € N, we have the following decomposition.:
{88 < e} = )7 (A0 {07 < (i — feccooma— 0} 0 {08 <y — £ ma— ) )
=1
Remark 3.1. In fact, we also have the easier decomposition
{8 < (e} = )7 (A0 {057 < (na— 0o oma— )},
1=1

but we will later take advantage of the disjointness.

Proof (of Lemma 3.1). For every £ > 1, T~* (Aﬂ {@ffl] <(ng—4...,ng— Z)}) C {@Eff] < (nl,...,nd)},
hence we have the inclusion of the right member into the left one.
Now, let z € {@EZ] < (ny,... ,nd)}. Consider £ :=max {p<n; |z € T‘p(Aﬂ{q)Ezfl] <(ng—p,...,na—p}H}
The maximum ¢ is well-defined, as the set is non-empty with 74 (z) included as an element. By construction,
reT (AN {@EZ*” <(ne—4,...,ng—10)}). Ifz € T‘e{(I)Ef‘ﬂ < (m—4,,...,ng—1{) }, then £ + ry(T*z) is
also in the set which is a contradiction by definition of ¢.

The same approach shows that the union is disjoint. For 1 < /¢; < ¢35 < ni, we have

Tt (an{elf ) <o -t — ) o (@l < -, e —0)})
nT=* (Aﬂ {‘1’57” < (ng—4ta,...,nq —52)} " {(I)Ef] < (=204 _62)}6)
CT—&(AQ{@@ < (1 —lyyeyma— )}
AT~ (AN {7 < (ng — £y, 04 *42)}))
c T‘“(Am (o < (i —try,cma— )} N {2 < (62 — 1 mo _Kl""’nd_el)})

CT_Z1 (Aﬂ{‘bg] S (n1 —61,,...,nd—€1)}cﬂ{®f] S (n1 —El,ng—fh...,nd—fl)}) :(Z).

O
We are now ready to go on with the proof of Theorem 2.2.
Proof (of Theorem 2.2). Set R, := u(E,)a(®g,) and for all t > 0, let i be the integer such that
{(En)a(re,) <t} = {re, <pll}.
Conversely, define for all 0 < ¢ < pg], the number 195]2 such that
{u(Bnatre,) < 0} = {re, <ol = 0}
Thus, for all d > 1 and t1,...,t; > 0 we get
(R < (t1,. o ta)} = {0 < (0], plie) (3.1)
and
(R < ], ol = (o] < (plt) — ¢, pltdl — 0y} (3.2)
The quantities p%] and 97[54 can be computed using b the asymptotic inverse of a and «a itself. We get
P =0t/ i(E) and 0, = p(Ba) a(pf] -~ 0).
First, assume the convergence of the return process, that is to say assume that R, % ®. This is
equivalent to the convergence of R for every d > 1 and thus assume that égl (t1y. . tq) = Gl (t1,. .. ta)

at every point of continuity (1, ...,tq) of G4 such that t;((ty/t;)"/® — m/M)* for all 0 < m < M are also
continuity points of GI4. Without loss of generality, we can assume that t; < --- < t4 as the sequence of returns
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is increasing. In the following, we write éi{l ] instead of é%}l to ease the notations and we will do the same for GLd ].

Now, we have

G, (tr, ... ta) :/ UdN:/ udp  (by (3.1))
’ {RI<(t1,0sta) } 2ld <l plihy

[ty
Pn
. T u d,u) (by Lemma 3.1)

- ; ([Enn{@[g;”s(p£i’2]—e,...,p£fd]—e)}n{@[;;g(p&f”—é,,...,pﬂf"”—fz)}

[t1]

n
- Z (/ fzu d'u
¢ Enn{ e U< (ph? —t,plid —0) }

=1

n

T'u dM) (because pltil < plti+ily

. /Enﬂ{é[glﬁ(pif”—e,.._,pgdl_g)}

= Z (/ Tt du
Enm{R’[j—l]S(,&[‘Q] ﬂ[td])}

n,e2" " n, L

T u du> (by (3.2))

+1
) /Em{Rw <(o0lit) )

feudu

— / T u du)
Enﬂ{RLd] < <19[t1] oltal ) }

e R e
M—1 | el |

- Z feud,u
)}

=| gl |+1

vo1 e

IA
VY
S
D

—N
&
B
L
A
7N
%,—
S

IN

L’%lpglw

_ Tludpu.
/EWO{RLMS <19[t1] gltd] ) } gft Z 14

mo [ R el foht! |41
At this point, we can take advantage of the fact that Y is uniform for u. In particular, it means that of all
0 < ¢ < ¢, we have

CQk*l
g T ~ (¢S — ¢)ap,  uniformly mod p on Y,
€=C1k

and thus

Lm+1 [t1]
e +1\*  [m+1\"
~ m
g T u ~ <( > — ( ) > @) uniformly mod p on Y,

e=[ gl |41

meaning that for all € > 0 and n large enough,
[zl

Yo T'u<(l+e) ((7”]\;1)& - (T)CY) a -

e=| ol |41
By definition, a i) = a(b(tr/pw(Ey))) ~ t1/u(Ey,) and by the mean value theorem ((m + 1)/M)® — (m/M)* <
am®~1/M*. Hence, for n large enough, we get

M-1

Gt ota) < (4 aty 3 2 (0)" {“En R A P TTRAr))

— A Pn A Pn
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—HE, (Rrij] < <19E:,lﬂ%p£fl]J [ ’1957E77L+1 [tl]J ))]

Pn

S Ly Gl (gl ta]
<(+e)at M (51) {Gk @k Lottt mpkf”J)
_gld (gl [ta]
al (ﬁn{”ﬁlpgl TR S J)] : (3.3)

The lower bound is obtained similarly. Now, Vio > t; > 0,V0 < ¢ < 1, we have

ol —eny) = ”(E")a<b(u(tgn)) b(u(gn)))
(bt ()b ) — )

e (!
( (<ii>””>)
WKJO

where we use the hypothesis a € RV(«) which implies b € RV(a~!). Since we assumed the convergence for the
return time process, it yields

ﬂ[tz] lt1] *,U(E )

n,CPpn

B0 o i)
() () 5))
and
A s i)
e () o () ))

Thus, together with (3.3), recognizing a Riemann integral and letting € go to 0, we get
1 «@ (0%
G (tr,... ta) —— at1/ [G[d—” ((té/o‘ —t}/”‘r) ,...,(t}/“ —t}/“r) )
0

k— o0
el (t1 (=) (B =) (B = o) )] ro1dr,

This means that we have convergence of the normalized hitting time point process with distribution functions

G(ty,... tg) == aty /01 [é[d—l]( (té/“ _ t}/“r)a o (tz/a B ti/%)a)
~ G (tl (1—7)" (tl/a ti/QT>a ey (t}/a - t}/ar>a>} retdr. (3.4)

Now, assume conversely the convergence of the hitting process. By Helly selection theorem in R? (see
[Kal02, Theorem 5.19]) and diagonal extraction, we can find a subsequence (nj) such that G converges
pointwise towards éLd] for every d > 0. But, in this case, alongside this subsequence we have GLd, ]nk that
converges pointwise towards GLd] defined by (3.4) from éLd]. Since the equation defines uniquely éLd] from

GLd] = Gl by Lemma 3.2, it gives the wanted convergence. O

It remains to prove the following Lemma ensuring that the relationship found determines uniquely the law
of one limit process from the laws of the other.

Lemma 3.2. Let ® and ® be two processes on the phase space Ry. For all d > 1, write Gl and Gl the

distribution functions of their marginals. By convention let G0 = GOl = 1. Then, the equation ¥d > 1,
VO <t <. <tg,

1
Gty ... L) = atl/ {é[d—” ((té/‘* —t1/%s) %, () t}/“s)”‘)
0
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=G (1 (1= 9), (1 = a/s) " (=) )] s s,

defines uniquely the law of ® from the law ofé and conversely.

Remark 3.2. When o € (0, 1], instead of looking at the distribution function GI%, we can look at FI¥ defined
by

Flll(ty, . tg) = GUS, ... 19) Vty, ... tg > 0.

In fact, F is exactly the family of distribution functions of the limit point processes ¥ and T of Theorem 2.1 by
Remark 2.6. Thus, Lemma 3.2 is equivalent to Lemma 3.3 (below), and the equation in Lemma 3.3 gives (2.3),
concluding the proof of Theorems 2.1-2.2.

Lemma 3.3. Let ® and ® be two process on the phase space Ry. For all d > 1, write FI4 and Fld the
distribution of their marginals. By convention, let FI% = FIO) = 1. Then, the equations

t1 .
Fl(ty, . ty) :a/ (F[d*” (ty =ty +,...,tg —t, + )
0
— Fl (g, t, — +x,...,td7t1+z)>(t1 —z)* tdu,

where d > 1 and one takes any d-uplet 0 < t1 < --- < tg, uniquely determines the law of ® from the law of ;I;,
and vice versa.

Proof (of Lemma 3.3). Tt is immediate that the law of ® is uniquely determined by the law of 3. Now, assume
that there are two stochastic processes ®; and P, leading to the same ®. We will argue by induction. The case
d = 1 corresponds to the equivalence between hitting and return for the first return and has already been dealt
in [RZ20, Remark 4.2.b)]. For d > 1, assuming the distribution functions are equal up to d — 1, it means that
forall 0 <t; <--- <ty

1
a/ Fl[d](;v,tg—tl—i—x,...,td—tl—i—x)(tl—x)a_ldx
0
:a/ F[d](xtg—tl—i—x ta—t+a)(t —2)* .
0
Taking so, ..., sq such that t; — t; = s; for 2 < i < d, we obtain, for all ¢1,s4,...,84 > 0,

t1 -
a/ Fl[d](x,x+82,...7$+8d)(t1_m)a_ldl‘
0

t1
:a/ Féd]($,$+52,...,$+sd)(tl,x)afldx.
0
Thus, if we define

I x»—>F[d](x,:ﬁ+52,...,x+sd)—ﬁz[d](x,x—FsQ,...,x—Fsd),

we then have
t1
/ F@)(t — 2)°~ e =0, Vi1 > 0.
0

Thus, by definition of the Riemann-Liouville integral (2.6), we have I¢f = 0 which implies that f = 0,

FlI = F[d] It completes the induction and the proof. O

meaning that F}
We turn now to the proof of Corollaries 2.2-2.3

Proof (of Corollary 2.2). This is immediate by looking at the projection on the first coordinate, i.e. d =1, in
(2.3). With FI% = 1, we get

1
Fl@) = a/ (1 — FU )t —u)*tdu, t>0,
0

which is exactly (2.4). Equation (2.5) can be found by the same method as in [PSZ13, Lemma 7). O
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Proof (of Corollary 2.3). Recall the definition of Py(d,t) = P(N][0,t] = d) for a point process N, d > 0 and
teR. Let d > 1and ¢t > 0. Then, (2.3) with ¢1,...,tg =1t is

t
Fl(, ... 1) = a/ (F[d711($,...,x) —F[d](x,...,x)) (t —x)* ' da.
0
Since Fl(t,...,t) = P(N[0,t] > d) and Fld(¢,... . t) = P(N[0,t] > d) for all d > 0, it yields
t
P(N[0,2] > d) = a/ P(N[0,] =d — 1)(t — 2)* ' dz.
0

Thus, for every d > 1, we get

whence
Py(d,) =T(1+a)I*(Pg(d,) — Py(d—1,-))
which is the integral formulation of (2.8). Similarly, for d = 0, we obtain

Py(0,-) =1 =T(1+a)I*(P;(0,-)).

3.1.2 Proof of Proposition 2.4

As suggested in Remark 2.9, we actually prove the characterization of the law and its uniqueness for the
stochastic process. It entails the uniqueness of the point process via the composition by =Z. The process
Prpp, (M(1+a)) = (6);>1 with ¢(¥) = ZZZI Xy and (Xj)g>1 id.d with common law H,(I'(1+ «)), is such that
E(Prpp. (M(14a)) = FPPL(T(1 + ). ,

We can do the same with ®rpp(w, ,(or(14a)) = (p);>1 where () = Yooy Wi and (Wy)k>1 are iid
having as a common law W, ¢(6T'(1 + «)) (see (2.10) for the definition of these random variables). Then,

E(PRPP (W o (0T (14a))) = RPP(Wap(0T(1+ ))).

Proof (of Proposition 2.4). We will actually prove that for 6 € (0, 1], ®rpp(w,, ,(4r(1+a))) is the only stochastic
process such that for all d > 1 and ¢t; < --- < g,

ﬁ[d](tla"'atd) = (1 70)F[d71](t17-"atd)
tl .
- ea/ (F[d‘” (ty —t1+x,... tg —t; + ) (3.5)
0
— pld (yte —t1 +x,...,tg—t1 + x))(tl — :E)o‘*l dz.

In particular, when 6 = 1, we will get that FPP,(I'(1 + «)) is the only process such that its finite-dimensional
marginals are fixed points of the transformation from return times to hitting times.

As in Lemma 3.3, we show by induction on d that there is at most a one fixed distribution FI¥. For
d =1, (2.5) in Corollary 2.2 clearly ensures that there is a unique fixed law and using the Laplace transform,
Wa.0(0T (1 4+ a)) can be identified as the fixed law?.

)

Now assume d > 2 and that the result is true for d — 1. Let Fl[d] and Fg[d] be two distribution functions
compatible with Fl[d_l} and FQ[d] satisfying (3.5). Since Fl[d_l] = F2[d—1} by hypothesis, for all ¢1, so,...,54 > 0,
we have

d d
Fl[ ](tl,t1+82,...,t1+5d)7F2[ ](t17t1 +52,...,t1+$d)

ty
= a/ (Fz[d]($71'+827...,8+8d) —Fl[d](x,;v—&—52,...,s—|—sd))(t1 —x)* tda.
0

2This result corresponds to [RZ20, Lemma 7.1] and Wa,6(0T(1 4+ ) corresponds to the law ﬁa’g in the article. However, in
[RZ20], the constant I'(1 + «) has been forgotten in the identification.
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Letting
h:xw— Fl[d](x,:chsQ,...,ersd) - FZ[d](x,ersQ,...,ersd)
the equation can be rewritten as
h=-T(1+a)I%.

Going into the Laplace domain (which is possible because h is locally integrable as its absolute value is bounded
by 1), we get h = 0 and thus Fl[d] = FQ[d].

Thus, there can be at most one process whose distribution functions are fixed points of (3.5). It remains
to demonstrate the existence of at least one fixed point for this equation. Fortunately, the theory applies to
certain examples of null-recurrent Markov chains for which results concerning first hitting and return times are
well-established (see [BZ01, PSZ17] for the case § = 1, and [RZ20] for the general case).

By leveraging the strong Markov property, these results extend to the point process level in cases where the
waiting times are independent. In such scenarios, the process Prpp(w, ,(6r(1+a))) emerges naturally and must
satisfy (3.5). This demonstrates that a fixed point indeed exists.

Consequently, the fixed point is both unique and well-defined?. O

3.2 Sufficient conditions for convergence towards FPP, and CFPP,

In this section, we prove Theorem 2.3. We first need to recall the following lemma giving a uniform control of
the convergence to 0 for the average of the iterations by the transfer operator for functions in a compact subset
of L'(u).

Lemma 3.4. [Zwe07a, Theorem 3.1] Let (X, %, u,T) be a CEMPT and U a compact subset of Li(u) such that
Judp =1 for all w € U. Then, uniformly in u,u* € U, we have

1 M-1 1 M-1

i Ja) — Td %

PR Do I
=0 =0 L ()

Now, we can dive into the proof of Theorem 2.3.

Proof (of Theorem 2.3). As discussed in Remark 2.9 and in the proof of Proposition 2.4, we will actually show
the convergence of the process. Then, the application of = and the extended continuous mapping theorem give
the convergence of the point process.

We consider the sequence of stochastic processes (v(u(B,))®g5,)n>0 on Ry and the sequence of probability
spaces (B, s, ), i.e we look at the succesive return times. As (R, )Nis compact, this sequence is tight so
up to a subsequence and that the convergence of the stochastic process is characterized by the convergence of
its finite-dimensional marginals, we can assume that the familly of distribution functions (ﬁ][gdi)dZI converges
towards the family of functions (ﬁ [d])dzo (meaning that we have pointwise convergence for each one of them at

the continuity points of F [d]). We are going to show that the only possible limits are the distribution functions of
the successive return times of the stochastic process ®rpp(w, ,(0r(1+a))), Which is enough to get the convergence
towards this process. By Theorem 2.1, for any given density u, let (ngl »)d>1 denote the family of distribution
functions corresponding to the finite-dimensional marginals of the stochastic process (y(u(B,))®p,) on the

probability space (X, ), where p, is a probability measure absolutely continuous with respect to p, having
density v. Then, the family of renormalized distribution functions (ﬁ 1[;1]1 ,v)dzl converges to the family of functions
(Fld) 4. Both (ﬁgﬂ,u)dzl and (F9) ;5 satisfy the relationship given in (2.3).

Foralld >1and 0 <t; <--- <ty such that (t1,...,%q) is a continuity point of ﬁ[d], we have

ﬁl[gd}l (tl, ce ,td) :u(luU(v(Bf:;))/ﬁU(Bn) (’Y(MBn) rp, <ti,... 77(;“’(Bn)) Tglz = td)
+ AﬁQ((BiT;))MQ(Bn)(W(MBTL) e, <ti,...,7(u(Bn)) 7”1(;72 < td) : (3.6)

We are going to study the two members separately, in Lemma 3.5 and Lemma 3.6. When U(B,,) = () the first
term is trivially equal to 0 by convention and we can jump to Lemma 3.6 directly.

3In [RZ20], the first-return case confirms this fixed point, although it omits the constant T'(1 + «).
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Lemma 3.5. Assume U(B,) # 0. For alld > 1 and 0 < t; < --- < tq such that (tg,...,tq) is a continuity
point of Fl4=1 we have

U(B, ~iq_
OB oy (B 5, < 1, A GBI TS < ) ———> (L= O)F 1, 1)
/.L(Bn) n—+o00
Proof (of Lemma 3.5). By (A1l)a, we have u(U(By,))/1(Bn) R 1—6 . It vanishes when 6 = 1 and else we
n o0
have

o (V(Ba)) s, <ty v(1(Ba)) 1) < t4)

d—1

< HU(By) <ﬂ {V(M(Bn)) Tgl oTp, < L‘z‘+1}>

=1

1u(s,) d—1

/Bn WU(B) (H I{W(M(Bn))rg; gt,m}) oTp, dus,
U(Bn

=B ( ) (H (1B ) <t H}) dus,

d—1
HM/ H B T <ty W = F Uty ta) - (by (46)a).

< ,U(Bn)

On the other hand, we have

s, (V1B T, < b, Y (u(B D 9 < ta)
({7 ) 7B, <t1}m { )i o Ts, <td—7(u(3n))7“3n}>
and for all € > 0 such that (o —e,...,tq — €) is a continuity point of F'[d’”, we have

o) (V(Ba) T, <t Y (u(Ba) Tl < ta)
d—1
Z HU(Bn) (ﬂ {V(M(Bn))rgl oTp, <tiy1— s})

=y, (Y Bn)) e, > t1) — p(y(1(Bn)) T, =€)

Again by (A6),, the first term converges towards FI%(t, — e, ..., ty — ). For the two other terms, by (43), we
have pp, (Y(u(Bp))mn > €) P 0 and thus py, (Y(u(Bp))m > €) e 0 because 6 < 1. Together with
n—-+0oo n—-—+0oo

(A5), it ensures the convergence to 0. Since (1, ...,t4) is a continuity point of FI91, letting ¢ — 0 gives the

result. O]

Lemma 3.6. For everyd > 1 and 0 <ty <--- < tq such that (t1,...,tq) is a continuity point of F[d], we have
1(Q(Bn))

1as, (VB Ts, <tiy. o 7 (u(Ba) TS < ta) ——— OF(1,, . tg).

n—-+oo

#(Bn)
Proof (of Lemma 3.6). This time (Al), gives p(Q(By))/p(Bn) P 6. By (A0),, there exist a function
n—-—+0o0

u € L'(u) such that Y is u-uniform (without loss of generality we assume [udy = 1). We consider p,, the
probability absolutely continuous with respect to p and of density v, := T (1gg,)/n(Q(B,))) and write
(Fglj,’vn)dzl the family of distribution functions of vy(u(B,))®p, drawn from pu, . By (A2),, for all n > 1,
v, €EU.

By definition of v, we have (y(u(Bn))®s, )#tw, = (V((Bn))®B, o T™)4pug(s,)- On {rp, > 7.}, we have
V(1(Bn))®p, =v(1(Bn))®p, 0 T™ + (1t(Bn))Tn, s0 by (A3)a- (Ad)a we get d(v(u(Bn))®s,,,7(1(Bn))®s, ©

™) L@ 0. In particular, for all d > 1, we have
n—-+4oo

1B (VH(Ba)Ts, <ty (u(Ba) TS < ta) = Fi) (b, ) —— 0. (3.7)
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Now, we show that the stochastic processes (y(u(Byp))®p, drawn from pu,, and u, share the same limit.
We denote (F ][3] v, Ja>1 and (F][g] »)a>1 their respective family of distribution functions of the finite-dimensional
marginals. For every d > 1, consider a bounded Lipschitz function 1 : R? — R%. We are going to show that

n—-4oo

/w q)[d] Yudp — /1/) ))q>[d] Ju*dy ——— 0 uniformly in u,u* € Y.

Let € > 0 and consider M large enough so that the quantity in Lemma 3.4 is smaller than e. It yields,

M-—1 M—-1
1 S 1 s e
|/¢o (v(u(Bn))fﬁgg}n) i Z (T7u —T7u*) dp| < sup [¢| i Z (T7u —T7u*)
Jj=0 j=0
L (n)
< esup [¢].
Furthermore, we also have
1 M—-1 .
[ o GuEnel) (u-5; Y iu) d
§=0
<1 3 B,))o B.)® ) o T ud
<= >0 [ e B — v o (Hu(Ba)@) o T udy
§=0
1 M-1
< (2 sup [ udp + Lip(w)v(u(Bn))j>
= {rp, <i}
< 2sup |¢| udp + Lip(¢) y(u(By)) M

{’I"Bn SM}

< ¢ for n large enough and uniformly on uw € U since U is uniformly integrable.

Thus, by Portemanteau theorem, for every d > 1

FIP o (tyeeta) = F (b1, tg) ——— 0. (3.8)

n—-+oo

Since ng]“v (t1,...,tq) converges towards FI¥(t;,... t4), (3.7) and (3.8) together give the desired result. [

Now, going back to (3.6) and with Lemmas 3.5 and 3.6, we get, for all d > 1 and t; < --- < t4 such that
(t1,...,tq) and (ta,...,tq) are continuity points of Fld], F[4 and F4=1 we have

Fl (1, ta) ——— (L= ) FI (1, tg) + 0F D (1, 1)

n—-+oo

But we assumed that F[d] Lty ta) ——— Fll(ty, ... tq). Hence, we get the following equality

n—+oo
Fldl(t, o tg) = (1= 0)Fl Uty tg) + OF (1, tg).
Using Theorem 2.1, we can express FI¥ from Fld and Fld-1] by (2.3) we get
Fli(ty, .. tq) = (1= 0)Fl9= (.. tg)
+0a/0t1(}7[d1] (ta—t1+ 2, .. tg— b1 +7)
—F (gt —ty 42, tg— +x))(t1 —2)* dz,

which is exactly (3.5). In the proof of Proposition 2.4, we showed that the only process such that the distribution
functions of its marginals satisfy (3.5) is ®rpp(w, ,(4T(1+a)))- Thus, we get the convergence

N}, =£22— RPP(W,(00(1 + a))) .

™ n—+oo
By (2.3) and Corollary 2.1, we also obtain

Ny, == CFPP, (6T(1 + a), Geo(6)).

Bn n—+400
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4 Quantitative recurrence for maps with an indifferent fixed point

We now focus on the family of maps with one indifferent fixed point with LSV parameters and prove the results
presented in Section 2.3.

4.1 Additional properties

We recall the basic properties of the map 7" defined in (1.1) where p > 1. Recall that there is a unique absolutely
continuous invariant measure p and p([0,1]) = +oo if and only if p > 1. Recall the definitions of ¢, = T} "1,
where T is the first branch of T, and of the partitions £ = {[c,t1,¢n], n > 0} and & = \/5;& T9¢.

Although we will not directly use the coding of the map by a renewal shift, we will take advantage of this
perspective and use symbolic notations in what follows.

For all n > 0, let [n] := [cnt1,¢n]. In particular, £ = {[n], n > 0}. By definition of T, for n > 1,
Tn) : [n] = [n—1] and Ty : [0] — [0, 1] are diffeomorphisms. Similarly, the partition £ can be expressed with
cylinder notations.

Lemma 4.1. For all k > 0, we have
k—1
& = \/ T7¢ = {[alg_l] | (ab ) eNF, VO<i<k—2 a1 =a;—1ora; = 0},
=0

where [af '] = {z € [0,1] | TV(z) € [a;] VO < j < k — 1}.
Using the terminology of symbolic dynamics, we will say that (af ') is admissible if [af "] # 0.

Proof (of Lemma 4.1). This can be easily seen by induction. When k = 1, this is the definition of £&. Now,
Erp1 = & VT 1€, Consider an element [ah '] in &. Then, T~ [ab '] = Ty 'af U Ty *[ak~"). By definition
Ty Yab='] = [0af™'] and since Ty '[ag] = [ao + 1], we have Ty '[ag™'] = [(ap + 1)af '] and (0af™') and
((ap + 1)ak™1) are admissible. Reciprocally, for an admissible sequence, we have

[a’otl] = T;((llo) .. -T;(}lk72)[ak,1] € &, (4.1)
where ¢(0) := 2 and o(k) := 1 for all k¥ > 1. O

Remark 4.1. Due to the Markov property of the partition, for all k > 1 and all (alg_l) € NF¥ admissible,

79 : [ak™1 — [af_l] is a homeomorphism. Furthermore, we always have [af] = [ak(ar, — 1)(ay —2)...0].

For all 0 < n < ¢ < oo, we define the sets

[l =[] [k = [eqss eal:
n<k<q
When ¢ = oo, we simply write [(> n)] := [[n, 00]] = [0, ¢,] and when n =0, [(< ¢)] := [[0,¢]] = [¢g+1, 1]

Lemma 4.2. For allk > 1 and (alg_l) € N* admissible, [alg_l] is an interval. If furthermore ap_1 = 0, then,
forall0 <n <q< oo, [alg*l[n,q]] is also an interval.

Proof (of Lemma 4.2). This is immediate from (4.1) and because [[n, ¢]] are intervals for every 0 < n < ¢ <
0.

O

For every j > 0, it is known that the induced map on Y := [¢; 41, 1] has a Gibbs-Markov structure. Indeed,
define

& =& ={li], 1 <i<jyu{od, i >0},

and for all £ > 1
k=1
& =\ v
i=0

Then, (Y, Ty, py) is Gibbs-Markov with respect to the partition £€¥. We can also define

& =Ty =¢nY ={[i], 0<i<j}={lcis1.c], 0<i <]}
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Remark 4.2. If j =0, i.e. Y = [1/2,1], the system is full-branched Gibbs-Markov. Otherwise, it is Gibbs-
Markov with the “big image” property.

We also recall some useful estimates. This can be found in [You99] or [LSV99] for example.

Lemma 4.3. We have the following asymptotic results
1
pl0(=n)] < e (4.2)

and

p[On] =< ot

where a, =< b, means that there exists C > 1 such that C~'b, < a,, < Cb,, for alln > 1.

Finally, we recall the following lemma (see [PSZ17] p.31 and [Tha80, Tha83]) giving a distortion bound for
good subsets (this lemma is true for the bigger class of AFN-maps).

Lemma 4.4. LetY be of the form [cj41,1] for some j > 0. Then, if V,W C Y are intervals such that there

exists m € N with T™ : V. — W being a homeomorphism onto W, then T\mlv € Co(W) for some C > 0
depending only on'Y, where

CoW) :={f:Y = [0,+00) [ |f(2)/f(y) = 1| < Cd(z,y) Y&,y € W}.

From this lemma we are able to derive the following corollary that is going to be of crucial importance in
the proof of Theorem 2.7.

Corollary 4.5. There exists a constant C > 0 such that for all k,£,m > 0, for all (algfl), (bgfl), (g™ D)
admissible (with the possibility that by—1 and cpm—1 are of the form [i, j] for some 0 < i < j < 00) such that
[0ag=t0b57Y] # 0 and [0af = 0cy ™ # 0, we get

p[0ag 005" ']
p[0ag = 0cg' ™)

Obé—l]
= (1 £ C diam([065~1] U [0c 1)) “[70_
( 0 ’ ) 1[0cg g
where © = (1 £ C)y means that (1 — C)y <z < (14 C)y.

Proof (of Corollary 4.5). Consider the constant C' from Lemma 4.4 with Y = [1/2,1] = [0]. Let j := min{k >
0 | by # cx} with the convention that j := min{¢,m} — 1 if bglin%m}fl = cgﬁn{g’m}*l. In particular, we have
diam([ObZﬁl] U [0¢7Y]) = diam([0b)"]). By a property of the map T, we know that 7%+ : [0aX=0b] '] —
[0b~"] is an homeomorphlsm with both [0aX~106}"] and [08}, '] being intervals of Y. Thus, by Lemma 4.4,
we have TH+1 Lioak—105i-1) € Cc([06)1]). Consequently,

M[Oa’gilobgil] :/1[0a’g*10b§*1]dﬂ:/Tk+11[0a§*10b§*1]dﬂ

- Tk+1 .

= /1[0b€71] -T 1[0(113710%71] du

Tk+1

T + ]‘[Oa(’j_lObg*l}(I)

T+ [0ak~obi Y] ()

=(1+ Cd(x,y))fk+11[0ak710bj71](y) / 1[Obé—1]d‘u Yy € [0cg !

du (Vy € [0cg ')

= P g 0) [ Ly (@)-

1:|:C’d1arn bj 1 ) bé 1 m 1] [fk+11[0ag_10b671]

b@l

Obé 1
(1 + Cdlam bJ 1 ) /l[Ocm 4 T [0 E=lopi=1) du
( 0 m 1

1+ C diam([0b} ] ) p[0ak=t0cm ).

O

Remark 4.3. Although we are using notations coming from the symbolic dynamics, we are still working on the
interval with its topology. For example, diam([0(> p)]) e 0 in our case, whereas diam([0(> p)]) = 1/4 for
p——+0o0

all p > 0 with the usual geometric topology of countable Markov shifts.
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4.2 Proof of Theorems 2.4-2.5

Once z € [0,1]\Uy>0 T—*{0} is chosen, we fix Y of the form [cj11,1] such that z € Y. Furthermore, there
exists a sequence of integers (ag)r>o such that (aj ') is admissible for all n and B, = &,(z) = [af™']. Set
Sn i= Sp—11y (z) the number of visits to Y before n (note that s,, > 1 for n > 2 since we assumed z € Y).

Lemma 4.6. For alln > 0, we have
B, = 63; (x)

Proof (of Lemma 4.6). We have By = £(z) = & (z) and s; = Sply(x)

= 0. Assume that the result is
true for some n > 1. We have B, = &,(2) = [af '] and B,y1 = &upa(2) =

[ad]. There are three cases,

if ap_1 > j, Bpy1 = [agfl(an,l -1)] = [agfl] = B, et $pp1 = Sply(z) = Sp—1ly(z) = s, meaning
that fg;ﬂ(a:) =& (x) = By = Bygr. 1 < anq < J, Spp1 = sy + 1 but £ 1 (z) = £ (2) and again
s (@) = & (2) = Bp = By

Finally, if a,—1 = 0, then s,,41 = s, + 1 and & |, (z) = [af] = Byt - O

4.2.0.1 Proof of Theorem 2.4: Non periodic points.

Proof (of Theorem 2.4). Let z € [0, 1] be non periodic and not a preimage of 0. Let 7, := min{i > n—1| Tz €
Y}. Thus s, = Sp—1ly(z) = S5, 1y (2) and B,, = &,(2) = £ (z) for n > 1 by Lemma 4.6. Since (Y, Ty, puy, &)
is Gibbs-Markov, there exists s, c > 0 such that u(B,) < ke .

We will use Theorem 2.3 to get the result. Thus, we need to prove conditions (A0),-(A6),. (A0), is immediate
since Y is a uniform set. Since there is no appearance of clusters in the non periodic case, we set U(B,,) = (
and Q(By) =1 for (Al),. It remains to show (A2),-(A4), for our particular deterministic choice 7,,. We start

125:2%

with condition (A3),. In fact, we will even show the stronger result 7,,u(B;,) —+> 0. For that there are two
n—-+0oo

cases, either x is a "well-behaved" point, meaning is will return to Y often enough, or z does not come back
sufficiently often to Y. In the first case, the exponential decay of the cylinder measures for the induced map is
enough to get the result. In the second case, since z is a special point, the measure of its cylinder will already
be small enough. Consider a sequence (ny) such that limy_, o Tn, pt(By,,) = limsup,, ,, o Tap(By). Without
loss of generality, we can assume that (Sr, 1y (2)/log(7,,))k>0 is either bounded or diverges to +oo.

If it diverges to +o00, we have

cSrp, 1y (@) s 0.

—CSp, -
Tapit(Bn,,) < Tho ke k=T, Ke p—

Otherwise, if the sequence is bounded by K > 0, we have S;, 1y (z) < Klog(r,,) and thus, there exists some
j < Klog(7y, ) such that r;{/j}(as) > T, /(K log(7y,)). It yields,

T tt(Bny) < T (Y N Ty T oy = ri (@))) < 1o (Y 0 {ry = v (@)))

1 n 1 - a+1
< CTp——— < CKo ng;;*) 0 (using (4.3)).
TYJ (x)a—i-l Tny, k——+o00

Hence condition (A3), is satisfied. For condition (A4),, we can use (A3), and the fact that we have return
time statistics towards the exponential law for the induced map (because it is Gibbs-Markov). We get
(r%,) Y
pp, (re, <) < pp,(ry”" <) < ps,(Sr,1y > 7 )

< UB,, (,UY(Bn) Tgn < MY(BH)STn 1Y)
< pp, (py (Bp)Th, <t)+ ps, (1y (Bn)Sr, 1y > 1),

for all t > 0. Fix € > 0. Since B,, has return time statistics for the induced map, we can take ¢ small enough
KBy,

so that limsup,,_,, o g, (ty (By)ry. <t) <e. On the other hand, S;, 1y < 7, and using pu(B,)7, o 0,
n n—-+oo
it yields

limsup up, (rp, < mm) <e,
n—+oo

proving (A4),.
It remains to show (A2),. Since B, = ¢ (z), we have

T (1p, /u(Bn)) = Ty (Ley (o) /m(EL, (2))) -
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As the return map to Y is Gibbs-Markov, by [Aar97, §4.7] (see also [Zwe22, Section 10.2]), there exists some U

compact in L*(u) such that ﬁ(an/,LL(Bn)) € U for every n > 1.
Thus, since every condition of Theorem 2.3 in the case U(B,) = 0 is satisfied, it gives us the wanted
result. O

4.2.0.2 Proof of Theorem 2.5: Periodic points.
Proof (of Theorem 2.5). Assume now that z € [0,1]\ Uo7 #{0} is periodic of prime period ¢q. Again, we

want to use Theorem 2.3 and thus we have to show (A40),-(A46),. (A0), is immediate since Y is a uniform set.
Recall that B, = &,(z) = f;; (x) with s, = Sp—11y(z). Let Q(By) := B, N T 9B¢ be the escape annulus and

U(B,) = B,\Q(B,) = B, NT~1B,,. We start by conditions (A1),and (A6),. We have
w(U(By)) =pu(B,NT™IB,) = /1Bn ‘1p, oT%du = /1Bn -1p, oT9dLeb .

For n large enough such that 77B,, N B,, = ) for 1 < j < q and by construction of U(B,,), T, = T on U(B,,)
and TY : U(B,) — B, is a diffeomorphism. Thus, for every y € B,

1
(T9)'( [;(an)y)

where TJ(an)y is the only g-preimage of y in U(B,,). Since T" is continuous at x (and T"(z) > 0), ||1/(T" o

Tp, 1o, (y) = T00s,) (¥) 15, (y) =

Tyls ) = 1/(T) (@) || oo (g, ) = 0. Thus, using that 7/}; (1;“3")> and Ml('ﬁ are probability densities, we

U(Bn) (Bn)
have
— ( 1y )) 1p
Tg, ( ) — - —0
‘ /.t(Bn) /JJ(B»,L) Lw(#Bn) n—-4o0o
and

p(U(By) 1
W(B,) i (T (@)

proving conditions (A1), and (A6), with
1
0=1— ——.
(T7) ()
For (A5)4, by construction, we have U(B,,) = By1q = SYW (z) and we set 7, := min{i > n+q—1| Tz € Y}
so that s,4q = S7, 1y (z). First, since rp, = ¢ on U(B,,), we immediately get

P (B ("B, > Tn) = BB (@ > Tn) P 0.

Furthermore, since z is a periodic point, S, 1y (z)/log(n) —+—+ +o00. Thus, since the measure of cylinders in
n—-+0oo

Gibbs-Markov maps decays exponentially and s, < 5, + ¢

Tn /L(Bn) < TnkK e n <Tn kele™“nte = (Heq)Tn€STTL1Y(I) n—-+oo 07

which proves (A3),. For (A4),, as in the non periodic case, we can take advantage of the return time statistics
for the induced Gibbs-Markov system. This time, the convergence of ,uy(Bn)rgn is not to an exponential law
but to a law with distribution function t + (1 — ) 4+ (1 — e~%). However, starting from Q(B,,) instead of B,
implies that we do not have the cluster at 0 and a convergence to the same law as for the hitting time, that
is to say the law with distribution function ¢ + 1 — e=% [Zwe22, Theorem 3.2]. Thus we can use the same
decomposition as before to get

1Q(B,) (1B, < Tn) < pQ(s,) (v (Ba) T, <)+ g, (1ty (Bn)Sy, 1y > t)
for every t > 0. Fix ¢ > 0. By the convergence for the induced map, the first term will be smaller than ¢ if ¢

is chosen small enough. For the second term, S, 1y < 7, and we already proved that 7,,u(B,) % 0 and
n—-+0o0o

thus, for all ¢ > 0,

1
(o) (1B 70 > ) =~ [ L di
@ #Q(BA) S, M

B, -
#(Bn) wn, (W(Bp)Tn > 1) ——— 071 x 0= 0.

= QB ———

For the remaining condition (A2),, we can again use [Aar97, §4.7] (see also [Zwe22, Section 10.2]), to ensure

the existence of some U compact (and convex) in L'(u) such that ﬁ(lQ(Bn)/,u(Q(Bn)) € U for every n > 1
because Q(B,,) is a finite union of &, -cylinders. O
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4.3 Proofs of Theorems 2.7 and 2.9
4.3.1 The case z =1/2

Proposition 4.7. Let B, := [0(> n)] = [1/2,d,] be a sequence of nested balls shrinking towards 1/2, where
0n = (1+c¢n)/2. Then,
L) |~

V((Bn)) 7B, === Ja (4.4)
and y B
(u(Bn)) B, === Ja- (4.5)

Proof (of Proposition 4.7). Since B, is uniformly bounded away from 0, it lies inside a uniform set for all n and

thus Corollary 2.2-2) ensures that (4.4) and (4.5) are equivalent. Furthermore, with the strong distributional

convergence [RZ20, Lemma 4.1], (4.4) is equivalent to v(u(By)) s, LB/AN, 5 | Notice that T(By,) =10,¢,] is

n—-+oo

a right neighborhood of 0 and that on [3/4,1], we have rp, = rp(p,) — 1. Using 2.6, we obtain

Hi3/4.1]  ~

V(T3 (T(B))) rr(B,) === Ja-

n—-+4oo
Since T, *(T(B,)) = Bn, it concludes the proof. O

Proposition 4.8. Let B, :=[1/2,6,] be as in Proposition 4.7. Then,

Ny =2 DRPP(3a,3a), (4.6)
n n—4oo
and , B
N % RPP(Ja). (4.7)

Proof (of Proposition 4.8). To show the convergence, it is enough to prove that the stochastic process of the
waiting times converges towards the stochastic process (Wy)r>1 of independent waiting times with W R
and W, = ﬁa for i > 2 when the convergence is under £(u) and the i.i.d sequence of ?;a when the convergence
is under pup,. This is enough to get the convergence of the point processes, as discussed in Remark 2.9. We
will focus only on the return REPP as the proof is similar for the hitting REPP. It follows the argument
used in [PSZ17, (xii)-(xiii)] and we proceed by induction on successive returns. The initialization is exactly
Proposition 4.7. Consider now d > 1. Our goal is to show that the distribution of the (d + 1)-interarrival
time is independent of the previous interarrivals and the law is the same. Let to,...,t5-1,t4 € R’ and let

M, = B, N ﬂ?;ol{’y(u(Bn)) rp, © T]ign < t;}. We have

pg, (Mo 0 {y((Bn)) 15, 0 Th < ta}) = aclil
= g, (M) par, (Y(1(Bn)) T, 0 T < ta) .

By assumption, we know the limit of up, (M,,). Hence, we need to prove the convergence of v(u(By)) s, ng,n
under pp7, . We have

w(Br)
piar, (V((Br))rE, o T < tq) = (M) /B Lot Ly (u(Bo)) rs, <ta} © T diim,

n

~ 1,
= /Bn 1(By) Th (u(Mn)) Loy (u(B)) ra, <ta} AB, -

Since B,, = [0(> n)] is an interval and a union of cylinders build from &, the induced map is piecewise and
a partition g, of B, can naturally be defined. On each element of g, , rp, is constant. Furthermore, for
all i > 1, we can define g, ; = ;C_:lo TgfﬁB". In particular, M, is {p, 4—1 measurable. We write &,, for the
element of {p, 4—1 contained in M,,. On each V' € k,,, there exists some my such that Tfén |y =T™v :V = B,
is an homeomorphism and thus, T 1y € C, (By) by Lemma 4.4. Hence,

~ 1y 1 ool 1 T
Td ( 3 ) = Td 1V = —V 5~ valv € Cr Bn .
Bn (M) (M) V;n B #(My) Vgn .
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Now, writing u, = M(Bn)’fgn (Ml(j\”}")) and remarking that [ wu,dp = p(By), it gives, since supp(u,) C By,

that infp, u, <1 <supp u,. Since u, € C,(B,) we have, for every x,y € By,
un (y)(1 — rdiam(B,)) < uy(x) < uy(y)(1 4 rdiam(B,)) .
Hence,

1 —rdiam(B,) < i]gfun <supu, <1+ rdiam(B,),

n

which, since diam(B,,) —— 0, implies
n—-4oo

- 1y
u(Bn) Th ( ) —1p, ——0. (4.8)
H B ,LL(MTL) LDO(;U'BW,) n—-4oo
Thus
M@@W@MV&&T&Shﬂ#gm/lmmmWMQMMmJ;:QPﬁaﬁm%
where we used again Proposition 4.7 to get the convergence and this concludes the proof. O

In particular, Proposition 4.8 is Theorem 2.7 for 1/2 or, otherwise stated, for £ = 0. We will now capitalize
on the convergence for 1/2 and go backwards for the further preimages of 0.
4.3.2 Preimages of 1/2

Fix Y = [1/2,1] and for all n > 1, let E,, = Ty '[0,¢,] = [0(> n)] = [1/2,6,] where &, := (1 4+ ¢,)/2. In
particular, with the notations chosen, we have for all 0 < p < n, [0[p,n]] = [0n+1,0p] =Y N{p+1 <ry <n+1}.
Fix k > 1 and let B, := T~*E,. By invariance of u we have u(E,) = u(B,,). By definition of the map T, for
n large enough, we have

Bn = |_| Bz,n7
zeT—k{1/2}

where B, ,, = [z, 241..,]. With symbolic notations, we have B, ,, = [25710(> n)], where z = T;((llo) . T;(akil)l/Q.

So, to an element z € T—%{1/2}, we can associate a unique sequence (z4~!) such that (z8710) is admissible
and reciprocally, for every admissible (24 10) we can associate z € T~*{1/2}. We define the localization map
¢n : B, — T7F{1/2} by ¢,(x) = z if x € B,,. In fact, if ng > 1 is such that (B,,,). are disjoint, then
On = bnylB, for all n > ny and thus we can consider ¢ := ¢y, .

Let ¥)'* be a point process on R x T~%{1/2} defined by

vk ) )
\I/n = ;5(7(N(Bn))r<3jl’¢'OTléwl)'
J=Z

Theorem 4.1. Let k > 1 and V)% be defined as previously, then we have

where Py is an independent Qg-marking of RPP(;‘}Q),
Recall that Q is the probability on 7-%{1/2} such that for p the density of p and all z € T=*{1/2},

(2)

=P z —k .
= sy T WA

Qx(2)

4.3.3 Proof of Theorem 4.1

We start with the following easy observations.

Lemma 4.9. For allk >1, z € T-"{1/2} and all d >0, we have pp, (poTh = z) ~ Qi(z).
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Proof (of Lemma 4.9). By invariance of the induced measure on B, for all d > 0, we have

KB, (¢ © Tgn = Z) = kB, (¢ = Z) = UB, (Bz,n) - ‘LL,U((BEZ;S)
PR Leb(Bey)
nteo p(1/2) Leb(Ey)
p(z)

nShoe p(1/2)(TH)(2)

Lemma 4.10. We have

n—-4o0o

Y(u(By)) B,

Proof (of Lemma 4.10). On E,, by definition of B,, we have rg, = rg, — k. Thus, for all ¢ > 0 and by
Proposition 4.7,

pe, (Y(u(Bn))re, <t) = pe, (Y((Bn))1E, <t)+up, (¢ <y(u(Bn))re, <t+ky(u(B)))

O

To establish Theorem 4.1, the strategy is to analyze the last visit to the interval [0[p,n)] = [0y, d,] before
the system returns to F,. Leveraging the bounded distortion property (Corollary 4.5), we obtain accurate
estimates for the limiting process. Throughout this analysis, it is essential to ensure that the errors introduced
by approximations diminish in the limit. This concern is addressed through a series of supporting lemmas and
the pivotal Proposition 4.13. To proceed systematically, we begin by introducing the necessary notations.

Fix k > 1. Let ¢ > 0 and take p > 1 large enough so that [1/2,,] N Ule T-7{1/2} = 0. In particular, it
implies that for all z € T~*{1/2} and 0 <i <k —1, z; < p (vecall that (25!) is the path in symbolic notations
that corresponds to z as a k-preimage of 1/2). Let

t
Dy (t) == E, N {7”[5",5,,} < (B))} N {T[én,ép] <rg,},

v(p

and let P () be a collection of branches belonging to DP(t) defined as follows

kp(t) ={VCWe,NE, } (V) = [6n, Jp]a m < t/y(u(Br)) and ,u,(TjV NE,) =0vY0<j<m}
= {[0a§"20[p,n)] | 2 < m < t/y(u(Bn)), ap = n, and N0 < j <m —2, aj = n}.

For V € kE(t), we write my its associated m coming from the definition of V' and &2 (t). Note that 2 (t) is not
a partition of DP(t) as multiple returns to [d,, d,] are possible but we can build a partition of the sets

P (4) = DP (k) (k) «__t _ —k
Dy .(t) = Dy(t)n {Iilzaf {T[én,(sp] | 7506, < TEn} < V(M(Bn)} re, =rp,. +k}, zeT "{1/2}.
Indeed, for V € w2 (t) and 2z € T~%{1/2}, define
V, = {ac eVirg, . (T™z)=rg, (T"z) < r[(;m(;p}(TmV:r)}.

Then s} (t) := {V., V € K% (t)} is a partition of D? (t). To be more precise, for all V = [0ag™ ~20[p,n)] €
KE(t), we have

V. = | | [0af ~20b2f 1 0(= n)]
bez?

with Z? := {b:= (b5™) | £> 1, (0b5'20) admissible, by € [p,n) and 310 < j < ¢, b; = p}.

The following lemma ensures that the measure of the image 7™V V, will be comparable to the one of B,
for all V, € wb ().
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Lemma 4.11. For alln >p, z € T7%{1/2} and V. € s, _(t),

/J'(va (Vz)) = N(Bn,z) + O(/J'(Bn)z)
Furthermore, (T™VV,), are disjoint and for Vi := leeT*k{l/2} V., we have
W(T™V3) = u(Ba) + O(u(By)?).

Proof (of Lemma 4.11). For all n > p and z € T~*{1/2}, we have by ergodicity and conservativity

“+o0
#(Br,z) = Z/‘ (160, 6p) N {7(s,,6,) > K} N T7%B,..)

k=0
400 +o0

=3 3 i ([60,6,) N {rs, 0, = O T B,
k=0 =k +1
+o0 £—1

- Z Z” (160, 0] N {755, = NT*B, ) .

£=1 k=0

On another hand, we have

‘LL(TmVV - ( 571,3 6 m {TB - TBn z < T[ n»(SP]})
= ( On, 0p] N {TBn . <7, §p]}) ([5177 on] N {rp, < rB,. < T[%ﬁn]})
too /-1
— Z (U [0, 6p) N {75,.6,) =} NTFB, Z) — 1 ([0p, 6n) O {rp, <7B,. <Ts,.5.}) -
=1 k=0
We have

1 (10,80 O, < 7, < 75, 513) < 11 (10080 00 < 705,,0}) -
Consider the partition of [0y, ,] N {ng < 75,603 = [0p; 0n] N {7"%22 < 71(s,,5,]} defined as follows

GP = {W C [6,,6,] | 3¢ = 0, TW = [1/2,6,],
M <j<q TIW €[1/2,6,], V1 <L < q, T'W N [5,,6,] =0}
= {[065"0c" 1 0(= n)] | £,;m > 1, bo € [p,n),
co=>mn, A0 5 <lby =p, 3!0§i<mci:p}.

Then, for every W = [0b5 10 ~10(> n)] € G2, we can use Corollary 4.5 to get

[065'0cg'~0]u[0(= )]
1[0]

(W) = ufobs"0cg=10(= n)] < C&

< B, ) 120641 0c] 41 0] [0y 0]
N [Ocﬁp}klo]

m m i+p—1
[Obe 1ocz+pi~10] [Ocz+pi10] [OCO+p O]

p[0c L 0] (0]

< Cpu(Bn)ul0bG10c} L1 0]1[0cG P10,

< (B

Thus, summing on W € G? we get

i (100,30 45 < rig50}) = D0 (W)

WeaGH
<> CPu(By)ul0bg0c},k ,01ul0cg P O]
< C°u(B n)2ﬂ<[5nv5p}> = O0(u(By)?) .

Going back to the computation of (B, .) — p(T™vV,), we have

=1 0<j<k<t—1

W(By.2) — (T V) Zu ( U 6u 6 0 {rps,0, =G NT B, m:ran,z) +0(u(By)?)
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= 1 (10 8] N 7)< 715,5,0}) + O((B)?) = O(u(Ba)?),
using the same argument and Corollary 4.5 as before.
Now, by definition and by the Markov property, we have for all V' = [0a{'~20[p, n)] € &E (t)

TV, = |_| [0bz~10(> n)).
bET?

Tt is easy to see that (T"™VV,), are all disjoint and thus

(T V) = Z w(TmvV,) = Z 1(Bn,z) + O(u(Bn)?)

zeT—*{1/2} zeT—+{1/2}
= pu(By) + O(U(Bn)z)-

O

Now, let M, ,(t) := E, N{rp, <t/v((Bn))} N Tgﬂl (By,z) be the quantity we want to control. The next
lemma ensures that we can approximate it well by D} _(#).

Lemma 4.12. For allt >0, p > 1 large enough so that [1/2,6,] N U§:1 T-3{1/2} and z € T~*{1/2} we have

p (D5 () A My 2 (1)) + o(u(By)) -

Proof (of Lemma 4.12). We have the following partition 7, ,(t) of our set M, .(t)

elt) = {V W € sy | < 1/(u(3,))

T™V = B, (T*V N [1/2,8,]) =0V1 < k < m}
= {loa 24800z ] | m < )
ap > n, (ag' 22p) admissible and 310 < j <m — 2, a; = n}
On the other side, recall that
i,z (1) = {[OQE”_ZO[F, n)NT~"{rp, . =71, <Topmn)} ’

m < t/4(u(Bn)), ap >nand 30 < j <m—2, aj:n}.

We start by controlling M, .(t)\D%, .(t). For V = [0ad228710(> n)] € n,..(t) such that T(5,.6, < TB, =
rB,. =m,let j = max{i <m| Tz € [0,,6p]}. Then V.C W = [0a?~20[p,n)} N T {rp,. =18, <Ts.0s,]} €

kb .(t). Thus, it only remains the intervals for which r(5 5, > rs,, i.e.

Mmz(t)\D%Z(t) C Mn,z(t) n {TB,L < 7“[57“5})]} cE,N {’I‘En < 7“[57“5;)]} .

We already know that ug, (rg, <rs,.s5,)) = o(1), so

p (M = ()\D}, .(t)) = o(u(By))-

Now, we need to control D% _(t)\My .(t). This is more difficult as we allow for more branches in D% _(t)

because we do not impose any time control for returns to B,,. For every V, = [0ag' *0[p,n)] N T~™{rp, . =
B, < Topm)} € K5 .(t), we can build a partition x% Y= (t) of V., taking cylinders up to the return time to B, .

_t
Y(u(Bn))’

bo € [p,n), (B3~ '2E71) admissible, 310 < £ < 5, by = p}.

kb 2 (t) = {[0a?20b612510(> n)] [ m <
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Observe that W € k2= (t) is an interval included in E,,. Then, it gives another partition x£:%*(t) of DE _(t) by
e = U o
V.€rp 2 (t)

Consider the subset x5%9(t) of xkE:%*(t) defined by

KEAOI (1) 1= {W = [0ag" 2005267 0(= n)] € KD (t) | m+j+ 1> t/’y(u(Bn))} .
By construction, we have
Dg,z(t)\Mn,Z(t) = |_| w.
Werh (1)
For every sequence (yy ), going to +oo such that y, = o(y(u(By))™t), we have
H(DE L (D\Mn,s(1) = ) (W) + > u(w)
WeRR ™ (1), 1, —m>yn WeRp ™ (1), r, —m<yn

< Y0 ploagTRon T a T 0(= )
Werh ™ (t),

TE, ~™M>Yn

+ (B 0 {t/y(u(Bn)) < 78, <t/7((Bn)) + yn})

am72 n j_lzk71 n
cc ¥ 14[0ag O(Zﬂ%g”’gﬂ o 0z )]+O(M(Bn))7

Werp M (1),

TE, —Mm>Un

where we used Corollary 4.5 and Proposition 4.7. Again with Corollary 4.5, we get

WD O\M () <2 Y p[0ag'—20(> n)] p[0b) ' 26~ 0]u[0(> n)] o(u(B)

0(> 0
N pl0(= )] p[0]

TEn —m>yn

<C? N pl0ag20(= n)] 06 2b 0] + o(u(Bu)).
WerBlena(t),
TEp ~™M>Yn

At this point, we can split the sum into two sums on the possible agl_Q and the possible b{;l. (béfl) is such
that by € [p,n), (b(])_lzg_l) is admissible and 310 < ¢ < j, by = p. Since rg, — m > y,, this implies

Z U[Obé_lzg_lo] <p ([5n75p] N {7'[5n,6p] > yn}) .

j—1
bO

Yet, for all n > p, p[on,dp) > p([dp+1,6,]) > 0 and thus [RZ20, Proposition 2.1 b)] ensures that p([d,,d,] N
{7156, > Yn}) = 0(1) as yn m +00.

On the other side, we have (aj'?) that must be such that (af'~20) is admissible, m < t/y(u(B,)), ap > n
and 310 </ <m —1, ay = n. Thus,

> pl0ag?0(= n)] < p (En N {rEn < MBH))}) :

m—2
Qg

By Proposition 4.7, since t > 0, we know that

b (E n {E < W(B))}) < u(En) = p(B).

Hence, we have

pu(Dh L (O\My, () < C* ([0, 5] N {715,050 > Y }1(Bn) + 0(1u( B))
= o(u(Bn))

and it concludes the proof of the lemma. O
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Let My (t) := Ep N {v((Bn)) 7B, <t} = er—r(1/2) Mn, (1)
Proposition 4.13. For z € T~%{1/2} and all t > 0, we have

N(Mn,z (t))
METAG) ===

MM, (t) (TB?nan,z) = Qk(z) .

Proof (of Proposition 4.13). For every V' € £} (t), let Vi := ||, ek g1 /0y V2. By Lemma 4.12, for all p > 1 large
enough, n > p and z € T~%{1/2}, we have

(M, - (1) + o(p(By)) = (D5 (1) = > n(V2)
Verb(t)

= (14 C diam([8,,5,])) Z “(m)m’

Verb(t)

where we use the bounded distortion Corollary 4.5 for the last inequality. Hence, using Lemma 4.11, for all
z e T%{1/2}

t(Bn.2) + O(u(By)?)
1(Bn) + O(u(Bn)?)

(M- (1) + 0(u(By)) = (1+ C diam([6,,6,]) > u(W)
Ver?(t)

and

S ouv= Y Y uw)

Verh (t) 2'eT—Fk{1/2} Vz/enfm,(t)
= > D)
2’e€T—F{1/2}

= > (u(My (1) + o(u(Bn)))

2 eT—R{1/2}
= (u(Mn(t)) + o(u(By))) -

Thus, with Lemma 4.9, for all p large enough, we have

p(Bn.2) + O(1(Bn)?)
1#(Bn) + O(u(Bn)?)

p(My 2 () /(M (t)) + o(1) = (1 £ C diam([6n, 6,])) (140(1))

using Lemma 4.10 to ensure that o(u(B,,)) = o(u(My(t))).
Hence, for all t > 0, we have

. Mn,z(t) . . M(Bn,z) .
l;gilig) SYADE < (14 Cdiam([1/2,4,])) ngr-lr-loo (B < (14 Cdiam([1/2,5,]))Qxk(2).

We have a similar control for the liminf. Since it was true for p large enough, taking p — +oo concludes the
proof of Proposition 4.13. O

Building up on all these lemmas, we are now able to prove Theorem 4.1.

Proof (of Theorem 4.1). To get the convergence of the marking process, it is enough to get the convergence of
the finite dimensional marginal of the stochastic process

(V((Ba)) B, 0 Th ;0 TH)) oy

Let d > 1. We want to show

i i+1 HER (i i
(B 5, 0 Th, 00 T ) gy s (YD) - (4.9)
where ((5&“,Y“>)>O<l<d are i.i.d, 5&1) = ‘:ja, YD = Q, and ‘:j&l) and YY) are independent.

As we did for the point 1/2 in Proposition 4.8 and building up again on [PSZ17, (xii)-(xiii)], we prove the
result by induction. Proposition 4.13 together with Lemma 4.10 gives

(Y((Bn)) 7B, ¢ 0 T,) —22= (34, Y), (4.10)

n—-+oo

32



where Y 2 Q and Ea and Y are independent, proving the result for d = 0.
Now, we do the inductive step from d to d + 1. By invariance of the measure, for all £ > 1, we have

(Y((Bn) 7B, o Th ¢ 0 ThH) === (3, Y),

n—-+oo

using that T, o Ty =Tyt" on E, for all i > 0. Let to,...,tq > 0and 2, ... 2@ € T=5{1/2}. Let

d
M, = B, 0 ({v(u(Bn)) g, 0 Th, <t:i} N {po Ty =20},
1=0

Let t > 0 and z(*1) € T=#{1/2}. We show

par, (1B rs, 0 TET <1y 0 {00 T = 24D} ) ——— P < HQ("Y).

n——+oo

Because E,, is an union of 1-cylinders, we can give a partition 7, in cylinders of M,, and a partition 7], of
Ny = My, 0 {y(u(By))rp, o ngl <t}n{gpo Tg,:Z = 2411 Furthermore, associated to the partition 7, we
set Z,, such that

n = {V = [0ag" " 0(= n)] | (ag"™") € o}

This yields
= {[ann—lobg—lo(z W) et €T, bo 2,

S =, < 2B B = O

Thus

)

p(Ny) = 3 p{0ag =100~ 0(> n)]
[0ag" =" 0b) M 0(>n)]En;,

j71 >
= (1 £ C diam(E,,)) 3 ul0a=10(= n)]w
0a7 =106~ 0(>n)) ey, P Em

— (1 Cdiam(B,))us, {1(1(Ba)) s, < 6} 0 {60 T, = 2 V}u(M,),

where we used Corollary 4.5, meaning that

gt (Np) ——— P(Ja < £)Qi(2).

n—-+oo

Since rp, o T, =rp, oTp —kfori>1on E, and y(u(B,))k ——— 0, it is sufficient to get (4.9) and it

n—-+oo

concludes the proof of Theorem 4.1. O

4.3.4 Proof of Theorems 2.7 and 2.9
Proof (of Theorem 2.7). By Theorem 4.1, we have

v,k — 5 ) ) HE, P
Ya ; (Y((Ba)) ) $oTiH ) Toqoe LR
J=Z

Furthermore, for all z € T—%{1/2}, we have

~ 1p 1

" ( E ) - 1g,
1(Bh,2) 1(En)

Together with ky(u(B,)) — 0 and rp, oT* =rp, —k on B, this is enough to ensure

n—-+oo

— 0.
n—-+oo

L*>(pE,)

KBy,
\II’TYL’}C ~——nz::> Pk

n—-+oo
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Thus, we get

R . _ . BBnz ) law ~ V(Q(2),1)
;5v(u(3n))7’gi,z N ;5(7(/L(Bn))rgi@oTé‘:l)l{(ﬁoTé:l:z} o Pi(- x {z}) = RPP(Ja)™™"
Jj=Z J=Z

Finally, using that

lim y(u(By2)) /7 ((Bn)) = lim  (u(Bn.:)/n(Ba))"" = Qu(2)Y,

n—+oo n—+oo

we get, for every k > 1 and z € T~F{1/2},

N} | =2y RPP(Ja) @@=,

™2 n—+400
Therefore, by Corollary 2.1, it also gives

N, =2 DRPP(Ja, 3a) @ &@&Y),
™E n—+00

O

Proof (of Theorem 2.9). The proof of Theorem 2.9 is similar to the proof of Theorem 2.7. The laws J, and ‘:ja
must be changed to the exponential law £ but, apart from that, the proof stays identical and especially within
the key Theorem 4.1. Indeed, from Theorem 2.8 and Lemma 2.8, the same proof as for Proposition 4.8, gives
this time a renewal point process of exponential waiting times, i.e. the homogeneous Poisson process. Building
up on it, an equivalent of Theorem 4.1 can be proven the same way. Finally, since the Poisson point process is
stable through thinning and rescaling by the same parameter, i.e. if N is a Poisson point process and 7 > 0,
N(™7) is again a Poisson process, and since a = 1, the limit for the preimages of 1/2 are again Poisson point
processes. O

4.3.5 Proof of Proposition 2.7
Proof (of Proposition 2.7). Recall the formula (2.12) for the Laplace transform of the law Jq.

~ o 1 -1
~ S
E[Sda}:1—<sda+d/ “dasyd> , 5>0.
[ F(1+a) e saoy e Y s >

In particular, we have

Sa

I'(l+a)
However, for a renewal process RPP(X) with E[e™5%] = 1 — As® + o(s%), we have

RPP(X)™™) — FPP,(A7}).
T—

E [e_sga} =1- + o(s%).

This can be found for example in [GKMR20, §10.4.4 p.355]. Hence, it remains to show that for every sequence
(1)r>0 With x, € T7%{1/2}, Qp(x1) R 0 which is equivalent to p(z)/(T*) (z) P 0. Since on
- c—+00 ——+00

every interval on the form [e, 1], p is bounded away from +oo and 7" > ¢(e) > 1, this is enough to show it when

xr — 0. We consider the case xj, = T k1 /2 = cgy1, the other cases can be considered similarly. Since
k—+oco

the return map Y is full-branched Gibbs-Markov, for each branch T**! : [§; 1, dx] is such that there exists y €
[0k11, 0] with (T*T1) (y) = (2(0r,—0x+1)) ' = (cx—cry1) " by the mean value theorem. By bounded distortion,
it yields (T%+1)"(0r41) < (cx — cre1) ! and since T"(6x11) = 1/2, we obtain (T%)(cxy1) =< (cx — cxr1)” ' On
the other side, by (2.11), we have p(cx) < crr1(chr1 — cra2) ! and implying p(cx)/(T*) (ck) o 0. O

5 Fractional Poisson processes in infinite ergodic theory: a concluding
perspective

In the recent article [PS24] ([Yas18] for the first return), the authors showed a convergence for a recurrence
REPP in the infinite measure preserving context. They consider a Z-extension over a one-sided subshift of finite
type, defined as follows: let (2,0,v) be a topologically mixing subshift of finite type endowed with a Gibbs

measure v and let h : ) — Z be a centered integrable Holder observable. On the phase space X := ) x Z, we
define the dynamics T by

T:(xz,a)— (o(z),a+h(z)), =€, acl.

The o-finite measure p:=v ® (ZZGZ 52) is preserved by T.
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Theorem 5.1. [PS24, Theorem 3.10] For all v > 0, let N,. be the point process defined as follows

) = E 5”(B(x’7"))2T§31C()x,T)><{o} Ve e X.
k>1
Then, for the vague convergence,
BB (z,r
N, == NoLy, and N, =222 N6 L,
r—0 r—0

where N,ﬁ are standard Poisson process and Ly, Zo is are local times at O of the standard Brownian motion,
independent of N, N.

Here, the target set depends on the point x considered. However, the techniques developed could have also
given the convergence of the hitting REPP for generic points x and shrinking balls B,, = B(z,n,) for some
Nn —+> 0. We justify that both results are linked and we think combining the two approaches could provide

n—-—+0o0
fruitful insights for future developments.

For simplicity, consider the subshift of finite type on  := {—b,...,b}" for some b > 0, v = m®N a Bernoulli
measure on {2 with m a probability of mean 0 and variance 02 = 1 and h := pr, the projection onto the
first coordinate. Then the Z-extension (X,T) of (2,0) models the usual random walk on Z and we assume
furthermore that it is aperiodic. By inducing on Y := Q x {0} and using [Aar97, Lemma 3.7.4], it is possible to
show that the system is PDE. Furthermore, using classical estimates for random walks, we easily an equivalent
of the wandering rate w,(Y") := u(Y)E,, [ry An] = ZZ;S w(Y Nn{ry >n}) when n — +oc.

Lemma 5.1. ForY :=Q x {0}, we have

) e, 22
Wn 7L:J+oo ﬁ

Proof (of Lemma 5.1). Using classical local limit theorems for random walks, we know that uy (ry > k) =

Po(ro > k) e \/ = Since it is not summable, we get

Wn ZMYT'Y>]€ n;\}+ooZ\/7n—>+oo2\£

O
Then, by [Aar97, Proposition 3.8.7 p.137], we can identify the normalizing sequence (a),>0 as we have

1 n
5o T2~ a)T(1 + a) wn(Y)

Since w,(Y') € RV(1/2) we have oo = 1/2 and thus, using Lemma 5.1, we have
.
an, =—-———
n—>+oo 2fr(3/2) \f 71'2\/»\[ ™

using that I'(3/2) = I'(1/2)/2 and I'(1/2)?> = 7. Now, by definition (2.2) of 7, v : s + 2s?/7 is a suitable
scaling. Thus, Theorem 5.1 implies the following, for x generic in @ x {0} and B,, := B(z,r,) x {0} with

ry, — 0,
n—-+o0o

2
I
R UM == L O

It turns out this point process is in fact equal to the limit process we expect with the methods developed in
the previous sections.

Lemma 5.2. Let N be a standard Poisson point process and Lg be the local time at 0 of a standard Brownian
motion. Then,

N o Lg (i ) ZFPP, o (I(1 + 1/2)).
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In Definition 2.6, the fractional Poisson process is introduced as a specific type of renewal point process.
However, this is not the only perspective; alternative definitions have been shown to be equivalent. One such
approach characterizes it as a classical Poisson process where the time parameter is randomly rescaled, as we
now explain. Let « € (0, 1] and let D,, be the standard a-stable subordinator, that is to say an increasing Lévy
process such that for all s,¢ > 0, E[e*P=(®)] = exp(—ts) (see [Ber96] for more details on Lévy processes and
subordinators). Let E< be the inverse stable subordinator defined as the generalized inverse of D,, i.e.

E*(t) = DS (t) := inf{u > 0 | Dy(u) >t} fort>0.
This process E¢ is also non decreasing and is the correct random time scaling to define the fractional Poisson

process.

Remark 5.1. In infinite ergodic theory, this process is also defined as the Mittag-Leffler process and appears
as a functional limit for averages of integrable observables for infinite CEMPT [0S15, Ser20)].

Proposition 5.3. [MNV11, Theorem 2.2] Let N be a standard Poisson point process of parameter A > 0 and
E® an inverse stable subordinator independent of N. Then, N o E% is a fractional Poisson process of parameter
a and .

In particular, for @ = 1/2, E'/2 has the same law as v/2 B where B is the supremum of the Brownian motion
[App09, Theorem 2.2.9 p.95]. We are now able to show Lemma 5.2 showing that the point process obtained in
[PS24, Theorem 3.10] is the fractional Poisson process of parameter 1/2.

Proof (of Lemma 5.2). We have

2\ law = (2 law = law —
N o Ly <> 2w NOB('> e No\/ZBl: Nﬁox/iB
s T 2
= Nr(s/z) 0 B2 Z FPPy (T (1 4 1/2)),

where N, is a Poisson point process of parameter \ and every processes and point processes are assumed to be
independent. O

This closes the gap between the two approaches when o = 1/2, the right scale when considering a Z-
extension. However, as we have seen, the construction of the fractional Poisson point process N o E% could
provide a useful approach for « # 1/2 in future works.
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A Additional proofs

A.1 Proof of Corollary 2.6
Corollary 2.6 can be easily deduced from Theorem 2.6 and the following Lemma A.1.

Lemma A.1. Let (Bp)nen and (nn)nen be defined as in Theorem 2.6. Let Q(By,) := B, NT~Y(BE). Then we

have

. 1 1/« 1
(T3 B.) =1 @B o (Frrmra=s) T (A1)
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Proof (of Lemma A.1). The first equality follows directly from the T-invariance of u. Recall (2.11) stating that
the density p := du/d Leb is of the special form
x

p(x) = ho(x) X ———, Yz € (0,1],
=T "z

where hg : [0,1] — R is a positive continuous function (see for example [Tha83, Lemma 4]). Furthermore, recall
that v : s — 1/b(1/s) where b is the asymptotic inverse of a. Since we are studying a special AFN-map we
know that (see [Zwe00, Theorem 4]):

- 21 — )
n4oe ho(0)T(1+ a)D(2 — a)as

[0

an

Hence, we can choose

B 2(1 - o) Y
s = (hO(O)F(l +a)l'(2 - a)aa> 1%, ¥ 20

On the other part, we have

(Q(Bw)) —/n" (@)dz ~ _ ho(0) /% — T dw = ho(0)E, =T ome £ € [T ]
M n)) = Tl—ln” P N oo 110 Tl—ln” v T (E 0 5 _ Tflﬁn n 1 MnyMn
Hence,

2(1—a) Ve
By))  ~ fe A2
@B > (i) (A2)
On the other side, we have
1 1

dx dz o} 1 Q
I(Un) = /n Tz — Tflx n:JJroo /77n 21/apl/a+l = 21/ (nyl/a - 1) ng+w 21/0(7]}/&’ (A3)
where we use the fact that = — T, ' favn o1/ eagl/atl since Ty Lo = o — 2V @gt/oe+ 4 o(2'/*). Putting together

—

(A.2) and (A.3) gives (A.1) using that T'(2 — a) = (1 — )T'(1 — ). O

A.2 Proof of Lemma 2.8

Recall that B, = [0,¢,] and let E, := Ty 'B, = Y N {ry > n} = [1/2,5,]. Recall that we have chosen the
renormalization of u so that u(Y) = 1. We know by [Zwe00, Theorem 4] that, in the barely infinite case, we have

and thus b, hO(O)nlog( ) is an asymptotic inverse of (a,),>0 (recall that v(s) := b(s~1)71).

n ™~ 7}10(0) Tog(n)

Fix some p > 0 and assume n > p (this is no issue as we are interested by the limit on n). Let ?’g 2 be the
random variable defined as follows:

77(3103 = hEn OTEp]'En B
where ha(x) :=inf{n > 0| T"(x) € A}.

Lemma A.2. There exist a constant C),, with C, e 1 such that for alln > p,
p——+oo

E,., [F)]
1 En pry ' By, < En
Cp /u‘( ) — EMEP [TBH] — CPIU‘( )

Proof (of Lemma A.2). As usual, we use the bounded distortion result Corollary 4.5 and work branch by branch.
Let

Ay = {[0a)bE], ag >n,Nia; =p, bg =0, by >p, by_1 =0, by >n, VO< L < k—1b, <n}

%p)

be a partition in branches of 1, for r;3’. Then, we have
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B [F)= Y (k—1)uloa) " vf]
[0a) ' bEl€A,

1 k
0 b
< (1+ Cdiam(E,)) Z (k — 1)u[0a0 [0((>> ))]] [b5]
(003~ bk]€A,, H p
En)
< v M(En
<G u(E,) Euy (e, 18,]
En)
< B, (s, — 111,
P u(Ep) g ' P
.U(En)
<C Euy [, 1E,]-
p:u(Ep) "
The lower bound is obtained similarly. Since diam(E,) ——, we have C), —— 1. O
p—r—+oo p—+oo

Lemma A.3. For a fized p > 0, we have the following asymptotic result:

E,, [F2)] ~ / (ry An) duy = wa(Y).

Proof (of Lemma A.3). We look at the Birkhoff’s sums for the induced map on Y and consider the map ¢,, :=
TylEc = rylyyy<ny. Let j > 1, 2 € Y and assume for simplicity that 7y2 € E,. Write k(j) := sup{i >

0] r ) < j} (in particular, with the hypothesis we made, we have j = ry(k(l)ﬂ)) We have

1 132
Esfen(x) =3 Z ry (TYz)1p: (TYx)
k=0

k(]) T-En TEn (T)

= *Z Z ’I”y(T)i/OTgnx)+%hEn

i=1

1 k() [rE, °TE (z)—1 . TEp oTf (z)—1 _ .
==Y X w@eTho+ Y (T oTha) | +-hp,
J k=1 i=r§pngn(:c) i=1 J
On one side, we have
) k(j) "By °TE, (2)—1 k()
= ry(Ty o TE Z E,°Ty o Tgn (2)
J k=1 =1

= EZ (1EnhEp (e} Ty) e} T{;(ZIJ)

J =
1 a.e.
~ *S (]-E hE OTy) my E []-EnhEp OTy}
] Jj—4o00
On the other side, we have
1 K0) 7B oTE, (2) -1 k()
1 .
72 Z ry o Ty o Th ( =Y hg, oTg, oTf (v) using E, C E,
J =1 i =r}, oTE (z) J k=1

The hg, instead of rg, comes from the possibility that the sum is empty if rE = Tg and the 0 we get is

exactly hpg, in that case.

For ?{é’ ), we have
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k(5)
1
== Z hg, oTg, o T}}n (2) by definition of 77{;2.
k=1

Putting everything together, we get by Birkhoft’s theorem,
Epy 78] = By [ln] — By [, 5, 0 Ty ).
In particular, when n goes to 400, we have the asymptotic equivalence

E,, ]~ E, [l

n—+oo  HY

Finally, we have
E., [4n] = / ry liry <ny dpy = wn(Y) — npy (ry > n).
Y

However, in the particular barely infinite case, we have uy (ry > n) =< 1/n whereas w, (Y) < log(n). Thus,

]EHY [ETL] wn(Y)

~
n—-+oo

This yields the wanted result E,,,. [?'g )

] ~
nd n—4o0

wy (Y). O

Proof (of Lemma 2.8). With Lemma A.2 and A.3, we obtain

Y)
) < <2V <o
Cp M( ’I’L) ~ ]E#Ep [an] ~ Cp/”’( 'ﬂ)
~1
cl < Eyuy 15, ]” wn (V) /1(En) c,,

EMY [TBn]_lEuEp [TB,,L]

where u, < v, means that limsup,, _,, . un/v, < 1.

Taking the limit in n (lim sup and lim inf) and since the convergence in Theorem 2.8 is true pg, € L£(u), we
get, taking finally the limit p — 400,

1 _ wp(Y) _
Cp ! S W(E )Euy [rB,] ! S Cp.
Taking afterwards p — +o0, it yields
wp(Y)

However,
- _ho(0)

log(n) ~  wa(Y)/p(Ep).

n——+00

og(u(En)~")

ho(0)
n—-+o00 2/~L(En)

O
Remark A.1. In fact, in Lemma A.3, we actually showed that E,,, [?‘(ﬁz] ~  w,(Y)—nuy (Y N{ry >n}),

n——+00
whenever p > 1. In the case p > 1, both terms are of same order. Since we also have

n—1
wa(Y) = 3 (Y A {ry > b))
k=0

and we know that p(Y N{ry >n}) ~ Cn~* for some constant o, we obtain

n——+0oo
Q@
B [5,] ¥ T
which can also be proven with Theorem 2.6 which implies
1 Ky
—rp, =—— Ja (A4)
n n—-+oo

In particular, since E[J,] = /(1 — ), it also gives B, [rg,] oo an/(1— «).
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