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Abstract: Artificial neural networks (ANNs) have become essential components in various safety-
critical applications, including autonomous vehicles, medical devices, and avionics, where system
failures can lead to severe risks. Edge AI devices, which process data locally without relying on the
cloud, are increasingly used to meet the performance and real-time demands of these applications.
However, their reliability in radiation-prone environments is a significant concern. In this context, this
paper evaluates the MAX78000, an ultra-low-power Edge AI microcontroller with a hardware-based
convolutional neural network (CNN) accelerator, focusing on its behavior in radiation environments.
To assess the reliability of the MAX78000, we performed a test campaign at the ChipIR neutron
irradiation facility using two different ANNs. We implemented techniques to improve system
observability during ANN inference and analyzed the radiation-induced errors observed. The results
present a comparative analysis between the two ANN architectures, which shows that the complexity
of the ANN directly impacts its reliability.

Keywords: artificial neural network; edge AI; artificial intelligence accelerator; radiation effects;
reliability; single-event upset; single-event effects; atmospheric environments; neutrons

1. Introduction

Artificial intelligence (AI) is widely applied across various domains, including critical
areas such as autonomous vehicles, medical devices, and avionics systems [1–3]. In particu-
lar, edge AI devices integrate edge computing with AI, enabling data processing to occur
locally rather than relying on cloud solutions. This approach has gained popularity, mainly
due to the increasing demand for hardware AI accelerators in edge devices, driven by the
need for higher performance and energy efficiency in real-time AI task processing [4,5].

Recent advancements in microcontrollers and accelerators have enabled running AI
algorithms efficiently on small, resource-limited devices, supporting real-time applications
even in environments with limited or no connectivity. In recent years, there has been an
increasing utilization of microcontrollers for AI in edge computing applications for avionics,
such as satellite imaging [6], drones [7], and aircrafts [8].

However, for avionics operating at high altitudes or in orbit, exposure to ionizing
radiation raises significant concerns regarding system reliability and functionality [9,10].
Galactic cosmic rays (GCRs) and solar particles interact with Earth’s atmosphere, producing
secondary particles like neutrons, protons, and electrons through nuclear reactions [10,11].
At ground level, neutrons are the primary source of soft errors in electronics, with flux
levels around 13 n/cm²/h for energies above 10 MeV and 6.5 n/cm²/h for thermal energies
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in New York [11–13]. This flux increases by approximately 300 times at typical flight
altitudes (12 km) and up to 500 times at 18 km [10]. The interaction of ionizing particles
with electronic devices induces a variety of effects. single-event effects (SEEs), which occur
when high-energy particles interact with sensitive regions of electronic components, are
particularly impactful, causing faults that may be transient, intermittent, or permanent [14].
These faults manifest as bit flips, data corruption, or even permanent hardware damage [15].

Microcontrollers exposed to radiation environments encounter critical failure mecha-
nisms primarily due to single-event effects (SEEs). One common SEE, the single-event upset
(SEU), arises when charged particles alter logic states within memory cells or registers,
resulting in bit flips that disrupt data integrity and program execution. According to [14],
SEUs are a primary cause of transient faults in central processing unit (CPU) operations
and can affect various CPU components, such as the bus control logic, where mode shifts
can create faulty memory access patterns or unintended program jumps. SEUs impact-
ing the program counter or segment registers can alter execution flow, redirecting it to
incorrect memory addresses. Instruction registers, general-purpose registers, and state
registers are also vulnerable, with faults in these areas either producing execution errors or
self-correcting depending on timing and program flow [14].

More severe SEEs, including single-event latch-ups (SELs) and single-event functional
interrupts (SEFIs), present additional risks to microcontroller stability. SELs occur when
particle strikes activate parasitic structures within CMOS circuits, creating high, sustained
currents that can cause irreversible damage if not mitigated immediately [16]. SEFIs may
disrupt core functionalities by disabling control units or critical registers and frequently
require a full power cycle to restore normal operation [17].

In AI accelerators, these radiation-induced faults can compromise the accuracy of
computations, leading to incorrect outputs or unpredictable behavior [18,19]. Thus, as the
use of AI accelerators grows in critical applications, it is essential to evaluate their behavior,
identify potential weaknesses, and develop strategies to enhance their reliability [20].

In this context, we present a reliability analysis of the MAX78000 microcontroller, an
ultra-low-power, low-cost application-specific integrated circuit (ASIC) designed for edge
AI applications with a hardware-based convolutional neural network (CNN) accelerator.
The primary focus of this research is to investigate the effects of radiation exposure on the
performance and fault behavior of the MAX78000. We employ a layer-by-layer analysis
technique to increase system observability during neural network inference, facilitating
more effective monitoring and assessment of radiation-induced faults. To our knowledge,
no other studies have specifically examined the effects of radiation on the MAX78000,
highlighting both the novelty and importance of this work.

The main contributions of this paper include the following: (i) an evaluation of the
MAX78000 microcontroller to explore its potential in real-world edge AI applications
within radiation-exposed environments; (ii) the application of a method that examines fault
behavior in a deeply embedded device, despite challenges posed by a black-box design;
and (iii) a comprehensive report on sensitivity to neutron-induced faults, including an
analysis of error propagation and insights into performance under adverse conditions.
Together, these contributions provide valuable information on the reliability of low-cost
microcontrollers, addressing notable gaps in the existing literature.

The remainder of this paper is structured as follows: Section 2 describes the back-
ground of this work; Section 3 presents the related works; Section 4 presents the devices
used for the experiment, the test facility, and the applied test methodology; Section 5
presents the results obtained during the experiment; and Section 6 concludes this work.

2. Background

This section introduces the base concepts of artificial neural networks (ANNs). More-
over, we present discussions on the radiation reliability of ANNs.
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2.1. Artificial Neural Networks

Artificial neural networks (ANNs) were first presented in 1986 as a back-propagation
model based on the concept of the neural synapses [21]. Its processing is based on the
convolution of an input vector by a set of iterative weights, which are separated as ANN
layers. One of the most critical aspects of back-propagation is the ability to perform learning
by feed-backing the error to calibrate the weights, improving the result’s precision. The
layers, namely the input, hidden, and output, are separated by their function. The input
layer will have the same data format to be considered for the neural network (NN) and will
be responsive for the first formatting of the data. The hidden layers are considered a black
box for processing. The designer will model the output layer, depending on the purpose of
the ANN. All of the layers have weights adjusted by the learning procedure, which aims to
produce the most precise result possible.

The versatility of ANNs has enabled its use in numerous fields, including computer
vision, natural language processing, and robotics. Notably, convolutional neural networks
(CNNs) [22] have become an important ANN variant for the field of image recognition,
which has enabled precise image classification due to its ability to deal accurately with 2D
shapes. Although initially, ANNs had inferior precision, advances in deep learning have
significantly improved their performance. More specifically, deep neural networks (DNNs)
have achieved state-of-the-art results in areas such as image classification, natural language
processing, and reinforcement learning [23].

2.2. Neural Networks in Radiation Environments

Early studies on the reliability of ANNs [24,25] have analyzed the robustness of the
ANN architecture against errors, presenting masking traits that generate inherent resilience.
Still, radiation-induced errors can propagate within ANN layers and generate critical
failures, which are further accentuated with the proposal of complex ANN architectures
(e.g., CNNs and DNNs) that depend on several hardware components [18].

In embedded applications, ANNs are predominantly implemented using hardware
accelerators based on ASICs, field-programmable gate arrays (FPGAs), and graphics pro-
cessing units (GPUs). Each hardware platform provides unique performance, power, and
reliability traits [18,26]. For instance, while GPUs provide significant parallelism and per-
formance to ANNs, their complex hardware architecture and deeply integrated technology
allow for the propagation of single faults to several outputs, significantly impacting the
results of ANNs [20]. In [27], the authors provide a comprehensive literature review on
hardware reliability assessment methods for DNNs. Using fault injection, fault emulation,
and irradiation in particle accelerators, the analyzed studies demonstrate the susceptibility
and vulnerability of transient and permanent errors in several elements of DNNs.

Similarly to other processing workloads, ANNs depend on several memory and com-
puting elements that are susceptible to radiation. For example, storage and buffering
elements used to save weights, activation inputs, biases, layer outputs, and accelerator
configuration are sensitive to SEUs, which corrupt the stored value, resulting in the accu-
mulation and propagation of errors during execution [19]. For this reason, as important as
the ANN architecture’s impact on the reliability of the target application is, the hardware
platform’s sensitivity to radiation significantly determines the error rate and propagation
within the ANN. System failures, such as crashes, hangs, and overcurrent events, generally
correlate to device technology, critically disrupting ANN execution, even with commonly
used error mitigation strategies [20].

3. Related Work

In recent years, there has been a significant focus on the reliability of AI applica-
tions [27]. Many studies have examined the impact of radiation-induced faults in ANNs
executed in FPGAs and GPUs. In [28], the authors investigated the susceptibility of a
design implemented in a Xilinx 28 nm SRAM-based FPGA to SEUs using various fault
injection techniques to analyze the resilience of a NN trained for classification tasks. In [29],
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the impact of radiation-induced errors on CNNs implemented on FPGAs was assessed,
emphasizing how binary quantization of convolutional layers can reduce sensitivity to
radiation while analyzing the relationship between model accuracy and radiation effects.

Other research has focused on the reliability of ANN algorithms running on GPUs.
A study [20] evaluated the performance of object detection algorithms on three NVIDIA
GPU architectures using neutron beam experiments to assess the propagation of faults
during execution. Additionally, another study [30] combined neutron beam experiments
with software-level fault injection to characterize the fault model for deep neural networks
executed on GPUs, reporting error rates and the effectiveness of error correction codes.

While FPGAs and GPUs have proven to be effective platforms for executing deep learn-
ing algorithms, edge AI applications based on low-power ASIC accelerators offer a practical
alternative. These accelerators are designed to be more energy-efficient and cost-effective.
A discussion [31] highlighted how edge AI accelerators can deliver improved performance
at lower costs and power levels. Furthermore, another study [32] emphasized that edge AI
accelerators are increasingly being utilized in various applications, requiring performance
and resilience to operate effectively in challenging environments. Thus, microcontrollers
like MAX78000 are increasingly relevant, incorporating hardware-based CNN accelerators
and offering low-cost, energy-efficient solutions for implementing AI algorithms.

Recent studies on the MAX78000 microcontroller have demonstrated its potential for
edge AI applications. In particular, the authors in [33] evaluated MAX78000’s performance
and efficiency in executing CNN inference using datasets such as MNIST and CIFAR-10.
The research highlights the trade-offs between performance and accuracy when utilizing
the microcontroller for various AI tasks. Also, the study in [34] analyzed the performance
of the MAX78000 microcontroller, highlighting that simpler DNN models result in lower
latencies and energy consumption, while more complex models increase both. The study
also notes that optimizing layer sizes, bit widths, and memory usage can further improve
efficiency, supporting the suitability of MAX78000 for low-power edge AI applications.
In [35], a low-power smart camera that integrates MAX78000 was proposed, emphasizing
its ability to operate effectively under intermittent power conditions. This research features
a dual-stage energy harvesting approach, enabling the system to sustain energy-intensive
data transmission to sub-GHz low Earth orbit (LEO) radios.

In this context, our work focuses on a reliability analysis of the MAX78000 microcon-
troller. By examining the effects of radiation on this platform, we aim to provide insights
into its reliability and operational characteristics.

4. Experimental Evaluation

To evaluate the device under test (DUT) reliability, we performed an experiment at
the ChipIR beamline [36], part of the ISIS Neutron and Muon Source, at the Rutherford
Appleton Laboratory, United Kingdom. ChipIR generates a neutron beam with a spectrum
representative of atmospheric environments, which causes SEE on electronic devices. The
facility can generate neutron irradiation with fluxes that are several orders of magnitude
higher than those found at ground level on Earth, which enables an accelerated characteri-
zation of devices and systems. The beam flux is 5 × 106 cm−2/s for energies higher than
10 MeV, and during the experiment, the total accumulated fluence was 1.11 × 1012 n/cm2.

4.1. Device Under Test

MAX78000 is an ultra-low-power edge AI microcontroller. It has a heterogeneous
architecture that combines two main processing hardware modules: a microprocessor
cluster and a CNN accelerator. The microprocessor cluster combines an ARM Cortex-M4
with a floating-point unit processor running at up to 100 MHz and a 32-bit RISC-V co-
processor running at up to 60 MHz, both interfaced to the bus, where several peripherals
and the CNN accelerator are connected.

Figure 1 shows the DUT architecture, highlighting the CNN accelerator’s internal
structures. The hardware-based CNN accelerator in MAX78000 features 64 parallel convo-
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lutional processors and supports a wide variety of CNN and DNN models. It has dedicated
memory for corresponding weights (442 KB), biases (2 KB), and data (512 KB), and it
operates at a frequency of up to 50 MHz. Each convolutional processor consists of a pooling
engine, input cache, weight memory, and convolution engine and is responsible for running
a convolutional operation of a single input channel.

Convolutional Processor
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Figure 1. MAX78000 platform architecture.

The convolutional processors are divided into four groups, and processors within
a group share a common activation memory for data input and activation data. These
groups are then clustered into four sets, forming quadrants, each containing programmable
registers to configure the execution of individual layers. This hierarchical structure, dividing
the accelerator into quadrants, groups, and processors, allows for precise control over which
accelerator sections are active during operation.

MAX78000’s software development kit (SDK) [37] handles the complete training,
synthesizing, and deploying of ANN models. The training is performed with the help of
the PyTorch library for machine learning, data loader, and corresponding datasets. The
trained ANN model is converted into C code during the synthesis and deployment stages.
Once deployed on the device, the accelerator is initialized by configuring the SRAM control
bits and specifying the number of CNN layers. Subsequently, weights and biases are moved
from general-purpose SRAM into their dedicated memory locations. The configuration
then continues by defining the rows and columns for each quadrant, which consists of
16 processors, and mapping the necessary memory pointers. Input data are then loaded
into the memory of the accelerator, triggering the inference process. MAX78000 performs
NN inference as a single, indivisible task, which inherently limits the ability to monitor
intermediate computational results and restricts system observability.

4.2. Layer-by-Layer Implementation

In this study, we address a challenge posed by the MAX78000 CNN accelerator, which
performs NN inference as a single, indivisible task. This design feature limits our capacity
to observe intermediate computational results, making it challenging to verify the accuracy
and reliability of the inference process. To overcome this limitation, we used the Layer-by-
Layer Transient Toolchain (LbLTT) [38], an external tool designed to enable layer-by-layer
processing on MAX78000. LbLTT converts NN inference into several single-layer NNs,
allowing each layer to be individually processed. This method allows us to observe the
output of intermediate layers and verify that the parameters are correctly stored, improving
observability without altering the NN structure.

LbLTT is an open-source toolchain developed specifically for NNs compatible with
the MAX78000, optimized to allow for intermittent execution by shrinking the atomic
execution size to a single layer. This tool achieves this segmentation without modifying
network weights or configurations, ensuring that inference accuracy remains consistent
with the original network design. It is important to note that LbLTT is applied solely to
improve observability, and it introduces some latency to the inference speed [38].
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Initially, the toolchain uses the ai8xize.py Python script to translate the PyTorch model
into C code. This process generates two essential files: cnn.c, which contains the func-
tions necessary for loading, starting, and obtaining outputs from the NN accelerator, and
weights.c, which stores the values of the NN weights. Following this, LbLTT segments the
NN into individual layers. The LbLTT then segments the neural network into separate
layers, creating a standalone network for each layer, with an input, a layer, and an output.
This segmentation enables the creation of configuration files to set up the CNN accelerator
at the beginning of the computation of each layer. In the final stage, the LbLTT toolchain
merges the segmented layers into a unified execution framework for the MAX78000 CNN
accelerator. This framework includes functionality that allows the intermediate output to
be extracted and verified as needed. The resulting C code is then ready to be deployed on
the MAX78000 CNN accelerator, supporting intermittent execution.

The execution flow, as illustrated in Figure 2, contrasts the standard implementation
of the entire NN, presented on the left, with the layer-by-layer approach enabled by LbLTT
presented on the right. The green dashed rectangle indicates the loop performed for each
layer of the original NN model, and the purple one indicates the verification steps that we
implemented to increase the observability of the accelerator. It is important to note that
while network weights are loaded at the start of execution, biases are loaded individually
for each layer. This is done by modifying the ai8xize.py script to include memory offsets
for the biases; a necessary step because the Maxim toolchain treats each layer as a separate
NN. The default script maps all layers from a fixed address (e.g., 0 × 0000) and does not
allow for specifying different memory locations for weights, requiring their preloading.
After the CNN initialization, the input data for the first layer are loaded into the memory
of the accelerator. Subsequently, the biases for this layer are loaded, and the accelerator is
configured and started. This process is repeated for each layer of the NN model, allowing
for fine-grained control and observation of intermediate results.

Standard approach Layer-by-layer approach with observability

Verify bias,
configuration

and CRC-32 of
layer_i output

no yes
Last layer

Verify weights
and

classification

CNN Initialization

Load Weights

Load configuration
(Layer_i)

CNN Start
(Layer_i)

Load biases
(Layer_i)

CNN Stop
(Layer_i)

Start

Result

Load input

CNN
Initialization

Load Weights
and Biases

Load
configuration

Load input

CNN Start

Start

Result

Figure 2. Comparison of CNN execution runtime flow. The left diagram shows the standard approach.
The right one shows the combination of the LbLTT [38] layer-by-layer approach with the implemented
techniques for observability.

We performed golden runs, i.e., error-free runs, on all selected test images from the
dataset, obtaining the expected output values for each layer and each image. We then
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calculated the Cyclic Redundancy Check-32 (CRC-32) for these outputs. CRC-32 is a widely
used error-detection method that produces a unique checksum for data [39,40], enabling the
detection of discrepancies that may indicate errors in any output of a layer. This approach
allowed us to verify the outputs of each layer without storing all of the intermediate results.
Additionally, at the end of each layer, we verified the values of the bias and configuration
registers. The weights were checked only at the final layer, as verifying them after each
layer would significantly extend the inference time.

4.3. Neural Networks and Datasets

We evaluated and characterized MAX78000 using two different CNN models provided
by Maxim Integrated [37]: the AI85Net5 NN model trained on the Modified National
Institute of Standards and Technology (MNIST) [41] dataset and a model found through
NAS (Neural Architecture Search) trained on the Canadian Institute For Advanced Research
(CIFAR-10) [42] dataset. The MNIST is a collection of 70,000 28 × 28 grayscale images of
handwritten digits from 0 to 9. The CIFAR-10 consists of 60,000 32 × 32 color images in
10 classes, with 6000 images per class.

Datasets are also usually split into a training set and a testing set. MNIST is di-
vided into 60,000 training images and 10,000 testing images, and CIFAR-10 is split into
50,000 training images and 10,000 test images. For training, we used the full training sets
of both datasets. For testing the applications, we selected a subset of 20 images from each
dataset testing set due to the processor’s internal memory constraints. The goal was to
investigate the accelerator’s performance by comparing the results of each image with the
ones from the golden execution rather than evaluating the overall accuracy of the AI on a
larger dataset. The subset of images was chosen randomly while guaranteeing an equal
number of images for each category.

Table 1 presents the characteristics of the CNNs used in this work, including inference
times for both the standard and layer-by-layer approaches. The layer-by-layer method
increases inference time by 13.7% for CIFAR-10 and 12.8% for MNIST. While this approach
adds some latency overhead, it enables detailed fault monitoring across layers, increasing
the observability of the system.

Table 1. Characteristics of the CNNs.

Dataset Num. of
Layers

Weights
[Bytes]

Bias
[Bytes]

Num. of
Operations

Inference Time (µs)

Standard Layer-by-Layer

CIFAR-10 11 301,760 842 36,484,536 4872 5541
MNIST 5 71,148 10 10,883,968 1486 1676

4.4. Test Setup

We used the MAX78000FTHR evaluation board for the experiment, which provides
a platform for programming and debugging the MAX78000 microcontroller and several
peripherals. The test setup, shown in Figure 3, consists of four MAX78000FTHR boards,
where #B1 and #B2 were performing inferences with the CIFAR-10 dataset, and #B3 and
#B4 performed inferences with the MNIST one.

For logging the experimental data, we used serial connections to transmit the logs
generated to a host computer outside the irradiation room. The setup is fixed in a frame
containing the mentioned test boards and other boards utilized for other experiments to
optimize the beam time utilization. The supply current for each board was individually
monitored and limited in case of a single-event latch-up. The UART output was also being
monitored to trigger a power cycle in case of a hang, i.e., if no output was detected for more
than one minute.
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B2B4

B1 B3

Figure 3. Experimental setups prepared for the irradiation campaign composed of four
MAX78000FTHR boards.

4.5. Metrics

We estimated the system failure and weight error cross-section to assess the reliabil-
ity. The cross-section calculates the device’s failure rate based on the fluence, given in
cm2/device. Furthermore, we calculated the failure in time (FIT) metric based on New
York City’s sea-level neutron flux (ΦNYC). The FIT metric shows how many failures occur
in a billion hours, depending on the sensitivity of the device and the particle flux to which
it will be exposed. The FIT is given by Equation (1), where σ represents the cross-section
and 109 is a billion hours.

FITNYC = σ × ΦNYC × 109 (1)

5. Results

During the experiment, various types of radiation-induced errors were observed.
These errors had different levels of impact on the system, ranging from no noticeable effects
to complete system failure. We classified the executions in which errors were reported into
five categories:
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• No impact (NI): Executions where the corrupted data were either unused or did not
affect the circuit’s functionality, resulting in no observable change in the program
output.

• Major output disturbance (MaOD): The execution finished, but the classification result
was entirely incorrect.

• Medium output disturbance (MeOD): The execution finished, but the confidence level
or percentage of the classification was incorrect, even though the predicted class itself
was still correct.

• Minor output disturbance (MiOD): The execution finished, but the error caused a
slight disturbance in the output of the last layer. Despite this, the final classification
remained unaffected.

• System failure (SF): When the error led to the program to stop prematurely or caused
the entire system to crash.

Table 2 presents the number of images that were processed, the number of images
that shoedw any error, and the classification of errors per board, detailing the number of
errors reported for each category. It is important to note that the CNN used for the MNIST
dataset, processed in #B3 and #B4, was less complex, with fewer layers and parameters,
and it had a lower latency than the one used for the CIFAR-10 in #B1 and #B2.

The error rates observed for the MNIST dataset were notably lower compared to
CIFAR-10, likely due to a combination of factors. The simpler CNN architecture used for
MNIST had lower resource demands, which reduced the critical area exposed to faults and
limited fault propagation within the system. Also, the inherent characteristics of the MNIST
images, such as their lower complexity and grayscale format, reduced the computational
load, making the system less vulnerable to errors. These findings aligns with existing
literature suggesting that simpler models can offer improved reliability [43–45].

Table 2. Classification of errors per board.

Board Number of
Images

Images with
Errors MaOD MeOD MiOD NI SF

#B1 134,783 130,140 775 44,161 82,698 2506 167
#B2 131,416 127,031 686 44,134 79,839 2372 220
#B3 169,927 124,357 9 27 14,764 109,557 171
#B4 203,574 136,881 86 9 18,123 118,663 218

5.1. Major, Medium, and Minor Output Disturbance

Tables 3–5 show the errors reported during MiOD, MeOD, and MaOD executions,
respectively. Of all the images processed that reported an error (third column of Table 2),
97.08% of them reported only weight errors. Both configuration and bias values were
updated at each layer; therefore, they were updated frequently, leading to a reduced
probability of a bit upset occurrence.

Table 3. Errors reported in MiOD executions.

Board Weight Weight and Config. Weight and Bias All Unknown

#B1 80,391 10 0 1 9
#B2 78,088 5 1 0 6
#B3 14,752 0 0 0 12
#B4 18,088 3 0 0 32
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Table 4. Errors reported in MeOD executions.

Board Weight Config. Weight and Config. Weight and Bias All Unknown

#B1 42,365 1 6 1 1 4
#B2 42,952 0 3 0 1 4
#B3 27 0 0 0 0 0
#B4 9 0 0 0 0 0

Table 5. Errors reported in MaOD executions.

Board Weight Config. Weight and Config.

#B1 763 7 3
#B2 573 0 1
#B3 8 0 1
#B4 85 0 1

Of the few executions that reported errors in the configuration or bias values, most
of these errors were not attributable to bit upset. For the configuration cases, most of the
observed values were significantly different rather than just altered by a single bit. In all
the cases where a bias error was reported, it indicated that all the values were completely
wrong. Therefore, most configuration and bias errors were caused by a failure in the writing
process. For MeOD and MiOD executions, the unknown cases refer to instances where no
errors besides the values of the output of the layers were reported, yet the final result was
still impacted. These were likely caused by an error in the control of the accelerator.

In our analysis of MaOD executions, we observed that, although these executions
showed weight errors, the total number was low compared to the overall weights, reaching
a maximum of 490 errors for CIFAR-10 and 110 for MNIST. Given this limited number,
we conducted fault injection simulations on the weights to determine if these errors alone
could explain the observed misclassifications. Faults were injected exclusively into the
weights, as bias errors were minimal, and most configuration errors appeared unrelated to
actual upsets.

For the fault injection, we implemented a function that randomly selects a bit within
a random address in the weights storage and flips it. To closely match the original exper-
imental conditions, we ran the same flow used in the experiment, processing the same
set of images from both the MNIST and CIFAR-10 datasets. The fault injection function
was called once before processing each image, ensuring one injected fault per inference.
Whenever a misclassification occurred, we restarted the entire execution, resetting the
injected faults. We repeated this procedure 20 times to observe the average number of
weight errors required to trigger a MaOD event.

The results indicated that a large number of weight errors was needed to induce
misclassification, with an average of 1316 errors for CIFAR-10 and 2628 for MNIST. The
lowest number of weight errors leading to misclassification was 570 for CIFAR-10 and 824
for MNIST, though these were exceptions, with most cases closer to the average thresholds.

Given that the weight error counts observed in the experiment were significantly
below the thresholds needed to induce misclassifications in our fault injection tests, these
misclassifications were likely influenced by factors other than only the weight errors.
During our analysis, we noticed recurring patterns in the MaOD executions, where specific
types of misclassifications were repeated multiple times. For instance, 10, 12, 5, and
5 distinct patterns accounted for all misclassifications on devices #B1, #B2, #B3, and #B4,
respectively. It is worth noting that these patterned occurrences ceased only after a processor
reset was triggered by one of the SF occurrences. The identified patterns and their potential
causes are detailed below:
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• Stuck output values: There were cases of stuck output values where the values from the
last layer of the NN unloaded from the accelerator remained the same over a sequence
of images, despite the images being different. The intermediate layer values varied in
some instances, indicating that the error occurred only at the final output. In other
cases, the intermediate and final output values were identical, likely indicating that an
error occurred during image loading. In a few cases, no errors were detected in the
intermediate layers, probably caused by an event on the controller of the accelerator.

• Sequential misclassifications: One type of pattern involves sequential misclassifica-
tions of the same image with similar output values. The same image was misclassified
multiple times in sequence in a few instances. While the classification was wrong each
time, the output values varied slightly but remained similar. Since, in these cases, the
error occurred for only one image (and not for the others from the same class), it is
most likely that the issue lies in the variable that stores the memory pointer to the
image, which results in loading the wrong values for the input memory and thus an
incorrect classification.

• Multiple misclassifications in sequence: Finally, there was one scenario where several
images were misclassified in sequence. Each one had different output values and class
predictions. However, there was no report of wrong output between the layers, and
only a few weight errors were reported. This was also probably caused by an event on
the controller of the accelerator.

5.2. System Failure

During the testing phase of the microcontroller, several types of system failures were
identified. Table 6 summarizes the frequency of these failures across different boards during
testing. Hard faults occur when the microcontroller encounters a critical error, such as
attempting to access invalid memory or executing an illegal instruction. Another failure
type involved the watchdog timer (WDT) triggering a reset when the system failed to
respond within a set time limit, typically due to software hangs or deadlocks. Additionally,
there were instances where the system reset itself due to an unknown cause, categorized as
an unrecognized reset, likely caused by an SEU on the control of the system. In all these
mentioned cases, the system performed a soft reset.

As mentioned in Section 4.4, the current and the UART output were monitored during
the experiment. Some failures were attributed to system hangs, identified when no output
was received from the UART for over one minute, indicating that the system became
unresponsive. Also, some overcurrent cases were detected. In both cases, the monitoring
system triggered a power cycle on the board.

Table 6. Reported cases of system failure.

Board Hard Fault WDT Reset Unrecognized Reset Overcurrent Hang

#B1 55 15 44 5 30
#B2 55 28 47 17 36
#B3 41 21 56 3 28
#B4 63 32 49 3 51

5.3. Reliability Analysis

Table 7 summarizes the cross-sections for each type of SF for each board. We summed
all the errors from each category across all boards to determine the total number of SFs.
The overall cross-section (XS) was calculated to be 1.72 × 10−10 cm2/device. Based on this,
we derived a total SF FIT value of 2.24.
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Table 7. Summary of SF cross-sections per board.

Board Fluence [n/cm2]

XS [cm2/Device]

Hard Fault WDT Reset Unrecognized
Reset Overcurrent Hang

#B1 1.03 × 1012 5.33 × 10−11 1.45 × 10−11 4.27 × 10−11 4.85 × 10−12 2.91 × 10−11

#B2 9.01 × 1011 6.11 × 10−11 3.11 × 10−11 5.22 × 10−11 1.89 × 10−11 4.00 × 10−11

#B3 9.53 × 1011 4.30 × 10−11 2.20 × 10−11 5.88 × 10−11 3.15 × 10−12 2.94 × 10−11

#B4 1.05 × 1012 5.97 × 10−11 3.03 × 10−11 4.65 × 10−11 2.84 × 10−12 4.84 × 10−11

Table 8 shows the accumulated fluence for weight errors, the number of errors reported
in the weight memory, the weight errors cross-section, the number of weights, the FIT,
and the normalized FIT. The cross-section and FIT values for boards #B1 and #B2 were
significantly higher than those for boards #B3 and #B4. This is because the memory used
by the weights in the CNNs on boards #B1 and #B2 is much larger than that of boards
B3 and B4, resulting in a substantially larger sensitive memory area and, consequently,
a higher probability of soft errors. Therefore, the sixth column shows the normalized
weight error cross-section by dividing the cross-section by the number of weights. Since
the cross-section value is used to calculate the FIT, we also estimated a normalized FIT,
represented in the seventh column, using the normalized cross-section value. After the
normalization of the cross-section and the FIT, it became evident that the values across
all the boards were similar, which means that these events were independent of the ANN
architecture and dataset.

Table 8. Weight errors FIT and cross-section.

Board Fluence
[n/cm2]

Weight
Errors

XS
[cm2/Device]

Num. of
Weights

XS
[cm2/Weight] FIT Normalized

FIT

#B1 9.43 × 1011 14,318 1.52 × 10−8 301,760 5.03 × 10−14 197.30 6.54 × 10−4

#B2 7.93 × 1011 14,258 1.80 × 10−8 301,760 5.96 × 10−14 233.73 7.75 × 10−4

#B3 8.77 × 1011 3368 3.84 × 10−9 71,148 5.40 × 10−14 49.94 7.02 × 10−4

#B4 9.76 × 1011 4232 4.33 × 10−9 71,148 6.09 × 10−14 56.35 7.92 × 10−4

6. Conclusions

This work provides an analysis of the MAX78000, a microcontroller with a hardware
CNN accelerator, offering insights into the behavior and reliability of this device. We
increased system observability through layer-by-layer monitoring, enabling detailed track-
ing of faults at each NN layer. Additionally, we examined the types of errors caused by
radiation and evaluated the reliability of the DUT.

The varying performance across the different boards tested, particularly between those
processing the MNIST dataset and those handling CIFAR-10, underscores the influence of
the CNN architecture on error rates. The CNN used in boards #B3 and #B4 exhibited lower
error rates, likely due to their simpler architecture requiring less memory usage, memory
pointers, and variables. Thus, this reduced resource usage makes them less vulnerable to
errors. This finding aligns with existing literature suggesting that simpler models can offer
improved reliability [43–45].

Many observed errors originated from the processor, with configuration and bias
errors mostly related to memory access issues rather than direct SEUs. Additionally, the
number of MaOD executions remained relatively low, which indicates that the inference
process with the CNN accelerator is reasonably robust under radiation.

While these findings provide valuable insights into the reliability of MAX78000, the
study is limited by the specific CNNs, datasets, and conditions used. Thus, as future
work, we aim to expand our investigations by conducting experiments with additional
radiation sources to understand their effects on the MAX78000 microcontroller better.
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Furthermore, we plan to evaluate larger datasets and different CNNs to simulate real-
world applications. Lastly, we will conduct a comparative analysis of layer-by-layer
implementation versus the original architecture to assess whether this approach impacts
the reliability of CNN inference.
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