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ABSTRACT

Aims. A recent major high-angular-resolution imaging survey of 42 large main-belt asteroids (D > 100 km) with VLT/SPHERE has
provided shape models of these bodies with an unprecedented accuracy. We ask whether the shapes of these bodies correspond to
Maclaurin or Jacobi hydrostatic equilibrium figures.
Methods. To address this question, we compared the aspect ratios and rotation rates of these asteroids with Maclaurin or Jacobi
equilibrium figures.
Results. The rotation rates and polar flattenings of the 42 asteroids globally do not match those of Maclaurin or Jacobi ellipsoids.
Moreover, the equatorial axes of the asteroids are not compatible with an axial symmetry as for Maclaurin figures. Only a very few of
them could be compatible with a known hydrostatic figure such as Maclaurin, Jacobi, or Clairaut ellipsoids.

Key words. minor planets, asteroids: general

1. Introduction

The classical problem of equilibrium figures consists in find-
ing the possible shapes of a self-gravitating, spatially isolated,
hydrostatic, and solidly rotating celestial body. From a mathe-
matical or numerical point of view, this question is not com-
pletely resolved. From an astronomical point of view, it is
not always clear whether hydrostatic theory is suitable for a
given object and, if not, which theory can be used to deter-
mine the shape of that object. In this Letter we focus mainly
on hydrostatic equilibrium; we briefly discuss non-hydrostatic
equilibrium shapes in the conclusion and defer a more in-depth
discussion to a future paper.

There are some known solutions to the problem of hydro-
static equilibrium figures. For homogeneous bodies, an ellipsoid
of revolution is a solution with a flattening controlled by its angu-
lar velocity (Maclaurin 1741); an ellipsoid with three different
axes is also a solution if the axes obey a specific geometrical
relation, as found by Jacobi (1834). Later, Liapounov (1884) and
Poincaré (1885) found equilibrium figures close to Maclaurin
and Jacobi ellipsoids. For heterogeneous bodies, only one math-
ematical equilibrium solution is known, for the case of slow rota-
tion. It is a figure very close to a moderately flattened ellipsoid,
which we, slightly inaccurately, call a ‘Clairaut ellipsoid’.

From the point of view of astronomy, planets and dwarf
planets are nearly hydrostatic equilibrium figures, but ques-
tions remain as to which bodies are actually dwarf planets.
A VLT/SPHERE observing programme has recently imaged
the dwarf planet Ceres and 41 main-belt asteroids (for sim-
plicity, we refer to these 42 objects as ‘asteroids’). By plot-
ting the normalised angular velocity of these objects against

their normalised angular momentum (Fig. 1), Vernazza et al.
(2021) deduced that all but (216) Kleopatra are compatible with
the Maclaurin ellipsoids. However, the statistical distribution of
these asteroids around the homogeneous hydrostatic equilibrium
remains up for discussion.

In this Letter we show that the angular velocity of our 42
asteroids does not globally match that of Maclaurin ellipsoids.
We also show that the asteroids are not even axi-symmetric.
Finally, we quantify the misfit between the asteroids and the
Maclaurin and Jacobi ellipsoids by calculating their reduced chi-
square statistics. A few asteroids might be in hydrostatic equilib-
rium with depth-dependent densities, but most show a significant
deviation.

2. Asteroid rotation rate and flattening

For the 42 asteroids, Vernazza et al. (2021, Tables 1 and A.1)
determined and listed the mean density, ρ, the lengths of the axes
of the ellipsoids that best fit their shape, a > b > c, the sidereal
period of rotation, which we converted into angular velocity, ω,
and the uncertainties on these values.

Maclaurin ellipsoids are axi-symmetric (a = b) and are deter-
mined by a relationship between the aspect ratio c/a and the nor-
malised angular velocity:

Ω =
ω√

4
3πGρ

, (1)

where G is the gravitational constant, and the Jacobi ellip-
soids are determined by two relationships between Ω, c/a, and
c/b (e.g., Bertotti et al. 2012, p. 78–82). Our own comparison
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Fig. 1. Normalised angular velocity, Ω, as a function of the normalised
angular momentum, H, for the 42 asteroids (see also Vernazza et al.
2021, Fig. 6). Predictions for the Maclaurin ellipsoids are shown in blue
and those for Jacobi ellipsoids in red. The H = 0 value on the left corre-
sponds to the sphere, and the very flattened objects are on the right. The
shaded region corresponds to all ellipsoids with 0.5 ≤ c/a ≤ 1. Though
this is a large aspect ratio interval, the region is narrow: this representa-
tion is not appropriate for evaluating the compatibility of asteroids with
Maclaurin ellipsoids.
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Fig. 2. Square of the normalised angular velocity of the 42 asteroids
as a function of the aspect ratio c/a and their error bars. Predictions
for the Maclaurin ellipsoids are shown in blue and those for the Jacobi
ellipsoids in red. All error bars in the paper are at 1 sigma. The c/a = 1
value on the left corresponds to the sphere, and the very flattened objects
are on the right. Even taking the large error bars into account, most
asteroids are far from the curves of the Maclaurin and Jacobi ellipsoids.
In the data published by Vernazza et al. (2021, Table A.1), two asteroids
have axes b < c; we consider this to be an exchange of values between
b and c.

between the Maclaurin ellipsoids and the asteroids in the (c/a,
Ω) plane shows that all but ten of them do not match the Maclau-
rin sequence within the errors bars in this 2D graphic, and thus
cannot be globally considered as Maclaurin ellipsoids (Fig. 2).

A pitfall with Fig. 1 is that it represents Ω not as a function
of c/a but as a function of the normalised angular momentum,

H, which, for an ellipsoid of revolution, is expressed as

H =
2
5

Ω

( c
a

)− 2
3
. (2)

With c/a varying mainly between 0.5 and 1, all possible data
deviate little from the straight line H = 2

5 Ω and from the
Maclaurin curve (Fig. 1). Therefore, this plot cannot distin-
guish Maclaurin shapes from other ellipsoidal shapes. We use
the momentum of ‘axi-symmetric’ ellipsoids for an illustrative
reason: it yields a simple relation (Eq. (2)) that more easily high-
lights the correlation between H and Ω. This choice implies that
the abscissa of the points in Fig. 1 are slightly different from
those of Vernazza et al. (2021, Fig. 6), who used the momentum
of ‘triaxial’ ellipsoids. However, for most of the asteroids, the
difference between the two calculations is very small: even in
the large range 0.5 ≤ b/a ≤ 1, the relative difference is less than
5%, and in any case, it does not change the reasoning nor the
results of this paper.

From a statistical point of view, data that differ significantly
from a theory in a representation (Fig. 2) should also differ from
it in another representation (Fig. 1). A second pitfall with using
the variables in Fig. 1 would be encountered if the correlations
between them are ignored when calculating the errors on H and
Ω: most of the correlations are indeed close to one due to the
abovementioned fact that H ≈ 2

5 Ω. Since the rotation period
and the shape parameters are largely determined using differ-
ent observations, the data x = c/a and y = Ω2 in Fig. 2 are
de-correlated, that is, their covariance is written as

Cx,y =

(
σ2

x 0
0 σ2

y

)
, (3)

where the σi denotes the standard deviations. A change in vari-
ables of the type x′ = fx(x, y), y′ = fy(x, y) implies the covari-
ance matrix is propagated into the new variables. The covari-
ance matrix in the new variables can be approximated as (Cowan
1998, Sect. 1.6)

Cx′,y′ = FCx,′FT , (4)

where F denotes the Jacobian matrix of components Fi j = ∂ j fi.
We performed this change in variables, with x′ = H and y′ = Ω,
diagonalised the resulting covariance matrix, and plotted the cor-
responding error bars on the previous figure, thereby creating
Fig. 3. As expected, one of the eigen-directions is almost orthog-
onal to the Maclaurin ellipsoid curve; the corresponding stan-
dard deviation is very small and does not intersect the model
prediction. This confirms that, although the data seem to closely
match the model, they remain statistically distant.

3. Discussion

3.1. Tri-axiality of asteroids

One possible explanation for the difference between the angular
velocity of Maclaurin ellipsoids compared to asteroids that are
supposedly hydrostatic is that the shapes of the asteroids have
been frozen from an earlier condition in which they were poten-
tially much hotter and deformable and had a different angular
velocity. In addition to finding a mechanism that would have
decelerated so many asteroids, it would also be necessary to
verify that they are rotationally symmetrical, as Maclaurin ellip-
soids must be.

To check this, we plotted the ratios c/b vs. c/a (Figs. 4 and
5, top panels). We assumed that the errors on a, b, and c are de-
correlated; then, as before, we computed the covariance matrix
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Fig. 3. Same as Fig. 1 but with the correlated error bars. They indicate
that the points are statistically far from the curve despite being visually
close.
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Fig. 4. Aspect ratios of the asteroids. Shown are curves of the Maclaurin
(blue) and Jacobi (red) ellipsoids. The c/a = 1 value on the left corre-
sponds to the sphere, and the most flattened objects are on the right.
The asteroids are not globally on the curve of the Maclaurin or Jacobi
ellipsoids.

of c/a and c/b with Eq. (4), diagonalised it, and plotted the
corresponding error bars. Figure 4 shows the general geomet-
rical deviation of asteroids from the Maclaurin ellipsoids where
a = b. These asteroids are close to neither the Maclaurin nor the
Jacobi ellipsoids. Nevertheless, considering error bars in this 2D
graphic, the compatibility of a small number of asteroids with
these equilibrium figures is not excluded. As a dwarf planet, (1)
Ceres is almost rotationally symmetrical. Other smaller bodies,
such (24) Themis, (173) Ino, and (324) Bamberga, could also
be axi-symmetric. Therefore, except for some bodies, a change
in angular velocity cannot explain the difference highlighted in
Sect. 2 between asteroids and Maclaurin ellipsoids.

3.2. Quantification of misfit

The distances between asteroids and hydrostatic ellipsoids,
which we have thus far shown in two planes (Figs. 2 and 4),
can be estimated in three dimensions in the (c/a, c/b,Ω2) space.
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Fig. 5. Same as Figs. 4 (top) and 2 (bottom) but without error bars and
with asteroid numbers. See Vernazza et al. (2021, Table 1) for the cor-
respondences between numbers and asteroid names. The bottom panel
shows a zoomed-in view of the x-axis to exclude the red point that
corresponds to (216) Kleopatra, which has already been identified as
a dumbbell body (Ostro et al. 2000). The asteroids closest to a Maclau-
rin ellipsoid are in blue, and those closest to a Jacobi ellipsoid are in
red. This shows that the projections formed by these two figures can be
misleading with respect to a 3D misfit. In the bottom panel, we have
hatched the surface that corresponds to possible Clairaut ellipsoids (see
Sect. 3.3).

We used

χ2 = (x − xE)T C−1(x − xE) (5)

(Cowan 1998, Sects. 2.7 and 7.5) to quantify the distance
between a measured position, x, in N dimensions (here N = 3),
of covariance, C, and the closest position, xE, on the curves of the
hydrostatic ellipsoids. Assuming x follows a Gaussian (which is
only a crude approximation here), then χ2 follows a χ2 distri-
bution with N degrees of freedom. Therefore, the reduced chi
square, χ2/N, has an expectation of 1 and a median ≈1, and we
define as ‘misfit’ its square root,

√
χ2/N, which measures the

average number of standard deviations by which x and xE dif-
fer. Quantified in this way, six asteroids are closer to the Jacobi
ellipsoid curve, while 36 asteroids are closer to the Maclaurin
ellipsoid curve. These points are identified in Fig. 5.
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Fig. 6. Misfit of asteroids with Maclaurin and Jacobi ellipsoids, ordered
by increasing misfit. The asteroids closest to a Maclaurin ellipsoid are
in blue, and those closest to a Jacobi ellipsoid are in red. The black dots
represent the ordered medians for 42 random variables following a χ2

distribution. The green dot is the median for a single random variable
following a χ2 distribution (it corresponds to the 21st asteroid and a
misfit of 0.88). The misfits of the asteroids are well above the ordered
medians, indicating that they are very unlikely to be Maclaurin or Jacobi
ellipsoids overall. Individually, few asteroids have a misfit lower than
the median of a single random variable, indicating that, even individu-
ally, few asteroids have a good probability of being Maclaurin or Jacobi
ellipsoids.

The misfit
√
χ2/N varies between 0.4 for (324) Bamberga

and 100 for (4) Vesta (Fig. 6). Again, the misfits must be esti-
mated without ignoring the correlations in Eq. (5); taking these
correlations into account, we get misfits close to one, greater
than one, or much greater than one, which means that most of
the asteroids do not match the Maclaurin or Jacobi sequences
(a misfit of, for example, 5 has a probability of only ≈10−16 of
occurring if the variable follows a χ2 law). Only 10 of the 42
asteroids have a misfit lower than or close to 1. Therefore, once
again, we cannot exclude the possibility that a few asteroids have
hydrostatic equilibrium figures.

However, this comparison must be expanded upon. The
problem with comparing each individual misfit with 1 is that
it does not take into account the increasing probability of hav-
ing a false positive (i.e., having a small misfit by chance) when
increasing the number of comparisons. Here, the probability
that one of the 42 asteroids has the shape of a hydrostatic
ellipsoid by chance is much higher than for a single asteroid.
In statistics, this is known as a multiple comparison problem
(Lehmann & Romano 2005), and it is taken into account by esti-
mating a confidence level for the whole family of simultaneous
tests (here the 42 tests). To do that, considering that the tests
on asteroids are independent of one another, we computed the
ordered medians of 42 random variables following a χ2 distri-
bution (Fig. 6). All the asteroid misfits are above these random
misfits. This means that, overall, the 42 asteroids do not match
the sequence of Maclaurin or Jacobi ellipsoids.

Even restricted in the two dimensions c/a and c/b, the misfits
(not given here) are important: the asteroids are not rotationally
symmetric and do not have the axis ratios of Jacobi ellipsoids.

3.3. Asteroids are probably not hydrostatic

As a whole, asteroids observed by Vernazza et al. (2021) cannot
be considered as Maclaurin or Jacobi ellipsoids. Not only does

the relationship between their rotation rate and their shape not
match that of a Maclaurin ellipsoid, but the asteroids have large
deviations from axial symmetry.

There are at least three different possible reasons for this mis-
match. The first is heterogeneity: a hydrostatic and radially ‘het-
erogeneous’ body takes a different shape than a Maclaurin or
Jacobi ellipsoid. In this case, it is known that for low rotation
rates, the aspect ratio c/a of the Clairaut ellipsoid is higher than
that of a homogeneous body and is lower than that of a point
mass (e.g., Tassoul 1978, p. 100 and Poincaré 1902, p. 73). This
ratio interval corresponds to the hatched surface in Fig. 5 (bot-
tom). For the very few asteroids that this applies to, the cause
of the misfit may therefore be density stratification. This is typ-
ically the case for asteroid (31) Euphrosine, which could fit to a
strongly heterogeneous hydrostatic figure (Yang et al. 2020), and
for Ceres (Rambaux et al. 2015; Park et al. 2016), which is not
far from rotational symmetry and has almost the angular veloc-
ity of a Maclaurin ellipsoid. The second and most common rea-
son for the mismatch is that the asteroids are not in rotational
hydrostatic equilibrium (even if they are ellipsoidal). The devia-
tion from a hydrostatic shape is related to the existence of shear
stresses. Such stresses are limited by the strength of the rocks
but are also proportional to the weight of the topography (i.e., the
height of the relief times gravity). As the topography features are
limited by gravity, the largest celestial bodies have proportion-
ally lower reliefs. On the contrary, small rocky bodies, typically
with radii of less than a few hundred kilometres, generally do
not have sufficient gravity to fracture rocks. If these bodies are
made of coherent material, then they can have large topogra-
phies. This is why non-hydrostatic theories should be more
suitable for small bodies such as asteroids (for non-hydrostatic
studies, see e.g., Johnson & McGetchin 1973; Holsapple 2001,
2004, 2007; Richardson et al. 2005; Chambat & Valette 2008;
Sharma et al. 2009; Al-Attar 2011). A few asteroids have a small
misfit and could be investigated in more detail to determine if
they are nearly homogeneous hydrostatic ellipsoids. For exam-
ple, (324) Bamberga, (24) Themis, (187) Lamberta, (173) Ino,
(88) Thisbe, (704) Interamnia, (10) Hygiea, (29) Amphitrite, and
(354) Eleonora have misfits smaller than one.

In this Letter we have thus far considered asteroids as ellip-
soids; more exactly, we have identified each asteroid with its best
fitting ellipsoid as determined by Vernazza et al. (2021). How-
ever, the non-ellipsoidal topography is also a non-hydrostatic
signature. We have not taken into account this third possible rea-
son for a mismatch between asteroids and hydrostatic shapes.
A major source of topography are impacts. For example, (2)
Pallas or (4) Vesta have heavily cratered surfaces, probably
linked to the origin of a collisional family (Karimi et al. 2017;
Marsset et al. 2020; Vernazza et al. 2021). The deep depressions
observed at their poles make them distinct from equilibrium
figures.
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for improvements of the manuscript.
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