How to Modify the Tree of Shapes of an Image: Connected Operators Without Gradient Inversion

Julien Mendes Forte⁽¹⁾, <u>Nicolas Passat⁽²⁾</u>, Yukiko Kenmochi⁽¹⁾

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, Caen, France
 Université de Reims Champagne-Ardenne, CRESTIC, Reims, France

RFIAP 2024, Lille, July 1st 2024

Preliminaries

Connected filters

Image filtering

- Filter: modifies the content of an image
 → denoising, enhancement, simplification...
- Connected filters: do not create contours

Connected filters

Image filtering

- Filter: modifies the content of an image
 → denoising, enhancement, simplification...
- Connected filters: do not create contours

Connected filters: advantages

- Avoid blurring effects
- Preserve the structure of the image

Connected filters

Image filtering

- Filter: modifies the content of an image
 → denoising, enhancement, simplification...
- Connected filters: do not create contours

Connected filters: advantages

- Avoid blurring effects
- Preserve the structure of the image

Connected filters: paradigm

- Standard filters act at the scale of pixels
- Connected filters act at the scale of flat zones

Connected filters & morphological trees

Filtering paradigm

Image \rightarrow Tree \rightarrow Pruned tree \rightarrow Filtered image

Connected filters & morphological trees

Filtering paradigm

Image \rightarrow Tree \rightarrow Pruned tree \rightarrow Filtered image

Connected filters & morphological trees

Filtering paradigm

Image \rightarrow Tree \rightarrow Pruned tree \rightarrow Filtered image

Morphological trees

- Component-tree (Max-tree, Min-tree)
- Tree of shapes

Connected filters & tree of shapes

Tree of shapes (aka level-line tree)

- Models an image as a topographic map
- Nodes = isocontour regions / Edges = nesting relation

Filtering an image via its tree of shapes: relevant but not trivial!

Connected filters & tree of shapes

Tree of shapes (aka level-line tree)

- Models an image as a topographic map
- Nodes = isocontour regions / Edges = nesting relation

Filtering an image via its tree of shapes: relevant but not trivial!

Introduction

Context and framework

Support, value, image

- Discrete support $\mathbb{U} = \mathbb{Z}^n \ (n \ge 2)$
- Values $\mathbb{V} \simeq \mathbb{Z}$
- Image = function $\mathcal{F} : \mathbb{U} \to \mathbb{V}$
- The Jordan-Brouwer property holds

Max-tree

Max-tree

Max-tree

Max-tree

Max-tree

Max-tree

Max-tree

Max-tree

Morphological trees: the tree of shapes

Morphological trees: the tree of shapes

Tree of shapes

- represents an image through the "nested" relationship of its level lines
- can be computed in quasi-linear time

Applications: connected filtering

- Filtering
- Segmentation
- Simplification

Modifying the tree of shapes: issue

ToS of reconstruction

How to:

- preserve the signs of the gradients and
- preserve a valid tree of shapes

as a result of a modification?

Modification rules

Atomic operation: discarding a node

How to generalize the modification rules to any desired altitude?

How to generalize the modification rules to **any** desired altitude? We apply the **local modification** until the **desired altitude** is reached.

Applications

Image simplification: mean connected filtering

Biological image $4.2 \cdot 10^6$ pixels, ToS: $1.2 \cdot 10^6$ nodes

n = 10SSIM= 0.910 ToS: 2.3 · 10⁵ nodes

Image simplification: mean connected filtering

Biological image $4.2 \cdot 10^6$ pixels, ToS: $1.2 \cdot 10^6$ nodes

n = 10SSIM= 0.910 ToS: 2.3 · 10⁵ nodes

Image filtering: area opening

Satellite image

Proper part < 3

Image filtering: area opening

Satellite image

Proper part < 3

Image filtering: area opening

Satellite image

Proper part < 10

Conclusion

Conclusion

Contributions

- Tree of shapes modification
- Preservation of the structure while modifying the image
- Preservation of the gradient sign

Perspectives

- Tree of shapes simplification
- Connected operators
- Topological denoising
- Simplification of other trees (e.g. topological tree of shapes)

Thanks for your attention!

If you want to know more, ask this guy:

Julien Mendes Forte PhD candidate, GREYC, Caen julien.mendes-forte@unicaen.fr