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Abstract—The rapid proliferation of Internet of Things (IoT)
devices and the transition to distributed computing environ-
ments necessitate advanced intrusion detection systems (IDS) to
safeguard the new paradigm known as Cloud-Edge-IoT (CEI)
continuum. In this paper, we introduce a novel approach called
SURFS, integrating Hierarchical Federated Learning (HFL) with
Spiking Neural Networks (SNN) to propose a robust, sustain-
able, and energy-efficient IDS for this continuum. HFL, with
its hierarchical learning strategy, keeps data where they are
generated, thus preserving user privacy and reducing commu-
nication overhead through its combination of decentralized and
centralized architecture. On the other hand, SNN, inspired by
human neural mechanisms, offers significant computational effi-
ciency. Our proposed IDS combines these strengths, facilitating
localized and energy-efficient detection at the edge and IoT layers
while enabling global model aggregation and updates at the
cloud layer. Through extensive experiments using one of the
most recent datasets (Edge-IIoTset), we demonstrate that our
approach not only detects attacks with high accuracy but also
substantially reduces energy consumption across the continuum.
The SURFS model presents a slightly superior performance in
classification accuracy, outstripping the FL+SNN and non-FL
models by margins of 0.5% and 1.21%; however, with a much
faster convergence time (3× and 17× respectively). In terms of
sustainability, it achieves a remarkable reduction in communi-
cation overhead 99% lower than FL+SNN and 97% lower than
non-FL. Additionally, it showcases significant improvements in
computational cost, being 62% more efficient than FL+SNN and
94% more efficient than the non-FL model.

Index Terms—Hierarchical federated learning, Spiking neural
network, Intrusion detection system, Sustainable AI

I. INTRODUCTION

According to recent statistics, by 2030 the number of
connected Internet of Things (IoT) devices will surpass 500
million [1]. This tremendous expansion led to the realization
of several applications and services such as smart cities. These
IoT devices act in the background to collect the environment
and user data. A recent report indicates that the data generated
by IoT devices will reach 79.4 zettabytes (ZB) by 2025 [2].
Such data requires high computing resources for the treatment
process with latency constraints in order to provide delay-
sensitive services. Cloud computing can support IoT devices
in solving computation tasks, but it cannot satisfy the delay-
sensitive analysis applications that require fast analysis. To
solve these issues, edge computing has been proposed and is
considered ”the new cloud”. Migrating computing and storage
to the edge of the network helps to reduce the congestion

and latency that occur with the cloud and support IoT devices
with the creation of the Cloud-Edge-IoT (CEI) continuum [3].
CEI improves users’ computation experience and helps to
make the IoT system highly scalable. Also, it adapts to
distributed computing by avoiding the issues associated with
a single point of failure. However, the migration of large-
scale computing and storage services to the edge facilitates the
interception and analysis of end user-sensitive data. Moreover,
the distributed nature in the CEI introduces new security and
privacy challenges [4].

In this context, some advances, such as Hierarchical Fed-
erated Learning (HFL) [5] and Intrusion Detection Systems
(IDS) [6] can improve the confidentiality of the data and the
security of the IoT devices. In particular, HFL is a combination
of decentralized and centralized architecture [7]. It has been
proposed to integrate several aggregations of local models
taking place at the edge servers, which is then followed by
sending the edge aggregated sub-models to the cloud for
global aggregation. HFL helps reduce the impact of non-
independent and identically distributed (non-IID) data on the
model’s performance. On the other hand, IDS is one of the
requirements to monitor the communication system and to
protect against malicious attacks [8]. It demands faster data
processing, whereas sending user data to some central servers
is time-consuming [6]. In fact, the existing literature on HFL
for IDS uses traditional Artificial Neural Network (ANN)
models to learn from the end-users’ data [9]. However, using
(ANN) with HFL for IDS consumes a significant amount of
energy, further hindering the application of decentralized FL
on energy-constrained IoT devices. To solve this issue, Spiking
Neural Network (SNN) has been used as a new energy-
efficient generation of neural networks [10]. In contrast to
ANN, SNN replaces the multiplicative operations of inputs
and weights with simple addition operations. This difference
leads to a reduction in the power consumption of SNN-based
models, offering more energy-efficient models as demonstrated
in our previous work [11].

In this paper, we propose SURFS (Sustainable intrUsion de-
tection with hieraRchical Federated Spiking neural networks),
a novel IDS based on SNN within HFL for the CEI continuum.
It aims to reduce energy and communication costs as well
as to mitigate the impact of the non-IID data on the attack
detection performance. To the best of our knowledge, this is



the first study that explores the classification and sustainability
of the SNN-based HFL model for IDS. The contributions of
this paper are summarized in the following.

• We propose a sustainable IDS (SURFS) based on hier-
archical federated spiking neural networks for the CEI
continuum. It takes advantage of HFL to mitigate the
impact of the non-IID data and SNN to reduce the energy
consumption of the model on IoT devices.

• We evaluate the sustainability of SURFS using a sustain-
able indicator (S), which illustrates the trade-off between
energy consumption, communication costs, and classifi-
cation accuracy.

• We use one of the most recent and open cyber-security
datasets, called Edge-IIoTset (published in 2022) in order
to investigate the performance of SURFS against classical
FL with SNN (FL+SNN) and non-FL SNN-based models.

The rest of the paper is organized as follows. Section II
provides related work and Section III presents our SURFS
solution. Experimental settings and results are presented in
Section IV. Finally, the conclusion is provided in Section V.

II. RELATED WORK

Many solutions have been proposed for IDS using HFL.
In this context, Sun et al. [12] proposed an HFL-based IDS
to enhance the security of advanced metering infrastructure
in smart grids, called HFed-IDS. The experiment results
demonstrate that the HFed-IDS can improve the IDS in
terms of detection accuracy and communication cost. In the
same direction, Singh et al. [7] proposed a HFL-HLSTM
intrusion detection model for the Internet of medical things
(IoMT) application. The Preliminary results show also that
attack detection using the proposed HFL-HLSTM is better than
existing state-of-the-art models. Also, Saadat et al. [13] proved
the superiority of HFL over classical FL in terms of training
loss, attack detection, and speed of convergence. Moreover,
Sarhan et al. [14] introduce a novel Hierarchical Blockchain-
based FL HBFL framework for collaborative detection of IoT
intrusions. The framework adopts a cloud fog–edge topology
in which IoT endpoints and combiners are hosted on edge and
fog perimeters, respectively. The outcome of the framework
is a robust and securely designed HFL-based IDS to protect
and preserve the integrity of IoT networks. However, all these
proposed schemes were carried out using an outdated dataset
(NSL-KDD dataset). In addition, to address the heterogeneity
issues (i.e., non-IID data) that arise in FL settings, Saez et
al. [15] proposed HFL for IDS in large-scale heterogeneous
IoT networks. In particular, before the local models are aggre-
gated in the initial FL round, the local partially trained models
from all the clients are clustered in a fully unsupervised way
based on similarities between model parameters. Once each
client is assigned to a cluster center, the FL training process
is started for each identified cluster of devices.

Discussion: It is important to note that the IDS has
significantly shifted from simple models to more advanced
DL models and then to FL/HFL. The focus has been primarily
on classification performance such as accuracy (in centralized

systems), communication efficiency, and privacy (in FL). How-
ever, no study focuses on the sustainability of the proposed
scheme, as well as the combination power of SNN and HFL
for IDS has not been proposed yet. Considering these factors,
we propose in this paper a sustainable IDS based on SNN and
HFL for the CEI continuum. This approach not only offers the
advantages of efficient distributed learning with non-IID data
but also ensures a reduction in communication costs and most
importantly energy consumption, thus making it an efficient
and promising solution.

III. METHODOLOGY

To achieve better learning efficiency and sustainable IDS,
we propose SURFS, a sustainable IDS solution that combines
the strengths of HFL and SNN-based for the CEI continuum.

A. SURFS

As illustrated in Figure 1, our proposition integrates SNN
within HFL. In particular, SNN is inspired by the way biolog-
ical neurons communicate through spikes. Unlike traditional
ANN where information is conveyed through continuous val-
ues (often between 0 and 1), the information in SNN is con-
veyed through discrete events called spikes [10]. In particular,
each neuron maintains a membrane potential (an accumulated
value) that varies over time. This potential increases with
incoming spikes from other neurons and naturally decays
or leaks over time. When the neuron’s membrane potential
exceeds a certain threshold, it generates a spike and resets
its potential. Then, the membrane potential gradually decays
toward a resting value when the neuron is not firing due to
a leak factor. This process is repeated for T timesteps. All
this makes SNN a closer computational analogy to biologi-
cal neural systems. Because SNN only activates (i.e., spike)
when necessary, they are inherently energy-efficient solutions.
Moreover, since only the spikes are communicated between
neurons, this leads to sparse data transmission. Consequently,
SNN can reduce the computation, bandwidth, and memory
requirements, making it suitable for resource-constrained en-
vironments (i.e., IoT applications).

Our proposition consists of three layers: IoT, edge, and
cloud; matching with its integration into the CEI continuum.
The IoT devices represent the lowest layer. The edge servers
are located in the middle layer, which is used for sub-global
aggregations of IoT device models. The cloud servers located
at the top layer are used for global model aggregation. Similar
to FL, HFL allows IoT devices to train a shared global model
while the raw data are kept local. The learning process in the
continuum includes the following key steps:

• Distributed local training and updates: Once the subset
of the IoT devices that participate in the learning pro-
cess is selected, the cloud server sends an initial SNN
model to trigger the distributed training (Global SNN
model downloading). Then, after several local epochs,
each IoT device uploads its local SNN model updates
to the corresponding edge servers for sub-global model
aggregation (Local model uploading).
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Fig. 1. Envisioned framework for sustainable HFL for IDS. In this framework, the IoT devices train the SNN model locally, the edge servers perform
sub-aggregation, and the cloud performs the global aggregation.

• Sub-global model aggregations and uploads: Upon re-
ceiving all the updates from the IoT devices, the edge
servers perform the sub-global SNN model aggregation
and transfer it back (Edge model downloading) to their
assigned IoT devices to update their local SNN models
accordingly. Then, after a specific number of rounds, the
edge servers send their sub-global models (Edge model
uploading) to the cloud server.

• Global model aggregation: After receiving the sub-global
models, a combined global model is created by averaging
the parameters of the edge models. Finally, the global
model parameters are transmitted along the hierarchy
downwards to the IoT devices.

• Iterated Training: The HFL training is iterated until the
desired performance is achieved.

B. Sustainability metrics

To evaluate the sustainability of our proposition, we use
metrics proposed in [16]. These metrics consider both the clas-
sification performance and environmental impact as follows:

• Error rate (which is 1− accuracy) on unseen data.
• Computational efficiency in terms of energy consumed in

units of Watt hours (Wh).
• Communication efficiency, which is quantified by the data

size communicated between the cloud server and the edge
servers (resp. IoT devices) in each communication round
in kilobytes (kB) in the FL scenario. It is represented by
the raw data size in the non-FL scenario.

Using the error rate serves as an evaluation metric for the
classification performance of the proposed model while com-
putational efficiency is associated with energy consumption
and its corresponding environmental impact, and communi-
cation efficiency is connected to throughput and bandwidth
needs. These considerations are vital when evaluating the
sustainability of a solution.

Therefore, the sustainability indicator (S) is computed using
the following equation:

S = Str + SInf (1)

where Str and SInf are the sustainability indicators for
training and testing/inference, respectively. Str is defined as:

Str = (1 + Etr)× (1 + Ctr)× (1 +Dtr) (2)

where Etr is the training error rate (which is 1− accuracy),
Ctr represents the energy consumed by our model during the
training in Wh, and Dtr is the data size communicated to
the cloud server during the model training in terms of kB. In
particular, to calculate the Dtr, we used the formulas proposed
in [17]; hence, it is calculated as follows:

Dtr = P ×Rg × (2× size(H)) (3)

where P is the number of participants in each communication
round, Rg represents the total number of global rounds, and
size(H) is the size of the model/data exchanged between the
device/edge servers and cloud server in each communication
round. Furthermore, as mentioned in the paper [16], a lower
value of Str indicates better computational and communica-
tion efficiency relative to accuracy. An ideal model would have
Etr = Ctr = Dtr = 0 and Str = 1. Lastly, SInf is defined as:

SInf = (1 + EInf )× (1 + CInf ) (4)

where EInf represents the inference error rate and CInf repre-
sents the energy consumed by our model during the inference.
During the inference, we do not consider the communication
cost as each client keeps its own model locally. Similar to Str,
the ideal SInf = 1 and CInf = EInf = 0.

IV. EXPERIMENTS AND PERFORMANCE EVALUATION

In this section, we first describe the experimental parameters
and the dataset. Then, we evaluate our proposed model in
terms of classification performance, training time, energy,
communication cost, and most importantly sustainability.



A. Experimental Setup

1) Implementation Details: In this study, we use PyTorch
and snnTorch as libraries. All experiments are run on a
Apple M1 Pro, and 32GB of RAM. The energy consumption
per considered model is measured using CodeCarbon1, a
tool that monitors the energy consumed either in GPU or CPU
during the training. The communication overhead is quantified
by the data size to be transmitted between the cloud server and
the edge servers (resp. IoT devices) in each communication
round with our SNN-based HFL model (resp. classical FL).
To evaluate the performance, we compare our proposed model
with FL+SNN and non-FL in terms of accuracy, energy
consumption, communication cost, and sustainability.

2) Dataset description: To evaluate the performance of
the proposed model, we have chosen one of the most recent
datasets, called Edge-IIoTset, published in 2022 [18]. This
dataset contains 46 features and 15 classes, normal and 14
attacks, where the normal traffic represents 72.8% of the total
samples used. In alignment with the paper of the dataset [18],
we drop unnecessary flow features such as IP addresses, ports,
timestamps, and payload information. Moreover, as this dataset
consists of different features with values in different scales,
the data are normalized so all their values are in the range of
[0,1]. In addition, to evaluate the performance of our model,
we split the dataset into two subsets: train (80%), validation
(10%), and test (10%).

3) Implementation Settings: The experiments have been
conducted over a fully connected SNN model with 3 layers,
Adam as an optimizer, Softmax as a classification function,
and learning rate = 0.0001. Also, we use 5 local epochs
for model training, 10 rounds as sub-global rounds (between
device and edge server), and 5 rounds as global rounds (Rg)
in total. For a fair comparison, we use 5 local epochs and 10
global rounds with FL+SNN, whereas with non-FL we use 250
as training epochs. Moreover, in all simulations, we encode the
data values into spike trains of length T using rate coding.

B. Experimental Evaluation

1) Classification performance: Table I shows the classifi-
cation performance of our model against baseline schemes,
which are the non-FL model and classical FL+SNN model
with IID data in terms of accuracy and F1-score. Over-
all, our model SURFS achieves a higher accuracy and F1-
score in comparison to FL+SNN. This enhanced performance
is achieved with significantly fewer global communication
rounds (5 global rounds). Furthermore, our model outperforms
the non-FL model with only 0.5 active rates of 100 clients
(meaning 10% of clients participate in each round). In addi-
tion, as shown in the table, our model not only improves the
classification performance but also accelerates the convergence
of the global model and in turn requires less training time than
others (3× faster than FL+SNN and 17× that of non-FL).

1https://github.com/mlco2/codecarbon

TABLE I
PERFORMANCE OF THE PROPOSED MODEL (SURFS) AGAINST THE

CLASSICAL FL AND NON-FL MODEL WITH IID DATA.

Metric Non-FL FL+SNN SURFS
Accuracy (%) 92.19 92.90 93.40
F1-score (%) 92.02 91.79 93.06
Training time (s) 228,907 38,564 13,137

2) Impact of data distribution: To study the impact of non-
IID data on the performance of our model, we vary the α
parameter of the Dirichlet distribution [19], which controls
the degree of non-IIDness in the data distribution among the
devices. For example, if α → ∞, all clients have an IID data
distribution, and if α → 0 each client holds samples from only
one randomly chosen class. Figure 2 and Figure 3 show the
performance of SURFS and classical FL in terms of accuracy
and training time respectively. It can be seen that the data
distribution/heterogeneity can impact the performance of both
SURFS and the FL+SNN model. In particular, the skewed dis-
tribution of data makes the global model struggle to converge
and to generalize well across all clients, leading to increasing
the training time with reduced accuracy. However, our model
SURFS performs better than classical FL especially when
dealing with a higher degree of non-IID data. This is because
HFL introduces a hierarchical structure where edge servers
can perform intermediate aggregations. This local aggregation
helps in capturing local data patterns better, contributing to
improved global model performance and fast convergence.
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Fig. 2. Classification accuracy under IID data and different non-IID levels
(α).

Fig. 3. Training time under IID data and different non-IID levels (α).



3) Communication and energy costs:
• Communication overhead:
To calculate the communication overhead of our SURFS

and classical FL+SNN model, we used the equation 3. As can
be seen in Figure 4 the size of the communication overhead
is greatly decreased by 99% and 97% compared to non-FL
and FL+SNN, respectively. The intermediate layer within HFL
significantly improves the performance of SURFS as compared
to FL+SNN since it speeds up the convergence and, as a
result, lowers communication costs. Furthermore, the greater
performance of SURFS in comparison to non-FL is due to the
HFL/FL training process that sends only model parameters and
not raw data samples to the central entity. This benefit will be
significantly more important if the training data become larger.
This is also attributed to several characteristics of SNN and
how it learns from the data. Thus, SURFS not only optimizes
bandwidth usage but also enhances data privacy and security,
as sensitive information is not exposed during transmission.
Thereby, SURFS paves the way towards robust and secure
distributed learning, especially in environments constrained by
limited communication resources.

SURFS FL+SNN Non-FL0.0

0.2

0.4

0.6

0.8

1.0

Co
mm

un
ica

tio
n o

ve
rh

ea
d (

KB
)

1e6

3450

115000

976000

Fig. 4. communication overhead (Lower implies better).

• Energy cost:
Integrating SNNs into HFL can potentially lead to further

reductions in energy consumption, particularly at the IoT
device levels where computations are performed. The training
and inference phases of machine learning need energy. In this
subsection, we study the energy used during training because
the inference time of our model inference is marginal. As
shown in Figure 5, using the CodeCarbon library, we can
quantify the energy consumption (in Wh) of our model against
FL+SNN and non-FL models. We can notice that the data
distribution impacts the energy consumption of the HFL/FL
model training. This is intuitive as we will see later in Table II
that the high data heterogeneity increases the training time. On
the other hand, with IID and non-IID (with different values
of α), SURFS consumes less energy. On the other hand, the
overall energy consumption of non-FL is high due to the
volume of computations required for training the model on
large datasets.

Moreover, the lack of hierarchical aggregation means that
FL+SNN may require more iterations to converge compared

to HFL+SNN, resulting in higher computational energy con-
sumption. HFL+SNN emerges as the most energy-efficient
due to the hierarchical structure of HFL that enables efficient
aggregation of model updates at the edge servers and leads to
faster convergence. In addition, SNN is known for its energy
efficiency due to its event-driven nature, where neurons only
activate and consume energy when necessary. This makes the
computations more sparse and energy-efficient. Thus, we can
conclude that SURFS is much better than FL+SNN and non-
FL settings during the training phase and in turn has less CO2

emission and environmental impact.
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Energy Cost (Wh)
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Fig. 5. Total energy consumed during the training (Lower implies better).

4) Sustainability Evaluation: In this section, we discuss
an important factor that is expected to be used during the
choice between non-FL, FL+SNN, and SURFS towards a
sustainable solution. The sustainability (S) is measured here in
terms of classification accuracy, along with computational and
communication efficiencies throughout both the training and
inference phases, as defined in equation 1. Table II presents a
comprehensive summary of the pertinent parameters gathered
for each model variant, under both IID and non-IID data
scenarios, subsequently leading to the computation of S for
each case (the lower S, the more sustainable).

From the results, it is evident that SURFS distinguishes itself
as a sustainable and greener alternative. This advancement in
sustainability can be primarily attributed to two major factors:
its consistently high classification accuracy and significantly
reduced communication energy costs. On the contrary, the
non-FL paradigm emerges as the least sustainable model. The
inherent inefficiencies of non-FL can be attributed to its larger
dataset sizes and higher energy consumption. Along with its
leak privacy preservation of the data users. This is further
exacerbated by its inability to safeguard user data privacy,
as the necessity to centralize data poses substantial privacy
risks. FL+SNN shows improvement over non-FL with reduced
error rates and communication overhead. However, it is still
not as efficient as SURFS. On the other hand, with non-
IID (α = 2 and α = 1) both FL+SNN and SURFS show
increased error rates and decreased sustainability compared to
the IID scenario. Moreover, when α = 0.5, we can notice
that FL+SNN faces significant challenges when a higher error
rate and lower sustainability. Although SURFS is affected



TABLE II
STATISTICAL MEASURES OF THE ERROR RATE, COMPUTATIONAL CONSUMPTION, COMMUNICATION OVERHEAD AND MODELS SUSTAINABILITY.

Data distribution Model Etr EInf Ctr CInf size(H) SInf Str(×103) S(×103)

IID
Non-FLSNN 7.88 7.81 1.080 0.0001 976000 8.8 18027.128 18027.136

FL+SNN 7.1 7.1 0.159 0.0001
115

8.1 1079.617 1079.625

SURFS 6.6 6.6 0.059 0.0001 7.6 26.382 26.389

Non-IID (α = 2)
FL+SNN 18.98 18.94 0.1 0.0001

-
19.94 2715.905 2715.924

SURFS 15.02 15.01 0.066 0.0001 16.01 58.933 58.949

Non-IID (α = 1)
FL+SNN 20.94 20.88 0.226 0.0001

-
21.88 3093.347 3093.369

SURFS 17.24 17.2 0.068 0.0001 18.28 67.226 67.244

Non-IID (α = 0.5)
FL+SNN 21.5 21.48 0.346 0.0001

-
22.48 3482.805 3482.827

SURFS 18.54 18.59 0.201 0.0001 19.59 80.986 81.006

by the extreme non-IID condition, it still maintains better
performance and sustainability than FL+SNN. In summary,
these results indicate that the non-FL solution is no longer
efficient for IDS due to its high energy consumption and
communication overhead in contrast to our SURFS scheme,
which is environmentally sustainable. It is able to handle
both IID and non-IID scenarios effectively, ensuring high
intrusion detection accuracy while minimizing energy costs
and upholding data privacy.

V. CONCLUSION

This paper proposes a novel sustainable IDS with SNN-
based HFL called SURFS. We have used a sustainability
indicator for evaluating energy and communication costs with
respect to accuracy, which enables fair comparisons across
various classical FL and non-FL under IID and non-IID
data. Experimental results using one of the most recent
datasets have shown that SURFS is a robust solution for IDS,
achieving superior performance, faster convergence (3× faster
than FL+SNN and 17× that of non-FL), low communication
overhead (reduction by 99% and 97% compared to non-FL
and FL+SNN, respectively), and substantial energy savings
(62% more efficient than FL+SNN and 94% more efficient
than the non-FL model). The preliminary results and the
sustainability-centric approach of our work pave the way for
future research and implementations, driving towards energy-
efficient and environmentally conscious IDS solutions.

REFERENCES

[1] “Cisco edge-to-enterprise iot analytics for elec-
tric utilities solution overview, 2020.” https:
//www.cisco.com/c/en/us/solutions/collateral/data-center-
virtualization/big-data/solution-overview-c22-740248.html.

[2] “The growth in connected iot devices is expected to generate 79.4zb
of data in 2025, according to a new idc forecast. accessed:,”
https://infohub.delltechnologies.com/.

[3] H. El-Sayed, S. Sankar, M. Prasad, D. Puthal, A. Gupta, M. Mohanty,
and C.-T. Lin, “Edge of things: The big picture on the integration of
edge, iot and the cloud in a distributed computing environment,” IEEE
Access, vol. 6, pp. 1706–1717, 2017.

[4] T. R. Gadekallu, Q.-V. Pham, D. C. Nguyen, P. K. R. Maddikunta,
N. Deepa, B. Prabadevi, P. N. Pathirana, J. Zhao, and W.-J. Hwang,
“Blockchain for edge of things: applications, opportunities, and chal-
lenges,” IEEE Internet of Things Journal, vol. 9, no. 2, pp. 964–988,
2021.

[5] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” in ICC 2020 - 2020 IEEE International
Conference on Communications (ICC), 2020, pp. 1–6.

[6] S. Agrawal, S. Sarkar, O. Aouedi, G. Yenduri, K. Piamrat, S. Bhat-
tacharya, P. K. R. Maddikunta, and T. R. Gadekallu, “Federated learning
for intrusion detection system: Concepts, challenges and future direc-
tions,” arXiv preprint arXiv:2106.09527, 2021.

[7] P. Singh, G. S. Gaba, A. Kaur, M. Hedabou, and A. Gurtov, “Dew-cloud-
based hierarchical federated learning for intrusion detection in iomt,”
IEEE journal of biomedical and health informatics, vol. 27, no. 2, pp.
722–731, 2022.

[8] D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J. Kim, “A survey
of deep learning-based network anomaly detection,” Cluster Computing,
vol. 22, no. 1, pp. 949–961, 2019.

[9] V. Mothukuri, P. Khare, R. M. Parizi, S. Pouriyeh, A. Dehghantanha,
and G. Srivastava, “Federated learning-based anomaly detection for iot
security attacks,” IEEE Internet of Things Journal, 2021.

[10] J. L. Lobo, J. Del Ser, A. Bifet, and N. Kasabov, “Spiking neural
networks and online learning: An overview and perspectives,” Neural
Networks, vol. 121, pp. 88–100, 2020.
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