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Abstract—Translating unstructured text into logical format
is a key challenge for building ontologies automatically and
addressing deductive inference. Most of the approaches have
tackled the identification of concepts and relations in text, but
few of them have addressed the most complex axioms like class
expression subsumption. This work proposes DeLIR, a neuro-
symbolic approach to identify complex logical patterns in text
by combining a grammatical translation of dependency parsing
trees and a fine-tuned Large language Model (LLM). DeLIR
combines the strength of the parsing accuracy provided by a
grammatical approach and pattern flexibility provided by a fine-
tuned LLM. We evaluated our approach on FOLIO dataset for
both translation capacity and inference capability. Our gram-
matical approach has a perfect parsing accuracy and combining
the grammatical approach with LLMs improves the LLMS
translation capacity: tinyLlama, T5-small-text2logic, Llama-7B
and Mistral-7B. We also evaluate the inference capacity of the
different LLMs. Mistral-7B, while being smaller than the state-of-
the-art approach using GPT-4, presents similar results to predict
the correct inference labels.

Index Terms—Ontology Learning, Translation to Logic, Natu-
ral Language Inference

I. INTRODUCTION

Ontology captures a sound semantic machine-
understandable description of digital content or expert
knowledge to link information together and allows automatic
deductive reasoning. Classically, a domain ontology is
constructed manually by a dedicated work of ontologists and
knowledge engineers through a careful understanding of the
domain. These human experts also embed constraints of the
domain in the ontology, in the form of axioms and rules,
which are required to perform deductive reasoning and draw
inferences based on first-order logic. Nevertheless, building
an ontology manually can be tedious and time-consuming.
Therefore, the task of Ontology Learning (OL) seeks to
overcome the knowledge acquisition bottleneck in ontology
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construction by automating the extraction of ontological
elements from data. The primary motivation is to minimize
the manual effort and cost associated with building ontologies
and keep pace with rapidly evolving knowledge, e.g. [1]–[7].
If the identification of classes and relations within data is
a well-studied topic, integrating axioms and rules within
the ontology remains an open challenge identified in the
literature [1], [5].

Overall, the literature on OL identifies two distinct tasks for
learning axioms: 1)The inductive task [8], [9] consists of in-
ferring causal relationships based on the statistical observation
of numerous correlations. 2) The translation task [10] involves
transforming information from textual to first-order logic. The
main complexity consists in resolving language ambiguities
when converting unstructured text to an ontology. Our work
seeks a translation-based approach for learning general axioms
from textual documents.

Several approaches have been proposed in the literature to
address the task of OL from text [2], including early ontology
learning systems that used natural language processing, and
machine learning techniques, to extract ontological elements
from text. Moreover, with the explosion of the large language
models (LLM), several approaches have been proposed using
LLM to learn ontologies from text [11], reaching the non-
taxonomic relations extraction level. Meanwhile, first-order
logic axioms are learned in [12], [13] from the text and
translated into first-order logic for making inferences. These
two approaches seek to learn general axioms from text using
neuro-symbolic approaches that combine a fine-tuned LLM
with dedicated prompts and a first-order logic prover to
translate text to a first-order logic for deductive reasoning
purposes.

Our work proposes DeLIR, a neuro-symbolic approach that
uses grammatical parsing of sentences based on universal
dependencies [14]. The idea is first to perform a grammatical
translation of the input text to respect the syntax and semantics.
The output of the grammatical translation is used as expert
rules to train an LLM allowing to control the learning process



of the LLM to avoid hallucination. The proposed grammatical
translation comprises three main tasks: identifying named
entities in a sentence, associating the pronouns and their
co-references to the appropriate variable or individual, and
transforming grammatical patterns into first-order logic motifs
using tree traversals algorithms on Dependency Parsing Tree
(DPT).

In order to validate our approach, we compare it to different
well-known LLMs such as T5, LLama, or Mistral [15]–[17],
and show that combining these LLMs with our grammatical
approach leads to the best accuracy score when translating
text documents to first-order logic formula. Moreover, we
tested our approach on the inference task, which consists of
evaluating a logical conclusion from a set of premises. Our
approach improves the inference accuracy for small LLMs
such as tinyLlama-1B and reaches similar accuracy to the
state-of-the-art models using smaller LLMs (Mistral-7B). The
experiments are conducted on the public dataset FOLIO [18].

The main contributions of the paper can be summarized as
follows:

1) A novel state-of-the-art neuro-symbolic grammar-based
approach that allows translating text to first-order logic
formula with a syntactic accuracy of 97.9%;

2) A hybrid translation approach combining the neuro-
symbolic approach with foundational LLM models,
which we show to be more robust and accurate for
translating text to first-order logic using both BLEU and
ROUGE metrics;

3) A detailed experiment showing the accuracy of our
approach on the public translation and reasoning tasks
proposed in FOLIO.

The paper is organized as follows: sec. II introduces some
key concepts for our work, sec. IV presents the description of
our proposed solution, sec. V details the various experiments
we have conducted, and sec. VI proposes a discussion of the
results and their limits.

II. BACKGROUND

Ontology learning can be seen as learning specific first-
order logic axioms that are translated into an ontology model.
This section first explains how first-order logic axioms can be
translated into ontology data models, such as the Web Ontol-
ogy Language (OWL). Moreover, we also explain hereunder
the tasks that we tackle in this work, namely the translation
of the text into first-order logic axioms and natural language
reasoning, as well as the used evaluation metrics.

A. Learning first-order logic axioms

World Wide Web Consortium (W3C) defines two stan-
dards for expressing ontologies: the Web Ontology Language
(OWL) 1 and RDF/S, OWL being the most expressive and
the mostly used one to integrate axioms within an ontology.
OWL is grounded on Description Logics (DLs), a family
of formal languages, which is a subset of first-order logic

1https://www.w3.org/TR/owl2-syntax/

TABLE I: Equivalence between Description Logics Axioms
and First-Order Logic Formulas.

DL component Axiom Classifi-
cation

First-Order Logic

Concept Assertion Instances C(x)
Role Assertion Instances r(x, y)
Negation Class Expression

Sub.
¬C(x)

Conjunction Class Expression
Sub.

C(x) ∧D(x)

Disjunction Class Expression
Sub.

C(x) ∨D(x)

Existential
Restriction

Class Expression
Sub.

∃y[r(x, y) ∧ C(y)]

Universal Restriction Class Expression
Sub.

∀y[r(x, y) → C(y)]

Concept Inclusion
(GCI)

Class Axiom ∀x[C(x) → D(x)]

Concept Equivalence Class Axiom ∀x[C(x) ↔ D(x)]
Disjoint Concept Class Axiom ∀x[C(x) → ¬D(x)]
Transitivity Relation Axiom ∀x∀y∀z[(r(x, y)∧r(y, z)

→ r(x, z)]
Reflexivity Relation Axiom ∀x[r(x, x)]
Symmetry Relation Axiom ∀x∀y[r(x, y) → r(y, x)]
Role Inclusion Relation Axiom ∀x∀y[r(x, y) → s(x, y)]
Inverse role Relation Axiom r(y, x)

defined through different profiles to reach balances between
expressiveness and reasoning complexity. Table I presents the
common axioms in Description Logic with their equivalence
in first-order logic. From this table, it is possible to translate
first-order logic axioms to Description Logic.

The different axioms may be classified into three cate-
gories based on the W3C classification: Class Axiom, Object
Property Axiom, and Class Expression Subsumption. Class
axioms correspond to class restrictions (inclusion, equivalence,
disjoint concepts). Properties axioms are restrictions over
relations (transitivity, reflexivity, symmetry, role inclusion,
inverse role). Class expression subsumption combines several
class expression axioms (negation, conjunction, disjunction,
existential, and universal restriction) with general concept
inclusion (GCI) to create complex formulas. Finally, instances
are identified with the attribution of an individual to a concept
or a role (concept assertion and role assertion).

Identifying axioms within texts consists of translating the
text into its equivalent first-order logic formula and capturing
within those formulas the logical patterns that correspond to
their Description Logic equivalent. Doing so may control the
level of expressiveness and decidability to target for a given
data model.

B. Translation Task

The translation task from Natural Language text to logic
axioms can be formulated as follows: Let P be a set of
sentences {p1, p2, p3, ...pn} expressed in natural language. The
translation task consists in finding the appropriate first-order
logic set of formulas ϕ = {ϕ1, ϕ2, ϕ3, ...ϕn} so that for a
given translation score f , f(P, ϕ) is maximized.

This task is evaluated based on two aspects: the quality
of the translation and the accuracy of the parsing for the
generated logic formula.

https://www.w3.org/TR/owl2-syntax/


The translation quality is assessed using the well-known
machine-translation metrics: sacreBLEU and ROUGE. Sacre-
BLEU [19] is a shareable variation of the BLEU [20] score,
which assesses the precision of the proposed translation by
comparing the shared number of bi-grams and n-grams over
the whole translation, normalizing the distribution to provide
a score between 0 and 100. ROUGE [21] is a metric defined
in text summarization where identifying all the elements is
more important than presenting them in the same order. It
computes the number of n-grams in the reference text, which
also occurs in the generated text. BLEU is mainly oriented on
the precision while ROUGE is primarly oriented on the recall
but can be adapted to compute the precision also and the F1-
score as well. We use both the BLEU and F1-score version of
ROUGE in our evaluation.

The parsing accuracy is assessed using a logic parser
provided by the nltk library 2, which can be integrated af-
terward with theorem provers like Prover9 3. We assessed the
achievement of the parsing for each sentence with a binary
value (1 if parsed, 0 if not) and computed the percentage of
parsed sentences over the dataset (score between 0 and 100).

C. Reasoning Task

The reasoning task consists of evaluating a set of conclu-
sions sentences C based on a set of premises. The evaluation
results can be either True, False or Undefined. Therefore,
the reasoning task can be defined as follows: given a set
of premises P (resp. it first-order logic formulas ϕ) and
a conclusion C (resp. it first-order logic formulas ξ), is it
possible to deduce C from P (is there a model that satisfies
ϕ ⊢ ξ). In practice, this task is implemented as a classification
task that takes P (resp. ϕ) and C (resp. ξ) and outputs the
labels True, False, or Undefined. The evaluation is performed
using the accuracy metric which determines the number of
correct answer over all the predicted labels.

III. RELATED WORK

This section introduces an overview of the prominent meth-
ods from the literature. We first discuss the task of ontology
learning from text and then the task of natural language
inference.

A. Ontology Learning from Text

Most of the current approach to address the challenge of
identifying axioms and rules within text relies on lexico-
syntactic approaches [22]–[26], using the grammatical infor-
mation and key lexical elements to identify the hypotheses.
Meanwhile, [10] paved the way towards Neural Networks
and Deep Learning, proposing an approach for neural machine
translation. Most of the studies focus on the identification of
class axioms and class expression (negation, union, intersec-
tion, general class inclusion (GCI), equivalence, cardinality,
value restriction, universal and existential quantification) [10],
[23]–[26]. Nevertheless, [22], [27] address Rules beyond the

2https://www.nltk.org/howto/inference.html
3http://www.cs.unm.edu/mccune/prover9/

expression of the OWL axioms, mostly relying on the Seman-
tic Web Rule Language (SWRL), a combination of OWL and
the Datalog RuleML sublanguage based on Horn-rules.

Moreover, the approach in [24] presents a strategy based
on the Grammatical Dependency Parsing Tree combined with
the identification of relevant words expressing specific logic
patterns (’only’, ’before’, ’between’), which are mapped to
their corresponding logic structure (expressed in Description
Logic), or to identified predicate (between is given a specific
predicate). On the other hand, [10] tackles the task as a neural
network translation and uses a Recurrent Neural Network
(RNN) trained on labeled data to learn Description Logic
axioms, mainly class expressions from definition sentences.
However, those attempts do not cover a large variety of axioms
and rules at once but cover different subsets of axioms.

B. Natural Language Inference

Several works have proposed a system to address the first-
order logic inference task based on FOLIO dataset [18],
either as a full neural system to perform the reasoning with
LLM [28] using Chain-of-Thought or as a neuro-symbolic
system combining both LLM and symbolic reasoners [12],
[13]. The LINC system presented in [12] proposes an LLM
for translation, combined with Prover9 as their first-order logic
prover. LogicLM combines different symbolic solvers and
approaches (Logic Programming, First-Order Logic Prover,
Constraint Optimization and SMT Solver), with the translation
provided by LLM. Both approaches compare their results
to zero-shot inference from the LLM GPT-4 and Chain-of-
Thought techniques. SymCoT [28] takes a full neural approach
and improves the Chain-of-Thought techniques by splitting it
into four dedicated modules: translating into first-order-logic,
planning the inference step by step, solving the inference task
and verifying the accuracy of the inference before giving the
final answer.

However, most of those works focus on the inference task,
only addressing the translation task as a mean for inference,
in the case of neuro-symbolic systems. Yet, the complexity of
the translation task was identified as a key challenge by [12],
[13], [18], especially when sentences are very close to natural
language, as in FOLIO. One of the crucial aspects to address
is the variation of translation proposed by neural systems like
LLM, which does not keep consistency in translating the set of
sentences into the same logical equivalent and often generates
translations that have errors in the logical syntax, detrimental
for a symbolic parser. The work in [12] tried to tackle the
problem by asking an LLM to generate the translation several
times and taking the mean evaluation provided by the symbolic
reasoner at the end of the inference process. This solution,
while being efficient to mitigate the syntactic errors generated
by LLM, may not be robust enough when addressing a large
corpus of natural language sentences, which increases the time
complexity and the probability of syntactic errors.

https://www.nltk.org/howto/inference.html
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Fig. 1: Parsing of the sentence’s grammatical dependencies.

IV. METHODOLOGY

A. Grammatical Dependency

Our algorithm is grounded on grammatical parsing of
sentences based on universal dependencies [14]. Universal
Dependencies (UD) is a framework that defines grammati-
cal annotations across different human languages. It defines
the hierarchical structure of clauses through an asymmetric
binary relation from the head to the dependant. Through all
the dependencies, the whole sentence is parsed as a tree
from the root corresponding to the central proposition’s verb.
The UD framework provides a standard for defining large
language treebank corpora across 150 languages. Those tree-
banks provided an important dataset that ground the current
improvement of grammatical parsing. Large Language Models
reached the current state-of-the-art specifically trained on those
corpora, especially transformers like BERT [29].

Our algorithm defines a recursive path over the tree of
dependency relations, as defined in the universal dependency
standard [14], following the definitions hereunder.

Definition 1. A dependence parsing tree (DPT) ⟨w, p, C⟩ is:
• a token w, which is a simple sequence of characters,
• a part of speech p among UD tags,
• a collection C of children DPT, each with a dependence

among UD dep.

In more precise steps, our algorithm travels bottom-up
across the whole tree of dependencies by recursively iden-
tifying the syntactic pattern within the graph. Fig. 1 presents
how our algorithm identifies patterns within the grammatical
dependency tree, like Subject Verb Object (SVO) clauses or
relative clauses attached to a noun. When all the syntactic
patterns have been identified, the first-order logic formula is
created bottom-up from the lower leaves to the root of the
tree, using the compositional quality of the first-order logic
formula.

A key challenge to transform a sentence into logic is the
identification and appropriate association of individuals and
variables, to address them with the appropriate logical form.
We address it with the construction of co-reference cluster, via
a state-of-the-art coreference resolution algorithm [30], which
provides reference cluster following the definition below:

Definition 2. A coreference cluster ⟨i, T ⟩ is:
• a identifier i, which is a simple sequence of numbers and

characters which uniquely identify the cluster,

TABLE II: Grammatical Patterns and First-Order Logic trans-
lation

Grammatical
Patterns

FOL translation Axioms

S V O S(x) ∧O(y) ∧ v(x, y) Conjunction
S NEG V O S(x) ∧O(y) ∧ ¬v(x, y) Negation
S1 [and] S2 V O [S1(x) ∧ O(y1) ∧

v(x, y1)] ∧ [S2(z) ∧
O(y2) ∧ v(z, y2)]

Conjunction

S1 [or] S2 V O [S1(x) ∧ O(y1) ∧
v(x, y1)] ∨ [S2(z) ∧
O(y2) ∧ v(z, y2)]

Disjunction

Noun [which/that] V O ∃y[N(x)∧O(y)∧v(x, y)] Class expression
with Ex. restriction

S V Attr S(x) → A(x) Concept Inclusion
IF S V1 O1, S V2 O2 [S(x) ∧ O1(y) ∧

v1(x, y)] →
[O2(z) ∧ v2(x, z)]

General Concept
Inclusion

S[Plural] V O ∀x[S(x) → (O(y) ∧
v(x, y))]

Universal
restriction

S[NE] V O[NE] v(α, β) Relation assertion
S[NE] V Attr A(α) Concept Assertion

• a collection T of disjoint DPT which refers to the same
individual or variable.

The co-reference algorithm, therefore, associates all DPT,
with a noun or personal pronoun as its root, to a unique
identifier. The co-reference cluster is essential to keep the
coherence of the individual and variable across the text. In the
context of translating rules, quantification requires bounding
all co-referent variables to the same quantifier, especially for
long and complex rules. Our algorithm associates this identifier
of the co-reference cluster to the appropriate unique variable
or individual when entities are identified. To identify entities
in the text, we rely on current NER algorithm [31] to identify
the different kinds of entities. Most of the state-of-the-art
algorithms associate different tags to the entities recognized:
person, location, organization, work-of-art, money, numerical
values, languages, etc. Depending on the desired model for the
ontology, the different kinds of entities may be addressed as
instances or as other types of logical forms, integrating a larger
set of entities (integrating money or languages as instances
may depend on the modeling choices).

Bounding of the variable to the appropriate quantifier
(universal or existential) happens during the parsing, with
two strategies: universal quantifiers were identified within
the sentence through grammatical patterns, while existential
quantifiers were assigned to all unbound variables within
the parsing. The first strategy was conducted by identifying
patterns in the subject noun phrase to capture generic plurals,
as presented in table II, with the corresponding DL axioms.
On the other hand, all the variables that were not bounded by
a universal quantifier or were not identified as instances were
bound to an existential quantifier to meet the requirements of
first-order logic.

The other logical operators and patterns (negation ¬, con-
junction ∧, disjunction ∨, concept inclusion →, etc) are
identified within the Dependency Parsing Tree (DPT) through
the grammatical patterns presented in table II.

The main grammatical pattern Subject Verb Object (S V
O) is translated into a conjunction of classes and relations.



Objects of the verb are identified either as direct objects or
indirect objects through a preposition. In this latest case, the
preposition is considered part of the verb and integrated within
the constructed relation. Grammatical conjunction (and, or) are
translated into conjunction and disjunction of conjunction of
predicates. Negation identified in the sentence (as negation
before the verb or a negative subject such as ’nobody’) is
translated as negation of the relation. Noun phrases with
relative clauses are treated like propositions to construct class
expressions, the variable being bound within the whole expres-
sion by the type of determinant before the noun (as universal
or existential quantifiers).

Concept Inclusion is identified through verbs or verbal
expressions that expect an attribute (be, seem, look like, etc.),
as the verb doesn’t express a specific relation apart from the
inclusion of the subject in the attribute scope. General Concept
Inclusion is captured through a conditional proposition SVO
pattern, with a specific marker (if, when, since, etc.) associated
with the main proposition. The coreference clusters are mainly
useful in those cases to associate the pronouns between the
two propositions. Finally, named entities in the sentences are
treated as relation assertion and class assertion.

Therefore, our current algorithms covers all Class Expres-
sion Subsumption axioms (negation, conjunction, disjunction,
universal and existential quantification, general class inclu-
sion). Concept equivalence may be addressed if two sentences
express the inclusion of two concepts within one another (’All
A is a B. All B is an A.’). However, this is quite rare in textual
documents. Overall, our algorithms covers the profile of the
Description Logic family ALC.

B. Large Language Models Fine-tuning

Large Language Models (LLMs) with the Transformer
architecture have defined a new state-of-the-art for natural
language processing, particularly in information extraction
and translation tasks. The Transformer architecture relies on
transfer learning techniques for addressing specific tasks: the
model is trained using vast corpora on a generic task with a
self-supervised approach (predicting the next word).

LLMs can be categorized into three main types: encoders,
decoders, and encoder-decoder models. Each type has distinct
architectures and applications.

Encoder models that are designed to generate a represen-
tation of the input text. These models are beneficial for tasks
that require understanding and encoding the input into a fixed-
size vector representation, such as the model BERT [29] and
its different variations. This model provides the DPT parsing
required for the grammatical approach presented above.

Decoder models generate text based on an input prompt.
These models are commonly used for tasks that require text
generation, such as machine translation and text completion.
A well-known example of a decoder is GPT (Generative Pre-
trained Transformer) and its different versions, such as GPT-2,
GPT-3, and GPT-4. In this work, we rely on Mistral [16] and
Llama [17] as decoder models for the reasoning task. Mistral

and Llama are both open-source models with much smaller
sizes by opposition to GPT-3 and GPT-4.

Finally, encoder-decoder models are designed to transform
one sequence into another. These models are beneficial for
tasks that involve sequence-to-sequence transformation, such
as translation and summarization. In this work, we use the
well-known T5 (Text-To-Text Transfer Transformer) [15] for
the translation.

These different LLMs are foundational models that can be
fine-tuned afterward on a more specific task with a smaller
corpora, by updating their weights. This fine-tuning approach
reduces the need for vast corpora and resources to train the
LLM for each specific task, allowing the models to be more
accurate while remaining trainable for particular tasks.

Meanwhile, even if these models (T5, Llama, and Mistral)
are not as big as GPT-4 (1.7 trillion parameters), they can
not be fully fine-tuned since doing so may completely change
all the parameters of the models (and their accuracy), and
take a huge computational time. In order to solve these
issues, we rely on the new architecture LoRA (Low-Rank
Adaptation) [32] for fine-tuning Large Language Models such
as BERT, GPT or T5. This architecture freezes the pre-trained
model weights before the fine-tuning and creates a rank-
decomposition matrices. These matrices are updated during the
fine-tuning before being added to the model weights matrix.
This approach reduces the number of trainable parameters by
10,000 times and greatly improves the accuracy.

V. EXPERIMENTS

We conducted our experiments on FOLIO dataset to evalu-
ate both the translation and reasoning tasks.

FOLIO was introduced in 2022 by [18] as a dataset to
benchmark the capacity of natural language systems (and
Large Language Models in particular) to perform deductive
reasoning over a set of natural language sentences. This
dataset comprises, for each testing case, a set of premises,
a conclusion, and a label asserting if the conclusion follows
from the premises (True), if it doesn’t (False), or if there is
not enough information to conclude (Uncertain). Each premise
and conclusion are presented in natural language (English
sentences) and first-order logic. Table III presents an example
of the dataset. It was constructed, partly manually by logic stu-
dents and partly automatically following deductive templates,
to test the capacity of understanding complex natural language
sentences, with many topics and syntactic formulation, and the
capacity to perform complex deductive reasoning, with several
inference steps required to address the conclusion. FOLIO was
constructed to assess two different tasks: an inference task and
a translation task. The inference task evaluates the capacity to
predict the appropriate label (True, False, Uncertain) given
the set of natural language sentences in the premises and
conclusion. The translation task evaluates the capacity to
formalize the meaning of a natural language sentence in a
first-order logic form to perform deductive reasoning.

In the example provided in Table III, the conclusion ’Tom’s
license plate is from Istanbul’ is labeled as False, since Tom’s



TABLE III: Example of Premises and Conclusion in FOLIO

Premises 1. All vehicle registration plates in Istanbul begin with 34.
2. Plates that do not begin with the number 34 are not
from Istanbul.
3. Joe’s vehicle registration plate is from Istanbul.
4. Tom’s license plate begins with the number 35.
5. If a license plate begins with the number 35, it does not
begin with the number 34.

Premises
FOL

∀x(V ehicleRegistrationP lateIn(x, istanbul) →
BeginWith(x, num34))
∀x(¬BeginWith(x, num34) →
¬FromIstanbul(x))
∃x(Owns(joe, x)∧
V ehicleRegistrationP lateIn(x, istanbul))
∃x(Owns(tom, x) ∧BeginWith(x, num35))
∀x(BeginWith(x, num35) →
¬BeginWith(x, num34))

Conclusion Tom’s license plate is from Istanbul.
Conclusion
FOL

∃x(Owns(tom, x)∧
V ehicleRegistrationP lateIn(x, istanbul))

Label False

license plate begins with the number 35 (P4), and doesn’t
begin with number 34 (P5) and plates which don’t begin
with number 34 are not from Istanbul (P2). Therefore, Tom’s
licence plate is not from Istanbul, and the conclusive assertion
is False based on this fact.

A. Translation Task

We have conducted four experiments (presented in Fig. 2
and reported in Tab. IV) to assess different systems’ capacity
to translate a natural language sentence to a first-order logic
formula.

Fig. 2: Experiments set-up combining the Grammatical ap-
proach and LLM fine-tuning. Each path is a different set-up
to translate text to FOL formula. The different experiments
are detailed hereunder.

Experiment 1. (exp1 in blue) is executed using the gram-
matical approach presented in sec. IV identifying logical
patterns within DPT. We used the grammatical parsing module
provided by spacy 4, based on the transformer model for En-
glish (en-core-web-trf) which is trained with RoBERTa [33].
This module provided the POS tagging, dependency pars-
ing, and Named-Entity Recognition for our experiment. We
complete our pipeline with a final module for co-reference
resolution [30]. This pipeline transforms each sentence into
a Dependency Parsing Tree (with NER tag and co-reference
cluster), which is parsed by our algorithm to generate the first-
order logic formulas.

Experiment 2. (exp2 in red) consists in fine-tuning LLM
models (t5-base, t5-small-text2log, mistral-7B, TinyLlama-1B,

4https://spacy.io/models/en

and Llama-7B) to translate text into first-order logic formula.
We trained the models while providing the text of each
sentences of the premises as an input and the FOL formula
supplied by the FOLIO dataset as the target.

Experiment 3. (exp3 in green) is conducted in the same
way, but as an input, we provided the translated FOL formulas
provided by the first experiment’s result with the grammatical
approach, keeping the FOL formulas provided by FOLIO as
the target.

Finally, experiment 4 (exp4 in purple) consists of fine-
tuning the LLM models while providing both the natural
language text and the FOL formulas generated by the first
experiment with the grammatical approach, it combines exp2
and exp3.

B. Reasoning Task

We also fine-tuned several open-source LLMs (TinyLlama-
1B, Mistral-7B, Llama-7B, Mixstral-8x7B, and Llama-3-70B)
for the reasoning task as classification. The input is the
premises and the conclusion, and the output is the labels True,
False, or Uncertain.

Two evaluations have been conducted and reported in Ta-
ble V to assess the quality of our models. First, we evaluate
the models in zero-shot learning by inferring the labels on
FOLIO validation data without any training. Then, except
for the model Llama-3-70b, the models are fine-tuned using
LoRA architecture on the FOLIO train set and are evaluated
on the validation set. The evaluation of models is based on the
accuracy of the reasoning (accuracy of the predicted labels).

All the fine-tuning experiments were conducted using
Python’s Transformers and Pytorch libraries. The results of
the different models for these two tasks are discussed in the
next section.

VI. RESULTS & DISCUSSION

A. Translation task

Table IV presents the results of our conducted experiments
for the translation task.

TABLE IV: Results of the experiment on translation to logic

Models BLEU ROUGE Parsing
Grammatical approach 36.64 56.79 97.88
Text2logic Text 31.98 51.70 14.94
Text2logic Grammar 32.39 50.72 15.83
Text2logic Text + Grammar 31.56 51.33 19.36
T5-base Text 44.16 63.96 31.57
T5-base Grammar 41.63 58.42 25.11
T5-base Text + Grammar 44.45 64.11 32.18
TinyLlama Text 31.40 58.88 4.24
TinyLlama Grammar 30.84 60.01 3.97
TinyLlama Text + Grammar 36.17 62.97 1.079
Llama7b Text 33.24 61.52 2.91
Llama7b Grammar 38.31 62.79 2.65
Llama7b Text + Grammar 38.09 63.86 2.12
Mistral Text 30.84 60.01 3.98
Mistral Grammar 34.48 62.24 1.59
Mistral Text + Grammar 32.57 62.98 2.92

https://spacy.io/models/en


Among the different methods, the grammatical approach
achieved the best Parsing score (97.88%), showing its robust-
ness and accuracy for generating first-order logic formulas.
This approach should in theory reach 100% and the delta in
performance is due to some errors in the generation of the
DPT by the Transformer model below (RoBERTa) which are
not captured during the parsing.

The grammatical approach alone shows a BLEU score of
36.64% and a ROUGE score of 56.79%, whereas the T5-
base model with fine-tuning over the text achieved the third
best BLEU score of 44.16% and the second best ROUGE
score(63.96%). Fine-tuning the T5 model using the gram-
matical approach output gives a lower BLEU and ROUGE
scores than the T5-base alone but better than the grammatical
approach. However, combining T5 fine-tuning with both the
Text and the grammatical translation approach output gave the
highest results overall with a 44.45% BLEU score and 64.11%
ROUGE score. While the improvement is small since the T5-
base is very good for the translation task, this result shows the
grammar complements this T5 encoder-decoder model.

We observed an improvement, when integrating the gram-
matical approach output for the LLMs (exp4), in the scores
of all the decoder LLM (TinyLlama, Llama-7B, and Mistral-
7B) by up to +5% on the BLEU and +4% on the ROUGE.
This improvement suggests that the grammatical approach is
more effective for generative models (decoders) as it allows
for the control of the generated tokens. However this approach
doesn’t reach a score of parsing equivalent to the grammatical
approach.

The lower translation score of the grammatical approach
may be explained by the narrow coverage of syntactic and
logical patterns. In particular, some cases around cardinality
restriction (e.g. ’the only animals are rabbits and squirrels’)
have not been integrated within our handled grammatical rules.
There is inherently a lack of flexibility in the grammatical
approach to account for grammatical structure, which has
not been defined within the patterns. However, this approach
ensures that the expected logic formula syntax will be re-
spected and that the logical pattern will be translated in the
expected form. There is a much higher level of control over
the translation output by maintaining the statistical prediction
of the LLM to the lowest level of the pipeline (tagging, ner
and co-reference), in area where the state-of-the-art is already
well established. On the other hand, fine-tuning a T5 model
builds on the flexible capacity of LLMs to process structures
that have not been defined and seen previously, despite its lack
of precision on the syntactic parsing.

B. Reasoning task

The results for the reasoning task are presented in Table V.
The zero-shot learning evaluation shows an increase of the
accuracy as function of the number of parameters, large
models have great ability for label inference. Mistral (7B)
which is the smallest in Table V has an accuracy of 37.% while
GPT-4 (1.76T) which is the largest gave an accuracy of 61.3%.
We noticed also that LLama-3 (70B) while having less number

TABLE V: The evaluation of the inference task on FOLIO
using 0-shot learning and fine-tuning. The column size gives
the number of parameters, which can be in millions (M),
billions (B), or Trillions (T).

Model Size Accuracy (%)
zero-shot learning
Mistral 7B 37.4
Mixstral 8x7B 51.2
Llama-3 70B 57.6
GPT-3.5-Turbo [18] 175B 53.1
GPT-4 [18] 1.76T 61.3
Fully supervised fine-tune
BERT-large [18] 340M 59.0
RoBERTa-large [18] 340M 62.1
Flan-T5-Large [18] 783M 65.9
TinyLlama 1B 60.6
Mistral 7B 77.3
Mixstral 8x7B 75.9
Logic-LM [13] - 78.1
LINC [12] - 73.1
Fully supervised translation + inference
TinyLlama + exp2 1B 61.1
TinyLlama + exp4 1B 63.1

of parameters than GPT-3 (175B) achieved a higher accuracy
(+4%) than the later. Finally the Mixtral (8x7B) which is a
mixture of experts version of Mistral is better than Mistral.

We also report the results of the fine-tuned models. We
notice that the decoder models (Mistral, Llama) are better
than the encoder models (BERT, RoBERTa) and the encoder-
decoder T5, this is due to the large size of the decoder models.
The two best models are Logic-LM [13], which is based on
GPT-4 (1.7T parameters) and Mistral (7B parameters). The
fine-tuned Mistral(7B) that we propose here for the inference
task is relatively small compared to the GPT-4, it achieved
similar results.

Finally, we used the fine-tuned model on the translation
task (exp2 to exp4) and fine-tuned them on the inference
task. We did not notice an improvement for 7B parameters
models like Mistral or LLama. Nevertheless, the TinyLlama
(exp4) achieved an improvement of 3% (63.1%) compared to
the TinyLlama baseline model (60.6%) that was fine-tuned for
the inference task only. This final fine-tuned TinyLlama with
only 1B parameters is better than the zero-shot learning of the
GPT-4 model with 1.76T parameters (+2%).

VII. CONCLUSION

This paper presents a neuro-symbolic approach to address
the translation of a natural language text into logical formulas
for integrating axioms in ontology and making inferences.
Our approach combines a grammatical identification of logical
patterns in the Dependencies Parsing trees (DPT), and a
neural approach by fine-tuning Large Language Models on
the FOLIO dataset.

The grammatical approach provides a translation with an
accurate syntactic parsing, however it doesn’t capture logical
patterns which have not been specified beforehand. On the
other hand, the fine-tuned T5 model performs better on the
translation task by identifying more logical patterns, however it



doesn’t reach a satisfying level for logical parsing. The combi-
nation of both approaches, while improving the accuracy of the
translation and parsing on small (Text2Logic, TinyLlama) and
large (T5, Mistral) LLMs, doesn’t reach the level of syntactic
accuracy of the grammatical approach alone.

Moreover, we fine-tuned different LLM on a natural lan-
guage inference task, with a zero-shot learning approach and
a fully supervised fine-tuning. The fine-tuned Mistral 7B
achieved results close to the Logic-LM approach based on
GPT-4, with 1000× less number of parameters.

As future work, we will consider designing a join loss
function that allows to perform at once text to FOL translation
and FOL reasoning. We are also considering the exploration
of other logical pattern within the grammatical dependency
parsing tree, to identify cardinality restriction, for instance.
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