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On non-superperfection of edge intersection graphs of paths

Victoria Kaiala, Hervé Kerivina,1, Annegret K. Waglera,1

aUniversity Clermont Auvergne, LIMOS (UMR 6158 CNRS), Clermont-Ferrand, France

Abstract

The routing and spectrum assignment problem in modern flexgrid elastic optical networks asks
for assigning to given demands a route in an optical network and a channel within an optical
frequency spectrum so that the channels of two demands are disjoint whenever their routes share
a link in the optical network. This problem can be modeled in two phases: firstly, a selection of
paths in the network and, secondly, an interval coloring problem in the edge intersection graph
of these paths. The interval chromatic number equals the smallest size of a spectrum such that
a proper interval coloring is possible, the weighted clique number is a natural lower bound.
Graphs where both parameters coincide for all possible non-negative integral weights are called
superperfect. Therefore, the occurence of non-superperfect edge intersection graphs of routing
paths can provoke the need of larger spectral ressources. In this work, we examine the question
which minimal non-superperfect graphs can occur in the edge intersection graphs of routing
paths in different underlying networks: when the network is a path, a tree, a cycle, or a sparse
planar graph with small maximum degree. We show that for any possible network (even if it is
restricted to a path) the resulting edge intersection graphs are not necessarily superperfect. We
close with a discussion of possible consequences and of some lines of future research.

Key words: Routing and spectrum assignment problem, edge intersection graph of paths,
interval coloring, superperfection.

1. Introduction

In optical networks, light is used as a communication medium between sending and receiving
nodes. That is, we are given a graph G = (V, E) that represents an optical network and a set D of
demands, where each demand k ∈ D is specified by

• an origin node ok ∈ V ,
• a destination node dk ∈ V \ {ok}, and
• a weight wk ∈ Z+ as traffic demand.

For over two decades, wavelength-division multiplexing (WDM) has been the most popular tech-
nology used in optical networks, where different wavelengths are used to simultaneously trans-
port signals over a single optical fiber. The resulting routing and wavelength assignment (RWA)
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problem asks to find, for each demand k ∈ D, a route Pk through the network and a wavelength
so that routes with the same wavelength share no edges, and the number of used wavelengths is
minimized [18]. However, WDM has to select the wavelengths from a rather coarse fixed grid of
frequencies and leads to an inefficient use of spectral resources.

In response to the continuous growth of data traffic volumes, a new generation of optical net-
works, called flexgrid optical networks, has been introduced to enhance the spectrum efficiency.
In such networks, the frequency spectrum of an optical fiber is divided into narrow frequency
slots and any sequence of consecutive slots can form a channel on optical fibers. That way, flex-
grid optical networks enable capacity gain by allocating minimum required bandwidth to each
demand. The resulting routing and spectrum assignment (RSA) problem is a generalization of
the RWA problem and consists of finding, for each demand k ∈ D, a route Pk through the net-
work and a channel S k of wk consecutive frequency slots so that the channels of two demands
are disjoint whenever their routes have an edge in common, and the number of used frequency
slots is minimized [21].

The two problems can be reinterpreted in combinatorial terms as follows. A routing P is
an assignment of each demand k ∈ D to an (ok, dk)-path Pk in G. The edge intersection graph
I(P) of a routing P has the paths Pk ∈ P as nodes and two nodes are joined by an edge if the
corresponding paths in G are in conflict as they share an edge (notice that we do not care whether
they share nodes). The spectrum assignment of the RSA problem corresponds to an interval
coloring of I(P) weighted with the traffic demands wk, that is to an assignment of intervals S k

of wk consecutive frequency slots to the nodes of I(P) so that the intervals of adjacent nodes are
disjoint. Let w ∈ Z|D|+ be the vector with entry wk for each demand k in D. The interval chromatic
number χI(I(P),w) is the smallest number of frequency slots allowing a proper interval coloring.
Given G and D, the minimum spectrum width of any solution of the RSA problem, thus, equals

χI(G,D) = min{χI(I(P),w) : P possible routing of demands D in G}.

On the other hand, the wavelength assignment of the RWA problem corresponds to a (usual)
coloring of I(P) and the minimum number of used wavelengths equals the chromatic number
χ(I(P)) = χI(I(P), 1), with 1 = (1, . . . , 1), taken over all possible routings P of demands D in G.

Both problems have been shown to be NP-hard [3, 22]. We note that the RSA problem
remains hard even when the network is a path [20], whereas the RWA problem is polynomially
solvable in this case [6]. The reason is that the edge intersection graphs of the routings fall into
the class of interval graphs when the network is a path - and coloring interval graphs can be done
in polynomial time, but finding an optimal interval coloring is already hard in this case, see [8].

This paper is motivated by the RSA problem and the task to determine χI(G,D). For that,
we note that for each routing P, the weighted clique number ω(I(P),w), also taking the traffic
demands wk as weights, equals the weight of a heaviest clique in I(P,w) and is a natural lower
bound for χI(I(P),w) (as clearly the intervals of all nodes in a clique in I(P) have to be disjoint
by the construction of I(P)). Thus,

ω(G,D) = min{ω(I(P),w) : P possible routing of demands D in G}

is a lower bound for χI(G,D). However, it is not always possible to find a solution with this lower
bound ω(G,D) as spectrum width, as weighted clique number and interval chromatic number of
the edge intersection graphs are not always equal.

Graphs where weighted clique number and interval chromatic number coincide for all possi-
ble non-negative integral weights are called superperfect.
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A graph is perfect if and only if this holds for every (0, 1)-weighting w of its nodes. Ac-
cording to a characterization achieved by Chudnovsky et al. [4], perfect graphs are precisely the
graphs without chordless cycles C2k+1 with k ≥ 2, termed odd holes, or their complements, the
odd antiholes C2k+1 (the complement G has the same nodes as G, but two nodes are adjacent in
G if and only if they are non-adjacent in G). In particular, every superperfect graph is perfect.

On the other hand, comparability graphs form a subclass of superperfect graphs. A graph
G = (V, E) is comparability if and only if there exists a partial order O on V ×V such that uv ∈ E
if and only if u and v are comparable w.r.t. O. Hoffman [13] proved that every comparability
graph is superperfect. Gallai [7] characterized comparability graphs by giving the following
complete list of minimal non-comparability graphs:

• odd holes C2k+1 for k ≥ 2 and antiholes Cn for n ≥ 6,
• the graphs Jk and J′k for k ≥ 2 and the graphs J′′k for k ≥ 3 (see Fig. 1),
• the complements of Dk for k ≥ 2 and of Ek and Fk for k ≥ 1 (see Fig. 2),
• the complements of A1, . . . , A10 (see Fig. 3).
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Figure 1: Minimal non-comparability graphs: Jk , J′k for k ≥ 2 and J′′k for k ≥ 3.
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Figure 2: Minimal non-comparability graphs: the complements of Dk , Ek , Fk .

As comparability graphs form a subclass of superperfect graphs, we have that every non-super-
perfect graph is in particular non-comparability, which raises the question of which minimal
non-comparability graphs are also minimal non-superperfect, see Section 2.

In this paper, we examine for different networks G, the question whether or not there is a
solution of the RSA problem with ω(G,D) as spectrum width - which depends on the occurrence
of (minimal) non-superperfect graphs in the edge intersection graphs I(P).

For some networks G, the edge intersection graphs form well-studied graph classes: if G is a

• path, then I(P) is an interval graph,
• tree, then I(P) is an EPT graph [9],
• cycle, then I(P) is a circular-arc graph,
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Figure 3: Minimal non-comparability graphs: the graphs A1, . . . , A10 (from top left to bottom right).

see Section 3, 4 and 5, resp. However, if G is a sufficiently large grid, then it is known by [10]
that I(P) can be any graph. Modern optical networks do not fall in any of these classes, but
are 2-connected, sparse planar graphs with small maximum degree with a grid-like structure. In
accordance with [9], we also refer to interval graphs as EPP graphs, to circular-arc graphs as
EPC graphs, and call edge intersection graphs of paths in an optical network EPN graphs.

We first study the cases when the underlying network G is a path, a tree or a cycle (see Section
3, 4 and 5, resp.). We recall results on interval graphs, EPT graphs and circular-arc graphs from
[16, 9, 5] and discuss which minimal non-comparability non-superperfect graphs can occur. In
addition, we exhibit new examples of minimal non-superperfect graphs within these classes.

All of these non-superperfect graphs are inherited for the case when G is an optical network,
and we give also representations as edge intersection graphs for the remaining minimal non-
comparability non-superperfect graphs. In view of the result on edge intersection graphs of paths
in a sufficiently large grid [10], we expect that any further minimal non-superperfect graph has
such a representation and give some further new examples of such graphs.

We close with some concluding remarks and open problems.
Parts of the results, presented hereafter, appeared without proofs in [15].

2. Basic and non-basic minimal non-superperfect graphs

As comparability graphs form a subclass of superperfect graphs [13], we have that every
non-superperfect graph is in particular non-comparability, which raises the question of which
minimal non-comparability graphs are also minimal non-superperfect. Clearly, odd holes and
odd antiholes are minimal non-superperfect (as they are minimal non-perfect [4]). It has been
shown by Golumbic [8] that A1, D2, E1, E2 and J2 are non-superperfect, but that there also are
superperfect non-comparability graphs such as, for instance, even antiholes C2k for k ≥ 3.

Furthermore, Andreae showed in [1], that the graphs J′′k for k ≥ 3 and the complements of
A3, . . . , A10 are superperfect, but that the graphs Jk for k ≥ 2 and J′k for k ≥ 3 as well as the
complements of Dk for k ≥ 2 and of Ek, Fk for k ≥ 1 are non-superperfect.
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Note that Andreae wrongly determined A2 as superperfect which is, in fact, not the case (see
Fig. 4 for a weight vector w and an optimal interval coloring showing that ω(A2,w) = 5 < 6 =

χI(A2,w) holds).
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Figure 4: The non-superperfect graph A2 together with node weights w and an optimal interval coloring showing
ω(A2,w) = 5 < 6 = χI (A2,w).

Moreover, Andreae wrongly determined J′2 as non-superperfect which is, in fact, not the case.

Lemma 1. J′2 is a superperfect graph.

Proof. Consider the graph J′2 shown in Fig. 5. We denote by I(v) the interval assigned to node
v. In order to show that ω(J′2,w) = χI(J′2,w) holds for all non-negative integral node weights w,
we distinguish the following two cases.
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Figure 5: The superperfect graph J′2.

Case 1. Q1 = {a, 1, 2} is a maximum weight clique of (J′2,w).

Then we have ω = ω(J′2,w) = wa + w1 + w2.
If w4 > w2, then there is a feasible interval coloring of width ω:

• let I(1) = [0,w1), I(a) = [w1,w1 + wa) and I(2) = [w1 + wa, ω),
• w3 + w5 ≤ wa (as Q1 has maximum weight) and a being non-adjacent to 3,5 allows I(3) ∪

I(5) ⊆ I(a),
• with I(3) = [w1,w1 + w3) and I(4) = [ω−w4, ω), we see that I(5) = [ω−w4 −w5, ω−w4)

is possible since w1 +w3 +w5 +w4 ≤ ω (as Q1 has maximum weight) and 4 is non-adjacent
to a and 2,

• I(b) = [0,wb) is possible since wb + w5 + w4 ≤ ω (as Q1 has maximum weight) and b is
non-adjacent to a, 1, and 3.

If w4 ≤ w2, then there is a feasible interval coloring of width ω:

• let I(2) = [0,w2), I(1) = [w2,w2 + w1) and I(a) = [w2 + w1, ω),
5



• I(3) ∪ I(5) ⊆ I(a) is again possible,
• I(4) ⊆ I(2) is possible by w4 ≤ w2 and 4 is non-adjacent to 2,
• with I(4) = [0,w4) and I(5) = [ω − w5, ω), we see that I(b) = [w4,w4 + wb) is clearly

possible since wb + w5 + w4 ≤ ω (as Q1 has maximum weight) and b is non-adjacent to a,
1, 2, and 3.

Case 2. Q2 = {1, 2, 3, 5} is a maximum weight clique of (J′2,w).

We have ω = ω(J′2,w) = w1 + w2 + w3 + w5 and there is a feasible interval coloring of width ω:

• let I(2) = [0,w2), I(1) = [w2,w2 + w1), I(3) = [w2 + w1, ω − w5) and I(5) = [ω − w5, ω),
• w3 + w5 ≥ wa (as Q2 has maximum weight) and a being non-adjacent to 3, 5 allows

I(a) ⊆ I(3) ∪ I(5), say I(a) = [ω − wa, ω),
• 4 non-adjacent to 1, 2 allows I(4) = [0,w4),
• I(b) = [w4,w4 + wb) is possible since wb + w5 + w4 ≤ ω (as Q2 has maximum weight) and

b is non-adjacent to a, 1, 2, and 3.

The case with {1, 3, 4, 5} maximum weight clique is symmetric to Case 2, whereas the case with
{4, 5, b} maximum weight clique is symmetric to Case 1. Hence, we have in any case (i.e., for all
non-negative integral node weights w) a feasible interval coloring of width ω(J′2,w). �

Hence, all previous results from [1, 4, 7, 8, 13] together with Lemma 1 imply the following:

Corollary 2. The following minimal non-comparability graphs are also minimal non-superperfect:

• A1 and A2,
• odd holes C2k+1 and odd antiholes C2k+1 for k ≥ 2,
• the graphs Jk for k ≥ 2 and J′k for k ≥ 3 as well as
• the complements of Dk for k ≥ 2 and of Ek, Fk for k ≥ 1.

Note that we have ω(G, 1) < χI(G, 1) if G is an odd hole or an odd antihole (as they are not
perfect), whereas the other minimal non-superperfect graphs are perfect and, thus, ω(G,w) <
χI(G,w) is attained for some w , 1 (see Fig. 4).

We call a minimal non-superperfect graph basic if it is minimal non-comparability, and non-
basic otherwise. We note that every non-basic minimal non-superperfect graph can neither be
imperfect nor a comparability graph. To find non-basic minimal non-superperfect graphs, we
can thus make use of the aforementioned complete list of minimal non-comparability graphs
found by [7]. Thus, among the graphs with n nodes, the candidates to be non-basic minimal
non-superperfect graphs are all graphs that

• are perfect (i.e., do not contain odd holes or odd antiholes),
• do not contain any minimal non-superperfect graph with ≤ n nodes, and
• contain a minimal non-comparability superperfect graph with < n nodes, i.e., A3, . . . , A10,

an even antihole C2k for k ≥ 3, J′2, or a graph J′′k for k ≥ 3.

To certify non-superperfection of a graph G, it suffices to exhibit one weight vector w with
ω(G,w) < χI(G,w). To test this property, we can use a result from [17] to decide whether a
given graph G with weights w has a feasible interval coloring within a spectrum [0, s]. For that,
variables li, ri for all nodes i of G encode the interval bounds for I(i) = [li, ri), order variables
xi j ∈ {0, 1} for all edges i j of G with i < j encode whether or not the interval I(i) is before I( j).
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Due to [17], the following integer linear program has a feasible solution if and only if (G,w) has
a feasible interval coloring within a spectrum [0, s]:

wi = ri − li ∀i ∈ V
0 ≤ li ≤ ri ≤ s ∀i ∈ V
ri ≤ l j + s(1 − xi j) ∀i j ∈ E, i < j
r j ≤ li + sxi j ∀i j ∈ E, i < j
xi j ∈ {0, 1} ∀i j ∈ E, i < j

li, ri ∈ Z ∀i ∈ V

Hence, we can certify non-superperfection of a graph G if there exists one weight vector w so
that the above integer linear program is infeasible for s = ω(G,w) in order to find non-basic
minimal non-superperfect graphs.

3. EPP graphs: If the network is a path

If the optical network G is a path, then there exists exactly one (ok, dk)-path Pk in G for every
demand k = (ok, dk,wk) between a pair ok, dk of nodes. Hence, if G is a path, then P and I(P) are
uniquely determined for any set D of demands, and the RSA problem reduces to the spectrum
assignment part. The edge intersection graph I(P) of the (unique) routing P of the demands is an
interval graph (i.e., the intersection graph of intervals in a line, here represented as subpaths of a
path and, thus, also called EPP graphs).

Interval graphs are known to be perfect [2]. In order to examine which basic minimal non-
superperfect graphs are interval graphs, we rely on a characterization of minimal non-interval
graphs from [16].

A graph is triangulated if it does not have holes Ck with k ≥ 4 as induced subgraphs. Interval
graphs are triangulated [12] hence all holes are, in particular, minimal non-interval graphs.

Theorem 3. If P is a set of paths in a path, then I(P) is an EPP graph and can contain Jk for all
k ≥ 2, J′k for all k ≥ 3, and E2, but none of the other basic minimal non-superperfect graphs.

Proof. In order to prove the theorem, we present according path collections for the affirmative
cases (see Fig. 6 for E2 and Claim 1 and 2 for Jk and J′k, resp.) and exhibit a minimal non-interval
graph as induced subgraph in the other basic minimal non-superperfect graphs (see Claim 3).

1

e 2e

1 2
b a

d

c
a

db

c

Figure 6: The EPP graph E2 = I(P) with P in a path.

Claim 1. I(P) can contain the graphs Jk for all k ≥ 2.

Recall from Fig. 1 that Jk is composed of a path a, 2, . . . , 2k + 1, b and that node 1 is adjacent to
2, . . . , 2k + 1, but not to a and b. We can embed a collection P of paths P(i) with I(P) = Jk in a
path P2k+2 with edges e1, e2, . . . , e2k, e2k+1 in such a way that
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• P(a) consists of edge e1, P(b) of edge e2k+1,
• P(1) consists of e2, . . . , e2k, and
• P(i) consists of edges ei−1, ei for all 2 ≤ i ≤ 2k + 1.

Thus, for any k ≥ 2, we have I(P) = Jk, see Fig. 7 for illustration. ♦

Claim 2. I(P) can contain the graphs J′k for all k ≥ 2.

Recall from Fig. 1 that J′k is composed of a path a, 2, . . . , 2k, b, node 1 is adjacent to a, 2, . . . , 2k
and 2k + 1 but not to b, node 2k + 1 is adjacent to 1 and 2, . . . , 2k, b but not to a. We can embed
a set P of paths P(i) with I(P) = J′k in a path P2k+1 with edges e1, e2, . . . , e2k−1, e2k so that

• P(a) consists of edge e1, P(b) of edge e2k,
• P(i) consists of edges ei−1, ei for all 2 ≤ i ≤ 2k, and
• P(1) consists of edges e1, . . . , e2k−1, and P(2k + 1) of edges e2, . . . , e2k−1, e2k.

Thus, for any k ≥ 2, we have I(P) = J′k, see Fig. 7 for illustration. ♦
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Figure 7: The EPP graphs J2 = I(P) (on the left) and J′2 = I(P) (on the right) with P in a path.

Claim 3. I(P) can neither contain A1, A2, nor any odd hole or odd antihole, nor any of the
graphs Dk for k ≥ 2, Ek for k , 2, Fk for k ≥ 1.

Due to [16], odd holes and D2, E1 are minimal non-interval graphs. The remaining basic
minimal non-superperfect graphs contain a C4 (which is a minimal non-interval graph by [16]):

• every odd antihole C2k+1 for k ≥ 3 (induced by the nodes 1, 2, 4, 5),
• every Dk for k ≥ 3 (induced by the nodes a, 1, k, d, see Fig. 2),
• every Ek for k ≥ 3 (induced by the nodes a, 1, k, e, see Fig. 2),
• every Fk for k ≥ 1 (induced by the nodes 1, b, c, d, see Fig. 2),
• A1 (induced by a, b, e, f ) and A2 (induced by e, b, c, d), see Fig. 3.

Hence, none of them is an interval graph. �
Theorem 3 and Corollary 2 imply that EPP graphs are not necessarily superperfect. We

next discuss which non-basic minimal non-superperfect graphs can be EPP graphs. Recall that
all of them have to contain a minimal non-comparability superperfect graph as proper induced
subgraph.

Lemma 4. An EPP graph can contain A9, A10 and J′2, but none of the other minimal non-
comparability superperfect graphs.
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Proof. Recall that every interval graph is triangulated and, thus, C4-free. This excludes the
occurrence of

• even antiholes C2k for k ≥ 3 (as they all contain a C4 induced by 1, 2, 4, 5),
• the graphs J′′k for all k ≥ 3 (as they all contain a C4 induced by 1, 2, 2k − 1, 2k),
• the graphs A3, . . . A8 (as they all contain a C4, see Fig. 3).

On the other hand, there are path representations for the remaining three minimal non-comparability
superperfect graphs A9, A10 and J′2, see Fig. 8 for A9, A10 and Fig. 7 for J′2. �

Fig. 8 shows non-basic minimal non-superperfect EPP graphs G and G′ containing A9 and
A10, resp.: they are non-superperfect (due to the indicated weight vectors causing a gap between
weighted clique and interval chromatic number), they are minimal (as they do not have a non-
comparability subgraph different from A9 = G − h and A10 = G′ − h, resp.), they are EPP graphs
(see the according path representations).
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Figure 8: Non-basic minimal non-superperfect EPP graphs G (on the left) and G′ (on the right) containing A9 = G − h
and A10 = G′ − h, resp.

4. EPT graphs: If the network is a tree

If the optical network G is a tree, then there is also exactly one (ok, dk)-path Pk in G for
every demand k = (ok, dk,wk) between a pair ok, dk of nodes. Hence, if G is a tree, then P and
I(P) are uniquely determined for any set of demands, and the RSA problem again reduces to the
spectrum assignment part. Edge intersection graphs of paths in trees have been studied in [9] and
are called EPT graphs. We recall results from [9] on holes in EPT graphs and examine which
minimal non-superperfect graphs can occur in such graphs.

It is known from [9] that EPT graphs are not necessarily perfect as they can contain odd
holes. More precisely, Golumbic and Jamison showed the following:

Theorem 5 (Golumbic and Jamison [9]). If the edge intersection graph I(P) of a collection P

of paths in a tree T contains a hole Ck with k ≥ 4, then T contains a star K1,k with nodes
b, a1, . . . , ak and there are k paths P1, . . . , Pk in P such that Pi precisely contains the edges bai

and bai+1 of this star (where indices are taken modulo k).

Figure 9 illustrates the case of C5 = I(P). From the above result, Golumbic and Jamison
deduced the possible adjacencies of a hole which further implies that several graphs cannot occur
as induced subgraphs of EPT graphs, including the complement of the P6 and the two graphs G1
and G2 shown in Figure 10. That P6 is a non-EPT graph shows particularly that no antihole Ck

for k ≥ 7 can occur in such graphs. This implies that an EPT graph is perfect if and only if it
9
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Figure 9: The odd hole C5 = I(P) with P in a star.

Figure 10: The non-EPT graphs G1 (on the left) and G2 (on the right).

does not contain an odd hole. In view of Theorem 5, this is clearly the case when the underlying
tree has maximum degree 4, as noted in [9].

Based on the above results, we further examine which basic minimal non-superperfect graphs
can occur in edge intersection graphs of paths in a tree:

Theorem 6. If P is a set of paths in a tree, then the EPT graph I(P) can contain A1, A2,

• odd holes C2k+1 for k ≥ 2, but no odd antiholes C2k+1 for k ≥ 3,
• the graphs Jk for all k ≥ 2 and J′k for all k ≥ 3, and
• D2, D3, E1, E2, E3, F1, F2, F3, but none of Dk, Ek, Fk for k ≥ 4.

Proof. If P is a set of paths in a tree, then I(P) can clearly contain

• odd holes C2k+1 for k ≥ 2, but no odd antiholes C2k+1 for k ≥ 3 due to [9],
• the graphs Jk for all k ≥ 2, J′k for all k ≥ 3, and E2 (as they are, by Theorem 3, examples

of interval graphs, which form by construction a subclass of EPT graphs).

For the remaining affirmative cases, we can show:

Claim 4. I(P) can contain the graphs A1, A2, D2, D3, E1, E3, F1, F2, F3.

The corresponding collections of paths are shown in Fig. 11 for A1, A2, Fig. 12 for D2 and
D3, Fig. 13 for E1 and E3, and Fig. 14 for F1, F2, and F3. ♦

However, we have:

Claim 5. I(P) cannot contain the graphs Dk, Ek, Fk for all k ≥ 4.

Recall that P6 cannot occur in EPT graphs [9]. Note further that the graphs Dk, Ek, Fk

contain a P6 for all k ≥ 4 from their definition, see Fig. 2. Thus, Dk, Ek, Fk have a P6 as induced
subgraph, and cannot be EPT graphs. �

Theorem 6 and Corollary 2 imply that perfect EPT graphs are not necessarily superperfect.
We next discuss which non-basic minimal non-superperfect graphs can be EPT graphs. Re-

call that all of them have to be perfect and have to contain a minimal non-comparability super-
perfect graph as proper induced subgraph.
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Figure 11: The graphs A1 = I(P) (on the left) and A2 = I(P) (on the right) with P in a tree.
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Figure 12: The graphs D2 = I(P) (on the left) and D3 = I(P) (on the right) with P in a tree.

Lemma 7. An EPT graph can contain C6, A3, . . . A6, A8, . . . A10 and J′2, but none of the other
minimal non-comparability superperfect graphs.

Proof. Recall that no EPT graph can contain P6 and the two graphs G1 and G2, given in Figure
10, as induced subgraph by [9]. This excludes

• even antiholes C2k for k ≥ 4 (as they all contain P6),
• the graphs J′′k for all k ≥ 3 (as they contain G1 induced by the nodes 1, 2, 3, 4, 5, 2k), and
• A7 (as A7 − d induces a G2).

On the other hand, C6 is an EPT graph [9], J′2 and A9, A10 are, by Lemma 4, interval graphs
which form by construction a subclass of EPT graphs, and it is easy to find path representations
as EPT graphs for the remaining minimal non-comparability superperfect graphs A3, . . . A6 and
A8. �

Fig. 15 shows non-basic minimal non-superperfect EPT graphs G and G′ containing A10 resp.
A5 and J′2: they are non-superperfect (due to the indicated weight vectors causing a gap between
weighted clique and interval chromatic number), they are minimal (as they do not have a non-
comparability subgraph different from A10 = G − h resp. A5 = G′ − h and J′2 = G′ − f ), they are
EPT graphs (see the according path representations). However, note that neither G is an interval
graph (as it contains a C4 induced by a, e, f , h) nor G′ (as A5 is not).

5. EPC graphs: If the network is a cycle

If the optical network G is a cycle, then there exist exactly two (ok, dk)-paths Pk in G for
every demand k = (ok, dk,wk) between its origin and destination nodes ok and dk. Hence, if G
is a cycle, then the number of possible routings P (and their edge intersection graphs I(P)) is
exponential in the number |D| of demands, namely 2|D|.

Moreover, the edge intersection graphs of paths in a cycle are clearly circular-arc graphs (that
are the intersection graphs of arcs in a cycle, here represented as paths in a (chordless) cycle and,

11
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Figure 14: The graphs F1 = I(P) (on the left), F2 = I(P), and F3 = I(P) (on the right) with P in a tree.

thus, also called EPC graphs). It is well-known that circular-arc graphs are not necessarily perfect
as they can contain both odd holes and odd antiholes, see e.g. [5] and Fig. 16 for illustration.

In order to address the question of which of the studied perfect basic minimal non-superperfect
graphs can occur in circular-arc graphs, we either present path collections for the affirmative cases
or exhibit a minimal non-circular-arc graph otherwise. For that, we first show the following:

Lemma 8. E3 is a minimal non-circular-arc graph.

Proof. Consider the graph E3 shown in Fig. 13. E3 contains a C4 induced by the nodes 1, 3, a, e.
It is well-known that any hole has a unique representation as arcs in a cycle. For this C4 we
obtain paths P(1) = (1s, . . . , 1t), P(3) = (3s, . . . , 3t), P(a) = (as, . . . , at), P(e) = (es, . . . , et) in a
cycle, whose endpoints satisfy in cyclic order 1s < et < 3s < 1t < as < 3t < es < at < 1s, see
Fig. 17.

For the paths P(b) = (bs, . . . , bt) and P(d) = (ds, . . . , dt), there is only one possibility for each
to place them in the cycle:

• as P(b) has to share an edge with P(e) only, we obtain at < bs < bt < 1s,
• as P(d) has to share an edge with P(a) only, we obtain 3t < ds < dt < es.

Moreover, P(c) = (cs, . . . , ct) must not share an edge with P(b) or P(d), but with each of
P(1), P(3), P(a) and P(e) which implies bt < cs < et < . . . < as < ct < ds.

Hence, we obtained the paths shown in Fig. 18 as the only possibility to represent E3 − {2}.
It is left to place the path P(2). According to the adjacencies in E3, P(2) has to share an edge

with P(a), P(c) and P(e), but with no other path. The edges of the cycle in Fig. 18 marked in
bold can be occupied by P(2) (as they satisfy the condition that none of P(1), P(3), P(b), P(d)
uses these edges), but none of the subpaths of the cycle composed of bold edges satisfies the
condition that it shares an edge with each of P(a), P(c) and P(e).

Hence, P(2) cannot be added to the only possibility to represent E3 − {2} and, thus, E3 is not
a circular-arc graph.
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Figure 16: The odd antihole C7 = I(P) with P in a cycle.

Finally, E3−{v} is a circular-arc graph for any node v. E3−{2} has an according representation,
and we can place P(2) whenever we drop the path of one other node:

• removing P(a) enables P(2) = (cs, 1s) (as P(2) must not share an edge with P(a) anymore);
removing P(e) analogously enables P(2) = (3t, ct);

• removing P(c) enables P(2) = (es, at) (as P(2) does not have to share an edge with P(c)
anymore);

• removing P(b) implies that P(2) can occupy the subpath (es, at, . . . , cs, 1s) and, thus, shares
an edge with each of P(a), P(c) and P(e); removing P(d) analogously leads to P(2) =

(3t, ct, . . . , es, at);
• removing P(1) allows to extend P(a), keeping all non-adjacencies, in such a way that

cs ≤ as < et holds which enables P(2) = (cs, . . . , as, . . . , et); analogously, removing P(3)
allows to extend P(e) such that as < et ≤ ct holds which enables P(2) = (as, . . . , et, . . . , ct).

Hence, E3 is a minimal non-circular-arc graph. �
Making use of the above facts, we can prove:

Theorem 9. If P is a set of paths in a cycle, then the EPC graph I(P) can contain

• A1 but not A2,
• all odd holes C2k+1 and odd antiholes C2k+1 for k ≥ 2,
• the graphs Jk for all k ≥ 2 and J′k for all k ≥ 3,
• D2, D3, D4, but not the graphs Dk for k ≥ 5,
• E1 and E2, but not the graphs Ek for k ≥ 3, and
• F2, but not F1 neither the graphs Fk for k ≥ 3.

Proof. If P is a set of paths in a cycle, then I(P) can clearly contain
13
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• odd holes C2k+1 and odd antiholes C2k+1 for k ≥ 2 (as they are well-known examples of
circular-arc graphs, see e.g. [5]),

• the graphs Jk for all k ≥ 2, J′k for all k ≥ 3, and E2 (as they are, by Theorem 3, examples
of interval graphs, which form by construction a subclass of circular-arc graphs).

For the remaining affirmative cases, we can show:

Claim 6. The graphs A1, D2, D3, D4, E1 and F2 are circular-arc graphs.

The corresponding collections of paths are given in Fig. 19 for A1 and D2, Fig. 20 for D3
and D4, Fig. 21 for E1 and F2. ♦
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Figure 19: The graphs A1 = I(P) (on the left) and D2 = I(P) (on the right) with P in a cycle.

However, we have:
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Claim 7. Neither A2, F1, nor Fk, Ek for k ≥ 3, nor Dk for k ≥ 5 are circular-arc graphs.

We have seen in Lemma 8 that E3 is not a circular-arc graph. C4 ∪ K1 is a well-known
minimal non-circular-arc graph [5]. C4 ∪ K1 occurs as induced subgraph of

• A2 (induced by the nodes g and b, c, d, e, see Fig. 4),
• F1 (induced by the nodes 1 and a, b, d, e, see Fig. 14),
• each of Dk for k ≥ 5 (induced by the nodes b and 1, 2, k − 1, k, see Fig. 2), and
• each of Ek for k ≥ 4 (induced by the nodes b and a, 1, k − 1, k, see Fig. 2).

The domino is another well-known minimal non-circular-arc graph [5], and each of Fk for k ≥ 3
contains a domino induced by 1, k, a, b, d, e (see F3 in Fig. 14 for illustration). �

We next discuss which non-basic minimal non-superperfect graphs can be circular-arc graphs.
For that, we first show the following:

Lemma 10. J′′3 is a minimal non-circular-arc graph.

Proof. Consider the graph J′′3 shown in Fig. 22. In J′′3 , the nodes a, 2, 3, 4, 5, b induce a path

a

b 

2

5

3

4

6

1

Figure 22: The minimal non-circular-arc graph J′′3 .

P6 which has a unique representation by arcs in a cycle, using paths P(a) = (as, . . . , at), P(2) =

(2s, . . . , 2t), P(3) = (3s, . . . , 3t), P(4) = (4s, . . . , 4t), P(5) = (5s, . . . , 5t), P(b) = (bs, . . . , bt) in a
15
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Figure 23: The paths P(a), P(2), P(3), P(4), P(5), P(b) corresponding to the P6 induced by the nodes a, 2, 3, 4, 5, b in J′′3 .

cycle, whose endpoints satisfy in cyclic order as < 2s < at < 3s < 2t < 4s < 3t < 5s < 4t < bs <
5t < bt, see Fig. 23 for illustration.

For the paths P(1) and P(6), there is only one possibility each. As node 1 is adjacent to
a, 2, 3, 4, 5 but not to b in J′′3 , we get P(1) = (1s, . . . , 1t) with 1s < at < . . . < 4t < 1t < bs. As
node 6 is adjacent to 2, 3, 4, 5, b but not to a in J′′3 , we get P(6) = (6s, . . . , 6t) with at < 6s < 2t <
. . . < bs < 5t < 6t. However, this forces P(1) and P(6) to intersect in 3s . . . 4t, a contradiction as
nodes 1 and 6 are not adjacent in J′′3 . Hence, J′′3 is not a circular-arc graph.

We have seen that J′′3 \ {6} (and, symmetrically, also J′′3 \ {1}) has a representation by arcs in
a cycle. In order to show that J′′3 is a minimal non-circular-arc graph, it is left to give represen-
tations for the remaining proper induced subgraphs. Indeed, there are according representations,
see Fig. 24(a) for J′′3 \ {a} (there is a symmetric representation for J′′3 \ {b}), Fig. 24(b) for J′′3 \ {2}
(symmetric for J′′3 \ {5}), Fig. 24(c) for J′′3 \ {4} (symmetric for J′′3 \ {3}). �
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Figure 24: The path representations of (a) J′′3 \ {a}, (b) J′′3 \ {2}, (c) J′′3 \ {4}.

Note that E3 and J′′3 are, to the best of our knowledge, new examples of minimal non-circular-
arc graphs (see, e.g., the results on circular-arc graphs surveyed in [5]).

Finally, recall that every non-basic minimal non-superperfect graph has to be perfect and has
to contain a minimal non-comparability superperfect proper induced subgraph.

Lemma 11. An EPC graph can contain A3, . . . , A10 and J′2, but none of the other minimal non-
comparability superperfect graphs.

Proof. It is well-known that even antiholes C2k for k ≥ 3 are not circular-arc graphs [5]. Further-
more, J′′3 is not a circular-arc graph (by Lemma 10) and neither are the graphs J′′k for all k ≥ 4
(as they all contain the well-known minimal non-circular-arc graph K2,3 induced by the nodes
1, 2, 4, 6, 2k). On the other hand, J′2 and A9, A10 are, by Lemma 4, interval graphs which form by
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construction a subclass of EPC graphs, and it is easy to find path representations as EPC graphs
for the remaining minimal non-comparability superperfect graphs A3, . . . , A8. �

Fig. 25 shows non-basic minimal non-superperfect EPC graphs G and G′ containing J′2 and
A6, resp.: they are non-superperfect (due to the indicated weight vectors causing a gap between
weighted clique and interval chromatic number), they are minimal (as they do not have a non-
comparability subgraph different from J′2 = G − c and A6 = G′ − h, resp.), they are EPC graphs
(see the according path representations). However, note that neither G is an interval graph (as it
is the 5-tent which is a minimal non-interval graph by [16]) nor G′ (as A6 is not).
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Figure 25: Non-basic minimal non-superperfect EPC graphs G (on the left) and G′ (on the right) containing J′2 = G − c
and A6 = G′ − h, resp.

6. EPN graphs: The general case

Modern optical networks have clearly not a tree-like structure neither are just cycles due to
survivability aspects concerning node or edge failures in the network G, see e.g. [14]. Instead,
today’s optical networks are 2-connected, sparse planar graphs with small maximum degree and
have more a grid-like structure. As an example, Fig. 26 depicts the Telefónica network of Spain
taken from [19].

Figure 26: The Telefónica network of Spain from [19].

In view of the result from [10] that any graph can be the edge intersection graph of paths in
a sufficiently large grid, we expect that also any graph has such a representation in sufficiently
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large optical networks. As, however, the construction from [10] makes use of the strong regu-
larity of grids (which does not apply to optical networks), we discuss in the following explicite
representations in small sparse graphs. As measure of sparseness, we employ the number of
edges that are added to a tree in order to obtain the studied network. A k-tree is a graph obtained
from a tree by adding exactly k edges. We note that 1-trees form the smallest common superclass
of trees and cycles.

We first wonder which basic minimal non-superperfect graphs can occur in edge intersection
graphs of paths in such networks G and can show:

Theorem 12. All minimal non-comparability non-superperfect graphs are EPN graphs and can
occur in edge intersection graphs I(P) of sets P of paths in 1-trees G.

Proof. In this case, all studied minimal non-superperfect graphs occurring in I(P) when the
network G is a tree or a cycle can clearly be present, hence we conclude from Theorem 6 and
Theorem 9 that we have

• A1 and A2 (can occur when G is a tree),
• all odd holes C2k+1 for k ≥ 2 (can occur in both cases),
• all odd antiholes C2k+1 for k ≥ 2 (can occur when G is a cycle),
• the graphs Jk for k ≥ 2 and J′k for k ≥ 3 (can occur in both cases),
• the graphs D2, D3, D4 (can occur when G is a cycle), and
• E1, E2, E3, F1, F2, F3 (can occur when G is a tree).

Hence, it is left to address the families Dk for k ≥ 5 and Ek, Fk for k ≥ 4. We will present the
corresponding collections of paths. For that, we first note that the graphs Dk, Ek, Fk contain a
Pk+2 for all k ≥ 4 from their definition (see Fig. 2), induced by the nodes a, 1, . . . , k, d in Dk

and by the nodes a, 1, . . . , k, e in Ek, Fk. Thus, Dk, Ek, Fk have a Pk+2 which can be represented
as circular-arc graph by using the corresponding paths of a path representation of a sufficiently
large odd antihole in a cycle C.

We modify this representation in a suitable way and distinguish the following two cases.
Case 1: k is odd and at least 5. Consider a chordless cycle C of size k + 2 with clockweise-
ordered nodes c0, c1, . . . , ck, ck+1 and add a node u being adjacent to c0 only. Defining ` = k+1

2
and using arithmetics modulo k + 2, we construct a set P′ consisting of the following paths:

• P(a) = (u, c0, c1, . . . , c`),
• P(i) = (ci`, ci`+1, . . . , ci`+`) for 1 ≤ i ≤ k,
• P(d) for Dk respectively P(e) for Ek and Fk as (c`+1, c`+2, . . . , c0, u) (note that we have

c(k+1)` = c`+1 and c2`+1 = c0).

By construction, I(P′) is isomorphic to Pk+2. We next choose P(c) = (c1, c2, . . . , c`+3) to ensure
that c is adjacent to all nodes of Pk+2 in the edge intersection graph.

To complete the representation of Dk, it is only left to choose P(b) = (u, c0) to ensure that b
is adjacent to a and d but to no other node of Dk.

For Ek and Fk, it remains to find paths P(b) and P(d) sharing an edge with P(e) and P(a)
only, respectively. In Ek, b and d are non-adjacent, hence P(b) and P(d) need to be disjoint. For
that, we extend the host graph by two further nodes u1 and u2 both being adjacent to u only,
extend P(e) by the edge uu1, P(a) by the edge uu2, and choose P(b) = (u, u1) and P(d) = (u, u2).
In Fk, b and d are adjacent, hence P(b) and P(d) need to share an edge. For that, we extend the
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1Figure 27: Illustration for the path representation of Dk , Ek and Fk for odd k > 5.

host graph by three further nodes u0, u1 and u2 all being adjacent to u only, extend P(e) by the
edge uu1, P(a) by the edge uu2, and choose P(b) = (u0, u, u1) and P(d) = (u0, u, u2).

Fig. 27 illustrates the representations of Dk, Ek, and Fk for k = 5.
Case 2: k is even and at least 4. Consider a chordless cycle C of size k + 3 with clockweise-
ordered nodes c0, c1, . . . , ck+1, ck+2 and add nodes v1, v2, u and edges c0v1, c0v2, c`+1u. Defining
` = k+2

2 and using arithmetics modulo k + 3, we construct a set P′ consisting of the following
paths:

• P(a) = (v2, c0, c1, . . . , c`, c`+1, u),
• P(1) = (c`+1, c`+2, . . . , c0, v1),
• P(2) = (v2, c0, c1, . . . , c`−1),
• P(i) = (ci`, ci`+1, . . . , ci`+`) for 3 ≤ i ≤ k − 1,
• P(k) = (c`+2, c`+3, . . . , c0, v2),
• P(d) for Dk respectively P(e) for Ek and Fk as (v1, c0, c1, c2, . . . cl+1, u).

Noting that P(2) and P(3) are disjoint as ` − 1 = k
2 equals 3` = k

2 + (k + 3), P(k − 1) and P(k) are
disjoint as k` = (k + 3)` − 3` ≡ − k

2 ≡
k
2 + 3 ≡ ` + 2(modk + 3) equals ` + 2, and that P(1) shares

edge c0, v1 with P(d) respectively P(e), we see that I(P′) is isomorphic to Pk+2 by construction.
We next choose P(c) = (cl, c`+1, c`+2, . . . , c2`+1 = c0, v2) to ensure that c is adjacent to all nodes
of Pk+2 in the edge intersection graph.

To complete the representation of Dk, it is only left to choose P(b) = (c`+1, u) to ensure that
b is adjacent to a and d but no other node of Dk. For Ek and Fk, we add to the host graph nodes
u1, u2, respectively u0, u1, u2, all adjacent to u only, and finally extend P(e) and P(a) and define
the remaining paths in exactly the same way as in Case 1.

Fig. 28 illustrates the representations of Dk, Ek, and Fk for k = 4.
Hence, the families Dk for k ≥ 5 and Ek, Fk for k ≥ 4 have representations as edge intersec-

tion graphs of paths in a 1-tree. This finally proves the theorem. �
We illustrate this situation with the help of an example.

Example 13. We consider the Telefónica network of Spain together with its demands as a real
instance of the RSA problem (taken from [19]), see Fig. 26 for the network and Table 1 for the
set of demands. A natural routing P (along shortest paths, see again Table 1) yields an edge
intersection graph I(P) that contains several minimal non-superperfect graphs, e.g.
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• a C5 induced by the paths P3, P18, P11, P10, P17,
• a D2 induced by the paths P16, P12, P11, P15, P4, P10,
• a E1 induced by the paths P16, P11, P4, P1, P14, P8,
• a F1 induced by the paths P7, P20, P11, P5, P4, P14,
• a C7 induced by the paths P13, P14, P17, P15, P18, P11, P20, and
• a J2 induced by the paths P16, P12, P4, P17, P8, P19, P15.

Note that, taking the node weights w into account, there are indeed gaps between the weighted
clique number and the interval chromatic number for the two odd holes C5 and C7.

In addition, there are non-basic minimal non-superperfect graphs in edge intersection graphs
of paths in networks. We first show:

Lemma 14. All minimal non-comparability superperfect graphs are EPN graphs and can occur
in edge intersection graphs I(P) of sets P of paths in optical networks G.

Proof. In this case, all studied minimal non-comparability superperfect graphs occurring in I(P)
when the network G is a tree or a cycle can clearly be present. Hence we conclude from Lemma
7 and Lemma 11 that I(P) can contain

• the even antihole C6 (when G is a tree),
• the graph J′2 (in both cases), and
• the graphs A3, ..., A10 (when G is a cycle).

Hence, it is left to address the two remaining families, i.e., even antiholes C2k for k ≥ 4 and the
graphs J′′k for all k ≥ 3.

Claim 8. I(P) can contain the graphs J′′k for all k ≥ 3.

Recall from Fig. 1 that J′′k is composed of an induced path (a, 2, . . . , 2k−1, b), node 1 is adjacent
to a, 2, . . . , 2k − 1, node 2k is adjacent to 2, . . . , 2k − 1, b, whereas 1 and 2k are non-adjacent.

We consider a (k − 1)-tree G composed of two paths induced by (u0, u1, . . . , u2k−1) and
(v1, . . . , v2k) that are connected by the edges uivi for even i with 1 ≤ i ≤ 2k − 1. We can embed a
set P of paths P(i) with I(P) = J′′k in such a network G, where
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index k origin ok destination dk weight wk path Pk

1 2 11 3 2
l1
→ 3

l5
→ 6

l12
→ 7

l15
→ 11

2 2 10 2 2
l2
→ 1

l8
→ 9

l11
→ 10

3 3 15 5 3
l5
→ 6

l12
→ 7

l13
→ 8

l22
→ 15

4 2 5 4 2
l1
→ 3

l5
→ 6

l6
→ 5

5 4 10 6 4
l7
→ 5

l10
→ 10

6 5 8 2 5
l4
→ 8

7 4 9 3 4
l9
→ 9

8 6 11 4 6
l12
→ 7

l15
→ 11

9 10 12 3 10
l24
→ 15

l23
→ 14

l19
→ 12

10 1 6 5 1
l3
→ 4

l7
→ 5

l6
→ 6

11 2 5 3 2
l1
→ 3

l4
→ 4

l7
→ 5

12 4 6 3 4
l4
→ 3

l5
→ 6

13 8 10 3 8
l14
→ 5

l10
→ 10

14 10 6 3 10
l10
→ 5

l6
→ 6

15 3 8 3 3
l5
→ 6

l12
→ 7

l13
→ 8

16 4 3 3 4
l4
→ 3

17 5 7 3 5
l6
→ 6

l12
→ 7

18 6 2 3 6
l5
→ 3

l1
→ 2

19 7 12 3 7
l15
→ 11

l17
→ 12

20 8 9 3 8
l14
→ 5

l7
→ 4

l9
→ 9

Table 1: The considered set of demands together with the selected routes

• P(1) = (u0, u1, . . . , u2k−1),
• P(a) = (u0, u1, v1),
• P(2`) = (u2`, u2`−1, v2`−1, v2`) for 1 ≤ ` ≤ k − 1,
• P(2` + 1) = (u2`, u2`+1, v2`+1, v2`, v2`−1) for 1 ≤ ` ≤ k − 1,
• P(b) = (u2k−1, v2k−1, v2k), and
• P(2k) = (v1, . . . , v2k).

Thus, for any k ≥ 3, we have I(P) = J′′k , see Fig. 29 for an illustration. ♦

Claim 9. I(P) can contain even antiholes C2k for all k ≥ 4.

To represent even antiholes C2k having nodes 1, 2, . . . , 2k and the non-edges i(i + 1) for all 1 ≤
i ≤ 2k mod k as EPN graphs, we use the following 3-tree G to embed the paths.
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1Figure 29: The EPN graph J′′3 = I(P) with P in a network.

G has {v1, v2, . . . , v2k+1, u} as node set and

{vivi+1 : i ∈ {1, . . . , 2k}} ∪ {v2k+1v1, v1vk, v1u, v2k+1u}

as edge set. That is v1, v2, . . . , v2k+1 induce in G a cycle C with exactly one chord v1vk and u has
v1 and v2k+1 as only neighbors. We define the following paths P(i) in G (where all arithmetic are
considered modulo (2k + 1)):

• P(1) = (u, v1, v2, . . . , vk),

• P(i) = (v(i−1)k, v(i−1)k+1, . . . , vik) for 2 ≤ i ≤ 2k − 2,

• P(2k − 1) = (v(2k−2)k, . . . , v2k+1, u, v1), and

• P(2k) = (v2k+1, v1, vk, vk+1, vk+2).

Note that P(1) and P(2k − 1) are the only paths in P containing node u, P(2k) is the only path
in P containing edge v1vk, and each path P(i) for 2 6 i 6 2k − 2 uses k consecutive edges of G
in such a way that P(i) ends at this node of C where P(i + 1) starts (in clock-wise order on C).
Hence, I(P) = C2k indeed holds for all k ≥ 4 (see Fig. 30 for an illustration). �
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1
Figure 30: Illustration of the described path representation for C8 as edge intersection graph of paths over a 3-tree.

Fig. 31 shows non-basic minimal non-superperfect EPN graphs G and G′ containing A7 and
A9, resp.: they are non-superperfect (due to the indicated weight vectors causing a gap between
weighted clique and interval chromatic number), they are minimal (as they do not have a non-
comparability subgraph different from A7 = G− g = G− h and A9 = G′ − h, resp.), they are EPN
graphs (see the according path representations).
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However, note that neither G is an EPT graph (as A7 is not), nor an EPC graph (as nodes
a, e, f , g, h induce a K2,3 which is a non-circular-arc graph, see e.g. [5]), and G′ is neither an EPT
graph (as nodes b, c, d, f , g, h induce a G1 which is a non-EPT graph by [9]) nor an EPC graph
(as nodes a, c, d, f , h induce a K1 ∪C4 which is a non-circular-arc graph, see e.g. [5]).
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Figure 31: Non-basic minimal non-superperfect EPN graphs G (on the left) and G′ (on the right) containing A7 = G−g =

G − h and A9 = G′ − h, resp.

In view of the result by [10] that I(P) can be any graph if G is a sufficiently large grid, we
expect that all minimal non-superperfect graphs can occur in edge intersection graphs of paths
in networks, as soon as the networks G satisfy minimal survivability conditions concerning edge
or node failures.

7. Concluding remarks

In this work, we studied the question which minimal non-superperfect graphs can occur
in edge intersection graphs I(P) of routing paths P in flexgrid elastic optical networks. We
considered several cases: when the optical network is a path, a tree, a cycle, or a sparse planar
graph with small maximum degree, resp., and the edge intersection graphs I(P) are accordingly
EPP graphs, EPT graphs, EPC graphs, or EPN graphs, resp. In all cases, we characterized which
basic minimal non-superperfect graphs can occur, see Theorem 3, 6, 9, 12. In addition, we
discussed which minimal non-comparability superperfect graphs can occur as proper induced
subgraphs of non-basic minimal non-superperfect graphs, see Lemma 4, 7, 11, 14, and exhibited
examples of non-basic minimal non-superperfect graphs in the studied classes and, thus, several
new examples of minimal non-superperfect graphs.

In particular, even in the most restricted case when the optical network is a path and the edge
intersection graphs are interval graphs, non-superperfect edge intersection graphs I(P) can occur
and can cause a gap between ω(I(P),w) and χI(I(P),w) and, thus, also between the lower bound
ω(G,D) and the minimum spectrum width χI(G,D). This is in accordance with the fact that the
SA problem has been showed to be NP-hard on paths [20].

Hence, in all networks, it depends on the weights w induced by the traffic demands whether
there is a gap between the weighted clique number ω(I(P),w) and the interval chromatic number
χI(I(P),w). To determine the size of this gap, we propose to extend the concept of χ-binding
functions introduced in [11] for usual coloring to interval coloring in weighted graphs, that is, to
χI-binding functions f with

χI(I(P),w) ≤ f (ω(I(P),w))

for edge intersection graphs I(P) in a certain class of networks and all possible non-negative
integral weights w.
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It is clearly of interest to study such χI-binding functions for different families of minimal
non-superperfect graphs and to identify a hierarchy of graph classes between trees respectively
cycles and sparse planar graphs resembling the structure of modern optical networks in terms
of the gap between ωI(I(P),w) and χI(I(P),w). Possible graph classes being of interest in this
context are cacti (that are graphs where all cycles are edge-disjoint) and k-trees (that are graphs
obtained from a tree by adding k edges) as common superclasses of trees and cycles.

Furthermore, in networks different from trees, the routing part of the RSA problem is crucial
and raises the question whether it is possible to select the routes in P in such a way that nei-
ther non-superperfect subgraphs nor unnecessarily large weighted cliques (i.e., cliques Q with a
weight w(Q) > ω(G,D)) occur in I(P).

Finally, giving a complete list of minimal non-superperfect graphs is an open problem, so
that our future work comprises to find more minimal non-superperfect graphs and to examine the
here addressed questions for them.

Acknowledgment. We would like to thank Martin C. Golumbic and Martin Safe for interesting
discussions on the topic, in particular concerning EPT graphs and circular-arc graphs.
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