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ABSTRACT

Context. The large aperture arrays for the currently under construction SKA Observatory (SKAO) will allow for observations of the
universe in the radio spectrum at unprecedented resolution and sensitivity. However, these telescopes will produce data on the scale
of exabytes, introducing a slew of hardware and software design challenges.
Aims. This paper proposes a multi-step image reconstruction framework that allows for partitioning of visibility data by baseline
length. This enables more flexible data distribution and parallelization, aiding in processing radio-astronomical observations within
given constraints. Additionally, as each step of the framework only relies on a subset of the total visibilities, one can perform recon-
struction progressively, with the initial step performed on the SKAO Science Data Processors and the second on local clusters.
Methods. The multi-step reconstruction is separated into two steps. First a low-resolution image is reconstructed with only short-
baseline visibilities, and then using this image together with the long-baseline visibilities, the full-resolution image is reconstructed.
The proposed method only operates in the minor cycle, and it can be easily integrated into existing imaging pipelines.
Results. We show that our proposed method allows for partitioning of visibilities by baseline without introducing significant additional
drawbacks, reconstructing images of similar quality within similar numbers of major cycles compared to a single-step all-baselines
approach that uses the same reconstruction method as well as compared to multi-scale CLEAN.
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1. Introduction

Radio-interferometry allows one to obtain images of the sky
in the radio spectrum by using antenna arrays in tandem with
aperture synthesis. The upcoming SKA Observatory (SKAO)1

will be composed of two separate telescopes, one for high fre-5

quencies (350 MHz to 15.35 GHz) and one for low frequencies
(50−350 MHz), that are currently being built separately in South
Africa and Australia. Upon completion, they will provide un-
precedented resolution and sensitivity, enabled by the 197 dishes
in SKA-Mid in South Africa and the 512 antenna stations in10

SKA-Low in Australia.
With the large number of antennas comes an equally large

amount of data. For SKA-Mid, projections estimate up to
2.375 TB/s = 205.2 PB/day from the dishes to the beamformer
and correlator engines and 1.125 TB/s = 97.2 TB/day from15

these to the imaging super computer, the SKA-Mid Science Data
Processor (Swart et al. 2022). For SKA-Low, the estimated data
transfer is 0.725 TB/s ≈ 62.5 PB/day from the antennas to the
correlator and 0.29 TB/s ≈ 25 PB/day from the correlator to
the SKA-Low Science Data Processor (Labate et al. 2022). Such20

amounts of data naturally lead to hardware and software de-
sign challenges. These include transferring data between nodes,
which turns out to be very expensive both in terms of computa-
tional time and energy, and long-term data storage, which proves
impossible given the cost. In addition, memory usage per Sci-25

ence Data Processor node is a potential concern.
With these complications comes the need to efficiently parti-

tion both the data and the workload. This is typically performed
along the frequency and time domains, with reconstruction be-
ing performed independently for each partition. Approaches30

1 https://www.skao.int/

that separate the image into facets for direction-dependent cal-
ibration, such as Cornwell & Perley (1992); Van Weeren et al.
(2016); Tasse et al. (2018), also enable partitioning by the spatial
image domain. In addition to the above, one can also potentially
separate the sample data (i.e., visibilities based on the length 35

of their corresponding baselines). However, this is typically not
done due to current minor-cycle reconstruction algorithms need-
ing to process all baselines together to achieve full resolution.
This limits parallelization flexibility. For example (de)gridding
needs to wait for the reconstruction algorithm to finish process- 40

ing all baselines before restarting, and memory access patterns
become complex for large numbers of baselines due to the large
number of visibilities needing to be gridded to the same grid.

This paper proposes an image reconstruction framework that
allows for the partitioning of visibilities by baseline length. It 45

achieves this by performing reconstruction in two steps, with
each processing only a subset of the total visibilities. The first
produces a low-resolution image using only the short baseline
visibilities. The second produces the final reconstructed image
using both the long baseline visibilities as well as the low- 50

resolution image of the first step. This approach is advantageous
over previous ones, as there is no need to gather the gridded vis-
ibilities each major cycle in order to perform (de)gridding, with
the only communication between nodes being an image trans-
fer between the two steps. This also allows for the possibility of 55

progressive reconstruction in cases where the SKA Science Data
Processors are not able to fully process the visibilities within the
given time constraints and the work has to be offloaded to re-
gional clusters.

We study the proposed framework in the context of a re- 60

construction method in the family of algorithms that are based
on compressive sensing and convex optimization (Wiaux et al.
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(De)gridding Deconvolution
ı̃nv

Image update ı̄nı̂n+1

Fig. 1. High-level overview of the radio-interferometric pipeline. A
reconstructed image ı̂n is compared to the measurements v in the
(de)gridding step, which outputs the difference in the spatial domain
ı̃n. This is passed to the reconstruction algorithm, which generates the
next estimate ı̂n+1 by deconvolving the residual image ı̃n and adding it
to ı̂n.

2009; Carrillo et al. 2014; Garsden et al. 2015) adapted to the
traditional major-minor cycle pipeline. We compare our frame-
work to both a single-step approach that processes all baselines65

simultaneously using the same reconstruction method as well as
multi-scale CLEAN (Cornwell 2008). We found it to reconstruct
images of comparable quality in similar numbers of major cycles
compared to the other two methods.

The remainder of this paper is structured as follows: We pro-70

vide a brief overview of radio-interferometric imaging as well as
a literature review in Sect. 2. We describe our method in Sect. 3,
and Sect. 4 describes the datasets used for our experiments. We
present and discuss our results in Sect. 5, and we provide con-
clusions and discuss possible avenues for future work in Sect. 6.75

2. Radio-interferometric imaging

Radio-interferometers measure the sky using arrays of antennas
(i.e., aperture arrays). Baselines produce visibilities, which are
the correlated instrumental response of the electrical field for
some given time duration and electro-magnetic frequency. These80

can be defined using the following equation (Smirnov 2011):

V(u, v) = Cuv

"
Duv(l,m)

I(l,m)
n

e−2πi(ul+vm+w(n−1)) dl dm

n =
√

1 − l2 − m2,

(1)

where C represents the direction-independent effects, such as an-
tenna gain; D denotes the direction-dependent effects, such as
phase gradients caused by the Earth’s ionosphere; (u, v, w) is the
difference between antenna coordinates in the frame, where w is85

aligned with the phase center; (l,m) are the spatial angular coor-
dinates on the celestial sphere, which is also the domain of the
integral; and I is the incident radiance of the sky emission.

If the D and e−2πiw(n−1) terms are ignored, Equation 1 simpli-
fies into a two-dimensional Fourier transform and allows one to90

retrieve an image of the sky emission through its inversion. This
image contains artifacts caused both by the partial sampling of
the Fourier domain due to the geometry of antenna arrays and by
the omission of the w and D terms. Radio-interferometric imag-
ing aims to correct for these, reconstructing an image that is us-95

able for science.
The general approach used by radio-interferometric algo-

rithms is iterative and is illustrated in Fig. 1. The current im-
age estimate, ı̂n, is evaluated against the measurements, v, in the
(de)gridding step, which also corrects for the w and sometimes100

the D terms. This step produces the difference between v and ı̂n
in the image space, termed ı̃n. It can be expressed as

ı̃n = F†G†(v −GF ı̂n), (2)

where F and F† respectively are the fast Fourier transform (FFT)
and its inverse, G is a degridding operator responsible for extrap-
olating the regular gridded visibilities to their original irregular 105

positions, and G† is the gridding operator responsible for inter-
polating the irregular visibilities to regular gridded positions.

The correction of the w and D terms typically occurs before
F†. There are various approaches to this, such as treating the w
and D terms as convolution kernels in the Fourier domain and 110

convolving them with the visibilities during G† (Cornwell et al.
2008; Bhatnagar et al. 2008; Van Der Tol et al. 2018); discretiz-
ing in the w-plane, which can be seen in methods such as w-
stacking (Offringa et al. 2014) and its improvement (Ye et al.
2022); discretizing in the time domain, such as with the snap- 115

shots method (Ord et al. 2010); discretizing in the spatial do-
main with facet-based approaches (Cornwell & Perley 1992;
Tasse et al. 2018); or some hybrid of the above, such as be-
tween w-projection and snapshots (Cornwell et al. 2012) and w-
projection and w-stacking (Pratley et al. 2019a). 120

The residual image ı̃n is then sent to the deconvolution algo-
rithm, which removes the partial sampling artifacts. There are a
plethora of methods that aim to achieve this, with some exam-
ples being CLEAN and its variants (Högbom 1974; Cornwell
2008; Rau & Cornwell 2011) that deconvolve ı̃n in a greedy 125

non-linear manner, much akin to matching pursuit (Mallat & Z.
1993) and convex optimization methods based on compressive
sensing (Wiaux et al. 2009; Carrillo et al. 2014; Dabbech et al.
2015). There has also been work done on progressively recon-
structing the final image based on subsets of visibilities, such as 130

the work of Cai et al. (2019), which shares similar general ideas
to our approach. It differs in that the partitioning is by time rather
than baseline, with their method still requiring all baselines to
be present within a subset of visibilities. Another method that
has similarities with ours is that of Lauga et al. (2024), where 135

they alternate reconstruction between low and full-resolution it-
erations. Their work differs from ours in that their framework is
primarily aimed at accelerating reconstruction, and it does not
allow for easy partitioning of visibilities.

After deconvolution, the image estimate is updated by adding 140

to it the deconvolved residual ı̄n:

ı̂n+1 = ı̂n + ı̄n. (3)

The deconvolution step is iterative, ergo the imaging pipeline has
a nested loop structure, which is often referred to as the major-
minor loop structure, with the loop shown in Fig. 1 being the
major loop and the deconvolution being the minor. 145

(De)gridding is often the bottleneck of the imaging pipeline
due to the sheer number of visibilities needed to be processed,
with the work of Tasse et al. (2018) demonstrating that it can
reach up to 94% of the total processing time for a fully serial
implementation. Due to this fact, there is much work that looks 150

to expedite this stage through parallelization.
This can be done in a coarse- or fine-grained manner. Fine-

grained approaches aim to parallelize on the local machine at
a fine scale, such as per visibility or grid cell. There has been
substantial amounts of work done in this area, both for the central 155

processing unit (CPU), such as in Barnett et al. (2019), as well as
the graphics processing unit (GPU), such as in Romein (2012);
Merry (2016); Veenboer et al. (2017). Our method does not deal
with parallelization on this scale and instead focuses primarily
on facilitating distribution and parallelization on coarser scales. 160

Coarse scale parallelization looks to distribute (de)gridding
across multiple nodes within a cluster. A typical method for
this is to distribute according to frequency channels and time.
More recently, there has also been work that looks to distribute
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the gridding according to facets (Monnier et al. 2022) as well165

as sections of the UV plane (Onose et al. 2016; Pratley et al.
2019b). These different distribution strategies can also be com-
bined, such as in the work of Gheller et al. (2023) where visibil-
ities are separated by time and the v-axis.

Of the aforementioned coarse-scale methods, the most simi-170

lar to our work are those by Onose et al. (2016) and Pratley et al.
(2019b), both of which distribute and parallelize by regions of
the UV grid, or also by baseline length in the case of Pratley et al.
(2019b). Although similar in goal, their work differs from ours
in that our presented method is not parallel, with our main fo-175

cus being on investigating partitioning visibilities in the con-
text of radio-interferometric imaging. Furthermore, although our
framework is theoretically general, we present it in the context
of a major-minor loop reconstruction method, solving for a de-
convolution every major loop. This is contrary to both of these180

works, which aim to directly solve for the measurement equation
using primal-dual methods. This has efficiency implications, as
while their methods need to perform (de)gridding at every iter-
ation of the optimization algorithm, our approach only needs to
do so for each major cycle, which occurs far less often.185

3. Proposed algorithm

Our proposed framework performs imaging in two steps, each
operating only on a subset of the visibility data separated in the
UV plane. These subsets, termed VL and VH , are partitioned
according to the domains L and H , which cover regions repre-190

senting short and long baselines, respectively.
Each step performs the entire imaging pipeline and produces

an image. The first produces a low-frequency image, ı̂L, from
VL, and the second produces the fully reconstructed image, ı̂,
using both VH and ı̂L.195

The reconstruction method we apply to our framework
is based on convex optimization with sparsity regulariza-
tion, as this has a solid theoretical foundation (Candes et al.
2006; Donoho 2006; Candès et al. 2011) and has been ex-
tensively studied in the field of radio-interferometric imag-200

ing (Wiaux et al. 2009; Carrillo et al. 2014; Dabbech et al.
2015). Specifically, similar to previous works on reconstruction
within the Low-Frequency Array (LOFAR) pipeline (Jiang et al.
2015; Garsden et al. 2015), we solve for a sparse series of atoms
α of a redundant wavelet dictionary W.205

We adapted the method to operate with the traditional major-
minor loop framework for efficiency, which we achieved by
making the same assumption as algorithms such as CLEAN,
namely that F†G†GFi ≈ Hi, where H denotes the convolution
by the point spread function (PSF). This allows the minor cycles210

to only solve the deconvolution problem, with the full measure-
ment operator (i.e., degridding and gridding) only needing to be
performed every major cycle. As with CLEAN, this assumes that
the errors introduced by the approximation will be detected and
corrected for in future major-cycle iterations. It is important to215

note that although detailed for this specific family of reconstruc-
tion algorithms, our proposed framework can be adapted to other
reconstruction frameworks.

3.1. Partitioning visibilities

We partitioned the visibilities into subsets VL and VH based on220

whether the visibilities fall under the domain L or H , respec-
tively. Figure 2 illustrates this, where visibilities in the orange
region are part of VL, and visibilities in the green belong to VH .

H

L ∩ H
L

ℓ − δ

ℓ
+

δ

Fig. 2. Full set of visibilities partitioned according to the domains.
The domain L (orange) contains the short baseline visibilities, and H
(green) contains the long baseline visibilities. These are not mutually
exclusive but rather have an overlap region indicated in cyan and de-
fined using `, which is the middle of L ∩ H , and δ, the half-width of
L ∩H .

It can be seen that L ∩ H , ∅, and this overlap is denoted by
the cyan region. This is to alleviate cases where gridding intro- 225

duces additional spatial frequencies not in the respective domain,
which is caused by the visibilities being interpolated onto the
grid through convolution using a kernel with a non-zero support
size. The visibilities in L∩H are weighted so that although du-
plicated, their contribution adds up to one. This was done using 230

filters that are discussed in Sect. 3.3.
The dataset was partitioned using the variables ` and δ,

where δ defines the half-width size of L ∩ H and ` defines the
center of L ∩ H . These are also shown in Fig. 2. These values
are typically defined in units wavelength. However, we opted to 235

use pixel distances in our paper.

3.2. Low-resolution reconstruction

The first step of the framework involves reconstructing a low-
resolution image from VL. To do this, for every major-cycle it-
eration, n, for a total of N cycles, we solve for the unconstrained 240

problem:

αLn = arg min
α
‖ı̃Ln − HLWα‖22 + λLn‖α‖1

ı̄Ln = WαLn ,
(4)

where ı̃Ln is the current residual image (i.e., between VL and
ı̂Ln−1 , computed in the nth major cycle), HL is the operator de-
tailing the convolution by the PSF associated with VL, λLn is the
regularization parameter associated with the current major cycle, 245

and ı̄Ln is the deconvolved residual of ı̃Ln . The final image after
N major cycles is then ı̂L = ı̃LN+1 +

∑N
n=1 ı̄Ln .

An undesirable side effect when solving for Equation 4 is
that ı̂L can contain frequency information that is not associated
with L due to W not being constrained to L, which interferes 250

with the reconstruction of the full-resolution image. We han-
dled this in the full-resolution reconstruction step using filtering,
which we discuss in Sect. 3.3.
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3.3. Full-resolution reconstruction

The second step of the framework reconstructs the full-255

resolution image using both VH and ı̂L. We formulated the re-
construction problem using two data fidelity terms one for the
high frequencies and one for the low frequencies, in addition
to an L1 regularization term. For every major-cycle iteration, n,
over N total cycles, we solve for260

αHn = arg min
α
‖GH (ı̃Hn − HHWα)‖22 + ‖GL(lLn −Wα)‖22

+ λHn‖α‖1

lLn = ı̂L −

n−1∑
j=1

ı̄ j, ı̄n = WαHn ,

(5)

where ı̃Hn is the current residual image between VH and ı̂n−1,
HH the operator detailing convolution by the PSF associated to
VH , and λHn is the regularization parameter for the nth major
cycle of the full-resolution step. Operator GL denotes a low-pass
linear filter that discards frequencies not in L, and GH is a high-265

pass linear filter that discards frequencies not inH . Finally, ı̄n is
the deconvolved residual image using both ı̃Hn and ı̂L. The final
reconstructed image is computed similarly to the low-resolution
step and is ı̂ = ı̃HN+1 +

∑N
n=1 ı̄n.

In Equation 5, the first data fidelity term aims to recon-270

struct the high-frequency components of the residual image from
VH (i.e., ı̃Hn for the nth major loop). The second data fidelity
term guarantees that the low-frequency components of the re-
constructed image match the reconstruction obtained using VL
in the first low-resolution reconstruction step. For the nth major275

loop, the low-pass filtered reconstructed image must match the
residual between ı̂L and the low-frequency components of the
reconstructions at the previous major loop iterations: GL

∑n−1
j=1 ı̄ j.

As mentioned in the previous section, ı̂L may contain spatial fre-
quencies not in L due to W not being limited to L, which may280

bias the reconstruction of ı̂ toward these frequencies. These com-
ponents are removed by applying GL also to ı̂L, as in Equation
5.

The gains of the two filters have to be properly normalized, in
particular in L ∩H , to account for visibilities being duplicated.285

We assumed that the two filters GL and GH have circularly sym-
metric frequency responses denoted as gL(r) and gH (r). We con-
sidered that lLn contains some reconstruction noise with variance
η2 and that ı̃Hn has noise with varianceσ2. This suggests defining
the two filters as290

r > ` + δ : |gH (r)|2 = 1/σ2, gL(u) = 0 (6)

r < ` − δ : gH (r) = 0, |gL(r)|2 = 1/η2 (7)

` − δ < r < ` + δ : σ2|gH (r)|2 + η2|gL(r)|2 = 1. (8)

These constraints ensure normalization of the variance noise
across the three frequency domains L −H ,H −L, andH ∩L

We propose defining the frequency response of the filters for
` − δ < r < ` + δ as

gL(r) = α(r)
(
1 − sin

(
π

2δ
(r − `)

))
(9)

gH (r) = α(r)
(
1 + sin

(
π

2δ
(r − `)

))
, (10)

where α(r) is such that η2gL(r)2 + σ2gH (r)2 = 1. An example is295

given in Fig. 3.

Fig. 3. Radial frequency response of GH and GL for σ2 = 1 and η2 =
1.2.

3.4. Optimization algorithm

We opted to use the fast iterative shrinkage-thresholding algo-
rithm (FISTA) (Beck & Teboulle 2009) for our optimization al-
gorithm. FISTA is a fast converging algorithm aimed at optimiz- 300

ing convex problems that comprise both a smooth term and a
term that has an easy to solve proximal operator. Equations 4
and 5 both fall under this umbrella.

Algorithm 1: FISTA for α→ f (α) + γ‖α‖1
1: Initialize βp, α← βp
2: for k = 1 . . .N − 1 do
3: β← τγ(α − µ∇ f (α))
4: α← β + k−1

k+2 (β − βp)
5: βp ← β
6: end for
7: return α

FISTA operates iteratively and involves computing the gradi-
ent of the smooth portion and the proximal operator of the non- 305

smooth portion, which for the L1-norm is the soft-thresholding
operator. It then computes the candidate solution for the next
iteration using a gradient step size, µ; a soft-thresholding step
size; and a momentum term to allow for faster convergence. We
describe FISTA in Algorithm 1. 310

FISTA requires the gradients of the objective function for
each iteration. These are, for the nth major cycle,

∇ f (α)Ln = 2W†H†
L

(HLWα − ı̃Ln ) (11)

∇ f (α)Hn = 2W†
(
H†
H

G†
H

GH (HHWα − ı̃Hn )

+G†
L

GL(Wα − lLn )
) (12)

for Equations 4 and 5 respectively. The gradient step size is set

as µ =
1
ϑ

, where ϑ is the Lipschitz constant of ∇ f (α), defined
for our problem as 315

ϑL = 2λmax

(
W†H†

L
HLW

)
(13)

ϑH = 2λmax

(
W†(H†

H
G†
H

GHHH + G†
L

GL)W
)

(14)

for Equations 4 and 5 respectively, where λmax is the largest
eigenvalue.
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In the case where W consists of the concatenation of M or-
thogonal decompositions, as in (Onose et al. 2016), and the con-
volutions are circular, we obtain the following:320

ϑL = 2M max{|ĤL|2} (15)

ϑH = 2M max{|ĜH � ĤH |2 + |ĜL|2}, (16)

where Â denotes the discrete Fourier transform of the PSF asso-
ciated to A. In other cases, such as in Starck et al. (2007), λmax
can be obtained using an algorithm such as power iteration.

Finally, there is the question of how to approximate σ2 and
η2 and how to select the regularization parameters λL and λH .325

The former is discussed in Sect. 4.3, whereas the latter is pre-
sented in Sect. A.2.

3.5. Implementation

We implemented our method in Julia (Bezanson et al. 2017) and
integrated it into the Radio Astronomy Simulation, Calibration330

and Imaging Library (RASCIL) (Cornwell et al. 2020) frame-
work under the clean algorithm name mstep. Our implementa-
tion and results as well as instructions on how to use our code
are available in our repository,2 with code specific to this paper
available as a release.3335

4. Simulated datasets

4.1. Full datasets

We used three different simulated datasets for our experiments.
They were obtained from 512 × 512 pixel tapered cutouts of the
1.28 GHz MeerKAT mosaic (Heywood et al. 2022) and consist340

of the regions surrounding Sgr A, B2, and C with pixel resolu-
tions of 1.1”. These can be seen along with their UV coverage in
Fig. 4.

We used RASCIL to generate the visibilities. We first gener-
ated the visibility positions using a telescope configuration de-345

tailing the 64 MeerKAT dishes, assuming that the observation
lasts 4 hours (-2 to 2 hour angles) and with visibilities sampled
every 120 s, resulting in 249600 unique positions. We then per-
formed an FFT on our ground-truth images to obtain their re-
spective gridded visibilities, which we degridded to the gener-350

ated irregular positions with uniform weighting using the im-
proved w-stacking gridder (Ye et al. 2022). Finally, we modeled
the noise received by antennas by perturbing the visibilities with
noise sampled from N(0, σ/50), where σ is the standard devi-
ation of the visibilities. A more thorough study of how noise355

affects our reconstruction method is outside the scope of this pa-
per.

4.2. Partitioning configurations

We partitioned each initial dataset with three different centers
of separation, `, and each had three different half-width sizes,360

δ, resulting in nine different partitioning configurations for each.
Figure 5 illustrates both ` and δ in the context of our datasets,
whereas Table 1 details the number of visibilities in VL and VH
for each configuration. It also details the number of duplicated
visibilities, which lie in the region L ∩ H . These numbers are365

2 https://github.com/simon-prunet/radio-imaging/
3 https://github.com/simon-prunet/radio-imaging/
releases/tag/msteprelease

Sgr A Sgr B2

Sgr C UV Coverage

Fig. 4. Ground truth images of our three datasets obtained by cutting
out and tapering sections of the 1.28 GHz Meerkat galactic center mo-
saic (Heywood et al. 2022). The images are 512 × 512 pixels in size
with a resolution of 1.1” per pixel. The UV coverage for our simulated
datasets is shown at the bottom right. The same coverage was used for
all three datasets.

Fig. 5. Visualization of partition configuration parameters δ and ` used
for our datasets. We only show δ for ` = 55 in this figure to avoid clutter.
The combinations of the three values of δ and three values of ` result in
nine different partitioning configurations per dataset.

identical for all three of our datasets, as they have the same ob-
servational parameters. We show an example of how the parti-
tion configuration affects the dirty images for the Sgr A dataset
in Fig. 6.
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Table 1. Visibilities per partition.

VL VH VL∩H

` = 20
δ = 1 106548 150641 7589
δ = 3 113791 160061 24252
δ = 5 118941 169477 38818

` = 35
δ = 1 141653 111758 3811
δ = 3 146107 115792 12299
δ = 5 149271 120204 19875

` = 55
δ = 1 167772 84034 2206
δ = 3 169771 85758 5929
δ = 5 171508 87509 9417

Notes. Numbers apply to all three datasets, as they have the same ob-
servational parameters.

` = 20

` = 35

` = 55

ı̃L1 ı̃H1

Fig. 6. Dirty images ı̃L1 and ı̃H1 for different values of ` for the Sgr A
dataset. We set δ = 5 for these images.

4.3. Visibility and reconstruction variance370

Our proposed method requires knowing the variances σ2 and
η2 of ı̃H and ı̂L respectively. Ensemble statistics are required to
estimate them, and thus these statistics need to be approximated.
To derive an appropriate strategy, we first computed estimations
using ensemble populations of 50 for both VL and VH , each375

with independently sampled and identical noise properties to the
original.

For σ2, we used the average per-pixel variances of the differ-
ent realizations of ı̃H1 computed from the different realizations
of VH using RASCIL. For η2, we reconstructed ı̂L over three 380

major cycles for each realization of VL, and then we set η2 to
be equal to the average of the per-pixel variance among these
reconstructions. For the reconstructions, we used the regulariza-
tion parameter λLn = 0.05‖ı̂Ln‖2 × 2n for the nth major cycle as
well as the concatenation of the first eight Daubechies wavelets 385

for our dictionary. These choices are discussed in Sect. A.

Table 2. Estimated σ2 and η2 and their approximations

σ2 σ̂2 η2 η̂2

Sgr A
` = 20 2.8e-04 2.2e-04 2e-08 2.2e-07
` = 35 3e-04 2.3e-04 1e-07 2.3e-07
` = 55 3.6e-04 2.5e-04 2.6e-07 2.5e-07

Sgr B2
` = 20 2e-05 2.2e-05 2e-08 2.2e-07
` = 35 2.2e-05 6e-05 9.5e-09 6e-08
` = 55 2.5e-05 3.8e-05 2e-08 3.8e-08

Sgr C
` = 20 4e-06 2.8e-06 3e-10 2.8e-09
` = 35 4.2e-06 2.7e-06 1.6e-09 2.7e-09
` = 55 5e-06 2.8e-06 3.2e-09 2.8e-09

We approximated σ2 with σ̂2 by first estimating the variance
of pixels in ı̃H1 within a 5 × 5 sliding window and then aver-
aging the values. Approximating η2 is more complicated, as it
is dependent on the details of the reconstruction algorithm in 390

the low-resolution step. For example, an exceedingly large value
of λL would result in η2 = 0, as all realizations of ı̂L will be
zero. Rather than deriving a strategy for this, we applied a con-
stant factor of η̂2 = σ̂2 10−3 for our experiments, as we observed
this to be roughly the relationship between the two variables for 395

many cases.
Table 2 shows η2 and σ2 for the different values of ` as well

as our estimated values σ̂2 and η̂2. We set δ = 5 and did not vary
it, as it does not significantly change the variance. It can be seen
that σ̂2 is relatively close to σ2, diverging by at most 2.75×, and 400

in most cases it is much closer to the estimated value. Although
our approximations for η2 are also close in some cases, there
are others where they are off by more than a factor of ten, with
the worst being for the dataset Sgr B2 with ` = 35, where η̂2 is
almost 100 times larger. In practice, we found that these varia- 405

tions did not greatly change the quality of the final reconstruc-
tion. However, investigation into better approximation strategies
may yield improved convergence speeds.

5. Simulation results

We evaluated our proposed multi-step method by first studying 410

how the partitioning configuration affects the final image recon-
struction, both in terms of quality and speed. We then compared
our method against a method that reconstructs with all baselines
in L ∪ H in a single step, which afforded us information on
how partitioning visibilities by baseline compares to process- 415

ing all the visibilities simultaneously without any partitioning.
We also performed a comparison to images reconstructed using
RASCIL’s multi-scale CLEAN implementation in order to eval-
uate how our method compares to current popular methods used
in production. 420

For our algorithm parameters, we set λn, λLn , and λHn for
the nth major cycle to 0.015‖ı̃n‖2 × 2n, 0.05‖ı̃Ln‖2 × 2n, and
0.05‖ı̃Hn‖2×2n, respectively, and for W, we used a concatenation
of the first eight Daubechies wavelets. We discuss our motiva-
tions for these in Sect. A. We used a static value of 100 FISTA 425
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iterations as the stopping condition for both the single-step full-
resolution method as well as for both steps in our multi-step
method.

For multi-scale CLEAN, we used a maximum of 2000 mi-
nor iterations per major cycle, with a clean threshold of 0.001,430

a clean fractional threshold of 0.01, and CLEAN scales of
[0, 1, 2, 4, 6, 10, 30]. Although these parameters are conserva-
tive, we found that they are necessary in reconstructing many of
the smaller scale features, with larger CLEAN scales or higher
thresholds leading to significantly poorer quality images.435

Finally, we evaluated our reconstructions using peak
signal-to-noise ratio (peak S/N), which we calculated as

20log
(
‖i‖2
‖i − ı̂‖2

)
to obtain the decibel (dB) value, where i is the

ground truth and ı̂ is the reconstruction without the final added
residual. We opted to use this rather than the maximum signal, as440

it evaluates the reconstruction over the entire image while main-
taining a greater importance for brighter sources.

5.1. Partition configuration effect on reconstruction accuracy

Table 3. Final reconstruction quality across partition configurations.

Sgr A Sgr B2 Sgr C

` = 20
δ = 1 22.6 (0.99) 20.9 (0.92) 19 (0.97)
δ = 3 22.9 (1) 21.2 (0.93) 19.3 (0.98)
δ = 5 21.9 (0.96) 21.2 (0.93) 18.5 (0.94)

` = 35
δ = 1 22.5 (0.98) 21.6 (0.95) 19.6 (1)
δ = 3 22.1 (0.97) 21.6 (0.95) 19.6 (1)
δ = 5 21.6 (0.94) 21.5 (0.94) 19.2 (0.98)

` = 55
δ = 1 21.2 (0.93) 21 (0.92) 18.6 (0.95)
δ = 3 21.6 (0.94) 22.3 (0.98) 18.8 (0.96)
δ = 5 21.9 (0.96) 22.8 (1) 19.2 (0.98)

Notes. Values given are in peak S/N (dB), and normalized values are
given in parenthesis for easier comparison. Reconstructions were ob-
tained using five major-cycle iterations for each step.

Table 3 compares the peak S/Ns in dB of the final recon-
structed images for each partition configuration. These recon-445

structions were obtained by running the multi-step reconstruc-
tion algorithm for five low-resolution and five full-resolution ma-
jor cycles.

We found that there are only slight differences between the
peak S/Ns when varying `, without any obvious trend. This led450

us to believe that the difference in final image quality is caused
mainly by the choice and approximation of λ, σ2, and η2. This is
advantageous, as it implies that one can adjust the partition sizes
to suit ones needs without drastically impacting the quality of
the final reconstructed image. We also found that the choice of δ455

does not greatly impact the quality of the final image. This could
be because it only affects a few spatial frequencies, and thus the
effect on the final image quality is dominated by other factors,
such as parameter selection. Practically, it means that one can
decrease δ without greatly impacting the final reconstructed im-460

age, reducing the number of duplicate visibilities. However, care
needs to be taken, as reducing δ too much may result in fre-
quency spillage, biasing the reconstruction.

5.2. Reconstruction speed

We evaluated two aspects of reconstruction speed: the number465

of major cycles required for convergence, and the number of

Low-Resolution Step using VL

Full-Resolution Step using VH and ı̂L

Fig. 7. Progression of peak S/N of reconstructed images for various
partitioning configurations across the major cycles for both the low-
and full-resolution reconstruction steps. peak S/Ns have been normal-
ized by the maximum value of each configuration to allow for easier
comparison. An exponential scale is used for the bottom image to better
illustrate the differences between the different configurations. We fixed
δ = 5 here, as we found it does not greatly impact the results.

required FISTA iterations. We evaluated the latter solely in the
context of the first major cycle, as this is where the majority of
information is reconstructed.

Figure 7 shows the progression of the peak S/Ns of the re- 470

constructed images across major cycles. We normalized these
by the maximum obtained peak S/N for the configuration across
the major cycles for easier comparison. We found that for the
low-resolution step, a lower value of ` often results in a minor
increase in convergence speed. This is expected, as a lower ` 475

corresponds to a simpler image to reconstruct. However, this is
counteracted in the second step, where the corresponding con-
figurations have more information and are more challenging to
reconstruct. This can also be seen for the Sgr B2 and Sgr C
datasets, which have more information in ı̃H1 and thus have a 480

worse initial reconstruction quality than the Sgr A dataset.
A surprising result is that the full-resolution step converges

after at most only two major cycles. There are two main reasons
for this. The first is due to us selecting a larger λ to maximize
peak S/N, which leads to deconvolved images in the later ma- 485
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Low-Resolution Step with ı̃L1

Full-Resolution Step with ı̃H1 and ı̂L

Fig. 8. Peak signal-to-noise ratio of the candidate solution of the spec-
ified FISTA iteration for the first major cycle of the low- and full-
resolution steps, respectively. The full-resolution images were con-
structed with ı̂L set as a low-pass filtered version of the ground-truth
image. We observed slightly faster reconstruction speeds for low values
of ` in the low-reconstruction step, but these configurations are signifi-
cantly slower in the full-resolution step. It should be noted that although
lower values of ` improve faster for the low-resolution step, they do not
necessarily converge to a better result, as illustrated in the dataset Sgr
B2.

jor cycles being zero, as the regularization term dominates the
data fidelity term. We experimented with regularizing less ag-
gressively, but we found that the deconvolved images, despite
still reducing the residual, overfits the noise, detracting from the
overall peak S/N. We supply some results in Sect. A.2 to illus-490

trate this outcome. The second reason is that the peak S/N is
dominated by large-scale features that have already been recon-
structed in the low-resolution step.

Figure 8 shows the peak S/N of the candidate solutions
across FISTA iterations for both reconstruction steps and their495

respective first major-cycle iterations. We set ı̂L to be a low-
pass filtered version of the ground truth for the full-resolution
step for these reconstructions. We observed a slight change in
the low-resolution step reconstruction speed when varying `,
but we observed a much more significant change in the full-500

resolution step. This is expected, as the low-resolution recon-

struction is simpler than the full one and uses less FISTA it-
erations, so changes are less pronounced. We note that for the
low-resolution step, although lower values of ` typically result
in faster initial improvement, they do not guarantee that the final 505

image will be of higher quality, such as with the Sgr B2 dataset.
However, there are additional influencing factors in these cases,
such as differences in ideal parameters. Thus, whether the final
difference in image quality is due to ` specifically is inconclu-
sive. It should be noted that despite this, the different configura- 510

tions all converge to roughly similar peak S/N values, as shown
in Sect. 5.1.

Taking into account the reconstruction speeds for both
major-cycle and FISTA iterations, the slight change in FISTA
iterations is counteracted by the larger number of required major 515

cycles for the low-resolution step, and vice-versa for the full-
resolution step. Thus, we can conclude that the choice of ` and δ
should not greatly change the reconstruction speed, as the gains
and losses roughly cancel out.

5.3. Comparison to reconstruction without partition of 520

visibilities and to multi-scale CLEAN

We compare our multi-step method to both a single-step
method that reconstructs using all visibilities, and to multi-scale
CLEAN. Figure 9 shows the final reconstructed images and their
absolute errors with their respective peak S/Ns in dB for a single- 525

step reconstruction using all the visibilities VL ∪ VH , multi-
scale CLEAN, and the proposed multi-step reconstructions us-
ing first VL and then VH . We more aggressively increased λL
for the multi-step reconstructions compared to what was stated
in Sect. 5, as we found this to remove wave-like artifacts that 530

were occurring on the edges of the images. Specifically, we used
λLn = 0.05‖ı̃Ln‖2×4n. Although the three methods achieved com-
parable peak S/Ns, we also found there to be a visual difference
in terms of their error images. In particular, we found multi-scale
CLEAN to perform better at reconstructing the larger-scale fea- 535

tures but worse at reconstructing the smaller scales, which the
other two methods reconstruct to a similar level of accuracy.

Figure 10 shows the progression of all three methods across
major-cycle iterations, with ten major-cycles for both the single-
step method and multi-scale CLEAN and five low-resolution 540

(major cycles 1-5) and five full-resolution (major cycles 6-10)
major cycles for our method. We found that the three methods
obtained reconstructions with comparable peak S/Ns after six
to seven major cycles, with the single-step method and multi-
scale CLEAN sometimes improving after this point, whereas our 545

multi-step method does not. The main reason for this is that the
other two methods have double the number of major cycles to
improve the larger scale features, which dominate the peak S/N.
In practice, as our method only improves for one to two ma-
jor cycles in the full-resolution step, we can allocate more ma- 550

jor cycles to the low-resolution step in order to achieve better
peak S/Ns at the end of ten major cycles. Another important as-
pect to note is that the major cycles for our multi-step method
are less computationally expensive, as less visibilities need to be
(de)gridded. Thus, reconstructions for the same number of major 555

cycles should be faster to compute when compared to the other
tested methods. However, thorough benchmarking is required to
determine the actual amount of speedup.

We also found the total number of FISTA iterations required
by the single-step method to be comparable to the multi-step 560

one. Figure 11 shows the reconstruction speed across FISTA it-
erations for the single-step method during the first major cycle.
We observed that the single-step method requires two to three
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peak S/N (dB) = 20.7

peak S/N (dB) = 22.4

peak S/N (dB) = 18.5

peak S/N (dB) = 22.4

peak S/N (dB) = 22.5

peak S/N (dB) = 20.2

peak S/N (dB) = 21.7

peak S/N (dB) = 22.1

peak S/N (dB) = 18.5

Sgr A

Sgr B2

Sgr C

Single-step Multi-step multi-scale CLEAN

Fig. 9. Reconstructed images (left) and absolute error images (right) for our multi-step method (` = 35, δ = 5) using five low-resolution major
cycles and five full-resolution major cycles, a single-step all-baselines reconstruction method using ten major cycles, and multi-scale CLEAN
using ten major cycles. The corresponding images share scales. Overall, the different methods reconstruct images of comparable peak S/Ns, with
multi-scale CLEAN performing better with the larger scales, and the other two methods performing better with the smaller.

times less FISTA iterations compared to the full-resolution step
in the multi-step method, and it requires roughly 1.5 times more565

than the low-resolution step. This, coupled with there being more
major-cycle iterations needed for the low-resolution step than the
full, means that the total number of FISTA iterations between
the single and multi-step approaches roughly equalize, leading
to comparable costs for each major cycle.570

6. Conclusion and future work

6.1. Conclusions

This paper proposes a radio-interferometric imaging framework
that allows for partitioning of visibilities by baseline. This has
several advantages over previous approaches that require all575

baselines to be treated simultaneously in that (1) it alleviates
memory concerns, as not all baselines need to be gridded simul-

taneously; (2) it allows for more flexible distribution of visibility
data in a cluster; and (3) it enables progressive reconstruction.

We have presented our method in the context of sparsity 580

regularized convex optimization problems with over-redundant
wavelet dictionaries and compared it to a single-step approach in
the same framework that processes all baselines simultaneously
without partitioning as well as to RASCIL’s implementation of
multi-scale CLEAN. In addition to a better data distribution, we 585

find our method reconstructs images of similar quality in roughly
the same total number of major cycles, assuming that the low-
and full-resolution major cycles for our method are counted sep-
arately. This is promising for the overall computational costs, as
each major-cycle iteration for our method should be cheaper to 590

compute given that we only process a subset of the visibilities.
The main drawback to our proposed method is that it creates

a secondary data product, the low-resolution image ı̂L used in the
full-resolution reconstruction step. This could be a significant
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Fig. 10. Progression of image reconstruction quality across five low-
resolution and five full-resolution major cycles for our proposed multi-
step method and ten major cycles for a single-step method that recon-
structs using all visibilities and multi-scale CLEAN. For our multi-step
method, major cycles 1-5 are the low-resolution step, and major cycles
6-10 are the full-resolution step. We found the methods to have compa-
rable peak S/Ns after 6-7 major cycles, with the single-step method and
multi-scale CLEAN sometimes improving after this point. It should be
noted that the major cycles for the multi-step method are computation-
ally cheaper than the others, as there are less visibilities to (de)grid.

Fig. 11. Progression of peak S/N across FISTA iterations for the first
major-cycle iteration of the single-step all-baselines reconstruction.
Compared to the multi-step method, the convergence is faster than the
full-resolution step but slower than the low-resolution step.

stumbling block, especially in the context of the SKA, where595

storage costs are a concern. However, this can be alleviated by
reconstructing in Equation 4 a down-sampled image according
to the partition configuration. This smaller-sized image can then
be incorporated into the second data fidelity term of 5 after an
appropriate modification of GL and the addition of a decimation600

operator to Wα.

6.2. Future work

There are several avenues to extending our work. One natural
extension is studying how our framework performs with more
than two steps, which will afford us information on the limit of605

partitioning by baseline. Furthermore, we are also looking to op-
timize our implementation in order to obtain quantitative results
with regard to computational costs.

VL MC MC MC · · · MC
ı̄L1

ı̄VL2

VH MC MC MC · · · MC
ı̄H1

ı̄VH 2

ı̄H1 ı̄VH 2

ı̄L1
ı̄VL2

⊕

ı̂VL

ı̂VH

ı̂

Fig. 12. Example workflow of how parallelism will work with our pro-
posed method. We look to reconstruct full-resolution images in parallel,
achieved by sharing the deconvolved residuals across different nodes
after each major cycle, denoted as MC in the figure. A low and high-
resolution image are produced after the first major cycle, denoted as ı̄L1
and ı̄H1 respectively. Afterwards, full-resolution images ı̄VLn

and ı̄VH n
are produced. The final reconstructed images of their respective nodes,
ı̂VL and ı̂VH , are then combined to produce the final reconstructed image
ı̂.

In addition, we are looking to incorporate parallelism into
our framework. This can be done by reconstructing two full- 610

resolution images simultaneously (rather than a low-resolution
image first and then a full-resolution one), which can be achieved
by sharing the deconvolved residuals between nodes after ev-
ery major cycle. Thus, low- and high-resolution images are re-
constructed after the first major cycle and full-resolution images 615

from then on. The full-resolution reconstructions from each node
can then be combined to produce the final reconstructed image.
An example workflow of this can be seen in Fig. 12.

Lastly, although we present our method in the framework of
sparsity regularized convex optimization problems, the central 620

underlying idea is general. For this reason, an avenue of future
research would be to investigate extending this method to other
reconstruction frameworks, such as CLEAN.
Acknowledgements. This work was supported by DARK-ERA (ANR-20-CE46-
0001-01) 625
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IUWT Daubechies

Fig. A.1. Reconstructed images from the Sgr A full visibilities dataset
using both a concatenated dictionary of the first eight Daubechies
wavelets (right) and IUWT (left) wavelets for a single major iteration
using a single-step method that reconstructs with VL ∪ VH . Provided
below are the error images against the ground truth, which show that
the Daubechies dictionary is able to better reconstruct the large-scale
gas structures. We use a log10 scale to better illustrate the structural dif-
ferences for the error images.

Appendix A: Preliminary simulations for parameter
selection

Our proposed method requires knowing the regularization pa-
rameters λL and λH , as well as the wavelet dictionary W. This
appendix discusses our preliminary experiments to determine680

these.

A.1. Choice of wavelet dictionary

The choice of the wavelet dictionary can greatly affect the
quality of the reconstruction. We experimented with using
both a concatenation of the first 8 Daubechies (Daubechies685

1992) wavelets and Isotropic Undecimated Wavelet Transform
(IUWT) (Starck et al. 2007). Figure A.1 shows a comparison be-
tween reconstructed images of both dictionaries when using a
single-step L1 regularized reconstruction of the Sgr A database
when simultaneously processing all visibilities VL∪H .690

We found that both dictionaries exhibited artifacts, with
Daubechies exhibiting various tiling effects and discontinuities
at larger values of λ, and IUWT exhibiting false sources. How-
ever, we found that the Daubechies dictionary allowed for both
better reconstruction of large-scale structures, and was more ro-695

bust to changes in λ, as shown in Fig. A.2, supporting our use for
it in our experiments. A possible reason for why IUWT performs
worse for our test cases is due to its isotropic nature, which per-
forms poorly with the large-scale anisotropic features prevalent
in our datasets, such as the gas clouds.700

Fig. A.2. peak S/N (dB) of different λ values for the first major cycle
when performing a single-step reconstruction using VL ∪VH for Sgr A
using a concatenation of the first eight Daubechies wavelets and IUWT
wavelets. We found Daubechies wavelets better reconstruct the large-
scale features, as evidenced by the higher peak S/N values, and to also
be more robust to changes of λ, having a larger range of values that
work well.

Fig. A.3. Reconstruction quality of images for our three datasets for
different values of λ. The left image shows peak S/N in dB versus λ
for the first major cycle for our three initial datasets, illustrating the
different ideal values across different objects. This becomes less prob-
lematic when normalizing by the L2-norm of the dirty image ‖ı̃1‖2. As
shown on the right, λ

‖ı̃1‖2
is much better behaved, with the region of well-

performing values all roughly lining up. The reconstruction algorithm
used here is the single-step sparsity regularized method that reconstructs
using all visibilities without partitioning.

A.2. The regularization parameter λ

The selection of the ideal regularization parameters λLn and λHn

depends on a slew of variables, such as the strength and nature of
the object being imaged, the amount of noise present in the mea-
surements, and the wavelet dictionary used. We perform prelimi- 705

nary experiments to determine these – deriving a general strategy
is outside the scope of this work.

All our preliminary experiments are done with the single-
step L1 regularized method that reconstructs with VL ∪VH , and
evaluate λ. We generalize the findings here to λL and λH for 710

our multi-step method, as the nature of reconstructed images are
similar, albeit at different resolutions. Finally, as discussed in
the previous section, we used a concatenation of the first eight
Daubechies wavelets as our dictionary.

Figure A.3 shows the results for our three datasets for the 715

first major cycle. The left image plots λ as the x-axis, whereas
the right plots the normalized value λ

‖ı̃1‖2
. We found that normal-
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Fig. A.4. Normalized peak S/N against λ
‖ı̃n‖2

for the first three major
cycles when reconstructing the Sgr A database using the single-step
method that reconstructs using VL ∪ VH . The ideal values for λ

‖ı̃n‖2
in-

crease as we progress through the major cycles.

ization allows for the well performing regions to line-up, imply-
ing that we can pass a constant value for our simulations with-
out the need for dataset specific parameter tuning. We found720
λ
‖ı̃1‖2

= 0.015 to work well for the single-step reconstructions,

and λL
‖ı̃L1 ‖2

=
λH
‖ı̃H1 ‖2

= 0.05 to work well for our multi-step method.
We hypothesize that the larger ideal values for the low-

resolution step can be explained by there being less frequencies,
ergo needing less wavelet coefficients. On the other hand, the725

larger values for the full-resolution step could be explained by
the low-resolution data fidelity term biasing the reconstruction
to have less noise and fine-scale features, which also increases
the sparsity of the wavelet coefficients.

We also evaluate how λ changes across major-cycle itera-730

tions, which is necessary as the nature of residual images ı̃n
changes. Figure A.4 illustrates the behavior of λ

‖ı̃n‖2
across three

different major cycles for the Sgr A dataset. We normalize by the
maximum peak S/N obtained for each respective major cycle for
easier comparison. The ground truth images we use to compute735

the peak S/N are defined as I−
∑

N ı̂n, where I is the initial ground
truth, and ı̂n is the best reconstructed image among the different
λ
‖ı̃n‖2

values for the nth major cycle.
It can be seen that the ideal values for λ

‖ı̃n‖2
generally in-

creases as we progress through the major-cycle iterations. This740

is expected as the residual images are increasingly dominated by
noise, necessitating larger values of λ

‖ı̃n‖2
to suppress it. However,

care needs to be taken not to increase it too aggressively, as this
will lead to all fine scale features being ignored, as shown in
Fig. A.5. We found that multiplying λ

‖ı̃n‖2
by 2n for the nth major745

cycle provides a good trade-off between the two.
Finally, we would like to note that for the full-resolution re-

construction, a less aggressive regularization parameter λ does
allow for further reduction of the residual in latter major cycles.
However, we found this to overfit to noise, reducing the peak750

S/N of the overall reconstruction. Figure A.6 illustrates this for
the Sgr A ` = 20, δ = 5 dataset.

λ = 0.018, peak S/N (dB)=-6.74 λ = 0.516, peak S/N (dB)=2.73

Fig. A.5. Reconstructed images as well as their absolute errors of the
Sgr C dataset for the second major cycle residual image ı̃2 using the
single-step method, with a lower (left) and higher (right) λ. The larger
λ has a better peak S/N, as it reduces the error on a large scale, but it is
not able to reconstruct any of the finer-scale details.

Fig. A.6. L2-norm of the residual and the peak S/N of the reconstructed
image for the full-resolution step across major cycles. A less aggressive
regularization parameter was used here, which results in further reduc-
tion of the residual in the later major cycles. However, this also detracts
from the peak S/N, as the reconstructed image is overfits the noise.
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