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Abstract

In connection with the so-called 1-2-3 Conjecture, we introduce and study a new problem
related to proper labellings. In the regular problem, proper labellings of graphs are designed
by assigning strictly positive labels to the edges so that any two adjacent vertices get
incident to distinct sums of labels, and the main goal, for a given graph, is to minimise
the value of the largest label assigned. In the new problem we introduce, we construct
proper labellings through pushing vertices, where pushing a vertex means increasing by
1 the labels assigned to all edges incident to that vertex. We focus on the study of two
related metrics of interest, being the total number of times vertices have been pushed, and
the maximum number of times a vertex has been pushed, which we aim at minimising, for
given graphs. As a contribution, we establish bounds, some of which are tight, on these two
parameters, in general and for particular graph classes. We also prove that minimising any
of the two parameters is an NP-hard problem. Finally, we also compare our new problem
with the original one, and raise directions and questions for further work on the topic.

Keywords: 1-2-3 Conjecture; proper labelling; pushing vertices.

1. Introduction

In this work, we introduce a new problem where, given some graph, one aims at de-
signing a proper labelling of it by pushing its vertices. While the latter concept is a
new one, the former one has been well investigated in literature. For this reason, we start
in what follows with recalling what proper labellings are about.

The concept of graph regularity is fairly common and understood in graph theory, as
regular graphs are defined as those graphs in which all vertex degrees are the same. It is
pretty natural, now, to wonder how a natural antonym to the notion of graph regularity
could be defined, and there are multiple ways to do so. It is well known, in particular, that,
besides K1 (the complete graph of order 1), no simple graph can be totally irregular, in the
sense that all its vertex degrees are pairwise distinct. This led authors to consider other
notions of graph irregularity over the last decades, such as the notions of highly irregular
graphs in [1] or locally irregular graphs in [2]. Since, in this work, we are primarily interested
in the latter notion, let us recall that a graph is locally irregular if no two of its adjacent
vertices have the same degree. That is, in that notion of graph irregularity, said irregularity
is more of a local one. And, obviously, simple graphs can be locally irregular.

In the line of problems and concepts introduced in [5], the notion of proper labelling
arises when wondering about ways to make simple graphs somewhat irregular. For the
sake of introducing the next notions more naturally, let us focus on local irregularity. If
a simple graph G is not locally irregular, then the authors of [5] are interested in making
G locally irregular by essentially multiplying its edges, where multiplying an edge e of G



means replacing it by a certain number of parallel edges, or, in other words, by increasing
the multiplicity µ(e,G) of e in G. In other words, we are interested in finding a locally
irregular multigraph M having somewhat the same adjacencies as in G, in the sense that
two vertices are adjacent in G if and only if they are adjacent in M .

As is, studying this graph transformation problem is not convenient, which leads to
studying it under a labelling point of view, suggested in [5]. For a graph G and some k ≥ 1,
a k-labelling (or labelling for short, if k is unneeded) ℓ ∶ E(G) → {1, . . . , k} is an assignment
of labels (from {1, . . . , k}) to the edges of G. For every vertex u of G, we now define σ(u)
as the sum of labels assigned by ℓ to the edges incident to u, that is, ∑v∈N(u) ℓ(uv). And
we finally say that ℓ is proper if σ indeed forms a proper vertex-colouring of G, that is,
if σ(u) ≠ σ(v) for any two adjacent vertices u and v of G. It is not too complicated to
observe that turning G into a locally irregular multigraph through edge multiplications
is equivalent to finding a proper labelling of G, as, essentially, edge labels model edge
multiplicities, while the properness requirement models the local irregularity requirement.

Several aspects of proper labellings have been investigated in literature. In particular,
following thoughts from [5], multiplying an edge too many times might be perceived as a
costly operation, and, from this point of view, one might be interested in minimising the
maximum number of times an edge is multiplied, or, under the labelling point of view, the
maximum label value assigned. For a graph G, we are thus interested in the parameter
χΣ(G), which is the smallest k ≥ 1 (if any) such that proper k-labellings of G exist. For
the sake of keeping the current introduction short, we will not elaborate too much here on
what is known on these concerns, and instead refer the interested reader to surveys on the
topic such as [3, 7, 11]. First off, one must know that χΣ(G) is well defined whenever G is
nice, that is, does not contain any connected component isomorphic to K2. For long, the
main conjecture on χΣ was the 1-2-3 Conjecture [8], which was asserting we should have
χΣ(G) ≤ 3 for all nice graphs G. Note that this conjecture was supported in particular by
the fact that deciding whether χΣ(G) ≤ 2 holds for a given graph G is NP-complete [6].
Constant upper bounds on the parameter χΣ have been decreased over the years following
the introduction of the 1-2-3 Conjecture, until the conjecture was fully proved recently [9].
Please be aware that more information on this topic will be provided throughout, as they
are needed to get the extent of the results we present.

As described earlier, the study of proper labellings is mainly motivated by the fact
that it models another problem, where one aims at making simple graphs locally irregular
by multiplying their edges. From a more general, algorithmic point of view, this way of
creating irregularity can be regarded through a different angle, which will motivate our
upcoming new notions and concepts. Namely, let G be a graph, and M be a locally
irregular multigraph obtained from G by multiplying some of its edges. Algorithmically
speaking, note that M can be obtained from G by repeatedly considering a vertex u with
an incident edge e = uv that does not have the correct multiplicity (i.e., for the current
auxiliary multigraph, G′, we have µ(e,G′) < µ(e,M)) and increasing the multiplicity of
e by 1. Likewise, this can be described under the labelling point of view, by noting that
any proper labelling ℓ of G can be obtained from all edges of G being assigned label 1,
by repeatedly considering a vertex u with an incident edge e = uv that does not have the
correct label (i.e., it is strictly less than ℓ(e)), and increasing the label of e by 1.

This way of describing things is pretty natural, and it leads us to considering the
following generalisation, which might be regarded as a new way to introduce irregularity
in graphs. Namely, throughout this work, we aim at making graphs locally irregular by
repeatedly considering some vertex and increasing by 1 the multiplicity of all its incident
edges. This basic operation of increasing by 1 the multiplicity of all edges incident to some
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Figure 1: Sequential construction of a proper pushing scheme of C6. From the initial configuration (a), the
vertex highlighted with green is pushed once, resulting in (b). Then, the vertex highlighted with orange
is pushed twice, resulting in (c). It can be checked (numbers in vertices indicate their degrees) that the
resulting multigraph is locally irregular, and thus that the depicted pushing scheme is indeed proper. Due
to this proper pushing scheme, we have Pt

(C6) ≤ 3 and Pl
(C6) ≤ 2.

vertex, we call a push1, and since it is obvious that the order in which vertices of a graph
are pushed does not matter (w.r.t. the resulting edge multiplicities), the main notion we
will investigate throughout is that of pushing schemes, where, for a graph G, a pushing
scheme ρ ∶ V (G) → N is a function indicating, for every vertex u ∈ V (G), the number of
times u is pushed. Clearly, to ρ then corresponds a natural labelling ℓ = ℓ(ρ) of G, where
for every edge e = uv of G, we have ℓ(uv) = 1 + ρ(u) + ρ(v). Since we are interested in
pushing schemes yielding locally irregular multigraphs, we say ρ is proper if ℓ(ρ) is proper.

When studying proper labellings, the main goal is to design one so that the maximum
label assigned is as small as possible. Although there is a proper labelling associated
to every proper pushing scheme, it is obvious that not all proper labellings of a graph
correspond to a proper pushing scheme, and because of that we feel that it would be daring
to investigate proper pushing schemes minimising the maximum resulting label. Instead,
we prefer to regard pushes as expensive operations which one thus aims at minimising.
This leads us to the two main parameters we will investigate throughout this work, defined
as follows for a graph G (see Figure 1 for an illustration):

• Pt(G) =min

⎧⎪⎪⎨⎪⎪⎩
∑

u∈V (G)
ρ(u) ∶ ρ is a proper pushing scheme of G

⎫⎪⎪⎬⎪⎪⎭
;

• Pl(G) =min{ max
u∈V (G)

ρ(u) ∶ ρ is a proper pushing scheme of G}.

Through the first parameter, Pt, note that we are interested in proper pushing schemes
minimising the total number of pushes, while the second parameter, Pl, is more of a local
one, as it deals with minimising the maximum number of times a vertex is pushed, through
a proper pushing scheme. That is, regarding the latter parameter, we are more particularly
interested in proper k-pushing schemes with k ≥ 1 as small as possible, where we define
a k-pushing scheme as a pushing scheme where every vertex is pushed at most k times.
As will be proved later on in Section 2, all nice graphs admit proper pushing schemes, so
Pt(G) and Pl(G) are well defined for all nice graphs G. Also, it turns out that bounds on

1Note that the term “push” is inspired by other concepts of graph theory. Notably, in digraphs, pushing
vertices means reversing the direction of all their incident arcs. Obviously, this is unrelated to our concerns.
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Pt can be expressed in terms on Pl, which justifies why, throughout this work, we mostly
focus on the latter parameter.

This work is organised as follows. We start in Section 2 by raising first, general ob-
servations and results on the two parameters Pt and Pl (covering their behaviours, their
connections, and first general bounds). We then focus on common classes of nice graphs in
Section 3, covering trees, complete graphs, cacti, and others. Section 4 is dedicated to the
complexity of determining Pt(G) and Pl(G) for a given graph G. In particular, we prove
that the two corresponding problems are NP-complete. We finish off with a conclusion in
Section 5, in which we raise open questions and problems for further work on the topic.

2. First observations and results

We begin by making it clear that Pt and Pl are well defined for nice graphs only. In
other words, we prove that nice graphs admit proper pushing schemes. In the proof and
afterwards, for a graph G with a vertex u, and for a pushing scheme ρ of G, when writing
σ(u) we refer to the same parameter by ℓ(ρ), which is nothing but

d(u)(1 + ρ(u)) + ∑
v∈N(u)

ρ(v).

Recall that ∆(G) denotes the maximum degree of G.

Theorem 2.1. Every connected graph G with ∆(G) ≥ 2 admits proper pushing schemes.
Consequently, a graph admits proper pushing schemes if and only if it is nice.

Proof. Let (O,L) be the partition of V (G) where O contains all degree-1 vertices of G and
L contains all other vertices. Since ∆(G) ≥ 2, we have ∣L∣ ≥ 1. Now let S = (v1, . . . , vp) be
an arbitrary ordering over the vertices of L. Let us consider ρ, the pushing scheme of G
obtained as follows.

• We do not push any vertex u of O; that is, ρ(u) = 0.

• We consider the vi’s one by one in order, following S. For every vi considered this
way, we push, by ρ, vertex vi a certain number of times, so that:

1. the resulting σ(vi) is different from all σ(vj) such that j < i and vivj ∈ E(G);
2. for every j < i such that vivj ∈ E(G), the resulting σ(vj) is different from all
σ(vk) such that k ∈ {1, . . . , i} ∖ {i, j} and vjvk ∈ E(G).

We claim these conditions can always be achieved, by pushing vi sufficiently many
times. Indeed, regarding the first condition, since d(vi) ≥ 2, note that pushing vi
exactly once increases σ(vi) by at least 2, while, for every vj adjacent to vi, this
increases σ(vj) by only 1. Regarding the second condition, for some fixed vj adjacent
to vi, either vk is not adjacent to vi, in which case pushing vi modifies σ(vj) but not
σ(vk); or vk is adjacent to vi, in which case pushing vi modifies both σ(vj) and σ(vk)
the same way, but we know σ(vj) ≠ σ(vk) due to vertices treated earlier.

Now, because, through any pushing scheme, a degree-1 vertex cannot have the same
sum as its unique neighbour (unless that neighbour is of degree 1), we get that, after
treating vp in the process above, the resulting ρ is proper, as desired.

The last part of the statement follows from the fact thatK2, which is the only connected
graph G with ∆(G) = 1, obviously admits no proper pushing scheme at all.

4



As mentioned in the introductory section, throughout this work, out of our two new
parameters, we focus on understanding the more local parameter, Pl, mostly because it
can be used to upper bound the more global one, Pt. Indeed, we obviously have:

Observation 2.2. For every nice graph G with order n, we have

Pl(G) ≤ Pt(G) ≤ nPl(G).

Another reason why we believe focusing on the parameter Pl might be more interesting,
is that, to date, proper k-labellings have been mostly investigated for small values of k.
More precisely, due to the 1-2-3 Conjecture, proper labellings that have been investigated
the most are proper 3-labellings. Now, Pt(G) might be large for a graph G, and, conse-
quently, it is hard to retrieve what is the maximum label assigned by any proper labelling
associated to a proper pushing scheme realising Pt(G). On the other hand, if ρ is a proper
k-pushing scheme of G realising Pl(G) (that is, k = Pl(G)), then we know for sure that the
associated proper labelling ℓ(ρ) is a (2k + 1)-labelling. Due to the 1-2-3 Conjecture and
previous investigations, an appealing case is thus that of graphs G with Pl(G) = 1, which
thus admit proper 3-labellings. These will notably be discussed in later Section 4.

Due to Observation 2.2, one may think that, maybe, for general nice graphsG, designing
proper pushing schemes realising Pl(G) is a good way to design proper pushing schemes
realising Pt(G). We prove this is not the case.

Theorem 2.3. There are connected graphs G for which all proper pushing schemes realising
Pl(G) are, in terms of total number of pushes, arbitrarily bad w.r.t. Pt(G). In other words,
minimising the maximum number of times a vertex is pushed can be arbitrarily bad w.r.t.
the minimum total of pushes we can achieve, for a proper pushing scheme.

Proof. Let x ≥ 8, and consider Tx the tree obtained as follows.

• We start from a vertex u, being adjacent to x vertices v1, . . . , vx.

• For every i ∈ {1, . . . , x}, we make vi adjacent to seven new vertices ai, bi, ci, di, ei, fi, gi.
We then make vi adjacent to x − 8 ≥ 0 new leaves. This way, d(vi) = x.

• For every i ∈ {1, . . . , x}, we add new leaves adjacent to ai until d(ai) = x. We then
do the same with other vertices (in {bi, ci, di, ei, fi, gi}) so that d(bi) = d(ci) = x + 1,
d(di) = d(ei) = x + 2, d(fi) = 2x − 1, and d(gi) = 2x.

Due to this structure, note that Tx − u has x connected components, each containing
one of the vi’s. For every i ∈ {1, . . . , x}, we denote by Si the subtree of Tx containing the
vertices of the connected component of Tx − u containing vi.

Note that the vi’s have the same degree as u, and as the ai’s; thus, Tx is not locally
irregular, and Pl(Tx) > 0. We claim Pl(Tx) = 1. To see this is true, just consider the
pushing scheme ρ of Tx where we push exactly once all di’s and ei’s. As a result, we still
have σ(u) = x, while σ(vi) = x+2 for all i ∈ {1, . . . , x}, while σ(ai) = x, σ(bi) = σ(ci) = x+1,
σ(di) = σ(ei) = 2(x + 2), σ(fi) = 2x − 1, and σ(gi) = 2x. Recall also that leaves cannot be
involved in sum conflicts, so they cannot cause conflicts here.

We claim also that for any such proper 1-pushing scheme ρ of Tx, for every i ∈ {1, . . . , x}
there must be at least one vertex of Si pushed once. Indeed, towards a contradiction,
assume w.l.o.g. this is not the case for i = 1. Then we have either σ(v1) = x (if u is not
pushed) or σ(v1) = x + 1 (otherwise). So, we must have a conflict between v1 and either
a1 or b1, respectively, a contradiction to ρ being proper. Thus, if ρ is a proper 1-pushing
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scheme of Tx, then at least one vertex of each Si is pushed, and the total number of pushes
is at least x.

Now consider the pushing scheme of Tx obtained by just pushing u exactly three
times. As a result, for every i ∈ {1, . . . , x} we get σ(vi) = x + 3, while we still have
x + 3 /∈ {σ(ai), . . . , σ(gi)} (note indeed that pushing u did not alter the sums in this set).
Meanwhile, σ(u) = 4x. This pushing scheme is thus proper, and we have Pt(G) ≤ 3. So,
the result, now, follows from the fact that x − 3 grows larger as one considers larger and
larger values of x.

Now that we have clarified a bit the relationship between the two parameters Pt and
Pl, and explained why focusing on the latter may be more interesting for now, we focus on
providing a first upper bound. Actually, our proof of Theorem 2.4 yields the following:

Theorem 2.4. If G is a nice graph, then Pl(G) ≤∆(G)2.

Proof. Consider the proper pushing scheme ρ we construct in the proof of Theorem 2.1.
Recall that the only vertices u with ρ(u) > 0 are those from L. Consider thus any vi ∈ L.
We claim that, when dealing with vi, there is an integer x ∈ {0, . . . ,∆(G)2} such that,
upon pushing vi exactly x times, we do not create any of the conflicts described in items
1. and 2. in the proof of Theorem 2.1. Namely:

1. For each vj with j < i that is adjacent to vi, there is at most one integer y ∈
{0, . . . ,∆(G)2} such that we get σ(vi) = σ(vj) upon pushing vi exactly y times
(recall d(vi) ≥ 2). Since there are at most ∆(G) such vj ’s, such constraint thus
forbid at most ∆(G) values from {0, . . . ,∆(G)2} as x.

2. For every j < i such that vivj ∈ E(G), and every k < i such that k ∈ {1, . . . , i} ∖ {i, j}
and vjvk ∈ E(G) (and vivk /∈ E(G)), there is at most one integer y ∈ {0, . . . ,∆(G)2}
such that we get σ(vj) = σ(vk) upon pushing vi exactly y times. Since there are at
most ∆(G) such vj ’s, and, for each such fixed vj , at most ∆(G) − 1 such vk’s, such
constraints thus forbid at most ∆(G)(∆(G) − 1) values from {0, . . . ,∆(G)2} as x.

In total, all these constraints around vi thus forbid at most ∆(G) +∆(G)(∆(G) − 1) =
∆(G)2 as x. Since ∣{0, . . . ,∆(G)2}∣ =∆(G)2+1, there is thus a desired x in {0, . . . ,∆(G)2},
and we have our conclusion.

Observation 2.2 and Theorem 2.4 now yield:

Corollary 2.5. If G is a nice graph with order n, then Pt(G) ≤ n∆(G)2.

Now that we have Theorem 2.4 and Corollary 2.5, one could wonder, in general, about
accurate ways to express bounds on the parameters Pt and Pl. For reasons explained
earlier, we will mostly investigate this question for the latter parameter. As will be seen
in the next section, there is no constant upper bound on the parameter Pl, and we can
even come up with examples of graphs G where Pl(G) =∆(G), for ∆(G) being arbitrarily
large. For this reason, and due to Theorem 2.4, we think that bounding Pl in terms of the
maximum degree might be the way to go. We feel the following might hold true:

Conjecture 2.6. If G is a nice graph, then Pl(G) ≤∆(G).
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3. Some classes of graphs

In this section, we mostly focus on studying the parameter Pl for particular graph
classes. As a consequence, we get to confirming Conjecture 2.6 for certain graph classes,
and, notably through Observation 2.2, we get to establishing upper bounds on the more
global parameter Pt. In particular, we consider complete bipartite graphs, complete graphs,
graphs with maximum degree 2, trees, and cacti.

3.1. Complete bipartite graphs
Since complete bipartite graphs Kn,m have a very restricted, well-identified structure,

proper labellings are completely understood here. In particular, see e.g. [4], since Kn,m is
locally irregular if n ≠m, we have χΣ(Kn,m) = 1 whenever n ≠m. Otherwise, when n =m,
a proper 2-labelling can be obtained by choosing any vertex, making all its incident edges
labelled 2, and keeping all other edges assigned label 1; thus, χΣ(Kn,m) = 2 when n = m.
Such a proper labelling can, obviously, be realised through pushing vertices. From this
fact, we can thus derive the following easy, optimal result:

Theorem 3.1. For any n ≥ 1 and m ≥ 2 with n ≤m, we have Pl(Kn,m) = 0 if n ≠m, and
Pl(Kn,m) = 1 otherwise.

Proof. As mentioned above, Kn,m is locally irregular when n ≠m, in which case Pl(Kn,m) =
0. When n =m, just pick any vertex u, and push it once. Then, we have σ(u) = 2n, while
for all vertices v in the same part as u we have σ(v) = n, and for all vertices v in the other
part we have σ(v) = n + 1. Since n ≥ 2 by niceness of Kn,m in this case, the resulting
1-pushing scheme is proper and the claim follows.

From the proof of Theorem 3.1, note that we also deduce that Pt(Kn,m) = 0 when
n ≠ m, and Pt(Kn,m) = 1 otherwise, which obviously is best possible. This illustrates a
situation where the lower bound in Observation 2.2 is tight, and where the parameter Pt

does not have to be large (which is rather expected, again, given the structure of Kn,m).
Note also that we get that Conjecture 2.6 holds for complete bipartite graphs.

3.2. Complete graphs
When it comes to nice complete graphs Kn (thus n ≥ 3), it is well known, see e.g. [4],

that χΣ(Kn) = 3. Actually, for any k ≥ 3, there is a nice, easy way to design proper
k-labellings of Kn: start from the edges of K3 being assigned pairwise distinct labels in
{1, . . . , k}, and, repeatedly, letting i ∈ {1, k} be any label such that no vertex of the current
complete graph has all its incident edges assigned label i, add a universal vertex with all its
edges assigned label i. After any number x ≥ 0 of steps, this results in a proper k-labelling
of K3+x. And since we can essentially start the process with any k-labelling of K3, there
are plenty of such proper k-labellings, as k and x grow.

Unfortunately, designing labellings through pushing vertices is a very peculiar opera-
tion, and it can be checked that one cannot construct labellings as above through pushing
vertices. The situation is even worse, in the following sense:

Observation 3.2. For any n ≥ 3, a pushing scheme of Kn is proper if and only if every
two vertices are not pushed the same number of times. Consequently, we have Pl(Kn) =
n − 1 =∆(Kn), and thus there is no fixed k ≥ 1 such that Pl(Kn) ≤ k for all n ≥ 3.
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Proof. Since, for any two distinct vertices u and v of Kn, we have N(u)∖{v} = N(v)∖{u},
and, by any pushing scheme ρ, we have

σ(u) = (n − 1)(ρ(u) + 1) + ∑
w∈N(u)

ρ(w)

and
σ(v) = (n − 1)(ρ(v) + 1) + ∑

w∈N(v)

ρ(w),

so that σ(u) ≠ σ(v) we must have ρ(u) ≠ ρ(v). So, ρ is proper if and only if any two
vertices of Kn are not pushed the same number of times. The proper pushing scheme of
Kn that minimises the maximum number of times a vertex is pushed, is thus that where
vertices are pushed 0,1, . . . , n − 1 times. Hence, Pl(Kn) = n − 1 =∆(Kn).

Observation 3.2 justifies why we believe Conjecture 2.6 might be a reasonable conjec-
ture. Another consequence of Observation 3.2 is that, by Observation 2.2, we deduce that
Pt(Kn) ≤ n∆(Kn) =∆(Kn)(∆(Kn)+1) holds for every nice complete graph Kn. However,
note that the exact arguments in the proof of Observation 3.2 show that we have

Pt(Kn) =
n−1

∑
i=1

i = n(n − 1)
2

= 1

2
∆(Kn)(∆(Kn) + 1).

This also illustrates that the upper bound in Observation 2.2 is far from optimal, in general.

3.3. Graphs with maximum degree 2

In the context of connected graphs with maximum degree 2, proper labellings are very
easy to design, as, for a labelling of a path Pn (of order n) or cycle Cn (of order/size n)
to be proper, all is required is that edges at distance 2 apart get assigned distinct labels.
In particular, we have χΣ(P3) = 1, χΣ(Pn) = 2 for all n > 3, χΣ(Cn) = 2 for all n ≥ 3 with
n ≡ 0 mod 4, and χΣ(Cn) = 3 otherwise (see e.g. [4]). This can also be exploited in our
context. In particular, for paths, we can exploit the natural degeneracy to get an easy,
optimal result.

Theorem 3.3. For any n ≥ 3, we have Pl(Pn) = 0 if n = 3, and Pl(Pn) = 1 otherwise.

Proof. If n = 3, then Pn is locally irregular and thus Pl(Pn) = 0; otherwise, Pn is not locally
irregular and thus Pl(Pn) > 0. When n > 3, we obtain a proper 1-pushing scheme ρ of Pn

in the following way. Consider the vertices v1, . . . , vn of Pn in order, from one end-vertex
to the other. Note that, initially, σ(v1) = 1 and σ(v2) = 2, so there is no conflict between
v1 and v2. Now, for every i ≥ 3 considered in order, we have that vi−2 and vi−1 exist. If
vi−2 and vi−1 are not in conflict, then proceed with vi+1. Otherwise, just push vi once
to get rid of that conflict. Eventually, it should be clear that ρ is proper. In particular,
since we treat the vi’s in order, any possible conflict between two adjacent vertices vi−2
and vi−1 of degree 2 was dealt with upon reaching vi. It should be noted as well that, by
the definition of pushing schemes, a degree-1 vertex cannot be in conflict with its unique
neighbour. Thus, ρ is proper, and the claim follows.

Things are a bit more tricky for cycles Cn. In particular, a point worth mentioning is
that there is a straight classification, in terms of Pl, w.r.t. the parity of n; this contrasts a
bit with χΣ, for which the classification is made modulo 4.

Theorem 3.4. For any n ≥ 3, we have Pl(Cn) = 1 if n is even, and Pl(Cn) = 2 otherwise.
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Proof. Throughout, we denote by v0, . . . , vn−1 the consecutive vertices of Cn (where, all
along, operations over the subscripts of the vi’s are modulo n). Since Cn is not locally
irregular, we have Pl(Cn) > 0. Actually, we claim Pl(Cn) > 1 whenever n is odd. Indeed,
for some n ≥ 3, consider ρ, a proper 1-pushing scheme of Cn. A crucial observation is
that, because all vertices of Cn have degree 2, if ρ(vi) = ρ(vi+1) for some i ∈ {0, . . . , n − 1},
then we must have {ρ(vi−1), ρ(vi+2)} = {0,1}; this is because, otherwise, we would have
σ(vi) = σ(vi+1). Now, since Pl(Cn) > 0, some vertices of Cn must be pushed by ρ while
some others are not. From these observations, we get that if we denote by (P,Q) the
partition of V (Cn) where P contains the vertices pushed by ρ while Q contains the others,
then all p ≥ 1 connected components P1, . . . , Pp of Cn[P ] = Cn − Q contain exactly one
or three vertices each, and similarly for all q ≥ 1 connected components Q1, . . . ,Qq of
Cn[Q] = Cn −P . In other words, along Cn, the vi’s are arranged into alternating blocks of
one or three vertices each, with the same status w.r.t. ρ. Thus, p = q, and ∣P ∣ ≡ ∣Q∣mod 2.
So ∣P ∣ + ∣Q∣ = n must be even, from which we get that ρ cannot exist if n is odd.

We are now ready to prove the whole claim. Set n = 4k+r, where r = nmod 4. Consider
ρ, the pushing scheme of Cn obtained by pushing exactly once every vi in {v0, . . . , v4k−1}
with i ≡ 0 mod 4. If r = 0, then we obtain σ(vi) = 4 for all i ≡ 0 mod 4, σ(vi) = 3 for all
i ≡ 1,3 mod 4, and σ(vi) = 2 for all i ≡ 2 mod 4; this implies ρ is proper here. When r > 0,
we also perform the following:

• If r = 1, then we also push v4k twice. Then σ(v4k−1) = 4, σ(v4k) = 7, and σ(v0) = 6.

• If r = 2, then we also push each of v4k and v4k+1 once. Then σ(v4k−1) = 3, σ(v4k) = 5,
σ(v4k+1) = 6, and σ(v0) = 5.

• If r = 3, then we also push v4k twice. Then σ(v4k−1) = 4, σ(v4k) = 6, σ(v4k+1) = 4,
σ(v4k+2) = 3, and σ(v0) = 4.

As a result, ρ is proper in each case, and ρ pushes vertices at most once (when n is even)
or twice (otherwise). By earlier arguments, this is best possible, and the claim holds.

For both of Theorems 3.3 and 3.4, in terms of the parameter Pt, note that the proper
pushing schemes we design push about a quarter of the vertices, at most once (except for
odd-length cycles, for which a small, constant number of additional pushes are performed).
Thus, we believe the tight values of Pt(Pn) and Pt(Cn) should be about ⌊n/4⌋, in general.
Again, this is better than a simple application of previous Observation 2.2.

The fact that, for nice paths and cycles, we can design proper 2-pushing schemes, also
implies the following:

Corollary 3.5. Conjecture 2.6 holds for nice graphs G with ∆(G) = 2.

3.4. Trees
Recall that nice trees G have χΣ(G) ≤ 2, which is tight in general (see e.g. [4]). A proper

2-labelling ℓ of any nice tree G can actually be constructed quite easily, taking advantage
of the bipartite structure for G. More precisely, one can construct such an ℓ with the
property that vertices in one part of the bipartition all have odd sums while vertices in
the other part all have even sums, except perhaps for leaves which, as was remarked in a
previous proof, can never be in conflict with their unique neighbour since G is nice and
we are assigning strictly positive labels only. For instance, such an ℓ can be obtained by
starting from all edges assigned label 1, choosing any vertex r, applying a BFS algorithm
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from r, and for every non-leaf vertex u with at least one child v considered during the run,
changing, if needed, the label of uv to 2 if the parity of σ(u) is wrong.

It turns out that constructing proper labellings following a proper k-vertex-colouring of
the vertices (that is, making sure that vertices in distinct parts have distinct sums modulo
k) is a very common approach, see e.g. [8], and one can thus wonder whether this can be
applied in our context. While this can be tricky in most contexts, due to the fact that
pushing vertices is a very constraining way of building labellings, trees actually form a
context where such ideas can be set to work. This leads to the next result.

Theorem 3.6. If G is a nice tree, then Pl(G) ≤ 1.

Proof. As described above, let ψ ∶ V (G) → {0,1} be a proper {0,1}-vertex-colouring of
G, and choose any vertex r of G. We construct a proper 1-pushing scheme ρ of G by
essentially considering vertices in any order provided by a BFS algorithm performed from
r, and pushing vertices, if needed, so that σ(v) ≡ ψ(v)mod 2 for all vertices v ∈ V (G),
saved maybe for leaves, which can never be in conflict with their unique neighbour.

Let v be any vertex considered during the course of the BFS algorithm. If r = v, then
we do nothing. Otherwise, let u denote the parent of v in G w.r.t. the BFS algorithm,
that is, u is the unique vertex of G that is adjacent to v and was considered earlier in the
process. If σ(u) ≡ ψ(u)mod 2, then we do nothing. Otherwise, we push v exactly once, so
that σ(u) increases by exactly 1 and thus u has a desired sum modulo 2. Once all vertices
have been treated, note that we have σ(u) ≡ ψ(u)mod 2 for all non-leaf vertices u, since
σ(u) was perhaps adjusted, if needed, when considering one of its neighbours v later in
the process. As mentioned earlier, recall that we might have σ(u) /≡ ψ(u)mod 2 when u is
a leaf, but we know, since strictly positive labels are assigned by ℓ(ρ), that u cannot have
the same sum as its unique neighbour. Thus, ρ is a proper 1-pushing scheme of G.

By Observation 2.2 and Theorem 3.6, we obtain that every nice tree G with order n
fulfils Pt(G) ≤ n. Obviously, this bound does not seem quite accurate again; an argument
is e.g. that, for the proper 1-pushing schemes we build in the proof of Theorem 3.6, every
vertex can have at most two vertices in its neighbourhood pushed (its parent and one of
its children, w.r.t. the BFS ordering). In particular, if G, leaves apart, has all its vertices
having degree at least d ≥ 3, then the upper bound above is immediately improved to
⌊n/d⌋. This might indicate that nice paths could be the most annoying trees in terms of
Pt. Following our discussion by the end of Subsection 3.3, we thus suspect we might have
Pt(G) ≤ ⌊n/4⌋ for all nice trees G with order n, since, along long paths, we need to push
about a quarter of the vertices anyways.

Regarding Conjecture 2.6, we also get a confirmation for trees, from Theorem 3.6.

3.5. Cacti
In this section, we consider cacti, which, recall, are graphs in which no two cycles

share an edge. Cacti are well known to be 2-degenerate, and thus to admit proper 3-
vertex-colourings. From this, and following the discussion we had at the beginning of
Subsection 3.4, according to arguments e.g. from [8], we have that χΣ(G) ≤ 3 holds for
every nice cactus G. This is because every nice cactus G admits a proper 3-labelling where
adjacent vertices are essentially distinguished by their sums modulo 3.

As mentioned earlier, adapting such modulo methods to pushing schemes seems rather
tricky in general. Still, in this section, we prove this is somewhat achievable for cacti to get
an optimal result. Namely, we prove that Pl(G) ≤ 2 holds for every nice cactus G, which
is best possible e.g. because of odd-length cycles, recall Theorem 3.4.
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Figure 2: An example of ordering in which the vertices of a cactus are pushed, in the proof of Theorem 3.7.
Vertices of an initial cycle C are pushed first, before the vertices of distant configurations get also pushed,
accordingly to their distance to C and to the 2-degenerate structure of the cactus. Structures in red are
problematic end-structures, for which we may not fulfil the desired sums modulo 3.

Theorem 3.7. If G is a nice cactus, then Pl(G) ≤ 2.

Proof. Let G be a nice cactus. Clearly, we can assume G is connected (as otherwise we
could apply the arguments below to all connected components of G). Recall that, in G,
every edge is either a bridge (i.e., a cut-edge, whose removal from G results in a non-
connected graph) or a cycle edge (i.e., whose removal does not disconnect the graph).
Also, no two cycles of G share an edge and G is 2-degenerate, by definition of a cactus.

To build a proper 2-pushing scheme of G, we will mostly repeatedly extend a 2-pushing
scheme ρ from zero until all vertices are considered and we eventually get ρ is proper. For
that, we will exploit two crucial ideas. The first one is that, due to the 2-degeneracy of G,
we can treat vertices in a way (illustrated partly in Figure 2) so that, whenever considering a
new vertex (and its surrounding) to push, there are at most two sum constraints (neighbours
considered earlier) to take into consideration. The second one is that, still due to the 2-
degeneracy of G, graph G is 3-colourable and we can design ρ so that most adjacent vertices
are distinguished w.r.t. their sums modulo 3. More precisely, for reasons to be exposed
later on, this will not be achievable for degree-1 vertices and vertices belonging to particular
triangles. The former vertices do not cause problems, however, as, by labellings assigning
strictly positive labels, degree-1 vertices, in nice graphs, cannot be in conflict with their
unique neighbour. For the latter vertices, we will have to be a bit more careful to guarantee
they are not involved in conflicts.

For the process below to be described, we introduce a bit more terminology. Initially,
all vertices of G will be considered untreated, meaning their sums by ρ are not considered
fixed yet, and these vertices are not ready yet to be considered in next steps of the process.
Then, some untreated vertices will become ready, meaning their sum partly changed due
to vertices considered earlier, and they can now be considered in next steps of the process.
Vertices (untreated or ready) will eventually all reach the treated state, meaning their sums
have reached a desired value and will not be altered further. In particular, the ready state
will mostly occur for vertices when one or two of their neighbours have been considered.

We thus begin with all vertices of G untreated. First off, we can assume that G has
cycles, as otherwise G would be a tree, and the result would follow from Theorem 3.6. Let
thus C be any cycle of G. We claim the vertices of C can be pushed at most twice by ρ,
so that, when only considering the edges of C (thus omitting incident edges in G not part
of C), its adjacent vertices have distinct sums modulo 3. This follows mainly from a few
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auxiliary results: some for short cycles, and some for longer ones. Since this is crucial for
the proof, we prove these claims first, and will resume our explanations afterwards.

Claim 3.8. There is a proper 2-pushing scheme ρ of the triangle C = v0v1v2v0 such that
σ(v0), σ(v1), σ(v2) are pairwise distinct modulo 3.

Proof of the claim. Just set, e.g., ρ(v0) = 0, ρ(v1) = 1, and ρ(v2) = 2. Then σ(v0) = 5,
σ(v1) = 6, and σ(v2) = 7, and the result holds. ◇

From here on, most of the auxiliary claims to be established rely on checking exhaus-
tively all ways to push at most twice the vertices of some small structures. For the sake
of keeping the flow of the proof smooth, and for the reader’s convenience, we voluntarily
move all summarising tables by the end of the paper, in an appendix section.

Claim 3.9. Let C = v0v1 . . . vk−1v0 denote the cycle of order k, for any k ∈ {4,5,6}. Let
also c, d, p ∈ {0,1,2} be three integers (where “c” stands for “current”, “d” for “desired”, and
“p” for “push”). Then, there is a proper 2-pushing scheme ρ of C such that:

• ρ(v0) = p;

• σ(v0) + c ≡ dmod 3;

• d /≡ σ(vk−1), σ(v1)mod 3;

• for every edge vivj of C with 0 /∈ {i, j}, we have σ(vi) /≡ σ(vj)mod 3.

Proof of the claim. Just refer to Tables A.1, A.2, and A.3 of the appendix section. ◇

The way Claim 3.9 should be understood, is that if, in some graph G, we attach a cycle
C of length 4, 5, or 6 at some vertex v0, then, regardless how the vertices (in particular,
v0) of G are pushed, then there is always a way to push vertices of C (other than v0) at
most twice so that distinction within C is achieved modulo 3, and we can also make sure
σ(v0) is any desired value modulo 3. In particular, if, in G, the value of σ(v0) was not as
desired modulo 3, then we can always patch this through pushing vertices of C.

The next claim is the key for generalising Claim 3.9 to longer cycles.

Claim 3.10. Let P = v1 . . . v8 denote the path of order 8. Let also s1, s8, p1, p2, p7, p8 ∈
{0,1,2} be six integers (where “si” stands for “sum of vi”, and “pi” for “pushes of vi”).
Then, there is a proper 2-pushing scheme ρ of P such that:

• ρ(vi) = pi for all i ∈ {1,2,7,8};

• σ(v2) /≡ s1 mod 3, and σ(v7) /≡ s8 mod 3;

• for every edge vivj of C with 1,8 /∈ {i, j}, we have σ(vi) /≡ σ(vj)mod 3.

Proof of the claim. Just refer to Table A.4 of the appendix section. ◇

Claim 3.11. Let C = v0v1 . . . vk−1v0 denote the cycle of order k, for any k ≥ 7. Let also
c, d, p ∈ {0,1,2} be three integers (where “c” stands for “current”, “d” for “desired”, and “p”
for “push”). Then, there is a proper 2-pushing scheme ρ of C such that:

• ρ(v0) = p;

• σ(v0) + c ≡ dmod 3;

• d /≡ σ(vk−1), σ(v1)mod 3;
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• for every edge vivj of C with 0 /∈ {i, j}, we have σ(vi) /≡ σ(vj)mod 3.

Proof of the claim. Let us focus on the path P = vk−1v0v1 . . . vk−6 of C. Note that exactly
four vertices of C, namely vk−5, . . . , vk−2, do not belong to P , since k ≥ 7. We start
constructing ρ by setting ρ(v0) = p, ρ(vk−1) = 0, and pushing v1 at most twice so that
σ(v0) + c ≡ dmod 3. Next we push v2 so that σ(v2) /≡ σ(v0) + cmod 3, before considering
every i = 3, . . . , k − 6 in turn, and pushing vi (at most twice, if necessary) so that σ(vi−1) /≡
σ(vi−2)mod 3. It now remains to push, at most twice and if necessary, vk−5, . . . , vk−2 so
that any two adjacent of these vertices have distinct sums modulo 3, and similarly for their
neighbours (vk−6 and vk−1). This is possible by Claim 3.10, so the desired ρ does exist. ◇

Note that Claims 3.9 and 3.11 exclude triangles, for the simple reason that a similar
result does not hold (which is why the proof, unfortunately, gets convoluted). To better
understand the situation, we introduce a bit more terminology. Below, whenever an un-
treated vertex v, for reasons, switches to the ready state, we set ψ(v) ∈ {0,1,2} a colour for
v, where colours 0,1,2 are, roughly speaking, the sums we want to achieve for the vertices
modulo 3. That is, ψ forms a proper {0,1,2}-vertex-colouring of G, and if, through some
2-pushing scheme, we could achieve that σ(v) ≡ ψ(v)mod 3 holds for all vertices v of G,
then we would be done. Unfortunately, as mentioned earlier, this is not always achievable,
due to very local sparse structures. However, this can be achieved partly. Below, we say a
ready or treated vertex v is faulty if, currently, σ(v) /≡ ψ(v)mod 3, and flawless otherwise.

Regarding triangles, we prove something in the lines of Claims 3.9 and 3.11 can be
achieved. Namely, we prove a similar result holds, provided we drop some of the constraints
for one of the two vertices different from the attachment vertex (v0).

Claim 3.12. Let C = v0v1v2v0 denote the cycle of order 3. Let also c, d, p ∈ {0,1,2} be
three integers (where “c” stands for “current”, “d” for “desired”, and “p” for “push”). Then,
there is a proper 2-pushing scheme ρ of C such that:

• ρ(v0) = p;

• σ(v0) + c ≡ dmod 3;

• d /≡ σ(v1)mod 3;

• σ(v2) /≡ 2 mod 3.

Proof of the claim. Just refer to Table A.5 of the appendix section. ◇

Of course, in Claim 3.12, nothing guarantees v2 is in conflict with neither v0 nor v1.
The main idea is that if, in a whole graph G containing C, there are more structures around
v2, then we can use these structures (through tools such as Claims 3.9, 3.11, and 3.12) to
make sure v2 gets the right sum modulo 3, namely different from those of v0 and v1.

A few details remain to be mentioned, but, for now, let us make the proof of Theorem 3.7
a bit more concrete. So, we start from all vertices of G untreated, and consider any cycle
C = v0 . . . vk−1v0 of G, for some k ≥ 3. Focusing only on the vertices and edges of C, by
pushing vertices of C at most twice we can guarantee any two adjacent vi’s have distinct
sums modulo 3, by Claims 3.8, 3.9, and 3.11 (for the latter two claims, just consider all
parameters are e.g. 0). Then, for every vi we set ψ(vi) ∈ {0,1,2} to the resulting sum of vi
modulo 3, so that vi is currently considered flawless. Any vi being incident to other edges
(not along C) in G is then set to ready, while any other vi is set to treated.

If all vertices of G get treated, then G = C, and we are done. Otherwise, because G
is connected, some vertices of C are incident to other edges in G (which, at this point, do
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not contribute to their sums, as if they were not present), and are thus now in the ready
state. Consider thus any ready vertex v of G. Then v is also incident, essentially, to p ≥ 0
bridges and to an even number q ≥ 0 of cycle edges (in some sense, there are q/2 cycles,
besides the original cycle C we treated, attached at v), with p + q ≥ 1. Our goal here is
to extend what we have done to these p bridges and q/2 attached cycles, without messing
what we already did (in particular, w.r.t. to σ and ψ along C); that is, we must care only
about σ(v) and ψ(v) ∈ {0,1,2}, and remember that ρ(v) ∈ {0,1,2} was fixed earlier and
should not be altered. Also, these new edges did not contribute to σ(v).

• For every bridge vu incident to v (where, thus, u /∈ V (C)), we first set the label
of vu to 1 + ρ(v) before we push u (if needed) at most twice, so that, altogether,
we modify the previous value of σ(v) by a multiple of 3. This way, we preserve
σ(v) ≡ ψ(v)mod 3 and v remains flawless. We then let ψ(u) ∈ {0,1,2} be any value
different from ψ(v). If, in G, vertex u is incident to other edges, then we set u
to ready, while we set it to treated otherwise. In this latter case, we might have
σ(u) /≡ ψ(u)mod 3; however, eventually, we cannot have σ(v) = σ(u) since d(u) = 1.

• For any cycle (different from C) C ′ = vu1 . . . ukv containing exactly two edges incident
to v, we can push the ui’s so that (taking into account the two new edges incident to
v, and their labels inferred from ρ(v)) we preserve σ(v) ≡ ψ(v)mod 3, and, in most
cases, the ui’s have sums different from their neighbours (on C ′) modulo 3, when
only taking into account the edges incident to the ui’s along C ′. Indeed:

– If k ≥ 4, then this can be achieved completely, by Claims 3.9 and 3.11. For every
ui, we set ψ(ui) to the resulting sum modulo 3, so that ui is currently flawless.
And if ui is incident to other edges in G (that is, d(ui) ≥ 3), then we set ui to
ready, while we set it to treated otherwise.

– If k = 3, then recall this cannot be achieved completely, as mentioned earlier.
If, say, u1 is incident to other edges in G, then what we can achieve is pushing
u1 and u2 at most twice so that v remains flawless, σ(u2) /≡ σ(v)mod 3, and,
currently, σ(u1) /≡ 2 mod 3. We then set ψ(u2) = σ(u2)mod 3 so that u2 is
flawless, and set u2 to either ready or treated depending on whether it is incident
to other edges in G or not, respectively. Regarding u1, we choose as ψ(u1) the
only value in {0,1,2} ∖ {ψ(v), ψ(u2)}. If σ(u1) ≡ ψ(u1)mod 3, then u1 is
flawless, while it is faulty otherwise. And since u1 is, by assumption, incident
to other edges, then we set u1 to ready.

In the latter case, note that we leave the duty of fixing σ(u1) to a later step of the
process, by pushing some other neighbours of u1, which is possible in most cases.
However, in the last item, we did not discuss the case where neither u1 nor u2 is
incident to other edges, that is, when vu1u2v is a triangle attached at v. We consider
such cases as terminal ones, in the sense that we here must ensure distinction between
adjacent vertices without relying on pushing outside elements. The case of such an
attached triangle is actually not the only bad situation that can occur; see below.

In the previous explanations, we described how one iteration of the pushing process
goes. We now generalise the process, and make more formal the whole process. We
repeatedly consider ready vertices v, and extend ρ along their incident edges as follows.

• If v is adjacent to exactly two treated vertices v′ and v′′, then this is along some
cycle C (along which v′, v, and v′′ are consecutive) that has already been treated.
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In particular, ψ(v) ∈ {0,1,2} has been defined, and either, prior to considering the
extra edges incident to v, we have σ(v) ≡ ψ(v)mod 3 (that is, v is flawless), or
σ(v) /≡ ψ(v)mod 3 (that is, v is faulty). If d(v) = 2, that is, there are no further
structures attached to v, then we are done, and σ(v) is different from σ(v′) and
σ(v′′) (modulo 3 or not, see below). So, we focus on when d(v) ≥ 3.

– If v is flawless, then for every bridge uv that remains to be considered, we
first assign label 1 + ρ(v) to uv, before pushing u at most twice, if needed, to
make sure σ(v) remains flawless. We then choose σ(u) ∈ {0,1,2} ∖ {ψ(v)},
and set u either to ready in case it is incident to other edges, and to treated
otherwise. Similarly, for every cycle C ′ attached at v that remains to be treated,
we can proceed as earlier, using Claim 3.9 or 3.11 if C ′ has length at least 4,
and choosing values by ψ for the other vertices of C ′, and setting them to
ready or treated as earlier. Now, if C ′ = vu1u2v has length 3, then either C ′

is surrounded by other structures, and we can just apply Claim 3.12 as earlier
(generating exactly one faulty vertex with current sum not 2 modulo 3 that will
be handled later on), or d(u1) = d(u2) = 2. In that case, we can here make use
of the following particular adaptation of Claims 3.9 and 3.11 to triangles:

Claim 3.13. Let C = v0v1v2v0 denote the cycle of order 3. Let also c, p ∈ {0,1,2} be
two integers (where “c” stands for “current”, and “p” for “push”). Then, there is a proper
2-pushing scheme ρ of C such that:

• ρ(v0) = p;

• σ(v0) + c ≡ cmod 3;

• σ(v0) + c > σ(v1), σ(v2);

• σ(v1) ≠ σ(v2).

Proof of the claim. Table A.6 in the appendix section lists all possible cases. ◇

In particular, according to Claim 3.13, we can always push u1 and u2 in C ′ so
that we preserve the sum of v modulo 3 (thus its flawlessness), and we locally do
not have any sum conflict. For completeness, one can define ψ(u1) and ψ(u2)
to the corresponding values, and set u1 and u2 to treated.
In all cases, we note that v remains flawless, and that the only (ready) faulty
vertices we can create, arise when reaching triangles with ongoing structures
attached, for which, through Claim 3.12, we create one new faulty vertex with
current sum not 2 modulo 3.

– If v is faulty, then we can essentially proceed the same way. In particular, the
only situation where, on a cycle, we create a faulty vertex, is through using
Claim 3.12. That is, C is a triangle, and we know that, currently, σ(v) /≡ 2 mod
3. As earlier, any bridge uv or cycle C ′ of length at least 4 incident to v can be
used to guarantee we eventually have σ(v) ≡ ψ(v)mod 3. Regarding when C ′

has length 3 and has further structures attached, we can again apply previous
Claim 3.12 to achieve the same goal, the price for this being the generation
of a new faulty vertex that will be handled later on. Last, if C ′ is a triangle
with no further structures attached, then we can here make use of the following
dedicated adaptation of Claim 3.12

15



Claim 3.14. Let C = v0v1v2v0 denote the cycle of order 3. Let also c, d, p ∈ {0,1,2} be
three integers (where “c” stands for “current”, “d” for “desired”, and “p” for “push”). If
c /≡ 2 mod 3, then there is a proper 2-pushing scheme ρ of C such that:

• ρ(v0) = p;

• σ(v0) + c ≡ dmod 3;

• σ(v0) + c > σ(v1), σ(v2);

• σ(v1) ≠ σ(v2).

Proof of the claim. Refer to Table A.7 in the appendix for a solution in all cases. ◇

Thus, here as well, we can be done in all cases.

• It remains to consider when v is adjacent to exactly one treated vertex v′. That is,
v′v is a bridge, and v′ has already been treated earlier in the process (and, thus,
σ(v′) ≡ ψ(v′)mod 3, which perhaps required to push v). Note that if N(v) = {v′},
then there are no further edges incident to v, and we know for sure σ(v) ≠ σ(v′).
Thus, we focus on cases where d(v) ≥ 2; we again consider whether v is flawless.

– If v is flawless, then we can essentially proceed as in previous cases. That is,
for every bridge uv incident to v we can (after inferring the label of uv) push u
at most twice so that the flawlessness of v is preserved, and similarly for every
attached cycle of length at least 4. Last, every attached triangle with other
structures attached can be handled using Claim 3.12 (generating one faulty
vertex with sum different from 2 modulo 3), while every attached triangle with
no other structures attached can be handled using Claim 3.13.

– Assume last when v is faulty. Omitting vv′, we denote by p ≥ 0 the number
of triangles attached at v, by q ≥ 0 the number of cycles of length at least 4
attached at v, and by r ≥ 0 the number of bridges incident to v. Since d(v) ≥ 2,
we have p+q+r ≥ 1. If q+r ≥ 1, then, as earlier, through dealing with a cycle of
length at least 4 or a bridge attached at v, we can make v flawless, and thus fall
into the previous case. Now assume q+r = 0, and, thus, p ≥ 1. If p ≥ 2 and one of
the triangles has ongoing structures attached, then we can use that triangle to
make v flawless (the cost being to have one faulty vertex in that triangle), and,
from here, we can deal with the other triangles as earlier (recall Claims 3.12 and
3.13). If p ≥ 2 and none of the p triangles have further structures attached, then
either we can apply Claim 3.14 directly, or, currently, σ(v) ≡ 2 mod 3. Here, we
first consider any vu1u2v of the p triangles attached at v, and push u1 exactly
once. As a result, σ(u1) = 4+ρ(v), σ(u2) = 3+ρ(v), while, since p ≥ 2, we know
that, eventually, we will have

σ(v) = d(v)(ρ(v)+1)+ρ(u1) = (2p+1)(ρ(v)+1)+ρ(u1) ≥ 5(ρ(v)+1)+1 = 5ρ(v)+6.

Thus, regardless of ρ(v), eventually we cannot get any conflict between any
two of v, u1, and u2. If this changed the value of σ(v) modulo 3, then we can
proceed with the other p−1 triangles using Claim 3.14 (since we no longer have
σ(v) ≡ 2 mod 3). Otherwise, this means ρ(v) = 0. In this particular case, we
push u1 once more, so that σ(v) changes modulo 3, and this strategy applies.
In terms of sums, we obtain σ(u1) = 6, σ(u2) = 4, and σ(v) ≥ 1+4+2(p−1) ≥ 7,
meaning that, again, v can eventually be in conflict with neither u1 nor u2.

16



So, it remains to consider when p = 1, that is, there is only one triangle C
attached at v. In that case, we have d(v) = 3. Also, we can assume there is
no further structure around C, as otherwise we could again continue through
Claim 3.12. Likewise, if no other structure is attached at C, then we are done
by Claim 3.14 in case, currently, σ(v) /≡ 2 mod 4. Actually, the following claim
provides the situations where we can push the vertices of C successfully:

Claim 3.15. Let v0v1v2v0 denote the cycle of order 3, and assume uv0 is an edge to the rest
of the graph. Let also c, c′, d, p, p′ ∈ {0,1,2} be five integers (where “c” stands for “current”,
“d” for “desired”, and “p” for “push”). Then, there is a proper 2-pushing scheme ρ of the
whole structure such that:

• ρ(v0) = p and ρ(u) = p′;

• σ(v0) + c ≡ dmod 3;

• σ(v0) + c /≡ c′ mod 3;

• σ(v0) + c > σ(v1), σ(v2);

• σ(v1) ≠ σ(v2);

unless c′ ≡ 2 mod 3, ρ(v0) = 0, and ρ(u) ∈ {0,1}.

Proof of the claim. See Table A.8 for all cases. ◇

In particular, if v was pushed at least once in the process (when we dealt with
v′), then according to Claim 3.15 we could be done. So, assume we did not.
Let us rewind to the moment we dealt with v′ earlier. We denote by p′ ≥ 0, q′ ≥ 0,
and r′ ≥ 1 (since v′v is an bridge) the number of triangles, cycles of length at
least 4, and bridges, respectively, around v′. If r′ ≥ 2, then note that we could
have made v′ flawless by pushing at least once every vertex w (including v) such
that v′w is a bridge (just push twice all such w’s but two of them, and push
the last two once both, once and twice, or twice both to get the desired sum
modulo 3 for v′), thereby avoiding the bad situations in Claim 3.15 when later
dealing with v. Likewise, if q ≥ 1, then, through pushing vertices of a cycle of
length at least 4 attached at v′, by Claims 3.9 and 3.11 we could have achieved a
sum modulo 3 for v′ we could have corrected by pushing v exactly twice, thereby
again avoiding the bad cases in Claim 3.15 when dealing with v afterwards. If
p′ ≥ 1 and one of the triangles C attached at v′ has other structures attached,
then, again, we can push v (again avoiding the bad cases in Claim 3.15 later on)
and make v′ flawless via pushing vertices of C, generating a new faulty vertex
that will be handled later on. Now, if p′ ≥ 1 and all triangles attached at v′ have
no further structure around, then we can push v once or twice so that we get
σ(v′) /≡ 2 mod 4, from which we can then extend to the triangles attached at v′

by either Claim 3.13 (if v′ is flawless) or Claim 3.14 (otherwise). Then, since v
is pushed at least once, we avoid the bad cases in Claim 3.15.
Thus, we can assume p = q = 0 and r = 1 (that is, v′v is the sole bridge incident
to v′, omitting edges considered earlier in the process). If v′ is connected to
the rest of the graph through a single (bridge) edge v′v′′, then note that we
could have chosen another value as ψ(v′) ∈ {0,1,2} (any different from ψ(v′′)),
which would have led, later on, to pushing v a different number of times, thereby
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avoiding the bad cases in Claim 3.15. So, we can now assume v′ is connected
to the rest of the graph through a cycle C. If C has length at least 4, then,
when we treated C through Claim 3.9 or 3.11, recall we left v′ flawless. The
only situation that, later, leads to v not being pushed (one of the requirements
for the bad cases in Claim 3.15), is, when inferring the label of v′v from ρ(v′),
we have ρ(v′) = 2 (which derives to label 3 onto v′v). This does not meet the
last requirement of Claim 3.15, which means there is here a way to finish. It
remains to consider when C = u0u1u2u0 is a triangle, where, say, v′ = u2. Note
that the exact same argument applies if, after treating C, we had v′ flawless.
Now, when treating a triangle, recall that the only reason why we left v′ flawless,
is because we used Claim 3.12. In particular, u1 must be flawless. Now, note
that we could have interchanged the roles played by u1 and u2 to hopefully get
a better situation. If this is not possible, then it means that either d(u1) = 2
(that is, there are no further structures attached to u1 we can build upon) or
u1 itself, besides C, is incident to a single bridge u1w0 such that w0w1w2w0

is another triangle with no further structures attached. We finish off here, by
stating that, in both cases, when we reached u0, there was a correct way to push
the remaining vertices at once. This is by either of the following last two claims.

Claim 3.16. Let u0u1u2u0 denote the cycle of order 3, and assume u2v0 is an edge such
that v0v1v2v0 is another triangle. Let also c, d, p ∈ {0,1,2} be three integers (where “c”
stands for “current”, “d” for “desired”, and “p” for “push”). Then, there is a proper 2-
pushing scheme ρ of the whole structure such that:

• ρ(u0) = p;

• σ(u0) + c ≡ dmod 3;

• d /≡ σ(u1), σ(u2)mod 3;

• for every edge xy of the structure with u0 /∈ {x, y}, we have σ(x) ≠ σ(y)mod 3.

Proof of the claim. See all cases in Table A.10. ◇

Claim 3.17. Let u0u1u2u0 denote the cycle of order 3, and assume u1w0 and u2v0 are
edges such that w0w1w2w0 and v0v1v2v0 are other triangles. Let also c, d, p ∈ {0,1,2} be
three integers (where “c” stands for “current”, “d” for “desired”, and “p” for “push”). Then,
there is a proper 2-pushing scheme ρ of the whole structure such that:

• ρ(u0) = p;

• σ(u0) + c ≡ dmod 3;

• d /≡ σ(u1), σ(u2)mod 3;

• for every edge xy of the structure with u0 /∈ {x, y}, we have σ(x) ≠ σ(y)mod 3.

Proof of the claim. Here, refer to Table A.9. ◇
To sum up, from the initial cycle, we can repeatedly extend a 2-pushing scheme to

nearby structures, in such a way that adjacent vertices are either distinguished by their
sums modulo 3, or directly by their sums (this is the case, in particular, for triangles
connected to the rest of the graph through a single vertex, and degree-1 vertices).

Recall that Theorem 3.7 confirms Conjecture 2.6 for cacti. Also, from Observation 2.2,
we deduce that Pt(G) ≤ 2n holds for every nice cactus G of order n.

18



a

b

c

d

e

f

g

h

r

Figure 3: The M -gadget.

4. Complexity aspects

In this section, we study the complexity of determining any of Pt(G) and Pl(G), for a
given graph G. More precisely, we prove an NP-completeness result for both parameters.

4.1. Determining Pl

The problem we consider in this section is the following (defined for any k ≥ 0):

k-Pushability
Input: a graph G.
Question: does G have a proper k-pushing scheme? That is, do we have Pl(G) ≤ k?

Note that an instance of 0-Pushability is positive if and only if G is locally irreg-
ular; thus, this problem can be solved in polynomial time. In what follows, we prove
1-Pushability is NP-complete. For comparison, determining whether χΣ(G) ≤ k holds
for a graph G is NP-complete for k = 2 (see e.g. [6]), but polynomial-time solvable for all
k ≠ 2 (see [9]). A point of interest also, is that we saw earlier that Pl(G) ≤ 1 holds for
several common graphs G. Thus, one could legitimately wonder whether graphs with this
property are “easy” to characterise. Our result implies this is not the case, unless P=NP.

Before we get to proving our main result here, we need some preparation first. Namely,
we need to introduce a crucial gadget to be used in our reduction. This graph, which we
call the M -gadget throughout, is depicted in Figure 3. All along, assuming no ambiguity is
possible, we will deal with the vertices and edges of this gadget using the very terminology
from the figure. Copies of the M -gadget will be used by attaching them, through their
vertex r, in given graphs. Formally, assuming we have a graph G with a vertex v, by
attaching an M -gadget at v, we mean adding a copy M of the M -gadget to the graph,
and identifying v and r. The point is that if the resulting graph admits proper 1-pushing
schemes, then such pushing schemes behave in a particular way around M . More formally:

Lemma 4.1. Let M be a copy of the M -gadget, and ρ be a 1-pushing scheme of M . If
(omitting the possible conflict between r and g) ρ is proper, then:

• ρ(r) = ρ(g) = 0, and

• σ(g) = 7.

Furthermore, such a proper 1-pushing scheme ρ of M exists.
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Figure 4: Illustration of the reduction in the proof of Theorem 4.2, for the formula F = C1 ∧ C2 where
C1 = (x1 ∨ x1 ∨ x2) and C2 = (x2 ∨ x2 ∨ x3) (the set of variables being thus {x1, x2, x3}). Red vertices are
clause vertices, while green vertices are literal vertices. Blue octagonal shapes with an “M ” inside indicate
where M -gadgets are attached.

Proof. First off, note that N(b) ∖ {c} = N(c) ∖ {b}. Thus, so that σ(b) ≠ σ(c), it must
be that exactly one vertex in {b, c} is pushed. For a similar reason, exactly one vertex in
{e, f} must be pushed. W.l.o.g., assume b and e are pushed once by ρ, while c and f are
not. Note now that, so far, a has one neighbour, b, pushed once, one, c, not pushed, and
two other neighbours, g and h. Likewise, h has one neighbour, e, pushed once, one, f , not
pushed, and two other neighbours, g and a. Thus, so that σ(a) ≠ σ(h) it must be that
exactly one vertex in {a, h} is pushed. We claim this vertex must be a. Indeed, assume,
towards a contradiction, that h is pushed once while a is not. Note that, at this point, if
d is not pushed, then σ(b) = σ(d) = 6 since we have identified the status (pushed once or
not) of all vertices in N(b) ∪N(d) ∖ {d}. Thus, assume d is pushed once. For the same
reasons, but regarding a and b, observe that g must not be pushed, as otherwise we would
have σ(a) = σ(b) = 7. But then we necessarily have σ(e) = σ(d) = 10, a contradiction.

Thus, we can now go back to the situation where a, b, e are pushed while c, f, h are not.
Regardless of whether g is pushed or not, note that d must not be pushed, as otherwise
we would have σ(f) = σ(h) ∈ {6,7}. Likewise, now, g must not be pushed as otherwise we
would get σ(f) = σ(d) = 6. In turn, r must not be pushed, as otherwise we would have
σ(g) = σ(e) = 8. As a result, we obtain σ(a) = 9, σ(b) = 7, σ(c) = 5, σ(d) = 6, σ(e) = 8,
σ(f) = 5, and σ(g) = 7, thus no further objection to the properness of ρ.

Lemma 4.1 implies that if we attach an M -gadget at some vertex v in some graph G,
then, assuming the resulting graph admits a proper 1-pushing scheme ρ, necessarily v is
not pushed by ρ, and we cannot have σ(v) = 7.

We are now ready to prove our main result here.

Theorem 4.2. 1-Pushability is NP-complete.
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Proof. Since the problem is obviously in NP, we focus on proving its NP-hardness. This
is done by reduction from the 3-Satisfiability problem, which is well known to be NP-
hard. Recall that an instance of 3-Satisfiability consists of a conjunction F of m clauses
C1, . . . ,Cm each being a disjunction of three literals defined over n variables x1, . . . , xn (that
is, every literal is either a variable or a negated variable). The task is to determine if there
is a truth assignment to the variables of F such that each clause is satisfied, i.e., has a
true literal. From an instance F of 3-Satisfiability, we construct, in polynomial time,
a graph G such that F can be satisfied if and only if G admits proper 1-pushing schemes.

The construction of G goes as follows (see Figure 4 for an illustration). We start off
from G having vertices and edges depicting the structure of F . That is, for every clause
C of F we have a clause vertex cC in G, for every literal l over the variables of F we have
a literal vertex ll, and whenever some literal l belongs to some clause C of F we have the
formula edge llcC in G. Now:

• For every variable x of F , we add the edge lxlx to G.

• For every clause C of F , assuming C contains exactly x distinct literals, we attach,
in G, exactly 7 − x M -gadgets at cC . As a result, d(cC) = 7.

• For every possible literal l over the variables of F , and for every clause C of F that
does not contain l, we add a new vertex dl,C to G, attach an M -gadget at dl,C , and
add the edge lldl,C . As a result, d(ll) =m + 1.

Regarding the last item, note that, since we can suppose m (the total number of clauses
of F ) is not constant (as otherwise F could be solved by exhaustively checking all possible
solutions), we can assume throughout m ≥ 9, and thus d(ll) > 9 for every possible literal l.
Note also that the whole construction of G is clearly achieved in polynomial time.

To see that we have the desired equivalence between F and G, let us state some prop-
erties that a proper 1-pushing scheme ρ of G must fulfil (assuming such a ρ exists):

1. By Lemma 4.1, besides vertices within the attached M -gadgets, note that the only
vertices of G that can be pushed by ρ are literal vertices.

2. For every pair {ll, ll} of opposite literal vertices of G, recall that we have d(ll) = d(ll).
Since, by the previous item, only literal vertices of G can be pushed by ρ, so that
σ(ll) ≠ σ(ll), it must be that exactly one vertex in {ll, ll} is pushed. This implies also
that we must have {σ(ll), σ(ll)} = {m + 2,2(m + 1)}, and, thus, σ(ll), σ(ll) ≥ 11.

3. Each clause vertex cC has degree 7, is adjacent to at least one literal vertex, and has
at least one M -gadget attached. By Lemma 4.1 and the previous items, cC cannot
be pushed by ρ, and, actually, in N(cC) only literal vertices adjacent to cC can be
pushed. Furthermore, still by Lemma 4.1, in the attached M -gadgets there must be
neighbours of cC with sum 7 by ρ. So, so that cC is not in conflict with its such
neighbours, at least one literal vertex adjacent to cC must be pushed by ρ. Since cC
has one, two, or three such neighbours, we deduce σ(cC) ∈ {8,9,10}.

4. Every vertex dl,C has degree 2, has an M -gadget attached, and is adjacent to a literal
vertex. By Lemma 4.1 and the previous items, we must have σ(dl,C) ∈ {2,3}.

From all these arguments, the desired equivalence between F and G is easy to visualise.
Indeed, imagine that, by a proper 1-pushing scheme ρ of G, having some literal vertex ll
pushed models that literal l is assigned truth value true by some truth assignment ϕ to F ,
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and false otherwise. For every pair {ll, ll} of opposite literal vertices of G, the property
in the second item above models that, by ϕ, a variable and its negation are assigned
distinct truth values. The properties in the third item above models that, by ϕ, a clause is
considered satisfied if it has at least one true literal. Thus, a satisfying truth assignment to
the variables of F can be determined from a proper 1-pushing scheme of G, and vice versa.
In particular, recall that the M -gadgets attached in G can be pushed as required (recall
Lemma 4.1), and observe that, by a proper pushing scheme ρ of G behaving as described
above, literal vertices can be in conflict with neither clause vertices nor dl,C ’s.

4.2. Determining Pt

For any fixed k ≥ 0, note that the problem of determining whether Pt(G) = k holds for a
given graph G can be solved in polynomial time, by essentially considering all ∣V (G)∣k ways
to push k vertices of G, and checking whether the corresponding pushing scheme is proper.
Thus, the problem of determining whether Pt(G) ≤ k holds for any k ≥ 0 and given graph
G can be solved easily, which justifies, herein, to focus on the following problem (where,
in opposition to k-Pushability, the parameter of interest, k, is part of the input):

Minimum Total Pushability
Input: an integer k ≥ 0, and a graph G.
Question: does G have a proper pushing scheme performing, in total, at most k pushes?
That is, do we have Pt(G) ≤ k?

We prove Minimum Total Pushability is NP-complete in general.

Theorem 4.3. Minimum Total Pushability is NP-complete.

Proof. The problem is clearly in NP; thus, we focus on proving its NP-hardness. As in
the proof of Theorem 4.2, this is done by reduction from the 3-Satisfiability problem.
Given an instance F of 3-Satisfiability, we construct, in polynomial time, a graph G
such that F can be satisfied if and only if G admits a proper pushing scheme performing
at most k pushes in total, for some k being a (polynomial) function of G.

As in the proof of Theorem 4.2, we start from G being the graph modelling the structure
of F (thus with clause vertices cC , literal vertices ll, formula edges, and edges joining each
pair of opposite literals). We further modify G as follows:

• As in the proof of Theorem 4.2, for every literal l over the variables of F not appearing
in some clause C, we add the edge lldl,C , where dl,C is here a new degree-1 vertex.
Thus, at this point, for every literal l of F , in G we have d(ll) = 1+m (where, recall,
m is the total number of clauses in F ).

• For every clause C of F , we make, in G, clause vertex cC adjacent to a new vertex
c′C , which, assuming C contains x ∈ {1,2,3} distinct literals, we make adjacent to x
new degree-1 vertices. This way, we get d(cC) = d(c′C) = x + 1.

• Set d = m + n(n + 1) + 1 (where, recall, m and n are the number of clauses and
variables, respectively, of F ). For every literal l over the variables of F , and every
i ∈ {d, . . . , d+n}∖{d+1}, we make, in G, literal vertex ll adjacent to n+1 new vertices
al,i,1, . . . , al,i,n+1. Then, for every i ∈ {d, . . . , d+n} ∖ {d+ 1} and j ∈ {1, . . . , n+ 1}, we
add i−1 new degree-1 vertices adjacent to al,i,j so that d(al,i,j) = i. Thus, eventually,
every literal vertex ll of G satisfies d(ll) = d, and is adjacent (among others) to n + 1
vertices of degree d, d + 2, d + 3, . . . , d + n, respectively.
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Clearly, the whole construction of G is achieved in polynomial time. For the instance
of Minimum Total Pushability to be complete, the integer k we consider is n.

Let us remark that, in G, initially the only pairs of adjacent vertices with the same
degree are: every pair {ll, ll} for some literal l of F , every pair {cC , c′C} for some clause C
of F , and every pair {ll, al,d,i} (for all i ∈ {1, . . . , n+1}) for some literal l of F . Also, we can
assume the degree, d, of the literal vertices is strictly larger than the degree, which is at
most 4, of the clause vertices, as otherwise this would imply d is a constant, and F could
be solved in polynomial time by exhaustively checking all possible truth assignments.

The key point for the equivalence between F and G (and additional input k = n)
to hold, is the fact that, in any proper pushing scheme ρ of G performing at most n
pushes, for every variable x of F it must be that exactly one vertex in {lx, lx} is pushed.
Towards a contradiction, assume this is not the case. Recall that lx is adjacent and has
the same degree as lx and ax,d,1, . . . , ax,d,n+1, and lx is also adjacent and has the same
degree as ax,d,1, . . . , ax,d,n+1. Each of lx and lx is also adjacent to n + 1 vertices with
degree d + 2, . . . , d + n (of the form ax,i,j and ax,i,j , respectively, for i ∈ {d + 2, . . . , d + n}
and j ∈ {1, . . . , n + 1}). Now, by performing at most n pushes (not pushing lx or lx)
by ρ, note that σ(lx) and σ(lx) cannot leave the set {d, . . . , d + n}. Also, note that, for
any i ∈ {d, . . . , d + n} ∖ {d + 1}, we cannot push all of ax,i,1, . . . , ax,i,n or ax,i,1, . . . , ax,i,n.
This implies that, whatever n pushes (not pushing lx or lx) are performed by ρ, for every
i ∈ {d, . . . , d+n}∖{d+1}, there must be, by ρ, some ax,i,j and some ax,i,j with σ(ax,i,j) = i
and σ(ax,i,j) = i. Since by pushing once any neighbour of lx or lx we increase σ(lx) or
σ(lx), respectively, by exactly 1, due to the restricted number of pushes, and because the
smallest available sums (which must be different) for lx and lx are d + 1 and d + n + 1, we
cannot get rid of all conflicts involving lx and lx by pushing their neighbours only. We thus
have a contradiction; thus, ρ must push at least one vertex in {lx, lx}. On the other hand,
note that if, say, lx is pushed once while lx is not, then, assuming no other vertex in their
neighbourhoods is pushed, we get σ(lx) = 2d > d+n and σ(lx) = d+ 1, which two values do
not appear, as is, as the degree of any neighbour of lx and lx, respectively.

Now, by a proper pushing scheme ρ of G performing at most n pushes, we must have
the following properties:

1. By the arguments above, at least one vertex in any pair {lx, lx} must be pushed.
Since there are exactly n such pairs, this implies, for every variable x of F , that ρ
pushes exactly once exactly one vertex in {lx, lx}. Again due to the restricted number
of pushes, this implies only literal vertices are pushed, at most once each.

2. For every clause C of F , recall that d(cC) = d(c′C) in G. By the previous item, to
get rid of this conflict by ρ, there must be a formula edge cC ll such that ρ(ll) = 1.

3. Still due to the restricted number of pushes, and the distinct degrees, note that
clause vertices and adjacent literal vertices cannot be in conflict by ρ. Likewise, any
ll cannot be in conflict with an adjacent dl,C . All other non-discussed adjacencies
include a degree-1 vertex, which, by ρ, cannot be in conflict with its neighbour.

From these arguments, we have the desired equivalence between satisfying F , and
finding a proper pushing scheme ρ of G performing at most n pushes. We regard the
fact that ρ pushes once some literal vertex ll as setting literal l to true, and setting it
to false otherwise. The fact that exactly one of ll and ll must be pushed once by ρ for
every literal l of F thus models that, by a truth assignment, a variable and its negation
receive distinct truth values. The second property above then models that, by a truth
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assignment to the variable of F , a clause is considered satisfied only if it has at least one
true literal. From these arguments, and the third set of properties above, we get that a
satisfying truth assignment to the variables of F can be deduced from a proper pushing
scheme of G performing at most n pushes, and vice versa.

5. Conclusion

In this work, we have introduced the concept of proper pushing schemes and the two
associated parameters Pl and Pt, which we have studied in general and for several graph
classes. Recall that our main intent was to study particular types of proper labellings,
namely those which can be obtained by the somewhat natural pushing operation. We
focused more precisely on the parameter Pl, which we feel is more natural and manageable
to study, and came up with Conjecture 2.6. This conjecture we verified for several graph
classes along Section 3. We also focused on more algorithmic aspects, and proved, through
Section 4, that determining either of Pl and Pt is tough in general (unless P=NP).

Our results only stand as a very first approach towards understanding proper pushing
schemes, and the problems we considered here only form a very restricted sample of all
directions we could have investigated. In particular, we believe the following questions and
directions are appealing, and could deserve further consideration.

• Regarding Conjecture 2.6, one could consider establishing a bound on Pl that is
a linear function of the maximum degree. Recall indeed that we only proved a
quadratic bound, through Theorem 2.4. Let us mention that Theorem 2.4 can be
improved slightly in some contexts, by refining the proof. For instance, when G is
connected with maximum degree ∆ =∆(G) but G is not ∆-regular, then it is better
to consider, as S = (v1, . . . , vp), an ordering over the vertices of L such that each vi is
adjacent to at least one vertex of O or some vj with i < j, and d(vp) <∆. Such an S
can be obtained e.g. by reversing the order in which the vertices of L are traversed
during the course of a BFS algorithm performed from any vertex of degree strictly
less than ∆. This implies that every vi now has at most ∆ − 1 neighbours vj with
j < i; thus the number of constraints in the first item becomes at most ∆ − 1, while
it becomes at most (∆ − 1)2 in the second one. The bound deduced here is thus
Pl(G) ≤∆ − 1 + (∆ − 1)2 =∆2 −∆.

This apart, it could be good to confirm Conjecture 2.6 for more classes of graphs. Re-
call that, in Corollary 3.5, we proved the conjecture for graphs of maximum degree 2;
thus, as a first step, perhaps one could wonder about graphs of maximum degree 3.
If G is a nice graph with ∆(G) = 3, then we have Pl(G) ≤ 9 by Theorem 2.4, while
according to the conjecture we should have Pl(G) ≤ 3. Thus, there is some gap here.

• In the very same line, we proved Conjecture 2.6 for graphs with very low degeneracy,
recall Corollary 3.5 and Theorems 3.6 and 3.7, and we wonder whether one can prove
the conjecture for other classes of graphs with this property. For instance, we wonder
about 2-degenerate graphs, or more generally about graphs with bounded maximum
average degree (mad). From a more general perspective, we wonder whether one
could express bounds on Pl in terms of the maximum average degree. In particular,
we were not able to come up with graphs G such that Pl(G) is larger than mad(G).

• Regarding our complexity results from Section 4, one could first wonder whether our
two NP-hardness results (regarding Pl and Pt) hold when restricted to particular
graph classes. In particular, Theorem 4.2 does not hold when restricted to bipartite
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graphs, since the M -gadget we introduced is a crucial tool that is not bipartite; thus,
we wonder about the complexity of 1-Pushability when restricted to bipartite
graphs, especially since the problem of deciding whether χΣ(G) ≤ 2 holds for a
bipartite graph G lies in P [12].

Let us mention as well that our proofs of Theorems 4.2 and 4.3 are by reduction from
the 3-Satisfiability problem, which remains NP-complete when restricted to in-
stances where literals appear in a bounded number of clauses each (see e.g. [13]). From
this, 1-Pushability remains NP-complete when restricted to graphs of bounded de-
gree, while we leave open the same matter for Minimum Total Pushability. Like-
wise, 3-Satisfiability remains NP-complete when restricted to planar formulas [10],
but it turns out that our M -gadget from Figure 3 is not planar (to see this is true,
note that we obtain a K5 when identifying all of a, b, c, d to a single vertex). Thus,
some efforts would be needed to prove that 1-Pushability and Minimum Total
Pushability remain NP-complete for planar graphs. More generally, we wonder
whether there are other interesting classes of graphs for which the two problems are
NP-complete, and whether they are polynomial-time solvable for others.

We also expect k-Pushability to be NP-complete for all k ≥ 2, and we would be
curious to see a proof of that. In particular, we would be interested in generalisations
of the M -gadget to larger values of k.

• Regarding the more global parameter Pt, we raised Observation 2.2 but had numerous
occasions to see that the stated upper bound (function of Pl) is bad in general. We
thus wonder about natural and tight bounds on Pt. Recall, as discussed by the end
of Subsection 3.2, that there are graphs G for which Pt(G) is a quadratic function of
∣V (G)∣. However, in these graphs, ∣V (G)∣ is very close to ∆(G), so we are not sure
how this lower bound should be better interpreted.

From a more general perspective, we believe creating irregularity in graphs through
pushing vertices is an interesting concept, and could be worth studying for other notions of
graph irregularity. Recall indeed that, in the notion of proper pushing scheme we considered
throughout, we focused on the notion of local irregularity, while other such notions of
graph irregularity exist. For instance, one could wonder about pushing schemes encoding
labellings where no two vertices (adjacent or not) have the same sum, thus encoding total
irregularity (w.r.t. multigraphs in which no two vertices have the same degree). It is worth
mentioning that the associated notion of irregular labelling have been studied for long,
more than a decade prior the introduction of the 1-2-3 Conjecture, through the notion of
irregularity strength of graphs [1]. While some of our results in this paper on the more
local version of the problem generalise to this more global one, some others do not, and we
thus believe this could all be worth investigating.
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Appendix A. Exhaustive proper 2-pushing schemes for Theorem 3.7

In this section, we gather ways to push vertices in some structure to prove that the
claims we introduced in the proof of Theorem 3.7 hold true. Most of the time, this requires
to consider a lot of cases, which is why, for the reader’s convenience, we prefer to gather all
these cases in multiples tables. Please be aware that these cases were exhaustively checked
through the use of computer programs.
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Current σ(v0) Desired σ(v0) ρ(v0) ρ(v1) ρ(v2) ρ(v3) σ(v1) σ(v2) σ(v3)

0 0 0 0 0 1 2 0 1
0 0 1 0 1 2 1 0 2
0 0 2 0 0 0 1 2 1
0 1 0 0 0 2 2 1 0
0 1 1 0 0 0 0 2 0
0 1 2 0 2 1 0 1 2
0 2 0 0 1 0 0 1 0
0 2 1 0 1 1 1 2 0
0 2 2 0 2 2 0 2 1
1 0 0 0 2 0 1 0 1
1 0 1 2 0 2 1 0 1
1 0 2 1 1 1 1 0 1
1 1 0 2 2 2 2 1 2
1 1 1 1 0 1 2 1 2
1 1 2 0 1 0 2 1 2
1 2 0 1 2 1 0 2 0
1 2 1 0 0 0 0 2 0
1 2 2 2 1 2 0 2 0
2 0 0 1 1 1 2 0 2
2 0 1 0 2 0 2 0 2
2 0 2 2 0 2 2 0 2
2 1 0 0 1 0 0 1 0
2 1 1 2 2 2 0 1 0
2 1 2 1 0 1 0 1 0
2 2 0 2 1 2 1 2 1
2 2 1 1 2 1 1 2 1
2 2 2 0 0 0 1 2 1

Table A.1: Pushing (at most twice) vertices of a new cycle v0v1v2v3v0 of order 4, connected to previous
parts of the whole graph through v0. The first three columns give the initial assumptions, that is, some
contribution of the rest of the graph to σ(v0), what sum is desired for σ(v0), and whether v0 was pushed
earlier or not. The next six columns indicate, for each case, how many times v1, v2, v3 should be pushed,
and their resulting sums. Here, adjacent vertices are distinguished modulo 3; thus, all sums presented are
modulo 3.

Current σ(v0) Desired σ(v0) ρ(v0) ρ(v1) ρ(v2) ρ(v3) ρ(v4) σ(v1) σ(v2) σ(v3) σ(v4)

0 0 0 0 2 0 1 1 0 2 1
0 0 1 0 1 1 2 1 2 1 2
0 0 2 0 0 1 0 1 0 1 2
0 1 0 0 1 0 2 0 1 2 0
0 1 1 0 0 2 0 0 1 0 2
0 1 2 0 2 2 1 0 2 0 2
0 2 0 1 0 0 2 1 0 1 0
0 2 1 0 1 2 1 1 0 2 1
0 2 2 0 2 1 2 0 1 2 0
1 0 0 0 0 2 0 2 1 0 1
1 0 1 0 1 2 1 1 0 2 1
1 0 2 0 0 0 2 1 2 1 2
1 1 0 0 1 1 1 0 2 0 2
1 1 1 0 0 2 2 0 1 2 0
1 1 2 0 1 2 0 2 0 1 0
1 2 0 0 1 0 2 0 1 2 0
1 2 1 1 2 2 2 1 0 1 0
1 2 2 0 0 1 1 1 0 2 1
2 0 0 0 2 2 2 1 2 1 2
2 0 1 0 1 2 0 1 0 1 2
2 0 2 0 0 1 1 1 0 2 1
2 1 0 0 0 1 0 2 0 1 0
2 1 1 0 0 0 1 0 2 0 2
2 1 2 0 2 1 2 0 1 2 0
2 2 0 0 2 0 1 1 0 2 1
2 2 1 0 0 2 2 0 1 2 0
2 2 2 1 1 1 2 1 0 1 0

Table A.2: Pushing (at most twice) vertices of a new cycle v0v1v2v3v4v0 of order 5, connected to previous
parts of the whole graph through v0. The first three columns give the initial assumptions, that is, some
contribution of the rest of the graph to σ(v0), what sum is desired for σ(v0), and whether v0 was pushed
earlier or not. The next eight columns indicate, for each case, how many times v1, v2, v3, v4 should be
pushed, and their resulting sums. Here, adjacent vertices are distinguished modulo 3; thus, all sums
presented are modulo 3.
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Current σ(v0) Desired σ(v0) ρ(v0) ρ(v1) ρ(v2) ρ(v3) ρ(v4) ρ(v5) σ(v1) σ(v2) σ(v3) σ(v4) σ(v5)

0 0 0 2 1 0 1 2 1 0 1 0 1
0 0 1 0 1 1 1 2 1 2 0 1 2
0 0 2 1 1 0 0 2 1 2 0 1 2
0 1 0 0 0 1 0 2 2 0 1 2 0
0 1 1 1 0 0 2 2 2 0 1 2 0
0 1 2 2 0 0 0 2 2 1 2 1 2
0 2 0 1 0 0 0 2 1 0 2 1 0
0 2 1 2 0 1 0 2 1 2 1 2 1
0 2 2 0 0 0 2 2 1 2 1 2 1
1 0 0 1 0 2 1 2 1 2 1 2 1
1 0 1 2 0 1 0 2 1 2 1 2 1
1 0 2 0 0 0 2 2 1 2 1 2 1
1 1 0 2 0 0 0 2 0 1 2 1 0
1 1 1 0 0 0 2 2 0 2 1 2 0
1 1 2 1 0 1 1 2 0 1 2 1 0
1 2 0 0 1 0 0 2 0 1 0 1 0
1 2 1 1 1 2 2 2 0 1 0 1 0
1 2 2 2 1 1 1 2 0 1 0 1 0
2 0 0 0 0 2 2 2 2 1 2 1 2
2 0 1 1 0 1 1 2 2 1 2 1 2
2 0 2 2 0 0 0 2 2 1 2 1 2
2 1 0 1 1 1 2 2 2 0 1 0 2
2 1 1 2 1 0 1 2 2 0 1 0 2
2 1 2 0 1 0 0 2 2 1 0 1 2
2 2 0 2 0 0 0 2 0 1 2 1 0
2 2 1 0 0 0 2 2 0 2 1 2 0
2 2 2 1 0 1 1 2 0 1 2 1 0

Table A.3: Pushing (at most twice) vertices of a new cycle v0v1v2v3v4v5v0 of order 6, connected to previous
parts of the whole graph through v0. The first three columns give the initial assumptions, that is, some
contribution of the rest of the graph to σ(v0), what sum is desired for σ(v0), and whether v0 was pushed
earlier or not. The next ten columns indicate, for each case, how many times v1, v2, v3, v4, v5 should be
pushed, and their resulting sums. Here, adjacent vertices are distinguished modulo 3; thus, all sums
presented are modulo 3.
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σ(v1) σ(v8) ρ(v1) ρ(v2) ρ(v7) ρ(v8) ρ(v3) ρ(v4) ρ(v5) ρ(v6) σ(v2) σ(v3) σ(v4) σ(v5) σ(v6) σ(v7)
0 0 0 2 0 0 0 2 2 2 0 0 2 1 2 1
0 0 0 2 0 1 0 2 2 2 0 0 2 1 2 2
0 0 0 2 0 2 0 2 2 2 0 0 2 1 2 0
0 0 0 2 1 0 0 2 2 2 0 0 2 1 0 0
0 0 0 2 1 1 0 2 2 2 0 0 2 1 0 1
0 0 0 2 1 2 0 2 2 2 0 0 2 1 0 2
0 0 0 2 2 0 0 2 2 2 0 0 2 1 1 2
0 0 0 2 2 1 0 2 2 2 0 0 2 1 1 0
0 0 0 2 2 2 0 2 2 2 0 0 2 1 1 1
0 0 1 0 0 0 0 2 2 2 0 1 2 1 2 1
0 0 1 0 0 1 0 2 2 2 0 1 2 1 2 2
0 0 1 0 0 2 0 2 2 2 0 1 2 1 2 0
0 0 1 0 1 0 0 2 2 2 0 1 2 1 0 0
0 0 1 0 1 1 0 2 2 2 0 1 2 1 0 1
0 0 1 0 1 2 0 2 2 2 0 1 2 1 0 2
0 0 1 0 2 0 0 2 2 2 0 1 2 1 1 2
0 0 1 0 2 1 0 2 2 2 0 1 2 1 1 0
0 0 1 0 2 2 0 2 2 2 0 1 2 1 1 1
0 0 2 1 0 0 0 2 2 2 0 2 2 1 2 1
0 0 2 1 0 1 0 2 2 2 0 2 2 1 2 2
0 0 2 1 0 2 0 2 2 2 0 2 2 1 2 0
0 0 2 1 1 0 0 2 2 2 0 2 2 1 0 0
0 0 2 1 1 1 0 2 2 2 0 2 2 1 0 1
0 0 2 1 1 2 0 2 2 2 0 2 2 1 0 2
0 0 2 1 2 0 0 2 2 2 0 2 2 1 1 2
0 0 2 1 2 1 0 2 2 2 0 2 2 1 1 0
0 0 2 1 2 2 0 2 2 2 0 2 2 1 1 1
0 1 0 1 1 0 0 2 2 2 1 2 2 1 0 0
0 1 0 1 2 2 0 2 2 2 1 2 2 1 1 1
0 1 0 2 0 0 0 2 2 2 0 0 2 1 2 1
0 1 0 2 0 1 0 2 2 2 0 0 2 1 2 2
0 1 0 2 0 2 0 2 2 2 0 0 2 1 2 0
0 1 0 2 1 0 0 2 2 2 0 0 2 1 0 0
0 1 0 2 1 1 0 2 2 2 0 0 2 1 0 1
0 1 0 2 1 1 1 2 2 2 1 2 0 1 0 1
0 1 0 2 1 2 0 2 2 2 0 0 2 1 0 2
0 1 0 2 2 0 0 2 2 2 0 0 2 1 1 2
0 1 0 2 2 0 1 2 2 2 1 2 0 1 1 2
0 1 0 2 2 1 0 2 2 2 0 0 2 1 1 0
0 1 0 2 2 2 0 2 2 2 0 0 2 1 1 1
0 1 1 0 0 0 0 2 2 2 0 1 2 1 2 1
0 1 1 0 0 1 0 2 2 2 0 1 2 1 2 2
0 1 1 0 0 1 1 2 2 2 1 0 0 1 2 2
0 1 1 0 0 2 0 2 2 2 0 1 2 1 2 0
0 1 1 0 1 0 0 2 2 2 0 1 2 1 0 0
0 1 1 0 1 1 0 2 2 2 0 1 2 1 0 1
0 1 1 0 1 2 0 2 2 2 0 1 2 1 0 2
0 1 1 0 2 0 0 2 2 2 0 1 2 1 1 2
0 1 1 0 2 1 0 2 2 2 0 1 2 1 1 0
0 1 1 0 2 2 0 2 2 2 0 1 2 1 1 1
0 1 1 0 2 2 1 2 2 2 1 0 0 1 1 1
0 1 1 2 0 0 0 2 2 2 1 0 2 1 2 1
0 1 1 2 2 1 0 2 2 2 1 0 2 1 1 0
0 1 2 0 0 2 0 2 2 2 1 1 2 1 2 0
0 1 2 0 1 1 0 2 2 2 1 1 2 1 0 1
0 1 2 1 0 0 0 2 2 2 0 2 2 1 2 1
0 1 2 1 0 0 1 2 2 2 1 1 0 1 2 1
0 1 2 1 0 1 0 2 2 2 0 2 2 1 2 2
0 1 2 1 0 2 0 2 2 2 0 2 2 1 2 0
0 1 2 1 1 0 0 2 2 2 0 2 2 1 0 0
0 1 2 1 1 1 0 2 2 2 0 2 2 1 0 1
0 1 2 1 1 2 0 2 2 2 0 2 2 1 0 2
0 1 2 1 1 2 1 2 2 2 1 1 0 1 0 2
0 1 2 1 2 0 0 2 2 2 0 2 2 1 1 2
0 1 2 1 2 1 0 2 2 2 0 2 2 1 1 0
0 1 2 1 2 2 0 2 2 2 0 2 2 1 1 1
0 2 0 0 1 2 0 2 2 2 2 1 2 1 0 2
0 2 0 0 1 2 1 2 2 2 0 0 0 1 0 2
0 2 0 0 2 1 0 2 2 2 2 1 2 1 1 0
0 2 0 0 2 1 1 2 2 2 0 0 0 1 1 0
0 2 0 2 0 0 0 2 2 2 0 0 2 1 2 1
0 2 0 2 0 1 0 2 2 2 0 0 2 1 2 2
0 2 0 2 0 2 0 2 2 2 0 0 2 1 2 0
0 2 0 2 1 0 0 2 2 2 0 0 2 1 0 0
0 2 0 2 1 1 0 2 2 2 0 0 2 1 0 1
0 2 0 2 1 2 0 2 2 2 0 0 2 1 0 2
0 2 0 2 2 0 0 2 2 2 0 0 2 1 1 2
0 2 0 2 2 1 0 2 2 2 0 0 2 1 1 0
0 2 0 2 2 2 0 2 2 2 0 0 2 1 1 1
0 2 1 0 0 0 0 2 2 2 0 1 2 1 2 1
0 2 1 0 0 1 0 2 2 2 0 1 2 1 2 2
0 2 1 0 0 2 0 2 2 2 0 1 2 1 2 0
0 2 1 0 1 0 0 2 2 2 0 1 2 1 0 0
0 2 1 0 1 1 0 2 2 2 0 1 2 1 0 1
0 2 1 0 1 2 0 2 2 2 0 1 2 1 0 2
0 2 1 0 2 0 0 2 2 2 0 1 2 1 1 2
0 2 1 0 2 1 0 2 2 2 0 1 2 1 1 0
0 2 1 0 2 2 0 2 2 2 0 1 2 1 1 1
0 2 1 1 0 2 0 2 2 2 2 2 2 1 2 0
0 2 1 1 0 2 1 2 2 2 0 1 0 1 2 0
0 2 1 1 2 0 0 2 2 2 2 2 2 1 1 2
0 2 1 1 2 0 1 2 2 2 0 1 0 1 1 2
0 2 2 1 0 0 0 2 2 2 0 2 2 1 2 1
0 2 2 1 0 1 0 2 2 2 0 2 2 1 2 2
0 2 2 1 0 2 0 2 2 2 0 2 2 1 2 0
0 2 2 1 1 0 0 2 2 2 0 2 2 1 0 0
0 2 2 1 1 1 0 2 2 2 0 2 2 1 0 1
0 2 2 1 1 2 0 2 2 2 0 2 2 1 0 2
0 2 2 1 2 0 0 2 2 2 0 2 2 1 1 2
0 2 2 1 2 1 0 2 2 2 0 2 2 1 1 0
0 2 2 1 2 2 0 2 2 2 0 2 2 1 1 1
0 2 2 2 0 1 0 2 2 2 2 0 2 1 2 2
0 2 2 2 0 1 1 2 2 2 0 2 0 1 2 2
0 2 2 2 1 0 0 2 2 2 2 0 2 1 0 0
0 2 2 2 1 0 1 2 2 2 0 2 0 1 0 0
1 0 0 1 0 0 0 2 2 2 1 2 2 1 2 1
1 0 0 1 0 1 0 2 2 2 1 2 2 1 2 2
1 0 0 1 0 2 0 2 2 2 1 2 2 1 2 0
1 0 0 1 1 0 0 2 2 2 1 2 2 1 0 0
1 0 0 1 1 1 0 2 2 2 1 2 2 1 0 1
1 0 0 1 1 2 0 2 2 2 1 2 2 1 0 2
1 0 0 1 2 0 0 2 2 2 1 2 2 1 1 2
1 0 0 1 2 1 0 2 2 2 1 2 2 1 1 0
1 0 0 1 2 2 0 2 2 2 1 2 2 1 1 1
1 0 0 2 1 1 0 2 2 2 0 0 2 1 0 1
1 0 0 2 1 1 1 2 2 2 1 2 0 1 0 1
1 0 0 2 2 0 0 2 2 2 0 0 2 1 1 2
1 0 0 2 2 0 1 2 2 2 1 2 0 1 1 2
1 0 1 0 0 1 0 2 2 2 0 1 2 1 2 2
1 0 1 0 0 1 1 2 2 2 1 0 0 1 2 2
1 0 1 0 2 2 0 2 2 2 0 1 2 1 1 1
1 0 1 0 2 2 1 2 2 2 1 0 0 1 1 1
1 0 1 2 0 0 0 2 2 2 1 0 2 1 2 1
1 0 1 2 0 1 0 2 2 2 1 0 2 1 2 2
1 0 1 2 0 2 0 2 2 2 1 0 2 1 2 0
1 0 1 2 1 0 0 2 2 2 1 0 2 1 0 0
1 0 1 2 1 1 0 2 2 2 1 0 2 1 0 1
1 0 1 2 1 2 0 2 2 2 1 0 2 1 0 2
1 0 1 2 2 0 0 2 2 2 1 0 2 1 1 2
1 0 1 2 2 1 0 2 2 2 1 0 2 1 1 0
1 0 1 2 2 2 0 2 2 2 1 0 2 1 1 1
1 0 2 0 0 0 0 2 2 2 1 1 2 1 2 1
1 0 2 0 0 1 0 2 2 2 1 1 2 1 2 2
1 0 2 0 0 2 0 2 2 2 1 1 2 1 2 0
1 0 2 0 1 0 0 2 2 2 1 1 2 1 0 0
1 0 2 0 1 1 0 2 2 2 1 1 2 1 0 1
1 0 2 0 1 2 0 2 2 2 1 1 2 1 0 2
1 0 2 0 2 0 0 2 2 2 1 1 2 1 1 2
1 0 2 0 2 1 0 2 2 2 1 1 2 1 1 0
1 0 2 0 2 2 0 2 2 2 1 1 2 1 1 1
1 0 2 1 0 0 0 2 2 2 0 2 2 1 2 1
1 0 2 1 0 0 1 2 2 2 1 1 0 1 2 1
1 0 2 1 1 2 0 2 2 2 0 2 2 1 0 2
1 0 2 1 1 2 1 2 2 2 1 1 0 1 0 2
1 1 0 1 0 0 0 2 2 2 1 2 2 1 2 1
1 1 0 1 0 1 0 2 2 2 1 2 2 1 2 2
1 1 0 1 0 2 0 2 2 2 1 2 2 1 2 0
1 1 0 1 1 0 0 2 2 2 1 2 2 1 0 0
1 1 0 1 1 1 0 2 2 2 1 2 2 1 0 1
1 1 0 1 1 2 0 2 2 2 1 2 2 1 0 2
1 1 0 1 2 0 0 2 2 2 1 2 2 1 1 2
1 1 0 1 2 1 0 2 2 2 1 2 2 1 1 0
1 1 0 1 2 2 0 2 2 2 1 2 2 1 1 1
1 1 1 2 0 0 0 2 2 2 1 0 2 1 2 1
1 1 1 2 0 1 0 2 2 2 1 0 2 1 2 2
1 1 1 2 0 2 0 2 2 2 1 0 2 1 2 0
1 1 1 2 1 0 0 2 2 2 1 0 2 1 0 0

σ(v1) σ(v8) ρ(v1) ρ(v2) ρ(v7) ρ(v8) ρ(v3) ρ(v4) ρ(v5) ρ(v6) σ(v2) σ(v3) σ(v4) σ(v5) σ(v6) σ(v7)
1 1 1 2 1 1 0 2 2 2 1 0 2 1 0 1
1 1 1 2 1 2 0 2 2 2 1 0 2 1 0 2
1 1 1 2 2 0 0 2 2 2 1 0 2 1 1 2
1 1 1 2 2 1 0 2 2 2 1 0 2 1 1 0
1 1 1 2 2 2 0 2 2 2 1 0 2 1 1 1
1 1 2 0 0 0 0 2 2 2 1 1 2 1 2 1
1 1 2 0 0 1 0 2 2 2 1 1 2 1 2 2
1 1 2 0 0 2 0 2 2 2 1 1 2 1 2 0
1 1 2 0 1 0 0 2 2 2 1 1 2 1 0 0
1 1 2 0 1 1 0 2 2 2 1 1 2 1 0 1
1 1 2 0 1 2 0 2 2 2 1 1 2 1 0 2
1 1 2 0 2 0 0 2 2 2 1 1 2 1 1 2
1 1 2 0 2 1 0 2 2 2 1 1 2 1 1 0
1 1 2 0 2 2 0 2 2 2 1 1 2 1 1 1
1 2 0 0 1 2 0 2 2 2 2 1 2 1 0 2
1 2 0 0 2 1 0 2 2 2 2 1 2 1 1 0
1 2 0 1 0 0 0 2 2 2 1 2 2 1 2 1
1 2 0 1 0 1 0 2 2 2 1 2 2 1 2 2
1 2 0 1 0 2 0 2 2 2 1 2 2 1 2 0
1 2 0 1 1 0 0 2 2 2 1 2 2 1 0 0
1 2 0 1 1 0 1 2 2 2 2 1 0 1 0 0
1 2 0 1 1 1 0 2 2 2 1 2 2 1 0 1
1 2 0 1 1 2 0 2 2 2 1 2 2 1 0 2
1 2 0 1 2 0 0 2 2 2 1 2 2 1 1 2
1 2 0 1 2 1 0 2 2 2 1 2 2 1 1 0
1 2 0 1 2 2 0 2 2 2 1 2 2 1 1 1
1 2 0 1 2 2 1 2 2 2 2 1 0 1 1 1
1 2 1 1 0 2 0 2 2 2 2 2 2 1 2 0
1 2 1 1 2 0 0 2 2 2 2 2 2 1 1 2
1 2 1 2 0 0 0 2 2 2 1 0 2 1 2 1
1 2 1 2 0 0 1 2 2 2 2 2 0 1 2 1
1 2 1 2 0 1 0 2 2 2 1 0 2 1 2 2
1 2 1 2 0 2 0 2 2 2 1 0 2 1 2 0
1 2 1 2 1 0 0 2 2 2 1 0 2 1 0 0
1 2 1 2 1 1 0 2 2 2 1 0 2 1 0 1
1 2 1 2 1 2 0 2 2 2 1 0 2 1 0 2
1 2 1 2 2 0 0 2 2 2 1 0 2 1 1 2
1 2 1 2 2 1 0 2 2 2 1 0 2 1 1 0
1 2 1 2 2 1 1 2 2 2 2 2 0 1 1 0
1 2 1 2 2 2 0 2 2 2 1 0 2 1 1 1
1 2 2 0 0 0 0 2 2 2 1 1 2 1 2 1
1 2 2 0 0 1 0 2 2 2 1 1 2 1 2 2
1 2 2 0 0 2 0 2 2 2 1 1 2 1 2 0
1 2 2 0 0 2 1 2 2 2 2 0 0 1 2 0
1 2 2 0 1 0 0 2 2 2 1 1 2 1 0 0
1 2 2 0 1 1 0 2 2 2 1 1 2 1 0 1
1 2 2 0 1 1 1 2 2 2 2 0 0 1 0 1
1 2 2 0 1 2 0 2 2 2 1 1 2 1 0 2
1 2 2 0 2 0 0 2 2 2 1 1 2 1 1 2
1 2 2 0 2 1 0 2 2 2 1 1 2 1 1 0
1 2 2 0 2 2 0 2 2 2 1 1 2 1 1 1
1 2 2 2 0 1 0 2 2 2 2 0 2 1 2 2
1 2 2 2 1 0 0 2 2 2 2 0 2 1 0 0
2 0 0 0 0 0 0 2 2 2 2 1 2 1 2 1
2 0 0 0 0 1 0 2 2 2 2 1 2 1 2 2
2 0 0 0 0 2 0 2 2 2 2 1 2 1 2 0
2 0 0 0 1 0 0 2 2 2 2 1 2 1 0 0
2 0 0 0 1 1 0 2 2 2 2 1 2 1 0 1
2 0 0 0 1 2 0 2 2 2 2 1 2 1 0 2
2 0 0 0 1 2 1 2 2 2 0 0 0 1 0 2
2 0 0 0 2 0 0 2 2 2 2 1 2 1 1 2
2 0 0 0 2 1 0 2 2 2 2 1 2 1 1 0
2 0 0 0 2 1 1 2 2 2 0 0 0 1 1 0
2 0 0 0 2 2 0 2 2 2 2 1 2 1 1 1
2 0 0 2 1 1 0 2 2 2 0 0 2 1 0 1
2 0 0 2 2 0 0 2 2 2 0 0 2 1 1 2
2 0 1 0 0 1 0 2 2 2 0 1 2 1 2 2
2 0 1 0 2 2 0 2 2 2 0 1 2 1 1 1
2 0 1 1 0 0 0 2 2 2 2 2 2 1 2 1
2 0 1 1 0 1 0 2 2 2 2 2 2 1 2 2
2 0 1 1 0 2 0 2 2 2 2 2 2 1 2 0
2 0 1 1 0 2 1 2 2 2 0 1 0 1 2 0
2 0 1 1 1 0 0 2 2 2 2 2 2 1 0 0
2 0 1 1 1 1 0 2 2 2 2 2 2 1 0 1
2 0 1 1 1 2 0 2 2 2 2 2 2 1 0 2
2 0 1 1 2 0 0 2 2 2 2 2 2 1 1 2
2 0 1 1 2 0 1 2 2 2 0 1 0 1 1 2
2 0 1 1 2 1 0 2 2 2 2 2 2 1 1 0
2 0 1 1 2 2 0 2 2 2 2 2 2 1 1 1
2 0 2 1 0 0 0 2 2 2 0 2 2 1 2 1
2 0 2 1 1 2 0 2 2 2 0 2 2 1 0 2
2 0 2 2 0 0 0 2 2 2 2 0 2 1 2 1
2 0 2 2 0 1 0 2 2 2 2 0 2 1 2 2
2 0 2 2 0 1 1 2 2 2 0 2 0 1 2 2
2 0 2 2 0 2 0 2 2 2 2 0 2 1 2 0
2 0 2 2 1 0 0 2 2 2 2 0 2 1 0 0
2 0 2 2 1 0 1 2 2 2 0 2 0 1 0 0
2 0 2 2 1 1 0 2 2 2 2 0 2 1 0 1
2 0 2 2 1 2 0 2 2 2 2 0 2 1 0 2
2 0 2 2 2 0 0 2 2 2 2 0 2 1 1 2
2 0 2 2 2 1 0 2 2 2 2 0 2 1 1 0
2 0 2 2 2 2 0 2 2 2 2 0 2 1 1 1
2 1 0 0 0 0 0 2 2 2 2 1 2 1 2 1
2 1 0 0 0 1 0 2 2 2 2 1 2 1 2 2
2 1 0 0 0 2 0 2 2 2 2 1 2 1 2 0
2 1 0 0 1 0 0 2 2 2 2 1 2 1 0 0
2 1 0 0 1 1 0 2 2 2 2 1 2 1 0 1
2 1 0 0 1 2 0 2 2 2 2 1 2 1 0 2
2 1 0 0 2 0 0 2 2 2 2 1 2 1 1 2
2 1 0 0 2 1 0 2 2 2 2 1 2 1 1 0
2 1 0 0 2 2 0 2 2 2 2 1 2 1 1 1
2 1 0 1 1 0 0 2 2 2 1 2 2 1 0 0
2 1 0 1 1 0 1 2 2 2 2 1 0 1 0 0
2 1 0 1 2 2 0 2 2 2 1 2 2 1 1 1
2 1 0 1 2 2 1 2 2 2 2 1 0 1 1 1
2 1 1 1 0 0 0 2 2 2 2 2 2 1 2 1
2 1 1 1 0 1 0 2 2 2 2 2 2 1 2 2
2 1 1 1 0 2 0 2 2 2 2 2 2 1 2 0
2 1 1 1 1 0 0 2 2 2 2 2 2 1 0 0
2 1 1 1 1 1 0 2 2 2 2 2 2 1 0 1
2 1 1 1 1 2 0 2 2 2 2 2 2 1 0 2
2 1 1 1 2 0 0 2 2 2 2 2 2 1 1 2
2 1 1 1 2 1 0 2 2 2 2 2 2 1 1 0
2 1 1 1 2 2 0 2 2 2 2 2 2 1 1 1
2 1 1 2 0 0 0 2 2 2 1 0 2 1 2 1
2 1 1 2 0 0 1 2 2 2 2 2 0 1 2 1
2 1 1 2 2 1 0 2 2 2 1 0 2 1 1 0
2 1 1 2 2 1 1 2 2 2 2 2 0 1 1 0
2 1 2 0 0 2 0 2 2 2 1 1 2 1 2 0
2 1 2 0 0 2 1 2 2 2 2 0 0 1 2 0
2 1 2 0 1 1 0 2 2 2 1 1 2 1 0 1
2 1 2 0 1 1 1 2 2 2 2 0 0 1 0 1
2 1 2 2 0 0 0 2 2 2 2 0 2 1 2 1
2 1 2 2 0 1 0 2 2 2 2 0 2 1 2 2
2 1 2 2 0 2 0 2 2 2 2 0 2 1 2 0
2 1 2 2 1 0 0 2 2 2 2 0 2 1 0 0
2 1 2 2 1 1 0 2 2 2 2 0 2 1 0 1
2 1 2 2 1 2 0 2 2 2 2 0 2 1 0 2
2 1 2 2 2 0 0 2 2 2 2 0 2 1 1 2
2 1 2 2 2 1 0 2 2 2 2 0 2 1 1 0
2 1 2 2 2 2 0 2 2 2 2 0 2 1 1 1
2 2 0 0 0 0 0 2 2 2 2 1 2 1 2 1
2 2 0 0 0 1 0 2 2 2 2 1 2 1 2 2
2 2 0 0 0 2 0 2 2 2 2 1 2 1 2 0
2 2 0 0 1 0 0 2 2 2 2 1 2 1 0 0
2 2 0 0 1 1 0 2 2 2 2 1 2 1 0 1
2 2 0 0 1 2 0 2 2 2 2 1 2 1 0 2
2 2 0 0 2 0 0 2 2 2 2 1 2 1 1 2
2 2 0 0 2 1 0 2 2 2 2 1 2 1 1 0
2 2 0 0 2 2 0 2 2 2 2 1 2 1 1 1
2 2 1 1 0 0 0 2 2 2 2 2 2 1 2 1
2 2 1 1 0 1 0 2 2 2 2 2 2 1 2 2
2 2 1 1 0 2 0 2 2 2 2 2 2 1 2 0
2 2 1 1 1 0 0 2 2 2 2 2 2 1 0 0
2 2 1 1 1 1 0 2 2 2 2 2 2 1 0 1
2 2 1 1 1 2 0 2 2 2 2 2 2 1 0 2
2 2 1 1 2 0 0 2 2 2 2 2 2 1 1 2
2 2 1 1 2 1 0 2 2 2 2 2 2 1 1 0
2 2 1 1 2 2 0 2 2 2 2 2 2 1 1 1
2 2 2 2 0 0 0 2 2 2 2 0 2 1 2 1
2 2 2 2 0 1 0 2 2 2 2 0 2 1 2 2
2 2 2 2 0 2 0 2 2 2 2 0 2 1 2 0
2 2 2 2 1 0 0 2 2 2 2 0 2 1 0 0
2 2 2 2 1 1 0 2 2 2 2 0 2 1 0 1
2 2 2 2 1 2 0 2 2 2 2 0 2 1 0 2
2 2 2 2 2 0 0 2 2 2 2 0 2 1 1 2
2 2 2 2 2 1 0 2 2 2 2 0 2 1 1 0
2 2 2 2 2 2 0 2 2 2 2 0 2 1 1 1

Table A.4: Pushing (at most twice) vertices of a path v1 . . . v8 of order 8, connected to previous parts
of the whole graph through v1 and v8. The first six columns give the initial assumptions, that is, some
contribution of the rest of the graph to σ(v1) and σ(v8), and whether v1, v2, v7, v8 have been pushed earlier
or not. The next ten columns indicate, for each case, how many times v3, v4, v5, v6 should be pushed, and
their resulting sums (as well as those of v2 and v7). Here, adjacent vertices are distinguished modulo 3;
thus, all sums presented are modulo 3.
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Current σ(v0) Desired σ(v0) ρ(v0) ρ(v1) ρ(v2) σ(v1) σ(v2)

0 0 0 1 0 1 0
0 0 1 0 2 2 1
0 0 2 0 0 1 1
0 1 0 2 0 0 1
0 1 1 0 0 0 0
0 1 2 0 1 2 0
0 2 0 1 2 0 1
0 2 1 2 2 0 0
0 2 2 1 1 1 1
1 0 0 2 1 1 0
1 0 1 1 0 2 1
1 0 2 1 1 1 1
1 1 0 0 1 0 1
1 1 1 0 2 2 1
1 1 2 1 2 2 0
1 2 0 0 2 1 0
1 2 1 0 0 0 0
1 2 2 2 2 1 1
2 0 0 0 2 1 0
2 0 1 2 1 2 1
2 0 2 0 1 2 0
2 1 0 1 2 0 1
2 1 1 1 0 2 1
2 1 2 2 0 2 0
2 2 0 0 1 0 1
2 2 1 1 1 0 0
2 2 2 0 0 1 1

Table A.5: Pushing (at most twice) vertices of a new cycle v0v1v2v0 of order 3, connected to previous
parts of the whole graph through v0, in such a way that only v2 might be involved in conflicts, but
σ(v2) /≡ 2 mod 3. The first three columns give the initial assumptions, that is, some contribution of the rest
of the graph to σ(v0), what sum is desired for σ(v0), and whether v0 was pushed earlier or not. The next
four columns indicate, for each case, how many times v1, v2 should be pushed, and their resulting sums.
Here, adjacent vertices are distinguished modulo 3; thus, all sums presented are modulo 3.

Current/Desired σ(v0) ρ(v0) ρ(v1) ρ(v2) σ(v0) σ(v1) σ(v2)

0 0 0 1 ≥ 5 3 4
0 1 0 2 ≥ 10 5 7
0 2 1 2 ≥ 15 8 9
1 0 0 1 ≥ 5 3 4
1 1 0 2 ≥ 10 5 7
1 2 1 2 ≥ 15 8 9
2 0 0 1 ≥ 5 3 4
2 1 0 2 ≥ 10 5 7
2 2 1 2 ≥ 15 8 9

Table A.6: Pushing (at most twice) vertices of a new cycle v0v1v2v0 of order 3, connected to previous parts
of the whole graph through v0, assuming σ(v0) currently already has a desired value modulo 3. The first
two columns give the initial assumptions, that is, the current and desired value of σ(v0) modulo 3, and
whether v0 was pushed earlier or not. The next five columns indicate, for each case, how many times v1, v2
should be pushed, and bounds on their resulting sums (as well as for v0).

Current σ(v0) Desired σ(v0) ρ(v0) ρ(v1) ρ(v2) σ(v0) σ(v1) σ(v2)

0 0 0 0 1 ≥ 5 3 4
0 0 1 0 2 ≥ 10 5 7
0 0 2 1 2 ≥ 15 8 9
0 1 0 0 2 ≥ 7 4 6
0 1 1 1 2 ≥ 11 7 8
0 1 2 0 1 ≥ 13 5 6
0 2 0 1 2 ≥ 8 6 7
0 2 1 0 1 ≥ 9 4 5
0 2 2 0 2 ≥ 14 6 8
1 0 0 1 2 ≥ 9 6 7
1 0 1 0 1 ≥ 9 4 5
1 0 2 0 2 ≥ 14 6 8
1 1 0 0 1 ≥ 5 3 4
1 1 1 0 2 ≥ 10 5 7
1 1 2 1 2 ≥ 15 8 9
1 2 0 0 2 ≥ 8 4 6
1 2 1 1 2 ≥ 11 7 8
1 2 2 0 1 ≥ 13 5 6

Table A.7: Pushing (at most twice) vertices of a new cycle v0v1v2v0 of order 3, connected to previous parts
of the whole graph through v0, assuming currently σ(v0) /≡ 2 mod 3. The first three columns give the initial
assumptions, that is, some contribution of the rest of the graph to σ(v0) modulo 3, what sum is desired
for σ(v0) modulo 3, and whether v0 was pushed earlier or not. The next five columns indicate, for each
case, how many times v1, v2 should be pushed, and bounds on their resulting sums (as well as for v0).
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σ(u) ρ(u) ρ(v0) ρ(v1) ρ(v2) σ(v0) σ(v1) σ(v2)

0 0 0 0 2 5 4 6
0 0 1 0 1 7 4 5
0 0 2 0 1 10 5 6
0 1 0 0 1 5 3 4
0 1 1 0 1 8 4 5
0 1 2 0 1 11 5 6
0 2 0 0 2 7 4 6
0 2 1 0 2 10 5 7
0 2 2 0 2 13 6 8
1 0 0 0 2 5 4 6
1 0 1 0 2 8 5 7
1 0 2 0 2 11 6 8
1 1 0 0 1 5 3 4
1 1 1 0 1 8 4 5
1 1 2 0 1 11 5 6
1 2 0 0 1 6 3 4
1 2 1 0 1 9 4 5
1 2 2 0 1 12 5 6
2 0 1 0 1 7 4 5
2 0 2 0 1 10 5 6
2 1 1 0 2 9 5 7
2 1 2 0 2 12 6 8
2 2 0 0 1 6 3 4
2 2 1 0 1 9 4 5
2 2 2 0 1 12 5 6

Table A.8: Pushing (at most twice) vertices of a cycle v0v1v2v0 of order 3, connected to previous parts of
the whole graph through a single edge uv0, assuming σ(u) currently already has a desired value modulo 3,
and we are not in the case where σ(u) ≡ 2 mod 3, ρ(u) = 0, and ρ(v0) = 0, or σ(u) ≡ 2 mod 3, ρ(u) = 1, and
ρ(v0) = 0. The first three columns give the initial assumptions, that is, the current value of σ(u) modulo 3,
whether u was pushed earlier or not, and whether v0 was pushed earlier or not. The next five columns
indicate, for each case, how many times v1, v2 should be pushed, and bounds on their resulting sums (as
well as for v0).

Current σ(u0) Desired σ(u0) ρ(u0) ρ(u1) ρ(u2) ρ(w0) ρ(w1) ρ(w2) ρ(v0) ρ(v1) ρ(v2) σ(u1) σ(u2) σ(w0) σ(w1) σ(w2) σ(v0) σ(v1) σ(v2)

0 0 0 0 0 0 0 2 1 1 2 1 0 2 1 0 0 1 2
0 0 1 2 2 0 1 2 1 0 1 1 0 2 0 1 0 1 2
0 0 2 1 1 0 0 1 1 0 2 1 0 2 0 1 0 2 1
0 1 0 0 1 0 0 1 1 1 2 2 0 2 0 1 0 1 2
0 1 1 0 2 0 1 2 0 0 2 0 1 2 0 1 2 1 0
0 1 2 1 2 0 1 2 1 0 2 2 0 2 0 1 0 2 1
0 2 0 1 1 0 0 1 2 1 2 0 1 2 0 1 1 2 0
0 2 1 0 0 0 0 2 2 0 1 0 1 2 1 0 1 2 0
0 2 2 2 2 0 1 2 2 0 2 0 1 2 0 1 1 0 2
1 0 0 1 1 0 0 1 1 0 2 2 1 2 0 1 0 2 1
1 0 1 0 0 0 0 2 1 1 2 2 1 2 1 0 0 1 2
1 0 2 2 2 0 1 2 1 0 1 2 1 2 0 1 0 1 2
1 1 0 0 0 0 0 2 2 0 1 2 0 2 1 0 1 2 0
1 1 1 2 2 0 1 2 2 0 2 2 0 2 0 1 1 0 2
1 1 2 1 1 0 0 1 2 1 2 2 0 2 0 1 1 2 0
1 2 0 0 1 0 0 1 0 0 2 1 0 2 0 1 2 1 0
1 2 1 0 2 0 1 2 0 0 2 0 1 2 0 1 2 1 0
1 2 2 1 2 0 1 2 0 0 1 1 0 2 0 1 2 0 1
2 0 0 0 1 0 0 1 0 0 2 1 0 2 0 1 2 1 0
2 0 1 0 2 0 1 2 2 0 1 2 1 2 0 1 1 2 0
2 0 2 1 2 0 1 2 0 0 1 1 0 2 0 1 2 0 1
2 1 0 1 1 0 0 1 1 0 2 2 1 2 0 1 0 2 1
2 1 1 0 0 0 0 2 1 1 2 2 1 2 1 0 0 1 2
2 1 2 2 2 0 1 2 1 0 1 2 1 2 0 1 0 1 2
2 2 0 0 0 0 0 2 1 1 2 1 0 2 1 0 0 1 2
2 2 1 2 2 0 1 2 1 0 1 1 0 2 0 1 0 1 2
2 2 2 1 1 0 0 1 1 0 2 1 0 2 0 1 0 2 1

Table A.9: Pushing (at most twice) vertices of three cycles u0u1u2u0, v0v1v2v0, and w0w1w2w0 of order 3
joined by the edges u1w0 and u2v0, connected to previous parts of the whole graph through u0. The first
three columns give the initial assumptions, that is, some contribution of the rest of the graph to σ(u0),
what sum is desired for σ(u0), and whether u0 was pushed earlier or not. The next sixteen columns
indicate, for each case, how many times u1, u2,w0,w1,w2, v0, v1, v2 should be pushed, and their resulting
sums (as well as that of u0). Here, adjacent vertices are distinguished modulo 3; thus, all sums presented
are modulo 3.
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Current σ(u0) Desired σ(u0) ρ(u0) ρ(u1) ρ(u2) ρ(v0) ρ(v1) ρ(v2) σ(u1) σ(u2) σ(v0) σ(v1) σ(v2)

0 0 0 0 0 0 0 2 2 0 2 1 0
0 0 1 0 1 1 0 2 1 2 0 2 1
0 0 2 1 1 0 0 1 1 0 2 0 1
0 1 0 0 1 1 0 2 0 1 0 2 1
0 1 1 0 2 0 1 2 2 1 2 0 1
0 1 2 1 2 0 1 2 2 0 2 0 1
0 2 0 0 2 0 1 2 1 0 2 0 1
0 2 1 0 0 0 0 2 0 1 2 1 0
0 2 2 1 0 1 1 2 0 1 0 1 2
1 0 0 0 2 0 1 2 1 0 2 0 1
1 0 1 2 1 0 0 1 2 0 2 0 1
1 0 2 2 2 1 0 1 1 2 0 1 2
1 1 0 0 0 0 0 2 2 0 2 1 0
1 1 1 2 2 1 0 1 0 1 0 1 2
1 1 2 2 0 0 0 2 2 1 2 1 0
1 2 0 0 1 1 0 2 0 1 0 2 1
1 2 1 2 0 0 0 2 1 0 2 1 0
1 2 2 2 1 0 0 1 0 1 2 0 1
2 0 0 1 0 1 1 2 1 2 0 1 2
2 0 1 0 2 0 1 2 2 1 2 0 1
2 0 2 1 2 0 1 2 2 0 2 0 1
2 1 0 1 1 0 0 1 2 1 2 0 1
2 1 1 0 0 0 0 2 0 1 2 1 0
2 1 2 1 0 1 1 2 0 1 0 1 2
2 2 0 1 2 0 1 2 0 1 2 0 1
2 2 1 0 1 1 0 2 1 2 0 2 1
2 2 2 1 1 0 0 1 1 0 2 0 1

Table A.10: Pushing (at most twice) vertices of two cycles u0u1u2u0 and w0w1w2w0 of order 3 joined by
the edge u2v0, connected to previous parts of the whole graph through u0. The first three columns give the
initial assumptions, that is, some contribution of the rest of the graph to σ(u0), what sum is desired for
σ(u0), and whether u0 was pushed earlier or not. The next ten columns indicate, for each case, how many
times u1, u2, v0, v1, v2 should be pushed, and their resulting sums (as well as that of u0). Here, adjacent
vertices are distinguished modulo 3; thus, all sums presented are modulo 3.
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