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Abstract—Energy communities (ECs) aggregate users
within proximity, which have diverse assets and consump-
tion/generation power profiles. Such a variety of user ar-
rangements significantly influences the benefits expected from
the ECs. From a vast pool of EC configurations, this paper
investigates their composition regarding users’ profiles impact
on collective benefits. To that end, clustering is performed
for i) different features to characterize an EC and for ii)
the performance metrics of the EC once managed. The paper
discusses how the community setup impacts its performance,
which enables identifying the most relevant features. Hence,
1000 ECs are formed from 10 users. Additionally, two study
cases are tested, one with 100% users with PV and battery (i.e.,
100% prosumers) and the second with 50% prosumers. The
results suggest that in terms of investment, the photovoltaic
installed capacity is a more significant asset than storage
capacity.

Index Terms—Energy communities, prosumers, clustering,
performance metrics, community self-comsumption, natural
self-sufficiency.

I. INTRODUCTION

Residential users account for a noticeable portion of
energy consumption, around 18% in Europe [1]). Users are
increasingly encouraged to invest in photovoltaic (PV) and
battery technologies, primarily driven by financial consider-
ations and environmental concerns. These decisions can be
made individually or collaboratively. When residential users
with diverse assets aggregate together, they can form energy
communities (ECs) [2]. Forming ECs can lead to technical
and economic benefits, such as more efficient utilization of
local generation, reducing the reliance on the upstream grid
for imports and thus lowering energy bills [3].

Discussions in existing literature about ECs often focus
on issues such as cost distribution [3]–[5], the complexity of
trading within markets among users [6], and the optimal size
of batteries and PV capacity for a given energy community
[7]. Additionally, some analyses provide a business model to
address possible losses of the EC manager (who supervises
the EC and acts as an intermediary between the EC members
and the retailer) and how to fairly allocate revenues to users
[8].

However, in such studies, the obtained results directly de-
pend on the use cases considered in terms of EC setup—i.e.,
the number/type of consumers and solar/storage capac-
ities—which is oftentimes unaddressed. Determining the
optimal size of an EC goes beyond just sizing, as it is
imperative to consider the intrinsic characteristics of the
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users forming such energy communities. Nevertheless, it can
be challenging to define features that accurately characterize
an EC, as these features may not effectively represent the
assets or the composition of the EC members and may not
provide any valuable insight into the ECs’ characteristics.

Therefore, this paper proposes an analysis of different EC
configurations and how the EC setup may impact the po-
tential benefits of the generated collective structure. Instead
of answering the question of the optimal number of users
for an EC, this research focuses on the following question:
“What are the best features to achieve a high collective
performance?” The contributions of this paper are listed as
follows:

1) Three features are introduced to characterize ECs,
followed by a clustering.

2) The ECs’ performance is assessed using an economic
and technical approach, with two metrics: community
self-consumption and bill savings.

3) Investigate the correlation between the features and the
performance metrics in clustered ECs, illustrated on
two study cases, one with 100 % of prosumers with PV
and battery and the other with only 50 % of prosumers
equiped.

The remainder of the paper is organized as follows:
Section II describes the methodology, which includes the
discussion on the energy communities’ features, the commu-
nity model and its energy management, and the performance
metrics to assess collective energy management. Section III
draws the main results. Finally, Section IV discloses the
conclusions.

II. METHODOLOGY

To form diverse energy communities, this research uses
the “drawing a sample with replacement” technique [9] for
selecting users from a pool of J = 173 individuals to form
a set of i = 1000 energy communities, each comprising
N = 10 users.

The features of each ECi are computed based on the users’
assets and power profiles. After the formation of each ECi, a
centralized energy management strategy is applied, resulting
in calculations of power imports (P c−

t ) and exports (P c+
t ).

These values are then used to derive performance metrics
for evaluation. This process is described in Fig. 1.

To characterize the energy communities, features are de-
fined corresponding to the PV and storage installed capacity
in comparison with the users’ power profiles. Moreover, two
performance metrics are considered for this purpose when
assessing the outcomes after forming ECs: the well-known
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Fig. 1. Proposed framework.

concept of self-consumption and the community economic
impact of such formations.

A. Energy Communities Characterization: Features

Determining the intrinsic characteristics of the formed
energy communities derived from users’ assets and power
profiles is essential, as these directly impact group perfor-
mance. This subsection presents the selected features for
further analysis: storage capacity ratio, PV capacity ratio
and self-sufficiency capacity.

1) Battery Capacity Ratio: The battery capacity ratio
(αBat/PV ) is a feature introduced to represent the storage
size (P b

n) as a function of the installed solar capacity (P pv
n ).

A larger αBat/PV means a higher capacity of storage over
the PV generation, giving priority to storage over solar
(local) production.

2) PV Capacity Ratio: The photovoltaic capacity ratio
relates installed PV capacity (P pv

n ) over the aggregated peak
load of the energy community (

∑
n
max(P l

n)). An αPV/Pl

larger than one means the solar production can cover at least
the collective peak load.

αBat/PV =

∑
n
P b

n∑
n
Ppv

n

, αPV/Pl =

∑
n
Ppv

n∑
n
max(P l

n)
(1)

3) Self-sufficiency capacity (SSC): The self-sufficiency
ratio (SSR) is a key concept in this feature, which quan-
tifies the amount of community load covered by the local
generation and storage capabilities. Similarly, the “natural
self-sufficiency (NSS)” quantifies the “alignment” of a load
profile with the solar production over a defined period (P̂ pv

t,n)
[10]. Therefore, the self-sufficiency capacity (αSSC) relates
the NSS with the installed PV capacity of the community
(P pv

n ), normalized by N users. Equation (3) expresses the
SSC feature which captures the average percentage of energy
covered by PV production at every instant t.

SSR = 1−
∑
n

∑
t
P g−

n,t∑
n

∑
t
P l

n,t
, NSSn =

∑
t
min(P l

t,n,P̂
pv
t,n)∑

t
P l

t,n

(2)

αSSC =
NSSN ×

∑
n P

pv
n

N
(3)

B. System model for centralized energy management

An energy community is modeled as a set of N members
equipped with a photovoltaic panel and a storage system
tailored to their needs. Figure 2 depicts a scheme of an

energy community in which the dashed lines show the
aggregated power. The EC management is modeled as an
optimization problem aiming to minimize the grid interac-
tions at the community level, i.e., reducing the collective bill,
as defined in (4). The retail price for purchasing electricity
is given by π−; similarly, the feed-in tariff is set to π+. In
this paper, both purchase and selling prices are considered
flat. The EC acts as a single entity interacting with its
supplier, purchasing (P c−

t ) and selling the surplus (P c+
t ).

The energy storage states for charge (P b−
t,n ) and discharge

(P b+
t,n ) allow a degree of freedom in the system to optimize

the collective bill. Such operations influence the individual
power interactions (P g

t,n) with the grid. Equations (5) to
(12) model the constraints within the community and state
of charge (SOC) update. Where (5) and (6) describe the
power balance at the individual and at the community level,
respectively. Moreover, (7)-(9) represent the power limits
for the EC, the individuals and their batteries, respectively.
Given that the objective is to reduce the bill’s costs (i.e.
ultimately the energy/the losses), then by design, there is no
need of including binary variables for avoiding simultaneous
import/export from/to the grid and charge/discharge of the
battery. Finally, (10)- (12) model the state of charge of the
battery, along with its limits and initial conditions.

The optimization problem is described as follows:

min Bfin =
∑
t

(π− × P c−
t − π+ × P c+

t )× dt (4)

s.t.
P g

t,n−Ppv
t,n−P b+

t,n+P b−
t,n+P l

t,n=0 ∀{t,n}ϵ{T,N} (5)

P c+
t − P c−

t =
∑
n

P g
t,n ∀ t ϵ T (6)

0 ≤ P c+
t , P c−

t ≤ P c ∀ t ϵ T (7)

P g
t,n ≤ P g

t,n ≤ P g
t,n ∀ {t, n} ϵ {T,N} (8)

0 ≤ P b+
t,n , P

b−
t,n ≤ P b

t,n ∀ {t, n} ϵ {T,N} (9)

SOCt+1=SOCt+

(
η·P g−

t,n−
P

b+
t,n
η

)
× dt

Eb
max

∀{t,n}ϵ{T,N} (10)

SOC ≤ SOCt,n ≤ SOC ∀ {t, n} ϵ {T,N} (11)

SOCt=0,n = SOCini
n

SOCt=T,n = SOCn,t=0
∀ n ϵ N (12)

C. Assesing ECs’ Performance

Two metrics are considered to assess the performance of
a given energy community once it is optimally managed
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following the optimization problem previously presented.
One metric is related to the technical performance, the
community self-sufficiency ratio and the other evaluates
the economic performance by calculating the collective
bill savings relative to the baseline scenario. The baseline
scenario entails users solely selling their energy production
and adhering to conventional consumption practices.

1) Self-consumption ratio (SCR): It is a metric that quan-
tifies the amount of community generation that is consumed
locally. As such, the SCR at the community level denoted
all the energy that supplies the load and not exported to
the upstream grid but produced and consumed locally. The
SCR for the base case scenario (i.e., users with no battery) is
shown in (13). This is compared to the final SCR from (14)
in the SCR increase (SCRI) given in (15).

SCRini =

∑T
t min

(∑N
n P l

t,n,
∑N

n

(
P pv
t,n

))
∑T

t

∑N
n P pv

t,n

(13)

SCR = 1−

∑
n

∑
t
P g+
n,t∑

n

∑
t
P pv
n,t

(14)

SCRI =
SCRini − SCR

SCRini
(15)

2) Bill savings (BS): The economic performance of the
different combinations of users forming ECs is assessed by
comparing the increment/decrement in the bill from the base
case (users trading individually and solely with the grid)
with the bill after forming such groups. Therefore, the initial
bill considers the users’ power consumption and PV profiles,
as in (16). Moreover, the final bill is computed after the
collective energy management, as described in Section II-B.
Thus, the bill savings can be calculated by the difference
between the initial and final bills, as in (17).

Bini =
∑
n

∑
t

(
π− × P l

n,t − π+ × P pv
n,t

)
(16)

BS =
Bini −Bfin

Bini
(17)

III. RESULTS

The results are based on the dataset provided by [11] for
the power consumption P l

t,n profiles spanning one year. We
employed clustering techniques to select two representative
days per month for simplification. This approach ensures
that the energy representation across the 24 days remains
equivalent to the entire year. Hence, the simulation runs
over 24 days, representing one year. Moreover, all users are
assumed to invest in photovoltaic (PV) and battery installa-
tions. The PV power profiles P pv

t,n are taken from [3] and

reproduced for J users. The battery specifications are given
by the categorical distribution: [5, 7.2, 10]kW peak power,
with a capacity of 13.5kWh, and are randomly assigned
to each user while forming various energy communities.
The retail prices correspond to π− = 10ce/kWh [12],
π+ = 25ce/kWh [13]. Additionally, two study cases are
tested, one with 100% users with PV and battery (i.e., 100%
prosumers) and the second with 50% prosumers.

A. Clustering Features:

We use the definitions discussed in section II-A to evalu-
ate each energy community’s features. The set of i = 1000
energy communities is clustered based on the three dimen-
sions of the selected features, using the K-means method
[14]. Moreover, we utilize the elbow method [15] to deter-
mine the optimal number of clusters to initiate the clustering
process, this is shown in Fig. 3. The elbow method aids in
determining the optimal number of clusters graphically. This
is achieved by calculating the within-cluster sum of squares
(WCSS), which is the sum of the squared distances between
points in a cluster and the cluster centroid. Additionally, the
silhouette method [16] was also tested to offer further insight
into the decision-making process on the number of clusters.
Both methods concur in selecting four clusters based on the
features.

Figure 4 shows the features within the selected clusters.
It provides an insight of the ECs assets compositions. It
suggests that the clusters can be defined appropriately in the
storage and PV ratios. However, the self-sufficiency capacity
seems to be blended among the clusters, given that the values
exhibit proximity to one another, this is visible in Fig. 4.

Nevertheless, the Fig. 4 alone does not suggest any par-
ticular finding, it describes the ECs features and indicates a
clustering mainly associated to αPV/Pl. Hence, it is essential
to correlate the features with the performance metrics.

B. Clustering the Performance Metrics

The performance metrics are evaluated similarly to the
clustering approach used for the features. The elbow method
[15] is used as well to determine the optimal number of clus-
ters, which is subsequently corroborated by the silhouette
method [16]. The outcome also identifies four clusters. After

Fig. 3. Elbow method to determine the number of clusters for the features.
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determining the appropriate number of clusters, the perfor-
mance metrics are clustered. This is done for both cases:
100% prosumers as depicted in Fig. 5, and 50% prosumers
shown in Fig. 6. The figures display the self-sufficiency
increment after the centralized energy management in the
y-axis, and the bill savings described in (17) in the x-axis.
It is shown that all tested ECs get an economic benefit
when forming such groups, regardless of the percentage
of prosumers. The clusters are classified according to the
percentage of bill savings.

From the perspective of the bill savings, in the case of
100% prosumes (Fig. 5), the 36.9% of the formed ECs
belongs to the cluster with lower BS (19% < BS < 47%),
and only 5% of the tested ECs get bill savings larger than
90%. In contrast, in the case of 50% prosumers (Fig. 6),
the bill savings of the clusters are much reduced than that
of 100% prosumers. The lowest BS cluster ranges between
(7.7% < BS < 20.7%) corresponding to 37.7% of the
total tested ECs, and the highest BS cluster renders savings
between 45% and 73.2%, corresponding to the 5.2% of the
total tested ECs. Similarly, self-consumption increases in
all tested ECs compared to the base case (which considers
users solely exchanging with the grid -before forming ECs).
In the case of 50% prosumers, the SCR reaches up to
3.6% of increase compared to the base case. Conversely, for
the case of 100% prosumers the self-consumption increase
reaches up to 10%. Nevertheless, these results are expected
since ECs are designed to increase technical and economic
benefits. Therefore, correlating the features’ influence on
the performance metrics is imperative to understanding
which characteristics drive the ECs’ outcomes. Mapping the
intrinsic characteristics of ECs and their performance will
provide a deeper perspective.

C. Features’ impact on the Performance Metrics

This paper proposes to assess the correlation of the
performance metrics’ clusters with the defined features in
order to comprehend the impact of the features on the
performance metrics.

(S
CR
I)

Fig. 5. 100% Prosumers in the ECs: Performance metrics’ clusters

(S
CR
I)

Fig. 6. 50% Prosumers in the ECs: Performance metrics’ clusters

The features of the performance metrics’ clusters are
shown in Fig. 7 for the case of 100% prosumers forming
ECs. It is visible that the PV capacity ratio has the most
impact, especially on the highest bill savings. This suggests
that investing in PV installation is more important than
investing in large batteries. In contrast, the bill savings
seem to decrease when the battery capacity is high. This
is better displayed in the case of 50% prosumers, where
the performance metrics show that the battery capacity ratio
highly impacts on decreasing the bill savings. The features
of this case are shown in Fig. 8. If we compare both
figures, there is a proportional relationship between the PV
installed capacity and the bill savings, while an inverse
proportionality exists between the battery installed capacity
and the bill savings. Likewise, for the self-consumption
ratio, since the bill savings are proportional to the SCR.

The significance of photovoltaic production outweighs
that of battery-installed capacity. It is essential to emphasize
the critical role of selecting appropriate metrics to accu-
rately characterize and define parameters influencing the
performance of energy communities, particularly in relation
to self-consumption and bill savings. The feature: self-
sufficiency ratio was anticipated to offer insights into factors
affecting increased self-sufficiency, yet it did not yield a
definitive conclusion.



Fig. 7. 100% Prosumers in the ECs: Proportion of Features within the
clusters of the Performance metrics.

Fig. 8. 50% Prosumers in the ECs: Proportion of Features within the
clusters of the Performance metrics.

IV. CONCLUSIONS

This paper deals with the collective formation of en-
ergy communities, understanding the assets composition
and evaluating the outcomes through economic and en-
ergy metrics. We assessed the intrinsic characteristic of
the formed ECs through features defined as self-sufficiency
capacity, photovoltaic and battery installed capacity ratio.
Furthermore, a set of 1000 ECs underwent testing, with
energy storage randomized for each user. This randomization
ensures that no predetermined number or fixed capacity
is imposed on any user from the outset, allowing for
flexibility in testing various group formations. The results
were measured through metrics such as community self-
consumption and bill savings, which were compared to the
scenario where users did not form ECs. Furthermore, two
cases with different percentage of prosumers was tested, one
with 100% prosumers and the other with 50% prosumers.
The results suggest that features related to PV installed
capacity and the potential of covering more than the maxi-
mum consumption should be given high relevance. On the

contrary, having a higher battery installed capacity over PV
production considerably influences the decrease of the bill
savings, this was particularly visible when comparing the
50% prosumers case.

Further analysis will focus on an individual perspective
rather than a collective one it will touch ground on the inner
motivations for users to form ECs. Moreover, the proposed
analysis could be compared to a base case where individuals
implement local energy management (i.e., including storage
in both cases).
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