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Homological smoothness of Hopf-Galois extensions

Julian Le Clainche

Abstract

We show that if H is a Hopf algebra with bijective antipode and B ⊂ A is a faithfully flat
H-Galois extension, then A is homologically smooth if H and B are.

1 Introduction
An algebra A is said to be homologically smooth if A admits, as an A-bimodule, a finite length
resolution by finitely generated projective A-bimodules. Homological smoothness is an appropriate
analogue of regularity for (noncommutative) algebras, and is the basic condition involved in homolog-
ical duality questions for algebras, see [3, 17, 18, 8]. The aim of this paper is to provide a result that
produces new examples of homologically smooth algebras, in the setting of Hopf-Galois extensions,
the analogue of principal bundles in noncommutative algebra.

Recall [10] that if H is a Hopf algebra and A is a H-comodule algebra, the algebra extension
AcoH ⊂ A is said to be an H-Galois extension if a certain canonical map β : A ⊗B A → A ⊗ H is
bijective, see Section 3. This framework includes examples of various nature such as Hopf crossed
products [12] or exact sequences of Hopf algebras [1] (in particular exact sequences of groups).

In this setting, our main result is as follows:

Theorem 1.1. Let H be a Hopf algebra with bijective antipode and let B ⊂ A be an H-Galois
extension such that A is faithfully flat as left and right B-module. If H and B are homologically
smooth algebras, then A is homologically smooth as well.

Similar results were known to be true in some particular cases, notably in the setting of twisted
Calabi-Yau algebras: the case of Galois objects (i.e. for B = k) was done by Yu [21] and smash
products of algebras by Hopf algebras were studied by Le Meur [11].

The main ingredients to prove Theorem 1.1 are

1. Stefan’s spectral sequences [16] for Hopf-Galois extensions;

2. a smoothness criterion using Tor due to Bieri-Eckmann [2], which seems to have been slightly
forgotten in the recent literature.

The paper is organized as follows. Section 2 consists of preliminaries about homological finiteness
of modules and reminders about Hochschild cohomology. In section 3 we recall the definition of
Hopf-Galois extensions and we introduce Stefan’s spectral sequences. Section 4 is devoted to the
proof of Theorem 1.1 and in the final Section 5, we present an illustrating example of Theorem 1.1.
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Notations. Throughout the paper, we work over a field k, and all algebras are (unital) k-algebras.
If A is an algebra, the opposite algebra is denoted Aop and the enveloping algebra A⊗Aop is denoted
Ae. The category of right (resp. left) A-modules is denoted MA (resp. AM). We have MA = AopM,
hence any definition we give for left modules has an obvious analogue for right modules, that we will
not necessarily give. An A-bimodule structure is equivalent to a left (or right) Ae-module structure.
Indeed, if M is an A-bimodule, a left (resp. right) Ae-module structure on M is defined by

(a⊗ b) ·m = amb (resp. m · (a⊗ b) = bma ) for a, b ∈ A and m ∈ M.

The category of A-bimodule is thus identified with the category MAe , or with the category AeM.
If M and N are left A-modules, Ext spaces ([20]) are denoted Ext•A(M,N) and if P is a right

A-module Tor spaces are denoted TorA• (P,M). We will also need to consider Ext spaces in categories
of right modules, which we denote Ext•Aop(−,−).

If H is a Hopf algebra, its comultiplication, counit and antipode are denoted ∆, ε and S and we
will use Sweedler notation in the usual way, i.e. for h ∈ H, we write ∆(h) = h(1) ⊗ h(2). See [12].

2 Homological preliminaries
In this section we recall the various homological ingredients needed in the paper.

Definition 2.1. Let A be an algebra. The projective dimension of an A-module M is defined by

pdimA(M) := min {n ∈ N, M admits a length n resolution by projective A-modules} ∈ N ∪ {∞}.

The projective dimension can as well be characterized by

pdimA(M) = min
{
n ∈ N, Extn+1

A (M,N) = {0} for any A-module N
}

= max {n ∈ N, ExtnA(M,N) ̸= {0} for some A-module N.}

We now recall various finiteness conditions on modules.

Definition 2.2. Let A be an algebra and let M be an A-module.

1. The A-module M is said to be of type FP∞ if it admits a projective resolution P• → M with
Pi finitely generated for all i.

2. The A-module M is said to be of type FP if it admits a finitely generated projective resolution
of finite length.

The following result characterizes modules of type FP among those of type FP∞, see e.g [5,
Chapter VIII].

Proposition 2.3. Let A be an algebra. An A-module M is of type FP if and only if it is of type
FP∞ and pdimA(M) is finite. In this case we have

pdimA(M) = max {n ∈ N, ExtnA(M,A) ̸= {0}}

The following result is [2, Corollary 1.6]. The implication (iii)⇒(i) is due to Bieri-Eckmann [4],
and gives an effective condition to check that a module is of type FP∞ and will be useful in section
4.
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Proposition 2.4. Let A be an algebra and M a left (resp. right) A-module. The following conditions
are equivalent:

(i) The left (resp. right) A-module M is of type FP∞;,

(ii) For any direct product
∏

i∈I Ni of right (resp. left) A-modules, the natural map TorAk (
∏

i∈I Ni,M) →∏
i∈I Tor

A
k (Ni,M) (resp. TorAk (M,

∏
i∈I Ni) →

∏
i∈I Tor

A
k (M,Ni) is an isomorphism for all

k ≥ 0;

(iii) For any direct product
∏

A of arbitrary many copies of A, we have TorAi (
∏

A,M) = 0 (resp.
TorAi (N,

∏
A) = 0) for i ≥ 1 and the natural map (

∏
A)⊗A M →

∏
M(resp. M ⊗A (

∏
A) →∏

M) is an isomorphism.

There are similar results for Ext functors, but will only use the following particular instance.

Proposition 2.5. Let A be an algebra and M a right (resp. left) A-module, if M is of type FP∞
then ExtAop(M,−) (resp. ExtA(M,−)) commutes with direct sums.

Those above general homological finiteness notions specify to the case of bimodules which is our
case of interest when considering Hochschild (co)homology.

Definition 2.6. Let A be an algebra.

1. The cohomological dimension of A is defined to be cd(A) := pdimAe(A).

2. The algebra A is said to be homologically smooth if A is of type FP as a left Ae-module.

3. Let M an A-bimodule. The Hochschild cohomology spaces of A with coefficients in M are
the vector spaces HH•(A,M) := Ext•Ae(A,M). The Hochschild homology spaces of A with
coefficients in M are the vector spaces HH•(A,M) := TorA

e

• (M,A).

Notice that if A is a homologically smooth algebra, then cd(A) = max {n ∈ N, HHn(A,Ae) ̸= 0},
by Proposition 2.3.

We finally record that if A = H is a Hopf algebra, homological smoothness can be expressed
using H-modules rather than H-bimodules.

Theorem 2.7. [19, Proposition A.2] Let H be a Hopf algebra. The following assertions are equiva-
lent:

(i) The algebra H is homologically smooth;

(ii) The right H-module kε is of type FP ;

(iii) The left H-module εk is of type FP .

3 Hopf-Galois extensions

3.1 Definitions and examples

Recall that if H is a Hopf algebra, an H-comodule algebra is an algebra A together with an algebra
map ρ : A → A⊗H making it into an H-comodule.
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Definition 3.1. Let H be a Hopf algebra. An H-comodule algebra A is said to be an H-Galois
extension of B := AcoH =

{
a ∈ A, a(0) ⊗ a(1) = a⊗ 1

}
if the (canonical) map

β : A⊗B A −→ A⊗H

a⊗B b 7−→ ab(0) ⊗ b(1)

is bijective. An H-Galois extension of the base field k is called an H-Galois object.

An overview of the theory of Hopf-Galois extensions can be found in [13]. We now list a number
of important examples.

Example 3.2. Let H be a Hopf algebra. Then H is an H-Galois object, with the right H-comodule
structure given by the comultiplication.

Example 3.3. Let G be a group and let A a G-graded algebra, i.e. an algebra with a decomposition
A =

⊕
g∈G

Ag such that AgAh ⊂ Agh for any g, h ∈ G and 1 ∈ Ae, where e denotes the neutral element

of G. The G-grading makes A into a kG-comodule algebra, and Ae ⊂ A is a kG-Galois extension if
and only if A is G-strongly graded, which means that AgAh = Agh for any g, h ∈ G.

In that case, the inverse of β is given by

β−1(a⊗ g) =
∑
i

aci ⊗Ae di for a ∈ A, g ∈ G

where ci ∈ Ag−1 and di ∈ Ag are elements such that
∑
i

cidi = 1.

Example 3.4. Let H be a Hopf algebra and let B be a left H-module algebra, i.e. B is a left H-module
with h · (ab) = (h(1) · a)(h(2) · b) and h.1 = ε(h)1 for any h ∈ H, a, b ∈B. Let A be the smash product
algebra B♯H. Then A is an H-Galois extension of B where the H-comodule structure on A is given
by

a♯h 7→ (a♯h(1))⊗ h(2)

and the inverse of β is

β−1 : (B#H)⊗H −→ (B#H)⊗B (B#H)

(a#h)⊗ k 7−→ (a#hS(k(1)))⊗B (1#k(2))

Example 3.5. Let p : A → H be a surjective Hopf algebra map. Then p induces a right H-comodule
algebra structure on A, given by a 7→ a(1) ⊗ p(a(2)). Let B = AcoH . If B+A = Ker(p), then B ⊂ A
is an H-Galois extension, with the inverse of the canonical map β being given by

β−1 : A⊗H −→ A⊗B A

a⊗ p(a′) 7−→ aS(a′(1))⊗B a′(2)

Recall [1] that a sequence of Hopf algebra maps

k −→ B
i−→ A

p−→ H −→ k

is said to be exact if the following conditions hold:
(1) i is injective and p is surjective,
(2) Ker(p) = i(B)+A = Ai(B)+,
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(3) i(B) = AcoH = coHA,
where AcoH = {a ∈ A, a(1) ⊗ p(a(2)) = a ⊗ 1} and coHA = {a ∈ A, p(a(1)) ⊗ a(2) = 1 ⊗ a}. Exact
sequences of groups correspond to exact sequences of their group algebras.

Hence, if k −→ B
i−→ A

p−→ H −→ k is an exact sequence of Hopf algebras, then by the previous
consideration we have that A is an H-Galois extension of i(B) where the H-comodule structure on
A is given by a 7→ a(1) ⊗ p(a(2)).

Remark 3.6. Let B ⊂ A be an H-Galois extension. Since the canonical map is left A-linear, its
inverse is uniquely determined by κ : H → A ⊗B A defined by κ(h) = β−1(1 ⊗ h). Denoting
κ(h) = h⟨1⟩ ⊗B h⟨2⟩, the following identities, which we will not use directly but are essential for some
constructions in the next subsection, are [15, Remark 3.4]:

bh⟨1⟩ ⊗B h⟨2⟩ = h⟨1⟩ ⊗B h⟨2⟩b, a(0)a
⟨1⟩
(1) ⊗B a

⟨2⟩
(1) = 1⊗B a, h⟨1⟩h⟨2⟩ = ε(h)

h⟨1⟩ ⊗B (h⟨2⟩)(0) ⊗ (h⟨2⟩)(1) = h
⟨1⟩
(1) ⊗B h

⟨2⟩
(1) ⊗ h(2),

(h⟨1⟩)(0) ⊗B h⟨2⟩ ⊗ (h⟨1⟩)(1) = h
⟨1⟩
(2) ⊗B h

⟨2⟩
(2) ⊗ S(h(1))

(hk)⟨1⟩ ⊗B (hk)⟨2⟩ = k⟨1⟩h⟨1⟩ ⊗B h⟨2⟩k⟨2⟩

3.2 The Stefan spectral sequences

The fundamental tool that we will use in the proof of Theorem 1.1 is the Stefan spectral sequence,
constructed in [16] by using the Grothendieck spectral sequence.

It involves a right (resp. left) H-module structures on the cohomology spaces HHq(B,M) (resp.
on the homology spaces HHq(B,M)) for q ≥ 0 and any A-bimodule M defined in [16]. For q = 0,
the H-action on HH0(B,M) ≃ MB is given by m · h = h⟨1⟩mh⟨2⟩ for m ∈ MB and h ∈ H and it is
extended to q ≥ 0 using the machinery of cohomological functors [5, Theorem 7.5] . In [7], explicit
formulas are given for q ≥ 0 in the case of a smash product.

For q = 0, the H-action on HH0(B,M) ≃ M/[M,B] is given by h · πM(m) = πM

(
h⟨2⟩mh⟨1⟩) for

m ∈ M and h ∈ H, where πM denotes the natural projection of M onto M/[M,B].

Theorem 3.7 ([16]). Let H be a Hopf algebra, let B ⊂ A be an H-Galois extension and let M be
an A-bimodule.

(i) Assume that A is flat as left and right B-module. Then there is a spectral sequence

Ep,q
2 = ExtpHop(kε,HH

q(B,M)) =⇒ HHp+q(A,M)

which is natural in M.

(ii) Assume that A is projective as left and right B-module. Then there is a spectral sequence

E2
p,q = TorHp (kε,HHq(B,M)) =⇒ HHp+q(A,M)

which is natural in M.

As explained in [16], the above spectral sequences are natural generalizations of the usual Lyndon-
Hochschild-Serre spectral sequences in group or Lie algebra (co)homology.
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Remark 3.8. It is shown in [14, Theorem 4.10] that if H is a Hopf algebra with bijective antipode,
and B ⊂ A an H-Galois extension with A faithfully flat as a left and right B-module, then A is
projective as a left and right B-module. Thus, in order to invoke one of the above spectral sequences,
we can indifferently assume projectivity or faithful flatness for an H-Galois extension B ⊂ A.

Remark 3.9. In [16], the homology spaces HH•(A,M) are defined as the spaces TorA
e

• (A,M) for A an
algebra and M an A-bimodule. This is equivalent to Definition 2.6, indeed, if P is an A-bimodule,
we have M ⊗Ae P ≃ P ⊗Ae M hence, the complexes defining TorA

e

• (M,A) and TorA
e

• (A,M) are
isomorphic, hence their homology are and TorA

e

• (M,A) ≃ TorA
e

• (A,M).

4 Smoothness of Hopf-Galois extensions
This section is dedicated to the proof of our main theorem. We begin with a result on finiteness of
the cohomological dimension.

Proposition 4.1. Let H be a Hopf algebra with bijective antipode and let B ⊂ A be an H-Galois
extension such that A is flat as left and right B-module. We have cd(A) ≤ cd(B)+cd(H), and hence
if cd(B) and cd(H) are finite, so is cd(A).

Proof. Under those assumptions, we can use Theorem 3.7. Thus, for every A-bimodule M , we get a
spectral sequence

Epq
2 = ExtpHop(kε,HH

q(B,M)) =⇒ HHp+q(A,M).

If cd(B) or cd(H) is infinite, there is nothing to show, so we assume that these are finite. For
p > cd(H) or q > cd(B), we have Epq

2 = {0}. Now, if we denote dp,q2 : Epq
2 → Ep+2,q−1

2 the
differential on the second page of the spectral sequence, we get that for p > cd(H) or q > cd(B)
the maps dp,q2 : Ep,q

2 → Ep+2,q−1
2 and dp−2,q+1

2 : Ep−2,q+1
2 → Ep,q

2 are both 0 hence {0} = Ep,q
2 ≃

Ep,q
3 ≃ .. ≃ HHp+q(A,M). We obtain that HHn(A,M) = {0} for n > cd(B) + cd(H), and hence

cd(A) ≤ cd(H) + cd(B).

Proof of Theorem 1.1. Let H be a Hopf algebra with bijective antipode and let B ⊂ A be an H-
Galois extension. We assume that A is faithfully flat as left and right B-module and that H and B
are homologically smooth algebras. We know from Proposition 4.1 that A has finite cohomological
dimension, hence to prove that A is homologicallly smooth, it remains to prove, by Proposition 2.3,
that A is of type FP∞ as an A-bimodule.

To prove that A is of type FP∞ as an A-bimodule, we will use the characterization of Proposition
2.4, and hence we consider the A-bimodule M =

∏
Ae where

∏
is an arbitrary direct product.

We have to show that for n ≥ 1, one has HHn(A,M) = 0 and that HH0(A,M) ≃ TorA
e

0 (M,A) ≃
(
∏

Ae)⊗Ae A ≃
∏

A ≃
∏

TorA
e

0 (Ae, A) ≃
∏

HH0(A,A
e).

Under the hypothesis that A is faithfully flat as a right and left B-module and regarding Remark
3.8, we can use Theorem 3.7 (ii). Thus, for every A-bimodule M we get a spectral sequence

E2
pq = TorHp (kε,HHq(B,M)) =⇒ HHp+q(A,M).

The algebra B is of type FP∞ as a left Be-module hence HHq(B,−) = TorB
e

q (−, B) commutes with
direct products. Moreover, Ae is flat as a left and right Be-module [16, Lemma 2.1] thus for q ≥ 1,
we get that

HHq(B,
∏

Ae) ≃
∏

HHq(B,Ae) = {0}.
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Hence we have E2
pq = {0} for q > 0.

If πM (resp. πAe) denotes the natural projection of M (resp. Ae) onto HH0(B,M) ≃ M/[M,B]
(resp. HH0(B,Ae) ≃ Ae/[Ae, B]), the natural isomorphism µ : HH0(B,M) →

∏
HH0(B,Ae) is given

by µ(πM

(
(xi ⊗ yi)i

)
) =

(
πAe(xi ⊗ yi)

)
i
for any xi, yi ∈ A. Hence, for h ∈ H, we have

µ(h · πM

(
(xi ⊗ yi)i

)
) = µ(πM

(
(h⟨2⟩xi ⊗ yih

⟨1⟩)i
)
) =

(
πAe(h⟨2⟩xi ⊗ yih

⟨1⟩)
)
i
= h ·

((
πAe(xi ⊗ yi)

)
i

)
.

The natural isomorphism HH0(B,M) ≃
∏

HH0(B,Ae) is thus an isomorphism of H-modules. There-
fore, since the algebras B and H are homologically smooth, we get, using Proposition 2.4, for p ≥ 0

E2
p0 = TorHp (kε,HH0(B,M)) ≃ TorHp (kε,

∏
HH0(B,Ae)) ≃

∏
TorHp (kε,HH0(B,Ae)).

The Ae-module Ae is projective, hence [16, Proposition 4.4] ensures that

TorHp (kε,HH0(B,Ae)) = {0} for p ≥ 1.

Hence for p ≥ 1 we have

E2
p,0 = TorHp (kε,HH0(B,M)) ≃

∏
TorHp (kε,HH0(B,Ae)) = {0}

We get that E2
p,q = TorHp (kε,HHq(B,M)) = {0} for (p, q) ̸= (0, 0), and hence the spectral sequence

ensures that HHn(A,M) = {0} for n > 0.
Finally, using [16, Proposition 4.2], that kε is of type FP∞ as a right H-module and that B is

smooth, we obtain
HH0(A,

∏
Ae) ≃ TorH0 (kε,HH0(B,

∏
Ae))

≃ TorH0 (kε,
∏

HH0(B,Ae))

≃
∏

TorH0 (kε,HH0(B,Ae))

≃
∏

HH0(A,A
e).

It is not difficult to check that the above isomorphism is the natural map µ in the third item of
Proposition 2.4, the first an last isomorphism being explicit from [16, Proposition 4.2], and the
second and third one being obtained from the natural respective maps µ as well. We thus conclude
from Proposition 2.4 that A is homologically smooth.

Remark 4.2. In the situation of Theorem 1.1, we have seen that cd(A) ≤ cd(B) + cd(H). We have
not been able to show that the equality cd(A) = cd(B)+cd(H) holds in general, although we suspect
it does. It holds in the case of Galois objects [21], of smash products [11], and in the case of exact
sequences of Hopf algebras, as we will show in a forthcoming paper.

5 An example
We finish the paper by presenting an illustrative example.

Definition 5.1. Let B be a commutative k-algebra, let b ∈ B and let q ∈ k× with q2 ̸= 1. The
k-algebra UB,b

q is defined by

UB,b
q = B

〈
g, g−1, e, f

∣∣ eg = q−2ge, gf = q−2fg, ef − fe = bg − 1

q − q−1
g−1

〉
7



When B = k and b = (q + q−1)−1, the algebra UB,b
q is the quantized enveloping algebra Uq(sl2).

Proposition 5.2. If B is an homologically smooth commutative algebra, then UB,b
q is as well homo-

logically smooth, with cd(UB,b
q ) ≤ cd(B) + 3.

Proof. Recall that denoting E = e, K = g and F = f , the algebra Uq(sl2) has a Hopf algebra
structure defined by

∆(E) = 1⊗ E + E ⊗K, ∆(F ) = K−1 ⊗ F + F ⊗ 1, ∆(K) = K ⊗K,

S(E) = −EK−1, S(F ) = −KK, S(K) = K−1, ε(E) = ε(F ) = 0, ε(K) = 1.

More generally, UB,b
q is a right Uq(sl2)-comodule algebra with ρ(a) = a ⊗ 1 for any a ∈ B, ρ(g) =

g ⊗K, ρ(e) = e⊗K + 1⊗E, ρ(f) = f ⊗ 1 + g−1 ⊗ F . It is shown in [9, Lemma 16] that B ⊂ UB,b
q

is a cleft (hence in particular free) Uq(sl2)-Galois extension. Hence combining [6, Proposition 3.2.1]
(for g = sl2), Proposition 4.1 and Theorem 1.1, we obtain the announced result.
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