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IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238 Brest, France

Abstract—In recent years, significant efforts were invested in
(de-)coding of convolutional codes and their concatenations by
leveraging alternative representations which aim to lower the
decoding complexity. One example is the Local-SOVA algorithm
that avoids redundant computations by reformulating the BCJR
algorithm towards the notion of providing partial extrinsic
information. This latter is now provided along path metric
computations in the code trellis leading to a significant reduction
in complexity. For high coding rates where most redundant
computations are made, the trellis compression technique rep-
resents an appealing solution to reduce the complexity of warm-
up calculations for BCJR-based turbo decoding. In addition, BP
based decoding solutions have come a long way to bridge the gap
between initially disappointing results and BCJR performance.
In this work, we propose to extend and combine several new rep-
resentations of the code targeting reduced decoding complexity
for short convolutional codes and their concatenations. Based on
our new perspective, we give an outlook on convolutional based
FEC for 6G.

Index Terms—6G, Convolutional codes, Turbo codes, Spatial
coupling

I. INTRODUCTION

Convolutional codes (CCs) are a well-established class of
error-correcting codes, known for their flexible code rates
and efficient, low-complexity encoding. For instance, CCs are
fundamental in 4G control channels [1] and in scenarios with
limited receiver hardware resources. Additionally, CCs serve
as key components in turbo codes (TCs), and their decoder
pipelining capability makes them well suited to high-speed
continuous transmissions.

However for finite block lengths and limited number of
memory elements, the decoding performance of CCs falls short
of the near-capacity performance achieved by advanced coding
schemes such as low-density parity-check (LDPC) codes and
TCs [2]. Although these advanced codes deliver superior
performance, they are far more resource-intensive, with high-
throughput pipelined implementations limited to short block
lengths and few decoding iterations [3]. Specifically, LDPC
codes suffer from a performance degradation when decoding
short block lengths [4] with belief propagation algorithms due
to unavoidable short cycles in the Tanner graph.

High-throughput communication systems typically operate
in a high-coding-rate regime. There, efficient decoding of
high-rate CCs remains challenging, as the complexity of the
maximum a posteriori (MAP) decoder depends on the structure
of the base code rather than that of the punctured code.
Simplifying MAP decoding is thus critical for CCs, but also for
TCs, which structurally rely on two MAP decoders or more.

This paper introduces new perspectives on two aspects of
convolutional coding, detailed in dedicated sections: Section II
presents the novel spatial coupling scheme tailored to pipelined
MAP decoder architectures, while Section III explores an al-
ternative representation of punctured CCs. Finally, Section IV
concludes the paper.

II. A HARDWARE IMPLEMENTATION PERSPECTIVE ON
SPATIALLY COUPLED CCS

Very high-throughput decoding can be achieved by pipelin-
ing every decoding iteration [3], [5]. In such architecture, the
extrinsic information of all frames traversing the pipeline are
naturally accessible, but the exchange is only performed from
one decoder to the next one in the pipeline chain. If this con-
straint is broken and the exchange between other decoders in
the pipeline chain is permitted, then frames can be coupled and
the encoder becomes a spatially coupled turbo encoder [6]–
[8]. Consequently, this structure benefits from spatial coupling
(SC) gain while limiting the complexity overhead with respect
to the original non-coupled decoder structure. Contrary to the
focus of most prior-art on serially concatenated SC CCs, in
this section this concept is exploited to build a new pipelined
decoder structure for parallel concatenated CCs.

A. Spatial Coupling Procedure

SC is a technique that interconnects multiple codewords
to enhance error correction performance. Let the systematic
bits of frame n be represented by the 1 × K vector xn,
directly encoded to produce a first set of parity bits. A
second encoder processes an input vector zn to generate a
second set of parity bits. To leverage SC, the input zn must
include systematic bits drawn from NSC different frames,
where NSC represents the number of coupled frames. The
first and second encoders are referred to as the uncoupled
and coupled encoders, respectively. A two-step process is
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Fig. 1. An example of the spatial coupling procedure for K = 9 bits
and NSC = 3 coupled frames. Systematic bits are collected into x′

n, and
subsequently mapped to the coupled encoder inputs zn.
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Fig. 2. a) Proposed baseline structure for pipelined SC MAP decoders, b) Improved structure without delay c) Baseline schedule of extrinsic exchanges d)
improved schedule without delay.

proposed to couple systematic bits in a predefined order.
First, systematic bits from multiple frames are collected into
a 1 × K vector x′

n, where x′
n[k] = xn−c[k][k]. Here, c is a

1×K vector1 that maps each systematic bit xn[k] transmitted
in frame n to one of the encoder inputs associated with
frame n − c[k]. The collected bits x′

n are interleaved using
a permutation matrix Π, to form zn = x′

nΠ. The interleaver
design is beyond the scope of this work, and well-established
families like quadratic permutation polynomial (QPP) [9] and
almost regular permutation (ARP) [10], are considered here.
To map coupled encoder inputs zn back to systematic bits
xn, the reverse process involves deinterleaving x′

n = znΠ
†,

where † denotes matrix transpose, followed by collecting
xn[k] = x′

n+c[k][k].
Figure 1 illustrates the two-step SC process with a block

of length K = 9 bits, NSC = 3 coupled frames, and
c[k] = mod3(k). In frame n, K/NSC = 3 systematic bits
(xn[0],xn[3],xn[6]) are collected into x′

n as inputs for the
coupled encoder, which outputs parity bits for frame n (see
dotted blocks). The bits (xn[1],xn[4],xn[7]) are collected
in x′

n+1 for encoding in the next frame, n + 1, while the
remaining bits are collected in x′

n+2. Once all bits from
previous frames have been collected, x′

n is interleaved to
produce zn, the input to the coupled encoder.

To simplify implementation, this paper adopts a regular
bit collection scheme defined as c[k] = modNSC(k). In this
scheme, all systematic bits spaced by NSC positions in xn are
mapped to the same frame at the coupled encoder input. The
collection operation is expressed in matrix form as:

c′n = [xn−m]m∈[0,NSC−1] ×C, (1)

1The elements of c[k] are restricted to NSC distinct values.

where C is the regular collection matrix, defined by
C
[
i + modNSC(i)K, i

]
= 1 ∀i ∈ [0,K − 1], and 0 for all

other non-assigned row or column indices.

B. Proposed Pipelined Decoder Structure

Decoding involves iteratively exchanging and updating ex-
trinsic log-likehood ratios (LLRs) computed by MAP decoders
across multiple frames (denoted by the function fMAP

2). Prac-
tical decoders typically implement the max-log-MAP (MLM)
or Local-Soft Output Viterbi Algorithms (L-SOVAs) [11].
Let (γxn

,γzn) represent 1 ×K vectors corresponding to the
decoder’s extrinsic LLRs for the uncoupled and coupled bits
of frame n, respectively, such that

γxn
←fMAP

(
[γzn+m

×Π†]m∈[0,NSC−1] ×C
)
, (2)

γzn ←fMAP

(
[γxn−m

]m∈[0,NSC−1] ×CΠ
)
. (3)

The arrow “←” symbol denotes the update operation. Dur-
ing decoding, the extrinsic LLRs are updated by each MAP
decoder and iteratively passed to other decoders according to
the above equations. For a frame n, one extrinsic information
update constitutes one half-iteration (HI), while a full iteration
occurs when the extrinsic LLRs of the coupled and uncoupled
MAP decoders are exchanged, corresponding to two HIs.
Processing NHI HIs for each frame requires the same number
of MAP decoders in the pipeline chain, as shown in Figure 2a.
Half of these are coupled MAP (cMAP) decoders, taking
uncoupled extrinsic information γxn

as input and producing
coupled extrinsic information γzn as output. The other half
are uncoupled MAP (uMAP) decoders, taking γzn as input
and producing γxn as output. At the output of the decoder,

2fMAP implicitly incorporates the received channel LLRs of both systematic
and parity bits as inputs. These LLRs remain constant during decoding and
are therefore omitted for clarity in the equations and figures.



the extrinsic LLRs for frame n are passed to the decoders
processing later frames n′ > n (forward exchanges) or earlier
frames n′ < n (backward exchanges).

C. Improved Extrinsic LLR Exchange Schedule

Collecting and interleaving extrinsic LLRs through MAP
decoders may require additional memory elements, depending
on the MAP architecture and the SC mapping c. In particular,
the structure in Figure 2a inherently introduces a delay for
certain extrinsic LLRs. This can be observed by analyzing the
schedule diagram in Figure 2c, which shows how extrinsic
LLRs are exchanged between uMAP and cMAP decoders.

When a new frame n is received, it is first processed by
the uMAP decoder at HI 1. The extrinsic LLRs generated
during this stage can only be forwarded to the cMAP decoder
handling frame n + 1 at HI 2 when the latter is ready to
consume them. Meanwhile, these extrinsic LLRs must be
temporarily stored while the first uMAP decoder processes
the first HI of frame n + 1. This pattern is repeated for the
following HI, which eventually requires delaying half of the
extrinsic LLRs, identified by all red lines in Figure 2.

To address this issue, an alternative structure is proposed
that switches between the uMAP and cMAP decoders de-
pending on whether the frame index n is even or odd. For
example, as shown in Figure 2d, frame n is processed by
a uMAP decoder at HI 1. Upon receiving frame n + 1, the
decoder switches to cMAP, allowing immediate consumption
of the extrinsic LLRs generated previously. This approach can
be generalized to all HIs, where MAP decoders are configured
as either uMAP or cMAP within the same processing time
intervals. Figure 2b illustrates the structure that supports this
improved extrinsic LLR exchange schedule, with significantly
reduced memory requirements compared to the structure from
Figure 2a. It should be noted, that this structure can be easily
obtained from a classical fully pipelined decoder architecture
by adding multiplexing at the input of the half iteration
decoder stages with minimal overhead.

D. Performance Evaluation

The frame error rate (FER) performance of the proposed
SC scheme is evaluated over an additive white Gaussian noise
(AWGN) channel using binary phase-shift keying (BPSK)
modulation. A TC is considered using 8-state component codes
with polynomials (1, 13/15) in octal notation. No puncturing
is applied (R = 1/3), and tail-biting termination is used.
The MAP decoders use the MLM algorithm with an extrinsic
scaling factor of 0.75. The evaluation considers several values
for the number of pipelined decoders, NHI. When SC is
implemented, the coupling length is fixed at NSC = 3, based
on prior evaluations to balance complexity and performance.
The analysis assumes continuous sequential transmission of an
infinite number of frames, each of size K. Thus, the pipeline
remains filled, and edge effects are neglected.

To evaluate the performance of the proposed SC scheme,
coupled and uncoupled configurations are first compared with
NHI = 16. Figure 3 presents the FER performance for both

Fig. 3. FER evaluation without and with spatial coupling (NSC = 3) for
different decoder configurations and NHI = 16.

1

Fig. 4. FER performance for different number of half iterations NHI when
considering no SC (dashed lines), SC using base schedule with delay (solid
lines) and SC using improved schedule without delay (dotted lines).

cases under different coding schemes, including the QPP
interleaver of 4G/LTE [1] for frame sizes K = 128 and
K = 384, as well as an ARP interleaver designed for full
iteration overlap [12] at K = 128. The ARP interleaver has a
period P = 95 and the shift vector3.

Figure 3 shows that SC achieves approximately a 1 dB
performance gain at FER = 10−3 for both interleavers. The
performance for K = 128 with SC is comparable to the
uncoupled case with a tripled frame size (K = 384) using
the LTE QPP interleaver. However, with NSC = 3, SC utilizes
MAP decoders configured for K = 128, reducing memory
requirements by up to 2/3 compared to uncoupled decoders
processing frames with sizes NSC − 1 = 2 times larger.
In fully pipelined decoder architectures, the number of MAP
decoder instances is equal to the number of HIs, leading to
excessive hardware resource usage for high values of NHI. To
ensure practical hardware implementation, NHI value must be
limited. Figure 4 shows the FER performance for different

3S = [15, 79, 15, 79, 15, 79, 15, 79, 15, 79, 15, 79, 8, 79, 15, 78, 16, 79,
15, 86, 15, 79, 15, 79, 15, 79, 15, 79, 15, 79, 15, 79].



NHI values for coupled and uncoupled configurations. Dashed
lines correspond to uncoupled coding, while solid lines are
obtained with SC using the baseline exchange schedule with
delay (Figure 2b). With NHI = 4, delayed extrinsic LLR
exchanges cause the coupled decoder to perform worse than
the uncoupled one. However, at NHI = 8, spatial coupling
achieves a gain of 0.65 dB at FER = 10−3, surpassing the
uncoupled decoders for NHI ≤ 16 by 0.45 dB. Increasing
NHI to 12 further amplifies the performance gap, yielding an
additional 0.5 dB gain. Dotted lines in Figure 4 correspond to
the proposed improved exchange schedule without delay. Here,
significant performance gains are observed, with the SC de-
coder outperforming the uncoupled decoder even at NHI = 4.
At NHI = 8, the improved schedule outperforms the baseline
by 0.25 dB, resulting in a total gain of 0.75 dB compared to
the uncoupled case. These improvements are achieved without
additional memory for extrinsic LLR exchanges.

III. NEW PERSPECTIVE ON PUNCTURED CCS

Punctured convolutional codes [13] achieve higher coding
rates by selectively omitting parity bits during transmission.
However, a major drawback of this approach is that the
decoding complexity is still dominated by the underlying
unpunctured base code. In this section, an alternative repre-
sentation is proposed for high-rate convolutional codes with
a rate R = m/(m + 1), designed to reduce the number of
decoding stages and, consequently, the latency of the decoder.

A. Alternative Representation of High-Rate CCs
Consider an R = 1/2 CC encoding a sequence of K bits.

Let x, y, and s denote 1×K vectors of systematic bits, parity
bits (prior to puncturing), and encoder state bits, respectively.
Its generator matrix, Tg , is a K × K Toeplitz matrix over
GF(2), generated by a polynomial g. If the encoder’s initial
state is zero, Tg is upper triangular. Its first row is the binary
representation of g using K bits, with the least significant bit
in the first column (see Section III-B). The remaining rows,
i ∈ J1,K−1K, are derived by shifting the first row: Tg[i, j] =
Tg[0, j−i] if j ≥ i, and 0 otherwise. For a tail-biting encoder,
Tg is circulant and rows i ∈ J1,K − 1K result from a circular
shift of the i positions of the first row.

Let P and P denote the lists of punctured and unpunctured
positions, respectively. The number of unpunctured parity bits
is MP = K −MP , where MP = |P| is the cardinality of
P . Let yp = [yi]i∈P and yp = [yi]i∈P denote the vectors
of punctured and unpunctured parity bits, respectively. These
vectors can be concatenated as [yp,yp], where the first M
elements are unpunctured bits and the rest are punctured bits.
This concatenation is derived from y using a permutation
matrix Πp: [yp,yp] = yΠp.

Assume two K × K matrices, Tgx and Tgy , constructed
using a recursive polynomial gx and a parity polynomial gy ,
respectively. The systematic and parity vectors x and y can
be expressed as a function of the state vector s as follows:

sTgx = x, (4)
sTgy = y. (5)

These equations show that (x,y) can be generated by encod-
ing s using a non-systematic, non-recursive CC with polyno-
mials (gx, gy) [14]. The commutative property of the triangular
and circulant Toeplitz matrices allows for TgxTgy = TgyTgx .
Multiplying by Tgy and Tgx on both sides of (4) and (5),
respectively, gives the following.

xTgy = yTgx . (6)

This equation defines the relationship between the systematic
and parity bits after encoding with Tgy and Tgx . The ultimate
goal is to find a similar expression in which the systematic
vector is only expressed as a function of the unpunctured
vector through an alternative encoding structure represented
by two matrices Gp and Tp:

xGp = ypTp. (7)

To derive Gp and Tp, let T , D be two invertible matrices s.t.:

(i) T = TgxD, (8)

(ii) ∀ (i, j) ∈ P × P,T [i, j] = T [j, i] = 0. (9)

Both conditions imply that permuting the rows and columns
of T using Πp results in:

Π†
pTΠp =

[
Tp 0MP×MP

0MP×MP
Tp

]
, (10)

where Tp = [Ti,j ](i,j)∈P2 , Tp = [Ti,j ](i,j)∈P2 , and 0A×B is
a null matrix of size A×B. Since [yp,yp]Π

†
p = y, it follows

yTΠp = [yp,yp]Π
†
pTΠp

= [ypTp,ypTp].
(11)

To preserve the validity of (6), both sides are multiplied by
DΠp. Similarly to (9), let G = TgyD, with its permuted form
GΠp = [Gp,Gp]. The matrices Gp and Gp are composed
of the first MP and last MP columns of GΠp, respectively.
Equation (6) is then rewritten as:

[xGp,xGp] = [ypTp,ypTp]. (12)

Since the punctured parity vector yp provides no information
during decoding, equation (12) reduces to (7).

In the specific case of a CC with rate m/(m + 1) and a
regular puncturing pattern with a fixed interval of m+ 1, the
following properties hold: i) there exists a matrix D satisfying
the condition in (9), that can be derived from a polynomial gD;
ii) Tp is a Toeplitz matrix generated by a polynomial gT;
iii) the set of rows in Gp starting at index r ∈ J0,m − 1K
and spaced by m+ 1 form a submatrix G

(r)
p . This submatrix

is a truncated Toeplitz matrix derived from a polynomial g(r)G ,
where its initial row and last column may be truncated.

The matrix Tp acts as the generator matrix for a non-
recursive convolutional encoder, denoted ET, associated with
the polynomial gT. Similarly, Gp corresponds to m con-
volutional encoders, denoted E

(r)
G , r ∈ J0,m − 1K, each

generated by the polynomial g(r)G . The inputs of Er may be
zero-padded, and its outputs are truncated to align with the
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Fig. 5. Proposed alternative representation for a rate-4/5 (m = 4) CC with
gx = (15)8 and gy = (13)8.

truncated Toeplitz structure of Gp. When the outputs of all
E

(r)
G and ET are summed, the result should be zero. Due to

the linearity of the codes, these encoders can be represented
as a single unified structure depicted in Figure 5a. This
alternative encoder structure accepts m systematic bits and
one unpunctured parity bit as input, processes them through
a linear transformation matrix composed of m + 1 rows of
polynomial coefficients from g

(r)
G and gT, and outputs a result

that is added to the outputs of a shift register structure similar
to those used in convolutional encoders.

In the end, the proposed representation reduces the num-
ber of trellis stages from K to MP , thereby decreasing
the complexity and latency of MAP decoding. Although the
computational demand per trellis stage exceeds that of tradi-
tional puncture-based decoding, this issue can be effectively
mitigated through the use of dual MAP decoding [15].

B. Application Example

Consider a coding rate of R = 4/5 and an information block
size K = 18, with unpunctured indices P = {0, 4, 8, 12, 16}.
Using the polynomials gx = (15)8 and gy = (13)8, ex-
pressed in octal base, the first rows of matrices Tgx and Tgy

are their binary representations, extended to K = 18 bits:
[1 1 0 1 0 . . . 0] and [1 0 1 1 0 . . . 0]. The constraint in (9)
is satisfied, for example, using a Toeplitz matrix D generated
from the polynomial (1347)8.

The matrix Tp, derived via (10), is a Toeplitz matrix
generated by the polynomial (13)8, as illustrated in Figure 5b.
The corresponding matrix Gp is shown in Figure 5c, where the
sub-matrix highlighted within the blue regions represents the 4
first rows of the linear transform from the alternative represen-
tation shown in Figure 5a. Each row of this linear transform
matrix corresponds to the binary representation of polynomials
g
(0)
G = (5)8, g

(1)
G = (3)8, g

(2)
G = (1)8, g

(3)
G = (11)8, and

gT = (13)8, respectively.

IV. CONCLUSION

In this paper, two novel perspectives on coding and decoding
techniques for CCs are introduced: The development of a
spatially-coupled decoder architecture, and an alternative rep-
resentation of punctured CCs. The proposed spatially-coupled
CC enables highly parallel decoding architectures, achieving
higher throughputs by decoding one frame per clock cycle.
Coupling 3 frames with the proposed schedule reduces the

memory requirements by up to 66% compared to uncoupled
decoders of equivalent frame sizes. Performance evaluations
show gains of more than 0.75 dB for 8 half iterations.

Additionally, an alternative representation for punctured
CCs is proposed. In this approach, punctured and unpunctured
parities are separated to construct two generator matrices, en-
abling a linear transformation function. This transform block,
implemented with a feed-forward convolutional code, ensures
output consistency with classical punctured CCs. The proposed
representation reduces the number of trellis stages, reducing
MAP decoding complexity and latency. The complexity within
a trellis stage can be further reduced through the use of dual
MAP decoding.

ACKNOWLEDGMENTS

This work was partially funded by the French National
Research Agency TurboLEAP project (ANR-20-CE25-0007).

REFERENCES

[1] Third Generation Partnership Project, LTE; Evolved Universal Terres-
trial Radio Access (E-UTRA); Multiplexing and channel coding (3GPP
TS 36.212 version 18.0.0 Release 18) , Sep. 2023.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes,” in IEEE Int. Conf.
on Commun. (ICC), vol. 2, May 1993, pp. 1064–1070 vol.2.

[3] S. Weithoffer, C. Abdel Nour, N. Wehn, C. Douillard, and C. Berrou,
“25 Years of Turbo Codes: From Mb/s to beyond 100 Gb/s,” in Int.
Symp. on Turbo codes and iter. proc. (ISTC), Dec 2018, pp. 1–6.

[4] M. Shirvanimoghaddam, M. S. Mohammadi, R. Abbas, A. Minja, and
et al., “Short Block-Length Codes for Ultra-Reliable Low Latency
Communications,” IEEE Commun. Mag., vol. 57, no. 2, pp. 130–137,
2019.

[5] S. Weithoffer, R. Klaimi, C. Abdel Nour, N. Wehn, and C. Douillard,
“Fully Pipelined Iteration Unrolled Decoders-The Road to Tb/s Turbo
Decoding,” in IEEE Intern. Conf. on Acoustics, Speech, and Signal
Processing-(ICASSP 2020), Barcelona, Spain, May 2020.

[6] S. Moloudi, M. Lentmaier, and A. Graell i Amat, “Spatially coupled
turbo-like codes,” IEEE Trans. Inf. Theory, vol. 63, no. 10, pp. 6199–
6215, 2017.

[7] M. Mahdavi, L. Liu, O. Edfors, M. Lentmaier, N. Wehn, and et al.,
“Towards Fully Pipelined Decoding of Spatially Coupled Serially Con-
catenated Codes,” in 2021 11th Int. Symp. Topics Coding (ISTC), 2021,
pp. 1–5.

[8] M. Mahdavi, S. Weithoffer, M. Herrmann, L. Liu, O. Edfors, and et al.,
“Spatially coupled serially concatenated codes: Performance evaluation
and vlsi design tradeoffs,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 69, no. 5, pp. 1962–1975, 2022.

[9] J. Sun and O. Y. Takeshita, “Interleavers for turbo codes using per-
mutation polynomials over integer rings,” IEEE Trans. on Inf. Theory,
vol. 51, no. 1, pp. 101–119, Jan. 2005.

[10] C. Berrou, Y. Saouter, C. Douillard, S. Kerouedan, and M. Jezequel,
“Designing good permutations for turbo codes: towards a single model,”
in IEEE Int. Conf. on Commun. (ICC), June 2004, pp. 341–345.

[11] V. H. S. Le, C. Abdel Nour, E. Boutillon, and C. Douillard, “Revisiting
the Max-Log-Map algorithm with SOVA update rules: new simplifica-
tions for high-radix SISO decoders,” IEEE Trans. Commun., vol. 68,
no. 4, pp. 1991–2004, 2020.

[12] S. Weithoffer, G. Aousaji, J. Nadal, and C. Abdel Nour, “Iteration
Overlap for Low-Latency Turbo Decoding,” in Int. Symp. Topics Coding
(ISTC), 2023, pp. 1–5.

[13] J. Cain, G. Clark, and J. Geist, “Punctured convolutional codes of rate(n-
1)/nand simplified maximum likelihood decoding (Corresp.),” IEEE
Trans. Inf. Theory, vol. 25, no. 1, pp. 97–100, 1979.

[14] G. Forney, “Convolutional codes I: Algebraic structure,” IEEE Trans.
Inf. Theory, vol. 16, no. 6, pp. 720–738, 1970.

[15] S. Riedel, “MAP decoding of convolutional codes using reciprocal dual
codes,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 1176–1187, 1998.


