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ABSTRACT
BEST (Beerkan Estimation of Soil Transfer parameters) methods of soil hydraulic characterisation are widely applied for estimat-
ing sorptivity, S, and saturated hydraulic conductivity, Ks. Calculating these properties requires choosing the β and γ parameters 
of the Haverkamp infiltration model. These parameters can be obtained from numerically simulated three-dimensional (3D) in-
filtration runs reaching steady-state. This investigation tested dependence of the estimated β and γ parameters on the algorithm 
for steady-state selection using simulated 3D cumulative infiltrations for different soils and initial conditions. Two algorithms 
used the original simulation outputs and included using (i) a threshold defining steadiness (T-algorithm) and (ii) the last four data 
points, yielding a reference value of steady-state infiltration rate (R-algorithm). A third algorithm, similar to the R-algorithm, 
was applied to previously re-sampled infiltration data at fixed time intervals (RR-algorithm). The intercept, bs, of the straight line 
fitted to the data describing steady-state on the cumulative infiltration plot depended on the applied algorithm more than the 
slope of this line. Consequently, β varied with the applied algorithm more than γ. The RR-algorithm, yielding 0.62 ≤ β ≤ 1.99 and 
0.74 ≤ γ ≤ 0.98, was preferred since it mediated between advantages and disadvantages of T- and R-algorithms. The influence of 
the choice of proper values for β and γ on the estimates of S and Ks was evaluated using BEST. Using the default values of β (0.6) 
and γ (0.75) yielded accurate estimates of S but not of Ks. Soil dependent β and γ values should be used in this case. A check of the 
reliability of the estimates of bs can be made by a sequential analysis of the cumulative infiltration data. Future developments 
include considering sources differing in size and establishing if the suggested β and γ values apply in general to the available 
BEST algorithms.

1   |   Introduction

Soil loss due to water erosion is a natural and unavoidable phe-
nomenon that can however become excessive, and hence in-
tolerable, in particular situations and mostly due to anthropic 

factors (Pimentel 2006). Soil erosion occurs when water does 
not enter the soil and instead moves on the soil surface. Soil 
water repellency represents a key factor in post-fire erosion 
(Doerr, Shakesby, and Macdonald 2009). Soil erosion processes 
are strongly affected by rainfall partition into infiltration 
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and surface runoff. This partition depends on many factors 
including, with a central role, soil hydrodynamic properties. 
Understanding and modelling soil erosion process, especially 
by physical models, requires adequately characterising the 
soil from a hydrodynamic point of view. There are various 
methodologies for determining soil hydrodynamic proper-
ties either in the field or in the laboratory. Field methods are 
more onerous since many replications of the experiment have 
to be performed in environmental conditions that are not al-
ways favourable to appropriately characterise an area of inter-
est. However, they are considered preferable over laboratory 
methods since the functional connection of the conductive 
pore system with the surrounding medium is guaranteed only 
in the former case. Field infiltration methods have gained a 
large popularity for determining soil hydrodynamic proper-
ties since they are relatively simple, rapid and cost-effective 
(Angulo-Jaramillo et al. 2016). These experiments involve es-
tablishing an infiltration process from a small-diameter cir-
cular source onto an initially unsaturated soil. Due to their 
versatility, these methodologies have been applied in a wide 
range of natural and anthropogenic soils (Angulo-Jaramillo 
et al. 2019; Yilmaz et al. 2019).

The three-dimensional (3D) infiltration model by Haverkamp 
et  al.  (1994) has received much interest from the scientific 
community over the years and has led, amongst other things, 
to development in 2006 of a simple field method to completely 
characterise the soil, that is to simultaneously estimate the 
soil water retention and hydraulic conductivity curves. The 
method, named BEST—Beerkan Estimation of Soil Transfer 
parameters, requires performing an infiltration experiment 
at a null ponded depth of water on the soil surface and col-
lecting some additional information on particle size distri-
bution, initial and final soil water content and dry soil bulk 
density (Lassabatère et  al.  2006). Pedotransfer functions are 
used to estimate the shape parameters of the soil water re-
tention and hydraulic conductivity curves. Measurement of 
water infiltration yields the scale parameters of these curves. 
Different algorithms, that is BEST-slope, BEST-intercept and 
BEST-steady, can be used to analyse the infiltration data 
(Lassabatère et  al.  2006; Yilmaz et  al.  2010; Bagarello, Di 
Prima, and Iovino 2014; Angulo-Jaramillo et al. 2016, 2019). 
BEST methods of analysis of a field measured infiltration 
curve have recently been adapted for use in water repellent 
soils (Di Prima et al. 2021), implying that these methods are 
very appropriate for soil hydraulic characterisation in relevant 
contexts for studying water erosion processes.

Using BEST methods of soil hydraulic characterisation re-
quires making a choice about the values assumed by the two 
shape parameters of the infiltration model, β and γ. Commonly, 
β = 0.6 and γ = 0.75 is assumed for practical use of BEST meth-
ods (Lassabatère et al. 2006; Angulo-Jaramillo et al. 2016) since 
Haverkamp et al. (1994) suggested to use these two values as re-
liable means. However, Haverkamp et al. (1999, 2005) later con-
sidered the shape parameters as dependent on both the soil and 
the initial soil water content (Lassabatere et al. 2009). According 
to several investigations, β can be expected to vary between 0.33 
and 1.56 and γ from 0.75 to 1.03 (Lassabatere et al. 2009; Moret-
Fernández and Latorre  2017; Moret-Fernández et  al.  2020; 
Rahmati et al. 2020).

Yilmaz et al.  (2023) recently developed a new procedure to si-
multaneously determine β and γ from numerically simulated 
3D infiltration runs reaching steady-state conditions. Their ap-
proach makes use of the long-time expansion of the infiltration 
model by Haverkamp et al. (1994) and the exact soil properties, 
that is soil sorptivity, S [L/T0.5], and saturated soil hydraulic 
conductivity, Ks [L/T]. The slope, is [L/T], and the intercept, bs 
[L], of the straight line fitted to the data describing steady-state 
conditions on the cumulative infiltration, I [L], versus time, t 
[T], plot have to be determined for calculating β and γ. Yilmaz 
et al. (2023) too recognised that these parameters vary with both 
the soil and the initial soil water content but they also proposed, 
for initially dry soil conditions, some fixed values instead of 
those currently used (β = 0.6; γ = 0.75; Haverkamp et  al.  1994; 
Lassabatère et  al.  2006). In particular, using 0.9 for both con-
stants was suggested for coarse-textured soils. For finer soils, 
γ = 0.75 can generally be considered. Soils with an intermediate 
permeability can be characterised with β = 0.75 whereas β = 1.5 
should be used for little permeable soils.

To detect attainment of steady-state conditions during the in-
filtration process, Yilmaz et  al.  (2023) adapted an algorithm, 
originally developed by Bagarello, Iovino, and Reynolds (1999) 
and Bagarello and Giordano (1999), that was denoted here as T-
algorithm (T = threshold). Briefly, a reference slope is initially 
calculated by linear regression of the last four (I and t) data 
points. Then, going backward during the run, an additional data 
point is considered for the linear regression and the percentage 
difference between the new estimate of is and the reference is 
value is calculated. The procedure is applied repeatedly by add-
ing each time an additional (I and t) data point and it stops when 
the new is value differs from the reference is value by more than 
a threshold, fixed at 0.5% by Yilmaz et al. (2023). In this back-
ward procedure, the first (I and t) data point yielding a percent-
age difference higher than 0.5% represents the last data point 
of the transient stage. All the subsequent (I and t) data points 
during the run are considered expressive of the steady-state 
stage and they are used to determine is and bs and hence β and γ.

In principle, the procedure applied by Yilmaz et al. (2023) pro-
vides an objective estimate of the duration of the transient stage 
of the infiltration process and, being based on a large number 
of data points, it is appropriate to capture trends in the case of 
experimental data with errors or that of numerically generated 
data with oscillations and dispersions. However, it also exposes 
the analysis to the risk of improperly treating transient data as 
expressive of flow steadiness with the consequence of overesti-
mating is and underestimating bs.

For an infiltration run of a given duration, this last risk is mi-
nimised if the last four data points of the I vs. t curve are con-
sidered (Yilmaz et  al.  2023) since these data are expressive of 
the process at the most advanced stage possible (R-algorithm; 
R = reference). It is currently unknown if and to what extent the 
estimates of β and γ change when the T- and the R-algorithms 
are applied to the same run.

Typically, numerically simulated infiltration curves comprise a 
large number of data points. In practise, however, infiltration 
is often sampled at fixed time intervals, that might also be rel-
atively long in advanced stages of the runs, or by reading the 
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time when a fixed water volume has infiltrated. With these 
methods, the infiltration run could be described by a relatively 
limited number of data points. For example, 8–15 (I and t) data 
pairs could fully describe an infiltration curve obtained by a 
Beerkan run (Braud et al. 2005; Lassabatère et al. 2006). A given 
steady-state attainment criterion could therefore be applied to 
a run described at a different level of detail, depending on the 
circumstances. It is necessary to also establish if the estimated 
β and γ values change depending on the number of data points 
describing the sampled infiltration process.

The general objective of this investigation was to obtain robust 
estimates of the shape parameters of the Haverkamp infiltration 
model, usable for predicting soil sorptivity and saturated soil hy-
draulic conductivity with the BEST methods. Considering dif-
ferent soils (from sand to silt) under different initial saturation 
degrees not exceeding 0.4, the specific objectives were to: (i) es-
tablish the effect of the used algorithm to assess flow steadiness 
on estimation of the β and γ parameters; (ii) determine the de-
pendence of these two parameters on the time interval at which 
simulated infiltration data are acquired and their dependence 
upon initial conditions; and (iii) derive β and γ values usable to 
obtain accurate estimates of S and Ks in different soils.

2   |   Materials and Methods

2.1   |   BEST-Steady

The BEST-steady algorithm yields the following estimates of soil 
sorptivity, S (mm/h0.5), and saturated soil hydraulic conductiv-
ity, Ks (mm/h) (Bagarello, Di Prima, and Iovino 2014; Angulo-
Jaramillo et al. 2016, 2019):

in which is (mm/h) and bs (mm) are the slope and the intercept, 
respectively, of the straight line fitted to the data describing 
steady-state conditions on the cumulative infiltration, I (mm), 
versus time, t (h), plot. The A (1/mm) and C (−) constants are 
defined as:

where γ is a shape parameter for geometrical correction of the 
infiltration front shape, r (mm) is the radius of the source, θs 
(m3/m3) is the volumetric soil water content at saturation, θi (m

3/
m3) is the initial volumetric soil water content, β is a shape pa-
rameter varying with the soil type and the initial soil water con-
tent (Lassabatere et al. 2009) and Ki (mm/h) is the soil hydraulic 
conductivity corresponding to a volumetric soil water content 

equal to θi. Note that these equations are derived from the as-
ymptotic approximate expansion of the Haverkamp infiltration 
model, which analytically computes cumulative infiltration in 
both transient and steady states (Haverkamp et al. 1994).

2.2   |   Determining β and γ From a Steady-State 
Beerkan Run

According to Yilmaz et al. (2023), the values of γ and β, treated 
as unknown parameters, can be obtained from a 3D infiltration 
run reaching steady-state conditions. In particular, γ is given by:

whereas β can be determined by finding the zero for the follow-
ing function:

The two equations, Equations (5) and (6), can be derived from 
the BEST-steady Equations  (1–4). In particular, combining 
Equations (1) and (2) yields:

Substituting Equation (7) into Equation (4) yields Equation (6). 
Solving Equations (1) and (2) for A and using Equation (7) for C 
yields:

Substituting Equation  (8) into Equation  (3) and solving for γ 
gives Equation (5).

2.3   |   Numerically Simulated Infiltration Data

The same numerical simulations performed by Yilmaz 
et  al.  (2023) were used in this investigation. In particular, 3D 
infiltration was simulated for sandy (Sa), loamy-sand (LoSa), 
sandy-loam (SaLo), loam (Lo), silty-loam (SiLo) and silty (Si) 
soils. The van Genuchten (1980) model and the related soil hy-
draulic properties (Carsel and Parrish 1988) were used for these 
simulations (Table 1).

Data were obtained for a circular source with a radius 
r = 50 mm, a null ponded depth of water on the infiltration 
surface and different values of the initial saturation degree, 
Sei = (θi − θr)/(θs − θr), in which θi (m

3/m3), θr (m
3/m3) and θs (m

3/
m3) are the initial, residual and saturated volumetric soil water 
contents, respectively (Table 2). For each soil, the highest θi/θs 
ratio was close to 0.4–0.5 and, overall, the ratio between the ini-
tial soil hydraulic conductivity, Ki (mm/h), and Ks did not exceed 
8.36 × 10−3 (Table 2). The theoretical sorptivity, S (mm/h0.5), cal-
culated for each soil and each Sei value according to Lassabatere 
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et al. (2023), was also provided by Yilmaz et al. (2023) and was 
reported in Table 2.

The duration of the simulations, tsim (h), varied with the soil 
from 0.5 h for the Sa soil to 12 h for the Si soil (Table  1). The 
maximum simulation time was fixed large enough by Yilmaz 
et  al.  (2023) to reach steady-state. For each run, a cumulative 
infiltration vs. time curve was obtained for both transient and 
steady states. The number of (I and t) data pairs for a run var-
ied from a minimum of 203 (LoSa soil, Sei = 0.4) to a maximum 
of 866 (Si soil, Sei = 0). From these numerically generated data, 
we then extrapolated (I and t) data pairs for specific times. In 
particular, the original infiltration outputs of the numerical 
simulations were resampled according to the following practi-
cal criterion: every minute for the first 30 min, every 2 min up 
to 60 min, every 5 min up to 120 min, and every 15 min up to 
720 min. The aim was to obtain infiltration curves similar, in 
terms of time interval between readings, to those that could be 
plausible to obtain in the field. In this case, the number of data 
pairs for a run varied between 30 (Sa soil) and 97 (Si soil).

2.4   |   Calculations and Data Analysis

In this investigation, three algorithms were applied to deter-
mine the slope, is, and the intercept, bs, of the straight line fitted 
to the data describing steady-state conditions on the cumulative 
infiltration plot and hence to calculate β and γ by Equations (6) 
and (5), respectively. An application example of these three al-
gorithms to one of the runs considered in this investigation is 
shown in Figure 1.

With the R-algorithm (R = reference), is and bs were obtained by 
linear regression analysis of the last four (I and t) data points. The 
calculations performed with this criterion were denoted as isR, 
bsR, βR and γR. This algorithm was used by Yilmaz et al. (2023) to 
obtain a reference is value but it was not directly considered for 
parameterizing the Haverkamp infiltration model.

Another estimate of the four parameters, denoted as isT, bsT, βT 
and γT, was obtained in accordance with the algorithm used by 
Yilmaz et al. (2023) and Di Prima et al. (2021) and pioneered by 
Bagarello, Iovino, and Reynolds (1999). This algorithm considers 
the last four points of the infiltration curve and then performs 
a linear regression to calculate the slope, which is regarded as 
the reference slope, denoted isR. The program then increments 

the number of points considered for the linear regression by one 
and computes the slope for this new dataset, involving the k last 
points and denoted is(k). Then, the relative error between the 
new slope, is(k), and the reference slope, isR, is computed:

The number of data points, k, is increased until the relative error 
exceeds a given threshold, fixed arbitrarily at 0.005, as in Yilmaz 
et al. (2023). The final number of data points, k, is used to define 
the portion of the cumulative infiltration corresponding to the 
steady state. This method is referred to as the T-algorithm. The 
advantage of this algorithm, which involves more points than 
the initial method, is evident for experimental data with mea-
surement errors. Adding points helps capture the overall trend 
and reduces the risk of misestimations related to the selection of 
specific or inappropriate points.

The original outputs of the numerical simulations were consid-
ered to apply the R- and T-algorithms.

Working with too many infiltration data points may be imprac-
tical and, in field use of the Beerkan method (Braud et al. 2005; 
Lassabatère et  al.  2006) the time interval between two subse-
quent readings may not be very short as it is necessary to wait 
for the complete infiltration of a pre-established volume of water 
before pouring another water volume. Therefore, is and bs were 
also obtained by linear regression of the last four (I and t) data 
points of the resampled cumulative infiltrations and the calcu-
lations performed with this algorithm (RR-algorithm; R = refer-
ence; R = resampled infiltration data) were denoted as isRR, bsRR, 
βRR and γRR.

The effect of the used algorithm on estimation of time to steady-
state, tsteady, was initially checked by comparing the cumulative 
frequency distributions of the ratio between tsteady and the dura-
tion of the simulation, tsim, for the three algorithms. This com-
parison was made because estimated equilibration times can 
be expected to change with the applied data analysis method 
(Bagarello, Iovino, and Reynolds 1999).

A comparison was established between the R- and T-algorithms 
to verify, for a given sequence of data points describing a cumu-
lative infiltration curve, the impact of the applied steady-state 
attainment algorithm on the estimates of is, bs, β and γ.

(9)Er(k) =
is(k) − isR

isR

TABLE 1    |    Soil hydraulic parameters (Carsel and Parrish 1988) and duration, tsim, of the numerically simulated infiltration runs.

Soil θs (m3/m3) θr (m3/m3) n α (1/cm) Ks (mm/h) tsim (h)

Sand (Sa) 0.43 0.045 2.68 0.145 297.0 0.5

Loamy-sand (LoSa) 0.41 0.057 2.28 0.124 145.9 1.0

Sandy-loam (SaLo) 0.41 0.065 1.89 0.075 44.2 2.0

Loam (Lo) 0.43 0.078 1.56 0.036 10.4 4.0

Silty-loam (SiLo) 0.45 0.067 1.41 0.02 4.5 8.0

Silt (Si) 0.46 0.034 1.37 0.016 2.5 12.0

Note: θs = volumetric soil water content at saturation; θr = residual volumetric soil water content; n and α = empirical parameters of the van Genuchten (1980) model for 
the water retention curve; Ks = saturated soil hydraulic conductivity.
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Another comparison was carried out between the R- and RR-
algorithms to verify, for a given number of data points used for 
the regression, the dependence of the estimated is, bs, β and γ 
values on the duration of the time interval between two subse-
quent data points.

Following Yilmaz et al. (2023), representative values of β and γ 
for each soil in the 0.1 ≤ Sei ≤ 0.3 range of values were then cal-
culated by averaging the results obtained with the T-, R- and 
RR-algorithms.

Finally, the accuracy of the S and Ks predictions was determined 
using BEST-steady by considering (i) the default values of β and 
γ (0.6 and 0.75, respectively), (ii) the soil-dependent β and γ val-
ues suggested by Yilmaz et al. (2023) and (iii) the soil-dependent 
β and γ values obtained in this investigation with the RR-
algorithm, which is considered to be the best one (as discussed 
in the Results section). The isRR and bsRR estimates were used 
for these calculations since they were considered to be those 
conceptually closest to the values that can be obtained with a 
field experiment. Moreover, Ki = 0 was assumed in Equation (4), 
as is done in practical application of the method. According to 
Reynolds  (2011), an estimated value was considered accurate 
when the following condition was satisfied:

Such an accuracy criterion (i.e., ≤ 20% error) was used because 
the data were numerically generated and therefore devoid of 
measurement error and natural variability. The applied crite-
rion was a little more restrictive than the one later applied by 
the same author in another investigation with numerically sim-
ulated data, in which the estimates were considered accurate if 
the error did not exceed the 25% (Reynolds  2013). The choice 
of the accuracy criterion has unavoidably a subjective character 
and a 20% error could be considered large. In this investigation 
it was preferred not to deviate from other investigations rather 
than suggesting other error levels.

3   |   Results

3.1   |   Steady-State Attainment Algorithm

The three applied algorithms (T, R and RR) differed apprecia-
bly with reference to the estimated time to steady-state, tsteady 
(Figure 2). In particular, the T-algorithm provided the earliest 
stabilisation prediction (0.25 ≤ tsteady/tsim ≤ 0.78; mean = 0.55) 
whilst the most delayed one was obtained with the R-algorithm 
(0.92 ≤ tsteady/tsim ≤ 0.99; mean = 0.98). The RR-algorithm yielded 
an intermediate result (0.75 ≤ tsteady/tsim ≤ 0.92; mean = 0.85), 
that was however closer to that obtained with the R-algorithm 
than the T-one. Therefore, the process was considered stable 
only in the last minutes of the run with the R-algorithm, for a 
little longer period with the RR-algorithm and for an appreciably 
longer period with the T-algorithm.

The T-algorithm yielded higher is values (Figure  3a,b) and 
smaller bs values (Figure  3c,d) than the R-algorithm for the 
N = 29 simulated infiltration runs (Table  2). In particular, isT 
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was greater than isR by a percentage, Δis, varying with the run 
between 0.2% and 3.0% and equal, on average, to 0.9%. Instead, 
bsT was smaller than bsR by a percentage, Δbs, varying with the 
run from −12.8% to −4.1% and equal, on average, to −7.0%. 
Therefore, the applied steady-state attainment algorithm influ-
enced the is and bs calculations but, in percentage terms, is was 
appreciably less sensitive to the applied algorithm than bs. These 
trends result from the fact that the T-algorithm is less discrimi-
nating than the R-algorithm to select steady-state and includes a 
larger time interval.

The mean of Δis was equal to 1.9% for the Si soil and ≤ 1.2% for 
the other five soils. The mean of Δbs was equal to −8.7% for the 
Si soil and ≥ −8.3% in the other cases. Therefore, the finest soil 
investigated in this study, that is, silt, was the most sensitive to 
the applied steady-state attainment algorithm.

To establish if the effects of the applied algorithm varied with 
Sei, the results obtained for the two coarsest soils with Sei = 0.05 
and those obtained for the other soils with Sei = 0 were pooled 
together and we then compared results between groups of ini-
tial saturation degrees. The means of Δis settled on a value of 
1.0%–1.1% for Sei ≤ 0.2 and to 0.7% for Sei ≥ 0.3. The mean of Δbs 
varied between −6.0% and −6.3% for Sei ≥ 0.3 and it was a little 
more negative (from −6.7% to −8.2%) in initially drier conditions 
(Sei ≤ 0.2). Therefore, the effect of the steady-state attainment al-
gorithm appeared overall a little more appreciable in relatively 
dry initial conditions.

The β and γ values obtained with the T-algorithm were greater 
than those obtained with the R-algorithm (Figure  4 and 
Table 2). In particular, the percentage difference between βT 
and βR, Δβ, varied from a minimum of 8.3% to a maximum 
of 27.7% with a mean of 15.6%. The percentage difference 
between γT and γR, Δγ, varied from a minimum of 0.3% to a 
maximum of 4.0% with a mean of 1.3%. Therefore, the applied 
steady-state attainment algorithm (T- or R-algorithm) influ-
enced the calculations of β and γ but, in percentage terms, γ 
was appreciably less sensitive to the applied algorithm than 
β. This last result was expected since γ depends on is through 
Equation  (5) whereas β depends on bs through Equation  (6) 
and is varied with the applied steady-state algorithm less than 
bs (Figure 3).

3.2   |   Effect of Storing Time Step 
of the Numerically Simulated Infiltration Data

In this section, we compare the two algorithms that define 
steady-state based on the four last points. The R-algorithm con-
siders the four last points of the raw numerical dataset with 

FIGURE 1    |    Example of application of the T-, R- and RR-algorithms for the loam soil with an initial saturation degree, Sei = 0.2 (tsteady = time to 
steady-state; is and bs = slope and intercept, respectively, of the straight line fitted to the data describing steady-state conditions).
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FIGURE 2    |    Cumulative empirical frequency distribution of the ratio 
between the estimated time to steady-state, tsteady, and the duration of 
the simulation, tsim, for the T-, R- and RR-algorithms.
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time steps between two readings of ≤ 1 min. In a closer accor-
dance with real experimental protocols, the second algorithm 
considers time steps of ≤ 15 min. With a few exceptions, the RR-
algorithm yielded higher is values (Figure 5a,b) and smaller bs 
values (Figure 5c,d) than the R-algorithm for the N = 29 simu-
lated infiltration runs (Table 2). In particular, isRR differed from 
isR by a percentage, Δis, varying with the run between −0.8% and 
2.0% and equal, on average, to 0.2%. Instead, bsRR differed from 
bsR by a percentage, Δbs, varying with the run from −8.7% to 
6.2% and equal, on average, to −1.5%. Therefore, the storing time 
step of the numerically simulated infiltration data influenced 
calculation of is and bs. In percentage terms, is was appreciably 
less sensitive to the considered time step than bs. However, the 
discrepancy between the RR and R-algorithms was much less 
than before. Indeed, the two algorithms are quite close to each 
other and select quite similar time intervals, compared to the 
much larger interval identified by the T-algorithm.

The mean of Δis was equal to 0.8% for the Si soil and it varied 
from nearly zero (−0.01%) to 0.4% for the other five soils. The 
mean of Δbs was equal to −3.7% for the Si soil and it varied from 
−2.5% to 0.3% in the other cases. Therefore, the finest soil was 
also the most sensitive soil to the considered storing time step.

The means of Δis settled on a value of 0.3%–0.5% for Sei ≤ 0.2 and 
to values ranging from −0.1% to 0.1% for Sei ≥ 0.3. The mean of 
Δbs varied between −2.9% and −1.6% for Sei ≤ 0.2 and from −1.0% 
to 0.8% for Sei ≥ 0.3. Therefore, the effect of the storing time step 
was a little more appreciable in initially drier soil conditions. 
We find similar results as before. The dry initial conditions and 

the type of soil defined as silty soil accentuate the difference be-
tween criteria.

The β and γ values obtained with the RR-algorithm were gener-
ally greater than those obtained with the R-algorithm (Figure 6 
and Table 2). In particular, the percentage difference between βR 
and βRR, Δβ, varied from a minimum of −10.9% to a maximum 
of 17.7% with a mean of 3.2%. The percentage difference between 
γR and γRR, Δγ, varied from a minimum of −1.2% to a maximum 
of 2.7% with a mean of 0.3%. Therefore, the considered time to 
acquire data (R- or RR-algorithms) influenced the calculations 
of β and γ but, also in this case, γ was less sensitive to the ap-
plied algorithm than β. Even this result was expected since is 
varied with the storing time less than bs (Figure 5). Note that our 
results are in line with previous findings and demonstrate the 
effect of inappropriate selection of steady-state on the computa-
tion of the shape parameters β and γ.

3.3   |   Soil Dependent β and γ Parameters

According to Yilmaz et al.  (2023), utterly dry conditions, such 
as an initial saturation degree below 0.1, are rarely observed 
during field experiments. Moreover, infiltration runs can also 
be performed in wetter, but not much wetter, initial conditions, 
ensuring that Sei ≤ 0.3. Note that the value of 0.3 is also in line 
with the condition imposed by Haverkamp et al. (1994) for the 
use of their analytical model and related approximate expan-
sions, which serve as the basis for many treatment methods and 
algorithms, including the BEST methods (Angulo-Jaramillo 

FIGURE 3    |    Comparison between (a) the slope, is, and (c) the intercept, bs, of the straight line fitted to the cumulative infiltration data describing 
steady-state conditions obtained by the T-algorithm (T = threshold; isT and bsT) and the R-algorithm (R = reference; isR and bsR), and percentage 
differences between corresponding (b) is (Δis) and (d) bs (Δbs) values for each soil and initial saturation degree.
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et  al.  2019). Given this premise, and also considering that, in 
this investigation, the 0.1 ≤ Sei ≤ 0.3 range was common to the 
six soils, the means of the three estimates of both β (βT, βR and 
βRR) and γ (γT, γR and γRR) were calculated for each soil with ref-
erence to this range of antecedent wetness conditions (Table 3). 
Evidently, the means of βT and γT listed in Table 3 coincided with 
those calculated using the β and γ values reported by Yilmaz 
et al. (2023) in their Table 2 since the same data and the same 
procedure were applied.

For a given soil (Sa, LoSa, SaLo, Lo, SiLo and Si) and a given 
algorithm (T, R and RR), the coefficient of variation, CV, of 
the three estimates of β (one for each Sei value in the 0.1 to 
0.3 range) varied from a minimum of 1.1% (βT, LoSa soil) to a 
maximum of 11.8% (βR, Lo soil) with a mean of 6.5%. For γ, the 
CV values varied from 0.1% (γRR, SaLo soil) to 1.6% (γT, SiLo 
soil) with a mean of 0.9%. Therefore, γ varied less than β with 
Sei but both parameters were quite stable in the 0.1 ≤ Sei ≤ 0.3 
range of values.

The means of β, obtained by averaging the three estimates of 
β for a given soil, varied with the soil by 3.1 times. In particu-
lar, these means decreased from 0.97 to 0.64 from the Sa soil to 
the SaLo soil and then they increased up to 2.01 for the Si soil. 
Therefore, the SaLo soil had the smallest value of β whereas both 
the coarser and, particularly, the finer soils had greater β values. 
The analysis algorithm of the numerically simulated infiltra-
tion data influenced the estimates of β for a given soil since the 
ratio between the maximum and the minimum value for a soil 

varied between 1.14 and 1.21 and the corresponding coefficients 
of variation, CVs, ranged from 6.9% to 10.5%, depending on the 
soil. A CV value that does not exceed, in practise, the 10% can 
be considered indicative of an overall limited variability of the 
individual data (Warrick 1998). Therefore, the calculated means 
appeared sufficiently reliable for most practical purposes.

Another point arises from the values of β. All soils exhibit a 
value of β greater than one, with silt soils having β values ex-
ceeding 2 (Table  3, Si soil). Similar results were obtained 
by Yilmaz et  al.  (2023) for fine soils (see Table  2 in Yilmaz 
et al. 2023). Our findings are also consistent with previous stud-
ies using numerically generated data for the transient state to 
derive β, which found values greater than one and sometimes 
approaching or exceeding 2 (e.g., Lassabatere et al. 2009; Latorre 
et  al.  2018; Moret-Fernández et  al.  2020). Such high values of 
β raise questions regarding the physical meaning and the ana-
lytical developments proposed by Haverkamp et  al.  (1994) for 
their infiltration model. Haverkamp et al. (1994) suggested that 
β should remain strictly below one to meet the proper conditions 
for model integration. Lassabatere et  al.  (2018) demonstrated, 
using pure analytical data, that the limit of β < 2 should be re-
spected to maintain consistency with the Haverkamp infiltra-
tion model approximations. Whilst the first condition of β < 1 is 
not always considered, adhering to the second condition of β < 2 
is essential to prevent inconsistent modelling, which excludes 
the silt soil and its corresponding β value.

The means of γ, obtained by averaging the three estimates of γ 
for a given soil, varied with the soil by 1.3 times. In this case, 
however, these means decreased from 0.98 to 0.74 from the Sa 
soil to the SiLo soil and then they increased only a little, that is 
to 0.77, for the Si soil. Overall, the coarser soils (Sa and LoSa) 
had the largest γ values (0.89–0.98) whereas the finer soils had 
smaller γ values (0.74–0.78). The analysis algorithm of the nu-
merically simulated data had no more than a minimal, and neg-
ligible, effect on the estimates of γ for a given soil since the ratio 
between the maximum and the minimum value for a soil did 
not exceed 1.03 and the corresponding CVs were equal to 1.2% 
at the most. Therefore, the calculated means appeared reliable 
in general.

In summary, adopting a soil specific value should be more im-
portant for β than for γ since the former parameter varies with 
the soil more than the latter one. Using the default value of β 
(0.6) appears a good choice for the SaLo soil and, to a lesser ex-
tent, the LoSa soil but not in general, that is regardless of the 
soil. Instead, the default value of γ (0.75) appears usable in many 
soils, with perhaps the exception of the coarser ones.

3.4   |   Accuracy of Soil Sorptivity and Saturated Soil 
Hydraulic Conductivity Estimates

In this section, we evaluated the impact of the choice of the val-
ues of β and γ on the estimates of sorptivity, S, and hydraulic 
conductivity, Ks, using the BEST-steady method. We then com-
pared the several sets of values of S and Ks obtained for the regu-
lar set of values (β = 0.6 and γ = 0.75), and obtained for the T- and 
RR-algorithms. This latter is considered the best option (as dis-
cussed below) and is then taken as the reference. The results of 

FIGURE 4    |    Comparison between the estimates of (a) the β 
parameter and (b) the γ parameter obtained by estimating the steady-
state conditions with the T-algorithm (T = threshold; βT and γT) and the 
R-algorithm (R = reference; βR and γR).
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the T-algorithm correspond to those of Yilmaz et al. (2023). With 
reference to the six soils (Sa, LoSa, SaLo, Lo, SiLo and Si), the 
three Sei values (from 0.1 to 0.3) and the three β and γ estimating 
algorithms (T, R and RR), the ratio between the estimated and 
the theoretical sorptivity fell into a range of values between 0.91 
and 1.04 (Figure 7a). Therefore, all estimates of S were accurate 
according to the adopted criterion (Reynolds  2011). However, 
in a context of accurate estimates, the three applied criteria to 
parameterize the Haverkamp et al. (1994) model were not equiv-
alent. In particular, the most accurate predictions were obtained 
by using βRR and γRR since, in this case, the ratio between the 
estimated and the theoretical S value was consistently very close 
to 1 in all cases (from 0.99 to 1.01). A minimally greater devia-
tion from the unit value (0.98–1.04) was observed for the ratios 
between estimated and theoretical values using the T-algorithm. 
The poorest, but still accurate, predictions of S were obtained 
using the default values of the two parameters (ratio = 0.91–1.03).

Instead, the ratio between the estimated and the theoretical 
saturated soil hydraulic conductivity values fell into a range of 
values between 0.86 and 1.59 (Figure 7b) denoting that not all 
the Ks predictions were accurate. In particular, the algorithm 
developed in this investigation performed best and it always 
yielded accurate predictions (0.96 ≤ estimated Ks/theoretical 
Ks ≤ 1.04). With the β and γ values by the T-algorithm, the Ks 
predictions got a little worse, since the range of the ratios be-
tween the estimated and the theoretical values became a little 
wider (0.86–1.18), but they remained accurate. With the default 
values of β and γ, the ratio between the estimated and the theo-
retical Ks value varied between 1.01 and 1.59 and the 56% of the 

predictions were deemed inaccurate according to the adopted 
accuracy criterion (20% error).

Therefore, this investigation suggested that using the default 
values of β and γ should not be expected to compromise the ac-
curacy of the S predictions but there is the risk to overestimate 
too much Ks. The values obtained with the T-algorithm (Yilmaz 
et al. 2023) are fully appropriate to obtain accurate estimates of 
both S and Ks. The β and γ values obtained in this investigation 
can be expected to improve the quality of an already good esti-
mate of these two soil hydrodynamic parameters.

4   |   Discussion

This investigation showed that the adopted algorithm to anal-
yse the numerically simulated infiltration data (T, R and RR) 
influenced the estimated parameters. In particular, finer and 
drier soil conditions implied a more appreciable effect on the es-
timates of is and bs of both the applied steady-state attainment 
criterion and the time step at which the data were acquired. 
Taking into account that the duration of the transient stage of 
the infiltration process generally increases with finer and drier 
soil (Youngs, Leeds-Harrison, and Elrick  1995; Reynolds and 
Elrick 2002; Reynolds, Elrick, and Youngs 2002), the effects of 
the adopted algorithm were more appreciable as the equilibra-
tion time was longer.

The estimates of bs depended more than those of is on the ap-
plied algorithm (Figures  3, 5 and Table  2). Consequently, β 

FIGURE 5    |    Comparison between (a) the slope, is, and (c) the intercept, bs, of the straight line fitted to the cumulative infiltration data describing 
steady-state conditions obtained by the RR-algorithm (RR = reference, resampled; isRR and bsRR) and the R-algorithm (R = reference; isR and bsR), and 
percentage differences between corresponding (b) is (Δis) and (d) bs (Δbs) values for each soil and initial saturation degree.

1

10

100

1000

1 10 100 1000

i sR
R

(m
m

/h
)

isR (mm/h)

a)

-1

-0.5

0

0.5

1

1.5

2

Sa
 0

.0
5

Sa
 0

.1
Sa

 0
.2

Sa
 0

.3
Lo

Sa
 0

.0
5

Lo
Sa

 0
.1

Lo
Sa

 0
.2

Lo
Sa

 0
.3

Lo
Sa

 0
.4

Sa
Lo

 0
Sa

Lo
 0

.1
Sa

Lo
 0

.2
Sa

Lo
 0

.3
Sa

Lo
 0

.4
Lo

 0
Lo

 0
.1

Lo
 0

.2
Lo

 0
.3

Lo
 0

.4
Si

Lo
 0

Si
Lo

 0
.1

Si
Lo

 0
.2

Si
Lo

 0
.3

Si
Lo

 0
.4

Si
 0

Si
 0

.1
Si

 0
.2

Si
 0

.3
Si

 0
.4

�
i s

(%
)

soil

b)

5

10

15

20

25

30

5 10 15 20 25 30

b s
RR

(m
m

)

bsR (mm)

c)

-10
-8
-6
-4
-2
0
2
4
6
8

Sa
 0

.0
5

Sa
 0

.1
Sa

 0
.2

Sa
 0

.3
Lo

Sa
 0

.0
5

Lo
Sa

 0
.1

Lo
Sa

 0
.2

Lo
Sa

 0
.3

Lo
Sa

 0
.4

Sa
Lo

 0
Sa

Lo
 0

.1
Sa

Lo
 0

.2
Sa

Lo
 0

.3
Sa

Lo
 0

.4
Lo

 0
Lo

 0
.1

Lo
 0

.2
Lo

 0
.3

Lo
 0

.4
Si

Lo
 0

Si
Lo

 0
.1

Si
Lo

 0
.2

Si
Lo

 0
.3

Si
Lo

 0
.4

Si
 0

Si
 0

.1
Si

 0
.2

Si
 0

.3
Si

 0
.4

�
b s

(%
)

soil

d)

 10991085, 2024, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.15330 by E

N
T

PE
, W

iley O
nline L

ibrary on [13/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



11 of 15

varied more than γ amongst the three algorithms (Figures 4, 6 
and Tables 2, 3).

It was therefore necessary to establish what algorithm should 
be preferred in practise, taking into account that they have the 
same aim, which is defining the steady-state stage of the run 
in a reliable, objective and hence repeatable way. In practise, 
however, the duration of the presumed steady-state stage of the 
process, the amount of infiltrated water during this stage and 
the number of considered (I and t) data points for the regression 

can differ greatly with the adopted algorithm, as shown in the 
two examples (Sa soil, Sei = 0.05; and Si soil, Sei = 0.4) reported 
in Table 4. Each algorithm has advantages and disadvantages.

An expected advantage of the T-algorithm is that as many points 
as possible are considered for linear regression, which in princi-
ple assures a good representativeness of the fitted straight line to 
the data. In particular, data with errors, such as measurement 
uncertainty in experimental data or numerical dispersion and 
oscillations in numerical data, may obscure the trend and hin-
der the characterisation of a steady-state straight line. Increasing 
the number of data points helps to capture the main trend more 
accurately. A disadvantage is that the last part of the transient 
stage of the infiltration process could be considered expressive 
of the stabilised stage. In this case, is will be overestimated and 
bs will be underestimated.

The R-algorithm minimises the risk to improperly consider the 
last part of the transient stage of the infiltration run as expres-
sive of the stabilised stage since the data used for estimating is 
and bs describe infiltration at the most advanced stage possible. 
However, the last four data points refer to a short time interval 
and a small cumulative infiltration amount. Therefore, it can be 
suspected that any rounding and/or approximation of the data 
as well as numerical errors due to solving the partial differen-
tial equation (numerical dispersion, distortion and oscillations) 
could have a not negligible effect on the estimates of the two pa-
rameters even if the data have been numerically simulated and 
hence they are free of the perturbations embedded in field and 
laboratory measurements. Furthermore, an uncertainty on the 
reference value has to be expected to also affect the estimates of 
is and bs obtained with the T-algorithm.

The RR-algorithm mediates to some extent between advantages 
and disadvantages of the T- and R-algorithms, even if it is closer 
to the R-algorithm than the T-algorithm. The number of data 
points does not differ as compared with the R-algorithm but, 
with larger time increments between data points, the steady-
state stage considered for the calculations is longer and conse-
quently more water infiltrates. This circumstance suggests a 
reduced impact of rounding and/or approximation of the data 
but also a higher risk to include the last part of the transient stage 

FIGURE 6    |    Comparison between the estimates of (a) the β 
parameter and (b) the γ parameter obtained by estimating the steady-
state conditions with the RR-algorithm (RR = reference and resampled; 
βRR and γRR) and the R-algorithm (R = reference; βR and γR).
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TABLE 3    |    Soil dependent β and γ parameters of the Haverkamp et al. (1994) infiltration model for initial saturation degrees ranging from 0.1 to 
0.3 obtained with different analysis criteria of the numerically simulated infiltration curves.

Soil

β γ

βT βR βRR Max/min Mean CV (%) γT γR γRR Max/min Mean CV (%)

Sa 1.043 0.912 0.949 1.14 0.968 6.9 0.983 0.979 0.980 1.004 0.981 0.2

LoSa 0.803 0.701 0.701 1.15 0.735 8.1 0.896 0.892 0.892 1.005 0.893 0.3

SaLo 0.721 0.595 0.617 1.21 0.644 10.5 0.786 0.777 0.778 1.012 0.780 0.6

Lo 1.202 1.031 1.119 1.17 1.117 7.7 0.747 0.734 0.741 1.018 0.740 0.9

SiLo 1.638 1.433 1.464 1.14 1.512 7.3 0.748 0.735 0.737 1.018 0.740 0.9

Si 2.178 1.852 1.987 1.18 2.006 8.2 0.775 0.756 0.764 1.025 0.765 1.2

Note: βT and γT = β and γ values obtained with the T-criterion; βR and γR = β and γ values obtained with the R-criterion; βRR and γRR = β and γ values obtained with the 
RR-criterion.
Abbreviations: CV = coefficient of variation; max = maximum; min = minimum.
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in the calculations. Zhang et al.  (2017) also concluded that, at 
least in the field, a relatively long time-step length avoids short-
time measurement errors and reduces operational difficulties.

According to this investigation, the algorithm to be preferred is 
the one yielding the most convincing estimates of bs and hence 
β since these two parameters showed a clear dependence on 
the applied algorithm whilst the dependence of is and γ was 
minimal.

As an example for the same runs considered in Table 4, Figure 8 
shows, with reference to the steady-state stage of the process es-
timated by the T-algorithm, the single bs value obtained with this 
algorithm and the intercepts calculated for all possible quatrains 
of (I and t) data. To be clearer, the first estimate of bs in the figure 
was obtained by considering the first four (I and t) data points 
falling in the steady-state stage of the run. The second pair was 
obtained by excluding the first (I and t) data point from the qua-
train and including the fifth (I and t) data point. And so on until 
the last quatrain that included the last four (I and t) pairs. This 
analysis was made by quatrains since this was the sample size 
previously considered (Yilmaz et al. 2023) to calculate the refer-
ence slope. Calculations of bs by quatrains were made for both 
the original output simulations (raw numerical data) and the re-
sampled data. The estimates of bs obtained with the T-algorithm 
were smaller than those obtained with the other two algorithms 
by the end of the run. This result reinforced the suspect that, 
with the T-algorithm, calculation of bs can be expected to be bi-
ased due to the presence, in the considered dataset, of the last 
part of the transient stage of the infiltration run. The estimates 
of bs obtained with the R-algorithm tended to stabilise by the 
end of the run but they were rather noisy. It was enough to sub-
stitute a single data point in the quatrain to obtain an appre-
ciably different estimate of bs. This circumstance raised some 
doubt about the degree of representativeness of the last quatrain 
of data for defining a reference slope and hence a reference in-
tercept. In other words, it was not possible to state that this last 
data point was not influenced by the detected noise. The noise 
in the bs values appeared less significant with the RR-algorithm, 

TABLE 4    |    Characteristics of the steady-state stage for two 
infiltration runs determined with different criteria.

Infiltration run Criterion
Δt 

(min)
ΔI 

(mm) DP

Sand Sei = 0.05 T 18.6 223.3 194

R 0.39 4.6 4

RR 3.0 36.3 4

Silt Sei = 0.4 T 213.0 33.7 214

R 3.0 0.47 4

RR 45.0 7.1 4

Note: Δt = final (tf; end of the run) – initial (ti) time of the considered steady-
state stage; ΔI = difference between the cumulative infiltration at t = tf and t = ti; 
DP = number of considered data points for the regression.
Abbreviations: R = reference; RR = resampled and reference; T = threshold.

FIGURE 8    |    Comparison between different estimates of the 
intercept, bs, of the straight line fitted to the cumulative infiltration vs. 
time, t, data during the steady-state stage of the run according to the 
T-algorithm (T = threshold).
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FIGURE 7    |    Cumulative empirical frequency distribution of the ratio 
between the estimated and true values of (a) soil sorptivity, S, and (b) 
saturated soil hydraulic conductivity, Ks (default: β = 0.6 and γ = 0.75; 
Yilmaz: β and γ values obtained by Yilmaz et  al.  (2023) with the T-
algorithm; this investigation: β and γ values obtained for a given soil 
with the RR-algorithm).
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confirming that it was preferable to the other two algorithms. In 
other words, although the RR-algorithm does not guarantee per-
fect estimates, it probably makes the impacts of the predictable 
uncertainties with the other two algorithms less relevant.

Regardless of the applied algorithm, β and γ were calculated 
by assuming that each run reached steady-state. Plotting bs 
against time can help to establish if the run has really stabilised. 
Regardless of the noise, a nearly horizontal bs vs. t relation-
ship (e.g., Figure 8a) suggests that steady-state conditions were 
achieved since, in this case, this intercept has to become con-
stant if two groups of data are extracted from the steady-state 
stage of the run. A bs vs. t relationship that ends by still signal-
ling a positive slope (e.g., Figure 8b) does not prove that steadi-
ness was not reached since the last (bs and t) data point could 
actually represent the first point of the nearly stabilised stage. 
However, it suggests the opportunity to support this hypothesis 
by performing longer simulations. A similar approach, that is 
testing presumably steady flow rates against flow rates at very 
long times, was followed in other investigations making use of 
numerically simulated data (Kindred and Reynolds 2020).

In some previous investigations it was suggested that approxi-
mations in β and γ should have a limited effect on prediction of 
soil sorptivity and saturated soil hydraulic conductivity (Nasta 
et al. 2012; Moret-Fernández et al. 2020; Rahmati et al. 2020). 
According to this investigation, a distinction has to be made 
between S and Ks. Approximations in β and γ actually have 
negligible effects with reference to prediction of S but they may 
yield unacceptable results regarding the estimate of Ks. Both 
Yilmaz et al. (2023) and this investigation provide β and γ val-
ues yielding very accurate estimates of the two soil hydrody-
namic parameters with BEST-steady (Bagarello, Di Prima, and 
Iovino  2014). In both cases, knowledge of soil textural char-
acteristics is enough to choose appropriate values for the cal-
culations. Therefore, in future applications of BEST-steady, it 
is recommended to use these new values of β and γ with the 
confidence of expecting, at least in ideal conditions, accurate 
estimates of both S and Ks.

Two points that overall emerge from this and other inves-
tigations (Lassabatere et  al.  2009; Moret-Fernández and 
Latorre 2017; Latorre et al. 2018; Moret-Fernández et al. 2020; 
Rahmati et al. 2020; Yilmaz et al. 2023) are that: (i) β cannot be 
considered a constant since it is a soil dependent parameter; and 
(ii) the estimate of bs is more uncertain than that of is. These re-
sults can be expected to have several implications, two of which 
are briefly discussed in the following.

According to Di Prima et  al.  (2020) and Yilmaz  (2021), the 
macroscopic capillary length, λc (L) (White and Sully  1987), 
used in many simplified calculation methods of Ks (Reynolds 
and Elrick 1990; Bagarello, Iovino, and Elrick 2004; Bagarello 
et  al.  2014; Bagarello, Di Prima, and Iovino  2017; Nimmo 
et  al.  2009; Stewart and Abou Najm  2018), can be obtained 
from a beerkan run reaching steady-state by the following 
relationship:

in which b can be set equal to 0.55. Both Di Prima et al. (2020) 
and Yilmaz  (2021) also suggested the following more concise 
form of Equation (11), obtained by assuming that β can be set 
equal to 0.6:

Taking into account that β = 0.6 does not represent a good choice 
for many soils, Equation (12) cannot be recommended for a gen-
eral use. Instead, λc should be estimated by Equation (11), with 
the appropriate β value for the tested soil (Table 3).

For a 3D infiltration run reaching steadiness, Ks can be estimated 
from both bs and is or only from is. Both parameters have to be con-
sidered if Ks is obtained by Equation (2), that is to say with BEST-
steady (Bagarello, Di Prima, and Iovino 2014). Only is is enough 
if, for example, the purely steady-state method by Reynolds and 
Elrick  (1990) is applied. According to this investigation, using 
only is could be considered the best choice for obtaining accurate 
estimates of Ks given that bs appears a more uncertain parameter. 
However, the reasoning to be done is more complex since, with a 
purely steady-state method, there is one equation with two un-
knowns. Therefore, obtaining Ks requires either assuming that 
the ratio between the two unknowns is known or applying an 
appropriate experimental methodology, such as the two-ponding-
depth approach for the single-ring infiltrometer (Reynolds and 
Elrick 1990). Therefore, even a purely steady-state approach can-
not be considered free from uncertainties. In other words, estab-
lishing differences between the estimates of Ks obtained with the 
two mentioned approaches (from both bs and is or only from is) 
seems a practically relevant scientific topic needing consideration.

Finally, this investigation and that by Yilmaz et al. (2023) were 
performed with reference to a single ring radius (r = 50 mm). 
The estimates of β and γ could be considered of general valid-
ity since these parameters only depend on initial and saturated 
soil water content and the hydraulic conductivity and diffu-
sivity functions (Fuentes et  al.  1998; Lassabatere et  al.  2009). 
However, considering other ring radii could be advisable to 
verify if the expected correspondence between theory and nu-
merical experiments is actually detectable. Another reason why 
these additional simulations should be made is that, according 
to Haverkamp et al.  (1994), for increasing radius but identical 
initial and boundary conditions, the value of γ increases slightly.

5   |   Conclusions

The applied algorithm to select the steady-state stage of a 3D 
numerically simulated infiltration curve can be expected not 
to influence very much estimation of the γ parameter of the 
Haverkamp infiltration model but it also has a rather apprecia-
ble impact on estimation of the β parameter. The reason is that 
the slope, is, of the straight line fitted to the data selected for 
describing steady-state conditions on the cumulative infiltration 
plot is more stable than the corresponding intercept, bs, that is 
therefore a more unstable and uncertain parameter.

None of the algorithms tested in this investigation is free 
from uncertainties and approximations but, amongst these 

(11)�c =
b

1

2(1− �)
ln
(

1

�

)

bs
θs − θi

(12)�c = 0.861
bs

θs − θi
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algorithms, the one that seems most convincing, representing 
a good compromise between advantages and disadvantages of 
the other algorithms, is the algorithm named RR. With this 
criterion, the simulated infiltration curve is initially resam-
pled at fixed and practical time intervals and then is and bs 
are obtained by linear regression analysis of the last few data 
points. These data satisfy the condition of maximum repre-
sentativeness of the stabilised stage of the infiltration run and 
simultaneously they refer to time intervals and cumulative in-
filtration amounts large enough to reduce the risk of estimates 
of is and bs being affected by rounding and approximations or 
even errors in the data.

The doubts about the reliability of the estimates of bs can be re-
duced if this parameter is calculated for all possible groups of 
data that define a cumulative infiltration curve.

It was confirmed that the β and γ parameters depend on the 
soil since, in this investigation, they were found to vary in the 
0.62–1.99 and 0.74–0.98 ranges, respectively. In the perspective 
to use the Haverkamp model for determining soil hydrodynamic 
properties, the choice of these two parameters amongst differ-
ent possible alternatives has a limited and practically negligible 
impact regarding soil sorptivity, S, but it could lead to inaccu-
rate predictions of saturated soil hydraulic conductivity, Ks. 
Therefore, it is recommended to generally use soil dependent 
parameters for the calculations of S and Ks.

The results obtained in this investigation can be expected to 
have an impact in practise, given that the T- and RR-algorithms 
are two possible options for the analysis of a Beerkan run in 
the field, and in other contexts such as estimation of the mac-
roscopic capillary length by a Beerkan run or the choice of the 
experimental methodology to be applied in the field for deter-
mining Ks by a single-ring infiltration technique.

This investigation was performed by considering a single ring 
radius and infiltration runs of long but pre-fixed duration. It 
is therefore advisable to verify if the results are confirmed in 
other contexts including other ring radii and other criteria to 
establish that steadiness has been reached by the end of the 
run. It should also be verified if the β and γ values obtained 
in this investigation apply in general to the available BEST 
algorithms.

This investigation could contribute to an improved description 
of the soil hydrodynamic properties, and hence the soil hydro-
logical processes, in relevant contexts with reference to soil ero-
sion processes and their impact on the environment.

Data Availability Statement

The data that support the findings of this study are available from the 
corresponding author upon reasonable request.

References

Angulo-Jaramillo, R., V. Bagarello, S. Di Prima, A. Gosset, M. Iovino, 
and L. Lassabatere. 2019. “Beerkan Estimation of Soil Transfer 
Parameters (BEST) Across Soils and Scales.” Journal of Hydrology 576: 
239–261. https://​doi.​org/​10.​1016/j.​jhydr​ol.​2019.​06.​007.

Angulo-Jaramillo, R., V. Bagarello, M. Iovino, and L. Lassabatere. 2016. 
Infiltration Measurements for Soil Hydraulic Characterization. Cham, 
Switzerland: Springer International Publishing.

Bagarello, V., S. Di Prima, and M. Iovino. 2014. “Comparing Alternative 
Algorithms to Analyze the Beerkan Infiltration Experiment.” Soil 
Science Society of America Journal 78, no. 3: 724–736. https://​doi.​org/​10.​
2136/​sssaj​2013.​06.​0231.

Bagarello, V., S. Di Prima, and M. Iovino. 2017. “Estimating Saturated 
Soil Hydraulic Conductivity by the Near Steady-State Phase of a Beerkan 
Infiltration Test.” Geoderma 303: 70–77. https://​doi.​org/​10.​1016/j.​geode​
rma.​2017.​04.​030.

Bagarello, V., S. Di Prima, M. Iovino, and G. Provenzano. 2014. 
“Estimating Field-Saturated Soil Hydraulic Conductivity by a Simplified 
Beerkan Infiltration Experiment.” Hydrological Processes 28, no. 3: 
1095–1103. https://​doi.​org/​10.​1002/​HYP.​9649.

Bagarello, V., and G. Giordano. 1999. “Comparison of Procedures 
to Estimate Steady Flow Rate in Field Measurement of Saturated 
Hydraulic Conductivity by the Guelph Permeameter Method.” Journal 
of Agricultural Engineering Research 74, no. 1: 63–71. https://​doi.​org/​10.​
1006/​jaer.​1999.​0437.

Bagarello, V., M. Iovino, and D. Elrick. 2004. “A Simplified Falling-
Head Technique for Rapid Determination of Field-Saturated Hydraulic 
Conductivity.” Soil Science Society of America Journal 68, no. 1: 66–73. 
https://​doi.​org/​10.​2136/​sssaj​2004.​6600.

Bagarello, V., M. Iovino, and W. D. Reynolds. 1999. “Measuring 
Hydraulic Conductivity in a Cracking Clay Soil Using the Guelph 
Permeameter.” Transactions of the American Society of Agricultural 
Engineers 42, no. 4: 957–964. https://​doi.​org/​10.​13031/​​2013.​13276​.

Braud, I., D. De Condappa, J. M. Soria, et  al. 2005. “Use of Scaled 
Forms of the Infiltration Equation for the Estimation of Unsaturated 
Soil Hydraulic Properties (The Beerkan Method).” European Journal of 
Soil Science 56, no. 3: 361–374. https://​doi.​org/​10.​1111/j.​1365-​2389.​2004.​
00660.​x.

Carsel, R. F., and R. S. Parrish. 1988. “Developing Joint Probability 
Distributions of Soil Water Retention Characteristics.” Water Resources 
Research 24, no. 5: 755–769. https://​doi.​org/​10.​1029/​WR024​i005p​00755​.

Di Prima, S., R. D. Stewart, M. R. Abou Najm, et al. 2021. “BEST-WR: An 
Adapted Algorithm for the Hydraulic Characterization of Hydrophilic 
and Water-Repellent Soils.” Journal of Hydrology 603: 126936. https://​
doi.​org/​10.​1016/j.​jhydr​ol.​2021.​126936.

Di Prima, S., R. D. Stewart, M. Castellini, et al. 2020. “Estimating the 
Macroscopic Capillary Length From Beerkan Infiltration Experiments 
and Its Impact on Saturated Soil Hydraulic Conductivity Predictions.” 
Journal of Hydrology 589: 125159. https://​doi.​org/​10.​1016/j.​jhydr​ol.​
2020.​125159.

Doerr, S. H., R. A. Shakesby, and L. H. Macdonald. 2009. “Soil Water 
Repellency: A Key Factor in Post-Fire Erosion.” In Fire Effects on Soils 
and Restoration Strategies, Soil Water Repellency, edited by A. Cerdà and 
Peter R. Robichaud. Plymouth, England: Science Publishers.

Fuentes, C., M. Vauclin, J.-Y. Parlange, and R. Haverkamp. 1998. “Soil 
Water Conductivity of a Fractal Soil.” In Fractals in Soil Science, edited 
by P. Baveye et al., 333–340. Boca Raton, FL: Lewis Publisher.

Haverkamp, R., F. Bouraoi, C. Zammitt, R. Angulo-Jaramillo, and 
J. W. Delleur. 1999. “Soil Properties and Moisture Movement in the 
Unsaturated Zone.” In The Handbook of Groundwater Engineering, ed-
ited by J. W. Delleur, 5.1–5.50. Boca Raton: CRC Press.

Haverkamp, R., D. Debionne, P. Viallet, R. Angulo-Jaramillo, and 
D. Condapa. 2005. “Soil Properties and Moisture Movement in the 
Unsaturated Zone.” In The Handbook of Groundwater Engineering, ed-
ited by J. W. Delleur, 1–59. Boca Raton: CRC Press.

Haverkamp, R., P. J. Ross, K. R. J. Smettem, and J. Y. Parlange. 
1994. “Three-Dimensional Analysis of Infiltration From the Disc 

 10991085, 2024, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.15330 by E

N
T

PE
, W

iley O
nline L

ibrary on [13/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1016/j.jhydrol.2019.06.007
https://doi.org/10.2136/sssaj2013.06.0231
https://doi.org/10.2136/sssaj2013.06.0231
https://doi.org/10.1016/j.geoderma.2017.04.030
https://doi.org/10.1016/j.geoderma.2017.04.030
https://doi.org/10.1002/HYP.9649
https://doi.org/10.1006/jaer.1999.0437
https://doi.org/10.1006/jaer.1999.0437
https://doi.org/10.2136/sssaj2004.6600
https://doi.org/10.13031/2013.13276
https://doi.org/10.1111/j.1365-2389.2004.00660.x
https://doi.org/10.1111/j.1365-2389.2004.00660.x
https://doi.org/10.1029/WR024i005p00755
https://doi.org/10.1016/j.jhydrol.2021.126936
https://doi.org/10.1016/j.jhydrol.2021.126936
https://doi.org/10.1016/j.jhydrol.2020.125159
https://doi.org/10.1016/j.jhydrol.2020.125159


15 of 15

Infiltrometer: 2. Physically Based Infiltration Equation.” Water 
Resources Research 30, no. 11: 2931–2935. https://​doi.​org/​10.​1029/​
94WR0​1788.

Kindred, J. S., and W. D. Reynolds. 2020. “Using the Borehole 
Permeameter to Estimate Saturated Hydraulic Conductivity for 
Glacially Over-Consolidated Soils.” Hydrogeology Journal 28, no. 5: 
1909–1924. https://​doi.​org/​10.​1007/​s1004​0-​020-​02149​-​3.

Lassabatère, L., R. Angulo-Jaramillo, J. M. Soria Ugalde, R. Cuenca, I. 
Braud, and R. Haverkamp. 2006. “Beerkan Estimation of Soil Transfer 
Parameters Through Infiltration Experiments-BEST.” Soil Science 
Society of America Journal 70, no. 2: 521–532. https://​doi.​org/​10.​2136/​
sssaj​2005.​0026.

Lassabatere, L., R. Angulo-Jaramillo, J. M. Soria-Ugalde, J. Šimůnek, 
and R. Haverkamp. 2009. “Numerical Evaluation of a Set of Analytical 
Infiltration Equations.” Water Resources Research 45, no. 12: 20. https://​
doi.​org/​10.​1029/​2009W​R007941.

Lassabatere, L., D. Moret-Fernández, R. Angulo-Jaramillo, S. Di Prima, 
M. Iovino, and V. Bagarello. 2018. A new constraint on parameter beta of 
Haverkamp's model for 1D water infiltration. In EGU General Assembly 
Conference Abstracts4014.

Lassabatere, L., P. E. Peyneau, D. Yilmaz, et  al. 2023. “Mixed 
Formulation for an Easy and Robust Numerical Computation of 
Sorptivity.” Hydrology and Earth System Sciences 27, no. 4: 895–915. 
https://​doi.​org/​10.​5194/​hess-​27-​895-​2023.

Latorre, B., D. Moret-Fernández, L. Lassabatere, et al. 2018. “Influence 
of the β Parameter of the Haverkamp Model on the Transient Soil Water 
Infiltration Curve.” Journal of Hydrology 564: 222–229. https://​doi.​org/​
10.​1016/j.​jhydr​ol.​2018.​07.​006.

Moret-Fernández, D., and B. Latorre. 2017. “Estimate of the Soil Water 
Retention Curve From the Sorptivity and β Parameter Calculated From 
an Upward Infiltration Experiment.” Journal of Hydrology 544: 352–
362. https://​doi.​org/​10.​1016/j.​jhydr​ol.​2016.​11.​035.

Moret-Fernández, D., B. Latorre, M. V. López, et al. 2020. “Three- and 
Four-Term Approximate Expansions of the Haverkamp Formulation 
to Estimate Soil Hydraulic Properties From Disc Infiltrometer 
Measurements.” Hydrological Processes 34, no. 26: 5543–5556. https://​
doi.​org/​10.​1002/​hyp.​13966​.

Nasta, P., L. Lassabatere, M. M. Kandelous, J. Šimůnek, and R. Angulo-
Jaramillo. 2012. “Analysis of the Role of Tortuosity and Infiltration 
Constants in the Beerkan Method.” Soil Science Society of America 
Journal 76, no. 6: 1999–2005. https://​doi.​org/​10.​2136/​sssaj​2012.​0117n​.

Nimmo, J. R., K. M. Schmidt, K. S. Perkins, and J. D. Stock. 2009. “Rapid 
Measurement of Field-Saturated Hydraulic Conductivity for Areal 
Characterization.” Vadose Zone Journal 8, no. 1: 142–149. https://​doi.​
org/​10.​2136/​vzj20​07.​0159.

Pimentel, D. 2006. “Soil Erosion: A Food and Environmental Threat.” 
Environment, Development and Sustainability 8, no. 1: 119–137. https://​
doi.​org/​10.​1007/​s1066​8-​005-​1262-​8.

Rahmati, M., J. Vanderborght, J. Šimůnek, et al. 2020. “Soil Hydraulic 
Properties Estimation From One-Dimensional Infiltration Experiments 
Using Characteristic Time Concept.” Vadose Zone Journal 19, no. 1: 22. 
https://​doi.​org/​10.​1002/​vzj2.​20068​.

Reynolds, W. D. 2011. “Measuring Soil Hydraulic Properties Using a 
Cased Borehole Permeameter: Falling-Head Analysis.” Vadose Zone 
Journal 10, no. 3: 999–1015. https://​doi.​org/​10.​2136/​vzj20​10.​0145.

Reynolds, W. D. 2013. “An Assessment of Borehole Infiltration Analyses 
for Measuring Field-Saturated Hydraulic Conductivity in the Vadose 
Zone.” Engineering Geology 159: 119–130. https://​doi.​org/​10.​1016/j.​en-
ggeo.​2013.​02.​006.

Reynolds, W. D., and D. E. Elrick. 1990. “Ponded Infiltration From a 
Single Ring: I. Analysis of Steady Flow.” Soil Science Society of America 

Journal 54, no. 5: 1233–1241. https://​doi.​org/​10.​2136/​sssaj​1990.​03615​
99500​54000​50006x.

Reynolds, W. D., and D. E. Elrick. 2002. “Pressure infiltrometer.” In 
Methods of Soil Analysis, Part 4, Physical Methods, edited by J. H. Dane 
and G. C. Topp, 826–836. Madison, WI: Soil Science Society of America.

Reynolds, W. D., D. E. Elrick, and E. G. Youngs. 2002. “Single-Ring and 
Double- or Concentric-Ring Infiltrometers.” In Methods of Soil Analysis, 
Part 4, Physical Methods, edited by J. H. Dane and G. C. Topp, 821–826. 
Madison, WI: Soil Science Society of America.

Stewart, R. D., and M. R. Abou Najm. 2018. “A Comprehensive Model 
for Single Ring Infiltration II: Estimating Field-Saturated Hydraulic 
Conductivity.” Soil Science Society of America Journal 82, no. 3: 558–567. 
https://​doi.​org/​10.​2136/​sssaj​2017.​09.​0314.

van Genuchten, M. T. 1980. “A Closed-Form Equation for Predicting 
the Hydraulic Conductivity of Unsaturated Soils.” Soil Science Society of 
America Journal 44, no. 5: 892–898. https://​doi.​org/​10.​2136/​sssaj​1980.​
03615​99500​44000​50002x.

Warrick, A. W. 1998. “Spatial variability.” In Enviromental Soil Physics 
Appendix 1D, 665–675. California: Hillel.

White, I., and M. J. Sully. 1987. “Macroscopic and Microscopic Capillary 
Length and Time Scales From Field Infiltration.” Water Resources 
Research 23, no. 8: 1514–1522. https://​doi.​org/​10.​1029/​WR023​i008p​
01514​.

Yilmaz, D. 2021. “Alternative α* Parameter Estimation for Simplified 
Beerkan Infiltration Method to Assess Soil Saturated Hydraulic 
Conductivity.” Eurasian Soil Science 54, no. 7: 1049–1058. https://​doi.​
org/​10.​1134/​S1064​22932​1070140.

Yilmaz, D., S. Bouarafa, P. E. Peyneau, R. Angulo-Jaramillo, and L. 
Lassabatere. 2019. “Assessment of Hydraulic Properties of Technosols 
Using Beerkan and Multiple Tension Disc Infiltration Methods.” 
European Journal of Soil Science 70, no. 5: 1049–1062. https://​doi.​org/​
10.​1111/​ejss.​12791​.

Yilmaz, D., L. Lassabatere, R. Angulo-Jaramillo, D. Deneele, and 
M. Legret. 2010. “Hydrodynamic Characterization of Basic Oxygen 
Furnace Slag Through an Adapted BEST Method.” Vadose Zone Journal 
9, no. 1: 10. https://​doi.​org/​10.​2136/​vzj20​09.​0039.

Yilmaz, D., L. Lassabatere, D. Moret-Fernandez, M. Rahmati, R. 
Angulo-Jaramillo, and B. Latorre. 2023. “Soil-Dependent β and γ Shape 
Parameters of the Haverkamp Infiltration Model for 3D Infiltration 
Flow.” Hydrological Processes 37, no. 6: 10. https://​doi.​org/​10.​1002/​hyp.​
14928​.

Youngs, E. G., P. B. Leeds-Harrison, and D. E. Elrick. 1995. “The 
Hydraulic Conductivity of Low Permeability Wet Soils Used as Landfill 
Lining and Capping Material: Analysis of Pressure Infiltrometer 
Measurements.” Soil Technology 8, no. 2: 153–160. https://​doi.​org/​10.​
1016/​0933-​3630(95)​00016​-​X.

Zhang, J., T. Lei, Z. Yin, Y. Hu, and X. Yang. 2017. “Effects of Time Step 
Length and Positioning Location on Ring-Measured Infiltration Rate.” 
Catena 157: 344–356. https://​doi.​org/​10.​1016/j.​catena.​2017.​05.​013.

 10991085, 2024, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.15330 by E

N
T

PE
, W

iley O
nline L

ibrary on [13/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1029/94WR01788
https://doi.org/10.1029/94WR01788
https://doi.org/10.1007/s10040-020-02149-3
https://doi.org/10.2136/sssaj2005.0026
https://doi.org/10.2136/sssaj2005.0026
https://doi.org/10.1029/2009WR007941
https://doi.org/10.1029/2009WR007941
https://doi.org/10.5194/hess-27-895-2023
https://doi.org/10.1016/j.jhydrol.2018.07.006
https://doi.org/10.1016/j.jhydrol.2018.07.006
https://doi.org/10.1016/j.jhydrol.2016.11.035
https://doi.org/10.1002/hyp.13966
https://doi.org/10.1002/hyp.13966
https://doi.org/10.2136/sssaj2012.0117n
https://doi.org/10.2136/vzj2007.0159
https://doi.org/10.2136/vzj2007.0159
https://doi.org/10.1007/s10668-005-1262-8
https://doi.org/10.1007/s10668-005-1262-8
https://doi.org/10.1002/vzj2.20068
https://doi.org/10.2136/vzj2010.0145
https://doi.org/10.1016/j.enggeo.2013.02.006
https://doi.org/10.1016/j.enggeo.2013.02.006
https://doi.org/10.2136/sssaj1990.03615995005400050006x
https://doi.org/10.2136/sssaj1990.03615995005400050006x
https://doi.org/10.2136/sssaj2017.09.0314
https://doi.org/10.2136/sssaj1980.03615995004400050002x
https://doi.org/10.2136/sssaj1980.03615995004400050002x
https://doi.org/10.1029/WR023i008p01514
https://doi.org/10.1029/WR023i008p01514
https://doi.org/10.1134/S1064229321070140
https://doi.org/10.1134/S1064229321070140
https://doi.org/10.1111/ejss.12791
https://doi.org/10.1111/ejss.12791
https://doi.org/10.2136/vzj2009.0039
https://doi.org/10.1002/hyp.14928
https://doi.org/10.1002/hyp.14928
https://doi.org/10.1016/0933-3630(95)00016-X
https://doi.org/10.1016/0933-3630(95)00016-X
https://doi.org/10.1016/j.catena.2017.05.013

	Parameterizing Haverkamp Model From the Steady-State of Numerically Generated Infiltration: Influence of Algorithms for Steady-State Selection
	ABSTRACT
	1   |   Introduction
	2   |   Materials and Methods
	2.1   |   BEST-Steady
	2.2   |   Determining β and γ From a Steady-State Beerkan Run
	2.3   |   Numerically Simulated Infiltration Data
	2.4   |   Calculations and Data Analysis

	3   |   Results
	3.1   |   Steady-State Attainment Algorithm
	3.2   |   Effect of Storing Time Step of the Numerically Simulated Infiltration Data
	3.3   |   Soil Dependent β and γ Parameters
	3.4   |   Accuracy of Soil Sorptivity and Saturated Soil Hydraulic Conductivity Estimates

	4   |   Discussion
	5   |   Conclusions
	Data Availability Statement
	References


