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Data-driven dynamical modeling using machine learning and data
assimilation

Nishant Kumar 1 and Franck Kerhervé 2 and Laurent Cordier 3

Abstract

In fluid flow problems, complex dynamics, manifested in terms of large and small scale spatio-
temporal features, is commonly encountered. Resolution of such dynamics results in high-dimensional
discretized numerical models with associated high computational cost. This renders the full-scale
models intractable in applications where repeated realizations are required, such as flow control.
Reduced-order model (ROM) offers a way to mitigate this issue by offering a low-dimensional sys-
tem which is computationally efficient and accurate. An automated data-driven inference of ROMs
circumvents the requirement of an a priori knowledge of the governing equations by relying on the
time-series data obtained from simulation or experiments for the modeling. In this paper, a non-
intrusive approach based on artificial neural network (NN-ROM) is considered for the reduced-order
modeling. NN-ROM serves as a map approximating the reduced coefficients of a high-fidelity solution
in low-dimensional space. A novel multistep, residual-based neural network framework is proposed.
The proposed approach is used to recover the dynamical states in numerical and experimental fluid
flow problems. The framework provides sufficiently accurate initial estimate. Deviations in the
long-term prediction are mitigated by augmenting the framework with data assimilation (DA),

1. Introduction

A wide range of systems in the field of fluid mechanics exhibit complex dynamics. The complexity
pertains to spatial and temporal features originating from instabilities, nonlinearities, or turbulence
which span a range from small to large scales, especially for flows involving high Reynolds number,
compressibility, or combustion. In these flow cases, very fine spatial and temporal discretizations
are required for the adequate resolution and propagation of the flow states. The numerical analysis
performed to understand the complex underlying physical phenomena involves solving the associ-
ated full-scale models governing the flow dynamics. A detailed analysis of the flow features demands
the availability of highly resolved spatio-temporal data. This requires discretized systems with high
degrees of freedom, e.g. Re9/4 for direct numerical simulations. With the advancements in numer-
ical simulations and experimental measurement tools, handling large data representing the high-
dimensional nonlinear dynamics poses the challenge of high computational cost. These high-fidelity
systems are therefore not suited for applications such as real-time control [13], multidisciplinary
optimization (MDO) [48], or uncertainty quantification (UQ) [51] where repeated realizations of the
system are required. To alleviate this computational burden, it is of key interest to develop and study
approaches that seek to reduce the size and cost of computational models while providing robust
prediction of the state of a fluid flow system and forecast its evolution. This motivates the formu-
lation of reduced, low-dimensional, efficient models representing the flow dynamics. Reduced-order
modeling offers a viable approach to facilitate the real-time turn-around of computational results
without sacrificing accuracy [3]. In this regard, a large variety of reduced-order modeling method-
ologies have been proposed over the years. One of the ways to obtain reduced-order models (ROMs)
is offered by physics-based approaches, such as, projection-based models. Alternatively, there has
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been growing interest towards non-intrusive approaches recently, such as, subspace identification
and neural networks, in which empirical ROMs are derived from the input-output data.

The dimensionality reduction of fluid flow systems is made apparent by the observation that
similar spatial flow features – like the von Kármán vortex street and Kelvin-Helmholtz instability
– emerge across a wide range of flow geometries and parameters. The occurrence of these simi-
lar prominent features indicates the existence of common underlying phenomena that capture the
essence of the flow [75]. These features are extracted using modal decomposition techniques based
on some energetic or dynamical criteria, providing modes as the spatial features of the flow, and
modal coefficients as the associated characteristic values representing the energy content levels or
growth rates and frequencies. The modes allow the realization of a low-dimensional latent space
coordinate system (reduced basis) from a high-dimensional physical space and the formulation of
a low-order approximation of the flow dynamics in terms of its dominant components. Different
methods have been employed in the literature which are unique in terms of the modal structures
that are extracted, highlighting different aspects of the flow field. Based on the inputs used for
calculating the modes, the modal decomposition methods are classified into two main groups [75] –
data-based methods which rely on flow-field data from numerical simulations or experiments , and
operator-based methods which use the operator describing the state dynamics to obtain the modes.
In this paper, the data-based modal decomposition method of proper orthogonal decomposition
(POD) [40] is considered to perform reduced-order modeling in the latent space provided by POD
modes. Other alternatives are provided by the data-based dynamic mode decomposition (DMD)
[71] or the operator-based methods such as Koopman analysis [54], global linear stability analysis
[76], and resolvent analysis [72].

The POD analysis was first introduced in the context of fluid dynamics by Lumley [50] as a way
to extract and analyze coherent structures in experimental turbulent flows, and was later used to
analyze numerical simulations of turbulent flows [62, 79]. A variant known as bi-orthogonal decom-
position (BOD) to obtain temporal structures of the modes was investigated by Aubry [5], and a
snapshot POD variant to compute both the spatial and temporal components of the modes was pro-
posed by Sirovich [73]. Subsequently, a link between POD and singular value decomposition (SVD)
enabled the formulation of a discrete dataset in terms of a simple matrix factorization, as demon-
strated by Kunisch and Volkwein [45]. Owing to the simple matrix factorization framework, POD
is a popular tool for analyzing experimental and numerical fluid mechanics. Typical applications
of POD include the identification of coherent structures from experimental data [26], flow control
[17, 13], reduced-order modeling [24], and data-driven identification of nonlinear systems [18, 49].

The ROMs are fundamentally characterized by the reduced basis that defines them. Here, the
POD modal decomposition has been used to obtain low-dimensional and computationally tractable
ROMs, providing approximations of the high-fidelity dynamics with low computational times [53,
56]. Other commonly used projection methods for constructing ROMs are DMD method [77],
reduced basis method [61, 36, 42], cross Gramian method [10, 38], piecewise tangential interpolation
method [9], matrix interpolation method [58, 25], approximate balancing method [21], and balanced
truncation method [35, 47, 52]. The choice of the projection method to represent the dynamics has
direct implications on the success of the subsequent modeling and flow analysis. The methods based
on POD and its variants have been applied successfully to numerous research fields including fluid
flow control [2, 7, 8, 14, 22, 39, 46] and data assimilation [19, 27, 74, 64]. The complexity of the
models used in practical applications means that numerical packages for creating and computing
these models are not readily available. Several strategies are used to circumvent this issue regarding
model complexity and based on their dependency on governing equations, the ROMs are divided
into two categories [30] – physics-based intrusive ROM and purely data-driven non-intrusive ROM.

The classical POD-Galerkin projection approach has been found to provide an efficient and
accurate way to generate ROMs [6, 12] along with successful implementation closure models that
have been suggested in order to model the effects of discarded modes [57]. However, it has been
found that the dynamics corresponding to certain flow phenomena is not captured accurately by the
few dominant spatial modes [67]. The truncation also introduces instability in the projection-based
ROM [70]. Inclusion of more modes to counter this limitation and recover the embedded structures
leads to an increase in the computational expense which may render the ROM computationally
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inefficient. The construction of a reduced-order state space is also crucial in control as each degree
of freedom can potentially amplify noise [28]. Also, the low-dimensional deterministic ROM fails
to resolve the frequency range of the high-dimensional Navier-Stokes solutions [6]. Moreover, the
development of intrusive ROMs is hindered if the source code describing the physical model is not
available or if it is too complicated, which is often the case for legacy codes.

Due to these limitations, there is a recent interest in non-intrusive reduced-order modeling as
these models do not require the knowledge of the physical system while attempting to accurately
approximate the truncated basis. Several NIROMs following different approaches have been proposed
in the literature. An approach for reduced-order modeling based on neural networks was introduced
by Noack et al. [56]. A neural network is a form of machine learning method which is capable of
approximating an arbitrary function using observed data. The neural network based reduced-order
models has been applied in several fluid dynamics applications [60, 20, 37, 59, 78]. A neural network
derived from simulation of a cylinder wake flow was used by Gillies [31] for controlling a self-excited
cylinder wake oscillations. This empirical model of the modal response of the wake to external forcing
was then used to design a closed-loop control algorithm. A non-intrusive POD-ROM for aerodynamic
shape optimization was developed by Iuliano and Quagliarella [43]. A NIROM framework based on
POD and radial basis function (RBF) and the discrete empirical interpolation method (DEIM)
algorithm using artificial neural network (ANN) was proposed by Winter and Breitsamter [81] and
Guenot et al. [34]. A kernel method based on both support vector machines (SVMs) and a vectorial
kernel greedy algorithm was proposed by Wirtz and Haasdonk [82]. A NIROM based on constrained
POD (CPOD) and Kriging interpolation method was proposed by Xiao et al. [83]. A non-intrusive
method for the polynomial chaos representation to extract a set of optimal basis functions from a
coarser mesh and use it to perform finer mesh analysis was presented by Raisee et al. [65].

In this paper, a novel artificial neural network (ANN) framework – named NN-ROM for neural
network reduced-order model – is presented as a NIROM method for the time series prediction
of transient dynamics of the POD modes. This strategy is based on the multistep configuration
of the deep neural network (DNN) presented by Pawar et al. [59] where the values of the states
at previous time steps are used to obtain the time evolution of the POD projection coefficients.
Additionally, as this NIROM framework provides sequential estimates of the dynamics, it can be
considered as a forward model in the data assimilation paradigm of ensemble Kalman filter (EnKF)
while assimilating the estimates and observations.

The workflow of the dynamical modeling and reconstruction approach involves a sequence of
three main operations. First, data-based modal decomposition is performed using the high-fidelity
snapshots in the physical space in order to extract the reduced basis in the latent space. Next,
the reduced-order model in terms of the latent space variables is identified using the non-intrusive
approach. Lastly, the identified model, augmented with data assimilation, is used to obtain future
estimates of the latent space variables which, in turn, can be used to provide high-fidelity recon-
structions in the physical space. In Sec. 2.1, the data-based modal decomposition technique, namely
POD, used to extract the reduced bases from high-dimensional nonlinear flow data is described.
In Sec. 2.2, the non-intrusive ROM framework based on deep neural network, which is capable of
providing iterative predictions of the dynamical component of POD, is presented. The EnKF data
assimilation method used to assimilate the model estimates with observations in order to provide
long-term predictions is also described. In Sec. 3, the neural network based non-intrusive ROM
(NN-ROM) is applied to a toy model and two fluid flow problems and the results are discussed.
The consideration of memory effect by the NN-ROM is demonstrated for Lorenz-63 system. Also,
the sequential NN-ROM is combined with the EnKF data assimilation algorithm to enable long-
term predictions of the dynamics of a cylinder wake flow at high Reynolds number. Finally, Sec. 4
summarizes the most important results and proposes some perspectives for future work.

2. Reduced-order modeling and dynamical prediction

The modal decomposition technique used to provide a reduced basis for the representation of
high-dimensional nonlinear flow systems and the non-intrusive approach to obtain the reduced-order
model, augmented with data assimilation for long-term prediction, are discussed in this section.
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2.1. POD modal decomposition
Proper orthogonal decomposition (POD) is a method to determine energetically optimal set of

modes to represent the data which was introduced by Lumley [50] as a mean to deterministically
identify the large-scale structures present in turbulent flows. As POD is a data-based method, it
only requires the information of the scalar (e.g. pressure, temperature) or vectorial (e.g. velocity,
vorticity) elements associated with the linear or nonlinear dynamics. Let us consider a field q(χ, t),
where χ is the vector representing the relevant spatial coordinates and t is a scalar time. Let q′(χ, t)
be the fluctuating component which is obtained by subtracting the temporal mean q(χ) from the
field q,

q′(χ, t) = q(χ, t)− q(χ). (1)

The goal is to decompose the fluctuating field into a set of deterministic spatial functions modulated
by time coefficients, i.e.

q′(χ, t) =
+∞∑
i=1

ai(t)Φi(χ), (2)

where, Φi and ai represent the POD (spatial) modes and the modal coefficients, respectively. In the
POD framework, we seek the “proper” or optimal basis functions Φi such that the projection of the
field q′ on the first K spatial function Φi is maximized on average, irrespective of the value of K.
We assume that the field q′ is defined at discrete times tk, where k = 1, . . . , Nt, with Nt being the
total number of snapshots of the field. The corresponding POD maximization problem is given as4

max
{Φi}Ki=1

Nt∑
j=1
‖ΠPODq

′(χ, tj)‖2Ω , (3a)

subject to

‖Φk‖2Ω = 1 k = 1, · · · ,K, (3b)

where ΠPOD is the orthogonal projector on the space spanned by the first K functions Φi, i.e.

ΠPODq
′(χ, tj) =

K∑
k=1
〈q′(χ, tj),Φk(χ)〉Ω Φk(χ). (4)

Since ΠPOD is an orthogonal projector, the maximization problem (3) is equivalent to the minimiza-
tion problem given by

min
{Φi}Ki=1

Nt∑
j=1
‖q′(χ, tj)−ΠPODq

′(χ, tj)‖2Ω . (5)

This means that for any subspace of size K, POD optimizes the averaged residual with respect to
the norm (4) [see 23, for instance]. The POD method allows the representation of a signal using
a minimum number of modes, which suits reduced-order modeling. Hereafter, we introduce the
solution of the constrained maximization problem (3) in terms of correlation matrix.

The data obtained from experiments or numerical simulations are always finite-dimensional. Con-
sequently, the field q′(χ, tj) is considered to be defined at discrete spatial points χj (j = 1, . . . , Nχ)
where Nχ is the number of spatial grid points. The fluctuating component of the field in (1) can be

4The definitions of the inner product and its induced norm is introduced. Let qI and qII be two given fields defined
in a spatial domain, the spatial inner product is defined as〈

qI(χ, t), qII(χ, t)
〉

Ω
:=
∫
Ω

qI(χ, t) · qII(χ, t) dχ,

where the dot represents the Euclidean inner product. The induced norm is
∥∥qI∥∥

Ω =
√
〈qI, qI〉Ω.
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re-written in the discrete space as

q′(χj , tk) = q(χj , tk)− q(χj), j = 1, . . . , Nχ, k = 1, . . . , Nt. (6)

Here, q′(χj , tk) ∈ RNc×1, where Nc is the number of components of the input data (e.g. Nc = 2 for
a two-dimensional velocity field, Nc = 1 for a pressure field). We also introduce Ns = Nχ ×Nc as
the number of spatial points saved per time snapshot. The ensemble of snapshots q′(χ, tk) ∈ RNs×1

can be summarized into a snapshot matrix X as

X = [q′(χ, t1) q′(χ, t2) · · · q′(χ, tNt)] ∈ RNs×Nt . (7)

The velocity fluctuation are essentially random but there exists some order in the randomness.
The order is observed in the form of coherent structures which are identified via zones where the
fluid motion is synchronized and the fluctuations q′(χ, t) are correlated. The correlation of the
data is verified by computing its covariance matrix. In the direct method, the covariance matrix is
calculated using the snapshot matrix X ∈ RNs×Nt defined in (7) to construct a spatial covariance
matrix as Cs = XX>/(Nt − 1). However, the snapshot POD method introduced by Sirovich [73] is
considered here. The method uses the snapshot matrix to construct a temporal correlation matrix
as

Ct = 1
Ns − 1X

>X ∈ RNt×Nt . (8)

The snapshot POD is preferred over the direct method as in most practical cases, the number of
spatial measurement points is larger than the number of snapshots, i.e. Nχ � Nt. This makes
the covariance matrix Ct memory efficient and computationally more tractable as compared to the
spatial covariance matrix Cs.

It has been shown that the optimal basis vectors Φi for data projection are obtained from the
eigenvectors of the covariance matrix Cs [50]. However, the spatial coefficients and temporal modes
of the snapshot method, differ from the spatial modes and temporal coefficients of the direct method
by a multiplicative factor. The eigenvalues obtained using both the methods remain the same. The
eigendecomposition of Ct provides deterministic temporal modes At ∈ RNt×Nt and eigenvalues
Λ ∈ RNt×Nt as

Ct = AtΛA−1
t . (9)

The stochastic spatial coefficients Φt are then obtained by projecting the fluctuation data matrix
X on the temporal basis At as

Φt = XA>t ∈ RNs×Nt . (10)

The matrix Φt contains the Nt spatial coefficients (equivalent to the spatial modes of the direct
method), ordered energetically along the columns.

To match the results of both methods, we normalize each spatial coefficient of the snapshot
POD5 and scale the temporal modes accordingly. The spatial coefficients of the snapshot POD are
normalized to obtain the spatial modes, which are orthonormal and equivalent to those obtained
from direct method, as

Φ = 1√
Ns − 1

XAtΛ−1/2 ∈ RNs×Nt . (11)

Finally, the temporal coefficients of the direct method are obtained from the spatial modes as

A = Φ>X ∈ RNt×Nt , (12)

where an element Aik of the matrix A, represents the projection of the data measured at time tk on

5The spatial modes Φ in the direct method are orthonormal as they originate from the eigendecomposition of the
symmetric correlation matrix Cs. On the other hand, the spatial modes Φt in the snapshot POD are not orthonormal
as Φt is not obtained directly from eigendecomposition but derived through projection (10).
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mode Φi, given as

Aik = ai(tk) = Φi(χ)>q′(χ, tk) (13)

=
Ns∑
j=1

(Φi)m(j) (χn(j))q′m(j)(χn(j), tk), where m(j) = dj/Nχe. (14)

Herem(j) ∈ [1, Nc] indicates the component of the fluctuation vector, and n(j) = j−(m(j)− 1)Nχ ∈
[1, Nχ] is the spatial coordinate index.

The eigenvalues rank the correlation with respect to the variance of the data. In fluid dynamics, if
the fluctuations q′ are obtained from velocity measurements, and if the inner product (4) is used, this
corresponds to a ranking based on the turbulent kinetic energy (TKE) of the velocity fluctuations.
The individual eigenvalues λi therefore represent the TKE associated with the i-th mode and are
ordered in the matrix Λ based on their contribution to the total TKE. Based on this relationship
between the eigenvalues and TKE, we introduce an energetic criterion to determine the number of
modes that are necessary to sufficiently capture the flow dynamics. The criterion, known as relative
information content or RIC [13], is the fraction of total energy that is represented by an ensemble
of first n modes, given as

RIC (n) =
n∑
i=1

λi

/
Nt∑
i=1

λi ∈ (0, 1] ∀n ≤ Nt. (15)

2.2. Non-intrusive reduced-order modeling
In the proposed non-intrusive ROM (NIROM) framework, the projection step of intrusive ROM

is bypassed with a neural network architecture which is capable of approximating the nonlinear
functions and used as a forward model for dynamical prediction of the temporal POD coefficients.
Unlike reduced-order models based on Galerkin projection, the NIROM is not physically inter-
pretable. However, the ANN construction allows to represent nonlinear relationships that cannot
be expressed explicitly in functional form. The strategy presented here corresponds to the approach
where the neural network approximates the map between the time and state values at previous time
steps as inputs, and the residuals of temporal POD coefficients as outputs [59, 78]. For a given time
history of coefficients, the NIROM sequentially provides the projection coefficients at the subsequent
time steps. Here, the main elements of the neural network-based ROM (NN-ROM) are presented.

2.2.1. Regression via neural network
The ability of deep neural network (DNN) to approximate nonlinear dynamical systems is used

to obtain surrogate models that can iteratively predict the temporal dynamics of POD coefficients.
In the proposed framework, the multistep and residual-based approaches have been combined.

• The multistep approach [66] consists of using the time history of a set of POD coefficients to
predict a future state of the system, similar to classical time-stepping schemes like backward
differentiation formulation (BDF). This approach allows to incorporate the memory effect,
which helps to tackle the challenges of learning nonlinear temporal dynamics.

• The residual approach [63, 69] involves having the residuals calculated using consecutive values
of POD coefficients, given as

r(tk+1) = a(tk+1)− a(tk), (16)

instead of the sequential values of the solution trajectory given by {a(tk),a(tk+1), . . .}. Al-
though both formulations are mathematically equivalent, this simple transformation has been
shown to yield relatively more stable and accurate results.

The regression setup includes offline and online stages. In the offline stage, the DNN model,
henceforth referred as neural network-based ROM or NN-ROM, is trained in a supervised learning
paradigm by using high-fidelity POD data in order to determine approximate maps between the
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inputs (past projection coefficients and time) and residuals r(t). In the online stage, the learned
NN-ROM is rapidly evaluated to obtain the predicted projection coefficients corresponding to the
new sets of inputs.

Combining the above concepts, the NN-ROM fNN is formulated as a map between the input
features, i.e. time step tk and POD coefficients aPOD(tk), and the targets given in terms of the
residuals r(tk+1). Let W and b be the weights and biases of the model. The discrete form of fNN

is given by

r(tk+1) = fNN (aPOD(tk−p+1), . . . ,aPOD(tk);W , b
)

+ εk+1,

∀ p = 1, . . . , NTrain
t − 1, and k = p− 1, . . . , NTrain

t − 2,
(17)

where εk+1 is the modeling error at time step k+1. After training the DNN (offline stage, Sec. 2.2.2),
the learned weights and biases (W ∗ and b∗) are used to predict sequentially the temporal dynamics
(online stage) as

aNN(tk+1) = aNN(tk) + fNN(aNN(tk−p+1), . . . ,aNN(tk);W ∗, b∗),
∀ p = 1, . . . , NPred

t − 1, and k = p− 1, . . . , NPred
t − 1.

(18)

In (17) and (18), the superscripts “Train” and “Pred” are used to distinguish the variables pertaining
to the training and prediction regimes. Here, aNN(tk) ∈ RNr×1 represents the POD projection
coefficients obtained from the DNN framework at time instant tk while aPOD(tk) ∈ RNr×1 represents
the coefficients obtained from high-fidelity dataset used to train the NN-ROM. The model is trained
using data from NTrain

t time steps and used to predict the evolution for NPred
t time steps. Nr is the

number of modes considered in the reduced space based on the criteria (15).
The features (input) and target (output) data are arranged in matrices to facilitate the training of

the NN-ROM. The computed POD coefficients aPOD
i (tk), for all i = 1, . . . , Nr and k = 0, . . . , NTrain

t ,
are used to define the matrix of input features A ∈ R(NTrain

t −p)×(Nr×p+1) given as

A =


tp aPOD

1 (t0) · · · aPOD
Nr (t0) · · · aPOD

Nr (tp−1)
tp+1 aPOD

1 (t1) · · · aPOD
Nr (t1) · · · aPOD

Nr (tp)
...

...
. . .

...
. . .

...
tNTrain
t −1 aPOD

1 (tNTrain
t −p−1) · · · aPOD

Nr (tNTrain
t −p−1) · · · aPOD

Nr (tNTrain
t −2)

 . (19)

As the input is made of non-homogeneous features, i.e. time and POD coefficients, the individual
scale and distribution can be different for each variable. To avoid sensitivity to certain input values6,
normalization of the input matrix is performed [41]. The rescaled input features are obtained from
row-wise normalization as

A:,i ←
A:,i −min(A:,i)

max(A:,i)−min(A:,i)
. (20)

In addition, we introduce R ∈ R(NTrain
t −p)×Nr the matrix of residuals r(t) as

R =


r1(tp) r2(tp) · · · rNr (tp)
r1(tp+1) r2(tp+1) · · · rNr (tp+1)

...
...

. . .
...

r1(tNTrain
t −1) r2(tNTrain

t −1) · · · rNr (tNTrain
t −1)

 . (21)

Each row of the input features in the matrix A, i.e. current time instant and available POD
coefficients at previous p time steps, corresponds to a row of target values in the matrix R. The

6For instance, the training process might associate large weight values with large-valued inputs. Such a model
with large weight values is often unstable.
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(a)

+

(b)

Figure 1: Architecture of NN-ROM fNN corresponding to (a) offline, and (b) online stages. In the offline
training stage, the input features consist of the time (t) and POD modal coefficients (aPOD(t)), and the
residuals (r(t)) form the targets. For simplicity, only one node is shown for each input and output in vector
form and the corresponding actual number of nodes is indicated within square brackets. For the hidden
layers, σ is the activation function associated with each unit. In the online prediction stage, the learned
forward model fNN(W ∗, b∗) is used to obtain the sequential solution aNN(t).

regression problem (17) can be rewritten in matrix form as

R ≈ R̂ = fNN(A;W , b), (22)

where we denote the output of the neural network as R̂ in order to distinguish it from the matrix
R used during training.

The NN-ROM (18) can be considered as a one-step numerical integrator which can be solved to
obtain trajectories of the temporal POD coefficients a(t), similar to the Galerkin projection based
POD-ROM [56]. Note that this integrator is “exact” in time (i.e. without temporal errors with
respect to discretization, order of approximation, etc.) in the sense that the only error appears from
the neural network approximation of the model operators defining the governing equations. This
equation-free, non-intrusive regression framework offers an advantage by being purely data-driven,
thus reducing the uncertainties associated with the model-form.

2.2.2. NN-ROM training and prediction
A supervised learning method, known as backpropagation algorithm (often simply called back-

prop), is used to train the NN-ROM. The gradient-based backprop approach attempts to optimize
the internal weightings of the NN-ROM during training such that the error between input signals
and the expected output signal is low. Here, the training is performed using the open-source machine
learning library TensorFlow [1].

Backprop requires a DNN where each layer is densely connected, i.e. fully connected to the
previous and next layers, as shown in Fig. 1(a). The DNN consists of L layers, with the number
of nodes (also called neurons) in the l-th layer given as n[l] for all l = 1, . . . , L. An input layer
consists of n[1] = (Nr × p) + 1 nodes corresponding to features which include the current time
instant tk ∈ R1 and the available POD coefficients at previous p time steps aPOD(tk′) ∈ RNr×1, for
all k′ = k − p + 1, . . . , k. The output layer consists of n[L] = Nr nodes corresponding to the target
residual vector r(tk′) ∈ RNr×1. The hidden layers, indexed l = 2, . . . , L − 1, consist of n[l] hidden
units each. It can also be noted that the the number of nodes n[1] and n[L] in the input and output
layers are assigned vis-à-vis the number of columns in the feature matrix A (19) and the residual
matrix R (21), respectively.

Supervised learning is performed during offline training to determine a set of regression parame-
ters of the DNN model such that the error between the model output and targets is minimized. The
regression parameters that are optimized are the linear weights W [l] and biases b[l] associated with
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the neural network nodes in the hidden layers. The weights are coefficients associated with each of
the node inputs to which the bias associated with the node is added. The result is passed through
a node’s predefined activation function (σ), indicated in the nodes in the hidden layers in Fig. 1(a),
to obtain the node output. In this work, the rectified linear unit (ReLU) is used as the activation
function, which offers ease of optimization with gradient-based methods [33] and is able to compute
highly complex functions [55]. The weights and biases pertaining to each hidden layer can be stored
in dictionaries as W := {W [2], . . . ,W [L−1]}, with W [l] ∈ Rn[l]×n[l−1] , and b := {b[2], . . . , b[L−1]},
with b[l] ∈ Rn[l]×1, which together form the model training variables Θ := {W , b}. The weights are
initialized using normalized initialization [32] and the biases are initialized with small values (∼ 0.1)
to avoid loss of gradients caused by saturation of nodes [33]. The values of parameters in Θ govern
the accuracy with which the NN-ROM is able to map the features to the target.

After the initialization, forward propagation is performed by propagating the features A through
layers of DNN and obtaining the residuals R̂, which are compared with the targets R in order
to optimize the training variables Θ. From another perspective, for a given input-target training
pair (A,R), the training variables Θ can be mapped to a loss function L(R̂,R). The loss is
generally formulated using disjoint, randomly selected subsets of the input features and targets
called minibatch. Subsets of A provide Nmb minibatches {A(j) ∈ RNb×(Nr×p+1) | j = 1, . . . , Nmb}
of size Nb < (NTrain

t − p). Similarly, the target minibatches {R(j) ∈ RNb×Nr | j = 1, . . . , Nmb}
are also drawn from R. Training on minibatches increases the number of optimization steps by
a factor of Nmb. However, most optimization algorithms converge much faster in terms of the
overall computation time if the approximate estimates of the gradient are rapidly computed over
minibatches, as compared to when the exact gradients are computed over the entire training set
[33]. The loss function for the j-th minibatch as a function of the DNN predictions and predefined
targets is given as

L(R̂
(j)
,R(j)) = E[‖R̂

(j)
−R(j)‖2] = 1

2Nb

Nr∑
i=1

Nb∑
k=1

(R̂(j)
k,i −R

(j)
k,i)

2, ∀j = 1, . . . , Nmb. (23)

In order to limit the errors of the learning algorithm, a regularization factor is also defined in terms
of the norm of the training variables as

Ω(W ) = 1
2w
>w = 1

2

L∑
l=1

n[l−1]∑
q=1

n[l]∑
p=1

(W [l]
p,q)2, (24)

where w is the vector with weights contained in the dictionaryW as elements. A L2 regularized cost
function (or objective function) for the j-the minibatch is defined by combining the loss function
(23) and the penalty (24) as

C(j) = L(R̂
(j)
,R(j)) + λΩ(W ), ∀j = 1, . . . , Nmb. (25)

The hyperparameter λ > 0 weighs the contribution of the penalty term to the cost function with
respect to the standard loss function. The weight-based regularization attempts to limit the gen-
eralization error of the learning algorithm by penalizing large weights that do not have a large
contribution in the reduction of the cost function. The iteration over all the minibatches during
learning constitutes one training epoch. The total number of training epochs Nepochs is defined by
the user and should be sufficiently large such that convergence is reached.

After the forward pass, the backpropagation algorithm [68] allows the information from the scalar
cost function C(j) to flow backwards through the network for computing the gradients ∇W [l]C(j) and
∇b[l]C(j) with respect to the weights and biases respectively. The gradients computed from the
minibatches of input data are subsequently used in a gradient descent-based optimization to update
the training variables (weights and biases) such that the cost function (25) is minimized. In this
work, the adaptive learning rate optimization algorithm known as Adam [44] is used. The algorithms
of this class address the high sensitivity of the cost function to some directions in the space of training
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variables by automatically adapting the learning rate throughout the course of training [33].
The performance of the optimization algorithm over the course of the training epochs is monitored

by plotting an error metric evaluated over a validation dataset that is kept hidden from the training
algorithm. The validation dataset is constructed by splitting the available input features and targets
into disjoint subsets, one of size NTrain

t , which has been used to train the model variables, and
another of size NVal

t used for validation7. The validation set is used to estimate the generalization
error during training, allowing the training hyperparameters to be updated accordingly. The model
is evaluated throughout the training epochs to obtain the validation set estimates as

aVal,NN(tk+1) = aVal,POD(tk) + fNN(aVal,POD(tk−p+1), . . . ,aVal,POD(tk);W ∗, b∗),
∀ p = 1, . . . , NVal

t − 1, and k = p− 1, . . . , NVal
t − 1.

(26)

Here, fNN(W ∗, b∗) is the DNN model with trained weights and biases. The number of time lags
p is the same as the one used during training. The validation subset aVal,POD(tk) ∈ RNr×1 is
considered to be separate from the training dataset, and the NN-ROM estimation is represented by
aVal,NN(tk+1). The error metric, in terms of root-mean-square error (RMSEVal), used to gauge the
performance of the optimization algorithm is given as

RMSEVal =

√√√√ 1
NVal
t

NVal
t −1∑
k=0

‖aVal,NN(tk)− aVal,POD(tk)‖22. (27)

A comparison of this metric with the training error RMSETrain determines if the model is underfitting
or overfitting the dataset during the course of the training. Underfitting occurs when the model is
not able to obtain a sufficiently low training error value on the training set, while overfitting occurs
when the gap between the training error and test error is too large. The objective is therefore to
obtain a model with sufficiently low generalization error at the end of the offline training stage,
which often requires tuning the regularization coefficient in (25) and the model hyperparameters.

Lastly, the trained NN-ROM is used to obtain online predictions of the POD coefficients using
(18), as outlined in Fig. 1(b). The output of the model in terms of residuals r(tk) is transformed to
POD coefficients at the time step tk+1 by adding it to the POD coefficients at time step tk, already
available as inputs, as follows

aNN(tk+1) = aNN(tk) + r(tk). (28)

The prediction of the dynamics at subsequent time steps (tp, . . . , tNPred
t −1) is obtained by recursive

feedback of the output POD coefficients to the input sequence of p time lag steps.

2.3. Ensemble Kalman filter (EnKF) augmented NN-ROM estimation
As the NN-ROM framework is generated using the latent space variables obtained solely from the

snapshot data, it may suffer from the fundamental challenges of model reduction that are typically
faced by the traditional POD-Galerkin models, among which is the accurate prediction of dynamics
over long-term horizons. One way to mitigate the resulting inaccuracy of the estimations is to merge
this framework into a data assimilation algorithm. The ability of the DNN framework to take the
memory effect into account in order to predict the future state of the system makes it amenable
to be used as a forecast model in sequential data assimilation (DA) algorithms. This also gives a
possibility to provide an optimal estimation of the dynamical system, by taking into consideration
the statistical confidences of both the model outputs and the observations, and nudging the ROM
solution towards the true dynamics. Here, the NN-ROM is therefore augmented with the sequential
DA method of ensemble Kalman filter (EnKF). The combined framework is hereafter referred as
NN-ROM-DA.

7A third disjoint subset of size NTest
t , called the test set, is also drawn from the available input features and targets

to estimate the generalization error after the training has been completed. Usually the splitting is done such that 70%
of the available data is used for learning the model, which is a combination of training (55% of total) and validation
(15% of total) datasets. The remaining 30% is used for testing the trained model.

10



In the current context, DA is defined as a methodology for an optimal estimation of the states
by combining both the background solution from the models and incoming imperfect information
from the observations while taking into account the respective statistical confidences of the two
complimentary, but incomplete and/or inaccurate, sources of information. A class of DA methods,
known as sequential (probabilistic) DA [4] has been considered. This approach seeks solutions
with minimum variance and provides rich information in terms of its mean value and probability
distribution. The sequential approach of Kalman filter (KF) is a the most well-known and often-used
toolbox for stochastic estimation. However, it assumes the uncertainties in the stochastic states and
observations to be Gaussian distributed, and requires the model and observation operators to be
linear. For handling models following non-Gaussian statistics and/or nonlinear operators, the use
of ensemble Kalman filter (EnKF) was proposed by Evensen [29].

EnKF uses the Monte Carlo (MC) method to empirically represent the statistical characteristics
of the estimator. The statistics during the course of sequential estimation are estimated from the
propagation of a finite ensemble of samples (particles) generated using a forced random walk of the
states of interest. The EnKF can be seen as a reduced-order KF as it only handles first two moments
(mean and covariance) of the error statistics which loosely mimics the Gaussian filter. Generally, due
to this truncation of statistics, the EnKF does not solve the Bayesian filtering problem. However,
EnKF has been shown to provide a good approximate algorithm to the filtering problem.

In the NN-ROM-DA framework, the learned NN-ROM constitutes the forward model. The
nonlinear, time-discrete model of the dynamical system and the observation equation at the time
instant tk are therefore given as aNN(tk) = aNN(tk−1) + fNN({aNN(tl)}k−1

l=k−p;W
∗, b∗) + ηk, ηk ∼ N (0,Qk),

yo(tk) = Hk(aNN(tk)) + εok, εok ∼ N (0,Rk).
(29)

The term ηk ∈ RNr is the model error of the true (unknown) process at time tk. The error is
represented here as a stochastic additive term and accounts for the cumulative errors in the the
model parameters and the unresolved scales. The noisy discrete time observation is represented by
the vector yo ∈ RNo , where No is the number of components of observation (e.g. number of probes).
The superscript “o” is used to differentiate the imperfect (noisy) observations from the actual (noise-
free) observations y(tk). The nonlinear observation function is given by Hk : RNr → RNo . An
additive observation error term εok ∈ RNo is included which accounts for the instrument error,
deficiencies in the observation operator, and the representation error arising from unresolved scales.
The model error ηk and observation error εok are assumed to be unbiased and uncorrelated. Next, the
EnKF is performed sequentially by following a forecast-analysis (or prediction-correction) scheme.

2.3.1. Forecast step
During the forecast step, an ensemble of forecasted states is constructed by propagating each of

the Ne members (particles) of the ensemble with the evolution model in (29). Each particle in the
state-space evolves independently as

af,(n)(tk) = aa,(n)(tk−1) + fNN({aa,(n)(tl)}k−1
l=k−p;W

∗, b∗) + η(n)
k , η

(n)
k ∼ N (0,Qk), (30)

where n = 1, . . . , Ne is the sample index. The superscript “NN” has been omitted from the temporal
POD coefficients for simplicity. The vector af,(n)(tk) represents the n-th member of the ensemble
of forecast states at the instant tk and η(n)

k is the associated model error. The vector aa,(n)(tk−1) is
the corresponding member of the ensemble of corrected (analyzed) states at a previous time instant
tk−1. The unbiased empirical estimator of the forecast error covariance matrix P f

k , P
f,e
k , is obtained

as

P f,e
k = 1

Ne − 1

Ne∑
n=1

(af,(n)(tk)− af (tk))(af,(n)(tk)− af (tk))>, (31)
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Figure 2: Schematic of the EnKF data assimilation method. The filled symbols represent the mean values
and the hollow circles represent the ensemble members; the ensemble set itself is indicated by the shaded
region around the respective mean values of the analyzed (red) and forecast (blue) states. The dashed lines
represent the trajectories of the particles in the state ensemble propagated by the model from one time step
to the next. The corrections of the propagated values obtained at the observation times is indicated by black
arrows.

where the empirical mean af (tk) of the ensemble of forecast state is obtained as

af (tk) = 1
Ne

Ne∑
n=1

af,(n)(tk). (32)

The observations are considered as random variables. This is ensured by keeping the value centered
around the actual observation and adding a random perturbation drawn from a Gaussian distribution
with covariance Rk such that

yo,(n)(tk) = yo(tk) + εo,(n)
k , ε

o,(n)
k ∼ N (0,Rk). (33)

The vector yo,(n)(tk) represents the n-th member of the observation ensemble at the instant tk and
ε
o,(n)
k represents the associated perturbation. The unbiased (zero-mean) empirical estimator Re

k of
the observation error covariance matrix is given as

Re
k = E[εo,(n)

k (εo,(n)
k )>] = 1

Ne − 1

Ne∑
n=1

ε
o,(n)
k (εo,(n)

k )>. (34)

As the number of MC elements tends to infinity, the empirical estimator Re
k tends to the full-rank

observation error covariance matrix Rk.

2.3.2. Analysis step
The analysis step consists of updating each member from the ensemble of forecasted states using

the actual observation by applying a linear correction as follows

aa,(n)(tk) = af,(n)(tk) +Ke
k(yo,(n)(tk)− yf,(n)(tk))

= af,(n)(tk) +Ke
k(yo(tk) + εo,(n)

k −Hk(af,(n)(tk))).
(35)

The vector aa,(n)(tk) represents the n-th member of the ensemble of analyzed state. The ensemble
Kalman gain Ke

k is expressed in terms of the ensemble covariances as

Ke
k = P f,e

k H>k(HkP
f,e
k H>k +Rk)−1. (36)

This terminates the analysis step at the instant tk. We note that the linearized evolution model
has not been used in the algorithm which makes it useful in a significantly nonlinear regime. The
prediction-correction trajectory of the model state vector is shown in Fig. 2.
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2.3.3. Kalman gain for nonlinear observation operator
The Kalman gain (36) requires the tangent linear model Hk of the observation operator Hk to

be determined at each time step tk for the terms P f,e
k H>k and HkP

f,e
k H>k, which can be expen-

sive. However, these two terms can be estimated by using the full nonlinear observation operator.
Following the derivation provided by Asch et al. [4], a fully ensemble-based Kalman gain is given as

Ke
k = P f,e

ay,k(P f,e
yy,k +Re

k)−1, (37)

where the sample estimate P f,e
ay,k of the term P f,e

k H>k is given in terms of a cross-covariance of the
forecast state af,(n)(tk) and forecast observation yf,(n)(tk) as

P f,e
ay,k := 1

Ne − 1

Ne∑
n=1

(af,(n)(tk)− af (tk))(yf,(n)(tk)− yf (tk))>, (38)

and the sample estimate P f,e
yy,k of the term HkP

f,e
k H>k is given in terms of a covariance of the

forecast observation yf,(n)(tk) as

P f,e
yy,k := 1

Ne − 1

Ne∑
n=1

(yf,(n)(tk)− yf (tk))(yf,(n)(tk)− yf (tk))>. (39)

When the number of measurements is greater than the number of ensemble members, the inverse
term in the calculation of the Kalman gain may become singular. In this case, a pseudo-inverse
based on the singular value decomposition can be employed. However, the advantage of this repre-
sentation mainly resides in the fact that both the linearization and the calculation of the covariance
matrix of the prediction error are not required, therefore resulting in a considerable reduction in the
computation cost and requirement of storage space.

3. Results

In this section, the neural network-based non-intrusive reduced-order modeling framework pre-
sented in Sec. 2 is applied for time series prediction of dynamical systems. In Sec. 3.1, the ability of
the multistep, residual-based NN-ROM framework to predict the dynamics of the Lorenz-63 system
is first demonstrated. In Sec. 3.2, the NN-ROM is then applied to obtain predictions of the dynamics
of a cylinder wake flow at high Reynolds number. In addition, the sequential NN-ROM is augmented
with the EnKF data assimilation algorithm to obtain long-term predictions.

3.1. Non-intrusive modeling of Lorenz-63 system
Before implementing the proposed framework for fluid flow applications, the performance of

NN-ROM is evaluated here for the nonlinear and chaotic Lorenz-63 system.

3.1.1. Training and model-evaluation dataset
The Lorenz-63 system was developed to describe the phenomenon of natural convection in a

heated rectangular cavity. The quadratic system in terms of the state vector a = [a1 a2 a3]> of size
Nr = 3 is given as  ȧ1(t) = σ(a2(t)− a1(t)),

ȧ2(t) = a1(t)(ρ− a3(t))− a2(t),
ȧ3(t) = a1(t)a2(t)− βa3(t).

(40)

Here, the initial state is set as a(t0 = 0) = [a1(0) a2(0) a3(0)]> = [−8 7 27]>. For the parameter
values of [σ ρ β] = [10 28 8/3], the system exhibits a chaotic dynamics characterized by a limit cycle
and a strange attractor. The data is generated in the time range t = [0, 20] with a time step of 0.01,
giving Nt = 2001 snapshots. The dataset is split such that state evolution corresponding to the
initial 85% of the time steps is used for training, i.e. NTrain

t = 1700, and the remaining data is used
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for validation, i.e. NVal
t = 301. At the end of the training stage, the performance of the trained

model is evaluated based on the estimation capability with respect to the full solution trajectory,
such that NTest

t = 2001.

3.1.2. Hyperparameter selection
The training of NN-ROM, constructed as a feedforward network discussed in Sec. 2.2, requires

making some design decisions. The performance of the NN-ROM is largely dictated by the selection
of hyperparameters used to construct and optimize the neural network. The architecture is defined
by the number of hidden layers, the connection between the consecutive layers, and the number
of hidden units in each layer. The output of the hidden layer is governed by the choice of the
activation function. The gradient-based learning also requires defining an appropriate cost function
and selecting an optimizer.

Finding an optimal set of hyperparameters which minimizes the loss function over a hyperpa-
rameter space is a challenging task given the substantial number of free parameters involved. In
this work, the hyperparameters have been selected heuristically by monitoring the influence of the
assigned values on model performance ‘on the fly’. More sophisticated methods for hyperparameter
selection are random search [15] and Bayesian optimization [16]. However, following Goodfellow
et al. [33], general guidelines can be formulated.

1. Number of layers (L): Increasing L augments the model’s capacity to represent more complex
functions with a simultaneous increase in the computational cost of training.
� In this example, the network is constructed with L = 7 layers, which includes the input
and output layers and 5 hidden layers.

2. Number of units in each layer (n[l]): Increasing n[l] has the similar effect as L on the represen-
tation ability of the model. The number of units in the input and output layers is fixed for a
problem based on the size of the feature and target. Note that for a large value of either L or
n[l], the model has a chance of overfitting the training data.
� In this example, the number of units in the input layer is n[1] = Nrp + 1 = 3p + 1, where
p is the number of past input steps defining the multistep framework (see Sec. 2.2.1). Note
that the ‘+1’ unit corresponds to the time variable and no additional units are assigned for
parameters as the training is performed using data belonging to the solution set corresponding
to the same parameters. The size of the hidden layers is assigned to n[l=2,...,6] = 128 units.
The output layer contains n[7] = Nr = 3 units.

3. Activation function (σ): The output of the hidden units is dictated by the activation function.
The function σ must be chosen such that the layers do not saturate, i.e. the gradients of the
cost function do not become very flat and remain large enough to guide the learning algorithm.
� In this example, the widely used and easy to optimize rectified linear unit (ReLU) is used
as the activation function (see Sec. 2.2).

4. Size of minibatch (Nb): The stability and speed of the learning algorithm are generally op-
timized by dividing the input features (here, time and state evolution) and the target into
subsets, the training being made on these minibatches. Minibatches typically contain two to
several hundred samples, although for large models the choice may be constrained by compu-
tational resources.
� In this example, the minibatches are randomly selected disjoint subsets of the training data
of size Nb = 501.

5. Number of minibatches (Nmb): The number of minibatches dictates the number of updates
of the training variables during each training epoch. The number is fixed by monitoring the
learning curve. A higher value of Nmb may lead the model to overfit the training data.
� In this example, Nmb = 10 is used.

6. Learning rate (α): The success of the gradient-based optimization depends on the choice of the
learning rate. A small α slows down the computation while a large α may lead to overshooting
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the local minima of the cost function. The value of α is fixed by monitoring the learning curve.
� In this example, the learning rate α = 0.001 is used.

7. Regularization parameter (λ): The generalization error of the NN-ROM is tuned by the regu-
larization parameter in the cost function. A lower value of λ may make the model more prone
to overfit to the training data, while a higher λ may cause the weights of the neural network
to vanish, severely underfitting the training data. The value of λ is fixed by monitoring the
learning curve.
� In this example, the regularization parameter λ = 1.0× 10−5 is used.

8. Number of training epochs (NEpochs): The number of training epochs is related to the learning
rate. As NEpochs increases, the model transforms from underfitting, to optimal, and to poten-
tially overfitting the training data. The value of NEpochs is fixed by monitoring the learning
curve.
� In this example, the model is trained over NEpochs = 20000 cycles.

Tab. 1 summarizes the choice of these hyperparameters.

DNN architecture (p = 1, 5, 10) Training data Minibatch Optimization parameters
n[1] n[2,...,6] n[7] σ NTrain

t Nb Nmb α λ NEpochs
3p+ 1 128 3 ReLU 1700 501 10 1.0× 10−3 1.0× 10−5 20000

Table 1: Hyperparameters of NN-ROM for the Lorenz-63 system.

3.1.3. Online training
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Figure 3: Evolution of the training and validation errors during the training epochs of NN-ROM for the
Lorenz-63 system (p = 10). The error evolution in the last 100 epochs is also shown in the inset.

Once the hyperparameters are assigned, the training variables of NN-ROM (weights and biases)
are optimized over the NEpochs training epochs using the Adam algorithm (see Sec. 2.2). One
training epoch involves the evaluation of the gradients of the cost function (25) for each minibatch
by backpropagation. The deep neural network utilizes high-capacity architecture which, due to a
large number of training variables, are susceptible to overfitting even when sufficient training data
is available. This is monitored during the course of training using the learning curves which are
plots of the error metric (27) calculated for the training set (RMSETrain) and the validation set
(RMSEVal) as a function of the training epochs.

In order to demonstrate the influence of the number of past time steps p in the input on the
performance of NN-ROM, three values of p are considered, namely p = 1, 5, 10. The learning curves
for the training of NN-ROM for the Lorenz-63 system with p = 10 are shown in Fig. 3. Similar
curves are obtained for other values of p. It is observed that the error for the validation set drops
consistently with the corresponding decrease in the error for the training set. This implies that the
hyperparameters selected for designing and training the neural network lead to a NN-ROM with
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p = 1 p = 5 p = 10 p = 100
Average NRMSE 0.7524 0.5481 0.4905 0.6282

Table 2: Time averaged NRMSE in the testing window corresponding to different numbers of past input
steps (p) for the Lorenz-63 system.

a low generalization error, i.e. the model neither underfits not overfits the data used for training.
Note that the noisy learning curve is common to the stochastic gradient-descent methods which can
be attributed to the frequent updates of the training variables, allowing the model to avoid local
minima and hence, an early convergence.

3.1.4. Offline prediction
To elucidate the multistep, residual-based framework of the neural network, the learned NN-

ROM models, corresponding to the three values of p in the input training data, are used to obtain
the estimation of the state trajectories aNN(t) of the Lorenz-63 system using the forward model
(18). The comparison of the estimated trajectories with the reference solution trajectories is shown
in Fig. 4. The Lorenz system has a chaotic behavior. Hence, a small error in the estimated state
of the system can lead to a larger error in the subsequent time steps. The time period for which
the reproduced trajectory is the same as the reference trajectory varies for different values of p. In
general, the inclusion of temporal history of the state of the system in the input to NN-ROM, i.e.
p > 1, leads to an improved estimation where the reference trajectory is followed over a longer time
span.

The performance of NN-ROM can be quantified in terms of the normalized root-mean-square
error (NRMSE). Here, the NRMSE is calculated with respect to the reference solution aRef(t),
which is the solution obtained from the numerical integration of the Lorenz-63 system, as

NRMSE(t) =

√∑Nr
i=1(aNN

i (t)− aRef
i (t))2√∑Nr

i=1(aRef
i (t))2

, (41)

where Nr = 3. The averaged NRMSE over the testing time span is given in Tab. 2 for the three
values of p. An extreme case where p = 100 time steps is also included to observe the effect of a
long time past window on the accuracy of the estimation. It is observed that the estimation is more
accurate for the cases with p > 1. This result encourages to take the memory effect into account
in the input of NN-ROM for a more accurate reproduction of the transient dynamics. The effect
is however not monotonous (i.e. higher number of time steps p does not correspond necessary to a
lower value of error), as indicated by the higher value of estimation error corresponding to p = 100
as compared to p = 10. This is exacerbated by the sensitivity of the Lorenz-63 system to the state
space, i.e. featuring a positive Lyapunov exponent. The number of past time steps (p) is thus a
hyperparameter which can be optimized to obtain a sufficiently accurate estimation framework. For
simplicity, this parameter has been selected heuristically in the subsequent test cases.

3.2. Application to experimental cylinder wake flow
In this section, we consider a cylinder wake flow configuration at high Reynolds number. A

long-term estimation of the dynamics is envisaged by combining the sequential updates obtained by
NN-ROM and data assimilation.

3.3. Snapshot dataset
The dataset were obtained from the experimental work performed by Benard et al. [11]. The

experimental setup is briefly described in this section.
The cylinder wake flow was experimentally studied in an open Eiffel-type wind tunnel. The

cylinder, which spans the entire test section, has a diameter of D = 40 mm and an aspect ratio of
L/D = 7.5. The upstream velocity in the measurement section was set as U∞ = 5.6 m/s, giving
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Figure 4: Evolution of the states a(t) of the Lorenz-63 system obtained from the trained NN-ROM in
the testing window corresponding to different numbers of past input steps (p) and compared with the true
reference trajectories.
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Figure 5: Normalized vorticity field at a time instant t = 100 s obtained from the PIV measurements (a),
and reconstructed using the 10 most energetic POD modes (b) for the cylinder wake flow at Re = 1.5× 104.
The PIV measurement field in the near-wake region is depicted by the green box.

a Reynolds number based on the cylinder diameter of Re = 1.5× 104. The Reynolds number is
therefore an order of magnitude lower than the critical Reynolds number (Rec ∼ 2.0× 105, see
Williamson 80) at which turbulence transition occurs in the detached shear layers. The flow over
the cylinder remains in the sub-critical regime with laminar boundary layer separation, while a wide
turbulent wake develops downstream. The natural frequency of the vortex shedding, obtained from
the post-processing of the available data, is equivalent to a Strouhal number, based on the cylinder
diameter and freestream velocity, of St = 0.18 (or a non-dimensional time period of TsU∞/D = 5.39).

The two components of velocity in the near wake of the cylinder were measured with a particle
image velocimetry (PIV) system consisting of a fast CCD camera (Photron, APX-RS), a fast dual
oscillator single-head laser (Quantronix, Darwin-Duo), a synchronization unit (EG, R&D Vision)
and an acquisition PC. The cylinder was illuminated in the mid-span by a 1 mm thin laser sheet.
The measurement field, shown in Fig. 5(a), covers the region defined by the bounds 0.2 < x/D < 4.8
and −2.8 < y/D < 2.8. A CCD sensor of resolution 1024 × 1024 pixel2 was used. The acquisition
was carried out at a frequency of 1000 Hz, which corresponds to a non-dimensional time interval
between two consecutive snapshots of ∆tU∞/D = 0.14. This implies that, in theory, a shedding
cycle is discretized by about 38 instantaneous snapshots. The velocity vectors were obtained using
LaVision’s Davis software by computing cross-correlations with windows ranging in size from 64×64
pixel2 to 16× 16 pixel2 in the final pass, each with a 50% overlap. This results in a uniform grid of
size Ny×Nx = 108×89, i.e. Nχ = NxNy = 9612 nodes, with a spatial resolution of ∆x = ∆y = 2.09
mm. The overall time sequence spans the time range t ∈ [0, 1] s (i.e. 1001 snapshots), which is
equivalent to tU∞/D ∈ [0, 140] in terms of the non-dimensional variable.

3.3.1. NN-ROM setup and estimation
POD is first performed on the snapshots of velocity and the most dominant Nr = 10 modes, which
represent 79% of total energy, are preserved for reduced-order modeling. The temporal POD coeffi-
cients corresponding to the initial 701 time steps are used for training the NN-ROM. The time series
is split such that the data belonging to the first NTrain

t = 595 snapshots is used for training and
that belonging to the next NVal

t = 106 snapshots is used for validation of the learned model. The
summary of the manually assigned hyperparameters associated with the construction and training
of the neural network is given in Tab. 3. The NN-ROM is based on using the history of POD
coefficients from p = 10 previous time steps in the input feature set. The details regarding the rest
of the setup and optimization of the model are the same as the ones discussed in Sec. 3.1.2.

The learned NN-ROM is then used to obtain estimates of the POD coefficients. Due to the
limited size of the data, the testing is performed on the whole time range of POD coefficients,
NTest
t = 1001. The evolution of the temporal POD coefficients for the testing dataset is shown in

Fig. 6. Overall, the amplitudes of the estimated coefficients remain consistent with respect to the
reference trajectory and the evolution remains bounded over the full testing time span. It is observed

18



-100

0

100

a
1
(t

)

aPOD
i (t) aNN

i (t)

-50

0

50

a
4
(t

)

-50

0

50

a
7
(t

)

0 20 40 60 80 100 120 140

tU1=D

-50

0

50

a
10

(t
)

Figure 6: Evolution of the temporal POD coefficients ai(t) (i = 1, 4, 7, 10) for the testing dataset for the
cylinder wake flow at Re = 1.5× 104. The results are obtained from the NN-ROM and compared with the
reference trajectory.

DNN architecture (p = 10) Training data Minibatch Optimization parameters
n[1] n[2,...,6] n[7] σ NTrain

t Nb Nmb α λ NEpochs
10p+ 1 256 10 ReLU 595 401 10 1.0× 10−3 1.0× 10−2 20000

Table 3: Hyperparameters of the NN-ROM for the cylinder wake flow at Re = 1.5× 104.

that in the short-term, the trajectory of the POD coefficients estimated from NN-ROM follows the
reference trajectory of the POD coefficients directly obtained from the snapshots. However, the
trajectories start to deviate after about the first 20 time units.

3.4. EnKF augmented NN-ROM estimation
The NN-ROM learned in Sec. 3.3.1 is augmented with EnKF data assimilation. The framework is
hereafter referred as NN-ROM-DA. The data assimilation is performed using point measurements
of the streamwise velocity component at few locations in the flow field. As before, the observation
vector in (29) is defined accordingly as the streamwise component of the velocity fluctuation, i.e.
yo(tk) = {u′x(χ`, tk)}No`=1, where No = 6 is the number of fictive probes and χ` is the coordinate
vector of the `-th probe. The locations of the probes in the flow field are shown in Fig. 7 and the
coordinates is listed in Tab. 4. The observation equation (42) maps the temporal POD coefficients
obtained from the forward model to the observed velocity fluctuations. The spatial POD mode
at each probe location serves as the linear observation operator H to map the temporal POD
coefficients obtained from the forward model to the observed velocity fluctuations. The observation
model (29) can thus be reformulated as,

u′x(χ, tk) =

 u′x(χ1, tk)
...

u′x(χNo , tk)

 =

 Φx1(χ1) · · · ΦxNGal
(χ1)

... . . . ...
Φx1(χNo) · · · ΦxNGal

(χNo)


︸ ︷︷ ︸

H

a(tk), (42)

where Φxi (χj) (i = 1, · · · , NGal) represents the streamwise component of the i-th spatial POD mode
of the velocity fluctuations at the probe location χj .
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` χ` := (x`/D, y`/D)
1 (1.4,−1.0)
2 (2.5,−1.0)
3 (1.4, 0.0)
4 (2.5, 0.0)
5 (1.4, 1.0)
6 (2.5, 1.0)

Table 4: Probe coordi-
nates.
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Figure 8: Same comparison as in Fig. 6 but for the evolution obtained from NN-ROM-DA with pDA = 1
consecutive assimilation.

An additional hyperparameter, pDA, is introduced which is defined as the number of consecutive
observations used in assimilation. The justification of this multistep assimilation approach is to
augment the capability of the NN-ROM to take into consideration the memory effect of the temporal
dynamics. In this case study, two values of pDA are considered, namely pDA = 1, which corresponds
to the classical single update method, and pDA = 5. Note that both are smaller than the number of
time steps passed as the input to NN-ROM, p = 10.

For the DA augmented approach, the observations are assimilated every ∆toU∞/D = 28.1. This
value is 200 times larger than the PIV acquisition step size and spans 5 cycles of vortex shedding.
This equates to performing 4 steps of equispaced assimilations over the estimation window (1001
time steps).

The time evolution of the temporal POD coefficients obtained by NN-ROM-DA for the two
values of consecutive assimilations pDA = 1 and pDA = 5 is shown in Fig. 8 and Fig. 9, respectively.
The plots show that the estimated trajectories of the POD coefficients obtained using NN-ROM-
DA follow the reference trajectories more accurately as compared to the estimates obtained from
NN-ROM (see Fig. 6). As observed, after each observation step, the EnKF assimilation procedure
improves the accuracy of the trajectories in the time span between the observations. Moreover, a
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Figure 9: Same comparison as in Fig. 6 but for the evolution obtained from NN-ROM-DA with pDA = 5
consecutive assimilations.
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Figure 10: Time evolution of NRMSE in the testing window for the POD coefficients obtained from NN-
ROM and NN-ROM-DA with pDA = 1 and 5. Cylinder wake flow configuration at Re = 1.5× 104. The
time averaged NRMSE values over the testing window are indicated by horizontal dashed lines. The dotted
lines represent the time steps at which the observations are initiated for the two NN-ROM-DA frameworks.

slight improvement in accuracy can be observed when multiple consecutive observations are available
(pDA = 5) as compared to when only single observation is available at each assimilation step (pDA =
1). This indicates that the NN-ROM estimates benefit from the greater number of assimilated
states available in the memory for forward propagation. In Fig. 10, the NRMSE defined by (41) is
compared for the NN-ROM (i.e. without assimilation) and for the NN-ROM-DA with pDA = 1 and
5. A more accurate estimation is obtained from NN-ROM-DA than NN-ROM in the majority of the
testing time span. The corresponding average errors are also lower.

The estimated POD coefficients are finally used to reconstruct the two-component velocity fields.
In Fig. 11, the time evolution of the streamwise components of velocity, obtained from the NN-ROM
estimates (uNN

x (t)) and the NN-ROM-DA estimates (uNN−DA
x (t)), are compared at a location in the

flow field with the reference trajectories determined from the calculated POD coefficients (uPOD
x (t))

and the PIV experiments (uPIV
x (t)). Owing to the more accurate estimation of the POD coefficients,

the corresponding reconstruction of the velocity is also more accurate for the estimates from NN-
ROM-DA as compared to those obtained from NN-ROM. Moreover, the phase shift observed in the
time span between the assimilation steps is minimized when multiple consecutive observations are
used to nudge the estimated trajectory towards the reference trajectory. To gauge the performance
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Figure 11: Time evolution of the streamwise velocity components at a location (x/D, y/D) = (4.8, 0.9) in
the flow field. Comparison of the trajectory obtained from the PIV measurements with the reconstructions
using the POD coefficients determined from the NN-ROM and NN-ROM-DA with pDA = 1 (a), and pDA = 5
(b). Cylinder wake flow configuration at Re = 1.5× 104.
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Figure 12: Power spectrum densities of the velocity at a location (x/D, y/D) = (4.8, 0.9) in the flow field.
Comparison of the results obtained from PIV measurements and the reconstructed velocity signals using
the POD coefficients determined from the NN-ROM and NN-ROM-DA with pDA = 5. Cylinder wake flow
configuration at Re = 1.5× 104. The peak frequencies of the measured signal and that reconstructed from
the augmented ROM are indicated by vertical dashed lines.

in frequency domain, the power spectra of the reconstructed velocity signals using POD, NN-ROM
and NN-ROM-DA (with pDA = 5) are compared in Fig. 12 with that using the signal obtained from
experiment. It is observed that the peak frequency of the signal obtained from experiments (0.18
Hz) is correctly captured by the estimated dynamics using NN-ROM-DA (0.1874 Hz).

In order to quantify the performance of the different approaches, the normalized root-mean-
square error of the velocity magnitude |u| with respect to the measured values is calculated over the
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Figure 13: Time evolution of NRMSE in the testing window for the velocity magnitude calculated from
the POD coefficients obtained from the reference values and those determined from the NN-ROM and NN-
ROM-DA with pDA = 1 and 5. Cylinder wake flow configuration at Re = 1.5× 104. The time averaged
NRMSE values over the testing window are indicated by horizontal dashed lines. The dotted lines represent
the time steps at which the observations are initiated for the two NN-ROM-DA frameworks.

Average NRMSE
POD NN-ROM NN-ROM-DA

NRMSE(t;x,xRef) =
√

(x− xRef)2/(xRef)2

x xRef pDA = 1 pDA = 5
aNN, aNN−DA aPOD – 1.3234 1.0009 0.8625

uPOD
x , uNN

x , uNN−DA
x uPIV

x 0.1332 0.2765 0.2203 0.1886
|uPOD|, |uNN|, |uNN−DA| |uPIV| 0.2973 0.6573 0.5516 0.5196

Table 5: Time averaged NRMSE values in the testing window corresponding to the POD coefficients a, the
streamwise velocity component ux at location (x/D, y/D) = (4.8, 0.9), and the full-field velocity magnitude
|u| for the cylinder wake flow at Re = 1.5× 104.

prediction time span. This error is defined as

NRMSE(t) =

√∑Nχ
i=1(|uNN(χi, t)| − |uPIV(χi, t)|)2√∑Nχ

i=1(|uPIV(χi, t)|)2
. (43)

In Fig. 13, we show the temporal evolution of NRMSE as obtained from NN-ROM and NN-ROM-
DA on the one hand, and the coefficients determined by POD on the other hand. Again, the NN-
ROM-DA estimates show an improvement over the NN-ROM estimates. Indeed, the reconstructions
obtained from NN-ROM-DA have the same order of magnitude of error as those obtained from
the direct reconstruction using POD modes. A summary of the averaged NRMSE values for the
predictions in latent space and the reconstructions in physical space is given in Tab. 5. In the
latent space, the use of NN-ROM-DA (with pDA = 5) leads to a 35% reduction in the error value as
compared to NN-ROM. A corresponding reduction of 32% and 21% in the averaged error values are
obtained in the physical space, respectively for the streamwise velocity measurement at a location
in the farfield wake and the velocity magnitude. The lower error magnitudes obtained by NN-ROM-
DA demonstrate the interest of coupling non-intrusive models determined by neural networks to the
data assimilation framework.

4. Conclusion

Neural network-based, data-driven reduced-order model (NN-ROM) has been considered as a
surrogate, non-intrusive alternative to the intrusive reduced-order models. Through applications
to a nonlinear toy model and a fluid flow case, it was demonstrated that NN-ROM offers a viable
replacement as a forward model to provide long-term prediction. The whole framework can be
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considered in an offline-online paradigm. In the offline stage, NN-ROM is trained on variables in
the latent space, namely the POD coefficients. These are obtained by projecting a large amount of
high-fidelity snapshots onto the reduced space. In the online stage, the trained NN-ROM is rapidly
evaluated to obtain the future state of the latent space variables. These variables are then used for
reconstruction in the physical space, thus returning predicted high-fidelity flow field.

The NN-ROM is designed such that it learns on residual targets, i.e. the difference of the state
of interest between two consecutive time steps, rather than the value of the future state itself. The
model takes into account the memory effect by considering a sequential input of fixed length of the
latent variable in order to provide estimates at subsequent time steps. Influence of the inclusion of
temporal history of the dynamics on the performance of NN-ROM was evaluated for the standard
Lorenz-63 system. It was observed that the accuracy of estimation increased with an increase in the
length of the temporal history data (p) provided as input up till p = 10 but the accuracy deteriorated
for a higher value of p. It is suggested that p should therefore be considered as one of the training
hyperparameters.

In order to ensure accurate long-term predictions, NN-ROM is augmented with an Ensemble
Kalman Filter (EnKF) algorithm. The ability of NN-ROM to provide sequential updates makes it
amenable to be used as a forecast model in the EnKF algorithm. The performance of NN-ROM
augmented with EnKF (NN-ROM-DA) in terms of reconstruction of the flow field is evaluated on
experimental cylinder wake flow data at Re = 1.5× 104. Observations in the form of streamwise
velocity components are used to improve the accuracy of NN-ROM estimates. NN-ROM-DA is found
to be effective in mitigating the observed phase shift over a long time span. Consequently, a more
accurate long-term prediction of dynamics in both the latent and physical space as compared to
NN-ROM is obtained, implying an overall improvement in the estimation. Moreover, using multiple
consecutive assimilations (pDA > 1), a decrease of 21% in the error metric was observed as compared
to the initial NN-ROM estimation, indicating further improvement in the long-term predictions.

In this work, it was assumed that the reduced-order models are applicable only within the
operating range of the snapshot dataset used to build the model. Robustness analysis of the models
must be performed in order to have a detailed knowledge of the range of validity of the reduced-order
model, i.e. to understand if the identified model will still be able to provide accurate estimates if
the parameters like Reynolds number vary between specified minimum and maximum values. This
can be challenging as, in governing nonlinear PDEs, the change of physical parameters results in
a change in the spatial distribution of the solution which the initial POD modes may not be able
to approximate. One of the scenarios in which the robustness analysis can be beneficial is when
uncertainties are introduced in terms of time varying parameter disturbances, which in turn affect
the estimation of the POD coefficients. Also, for NN-ROM architecture and optimization, more
sophisticated methods like random search [15] and Bayesian optimization [16] should be introduced
to tune the model hyperparameters according to the problem.
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