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A B S T R A C T

In the first part of this paper series (Sun et al., 2023), we developed an ecological model that partitions
the total chlorophyll-a concentration (Chl-a) into three phytoplankton size classes (PSCs), pico-, nano-, and
microplankton. The parameters of this model are controlled by sea surface temperature (SST), intended to
capture shifts in phytoplankton size structure independently of variations in total Chl-a. In this second part
of the series, we present an Ocean Colour Modelling Framework (OCMF), building on the classical Case-1
assumption, that explicitly incorporates our ecological model. The OCMF assumes the presence of the three
PSCs and the existence of an independent background of non-algal particles. The framework assumes each
phytoplankton group resides in a distinct optical environment, assigning chlorophyll-specific inherent optical
properties to each group, both directly (phytoplankton) and indirectly (non-algal particulate and dissolved
substances). The OCMF is parameterised, validated, and assessed using a large global dataset of inherent and
apparent optical properties. We use the OCMF to explore the influence of variations in temperature and Chl-a
on phytoplankton size structure and its resulting effects on ocean colour. We also discuss applications of the
OCMF, such as its potential for inverse modelling and phytoplankton climate trend detection, which will be
explored further in subsequent papers.
1. Introduction

Changes in the Earth’s climate are driving alterations in phytoplank-
ton biomass, type, and phenology in marine ecosystems (Boyce et al.,
2010; Ardyna and Arrigo, 2020; Thomalla et al., 2023), with significant
impacts on the food web, biogeochemical cycles, and primary produc-
tion (Richardson and Schoeman, 2004; Litchman et al., 2015; Lewis
et al., 2020). Studying these alterations requires suitable monitoring
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systems. Ocean-colour remote sensing serves as the only available tool
providing near real-time information on phytoplankton in the surface
ocean under natural conditions at synoptic scales (Krug et al., 2017).
The continuous global ocean colour data record has now exceeded
27 years, creating an invaluable resource that is suitable in length
(at least in some areas of the ocean) for studying and understanding
https://doi.org/10.1016/j.rse.2024.114487
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long-term changes in marine ecosystems (Hammond et al., 2020).
Recent improvements in the stability and consistency of ocean colour

easurements (Werdell et al., 2009; Mélin et al., 2017; Sathyendranath
et al., 2019) have made them the primary data source for evaluat-
ing the response of phytoplankton to climate change (McClain, 2009;
Dutkiewicz et al., 2019; Cael et al., 2023). Every day, a vast amount of
ocean colour data, represented by remote sensing reflectances (𝑅𝑟𝑠), are
collected and available for interpreting the optical properties of waters.
The foundational step is to understand how to describe the 𝑅𝑟𝑠 signal,
known as 𝑅𝑟𝑠 forward modelling (Sathyendranath et al., 2000).

Forward modelling in ocean optics involves predicting 𝑅𝑟𝑠 from
optically active substances. The magnitude and shape of 𝑅𝑟𝑠 are de-
termined by the inherent optical properties (IOPs) of these substances,
including the absorption (𝑎) and backscattering (𝑏𝑏) coefficients of
phytoplankton, non-algal particles (NAP), coloured dissolved organic
matter (CDOM), and seawater (Zaneveld et al., 2006). In other words,
he key aspect of the forward modelling is to quantitatively infer 𝑅𝑟𝑠

from 𝑎 and 𝑏𝑏. The two components of this process are the relation-
ship between biogeochemical variables and IOPs, and the relationship
between the IOPs and the 𝑅𝑟𝑠. In this study, we focus on open ocean
waters, commonly known as Case-1 waters (Morel and Prieur, 1977),
where optical properties covary with chlorophyll-a concentration (Chl-
a) (Prieur and Sathyendranath, 1981; Morel, 1988). It implies that
ptical properties of all non-water constituents are linked to vari-

ations in Chl-a. Consequently, the establishment of the relationship
etween biogeochemical variables and IOPs can be achieved through

Chl-a (Bricaud et al., 1998b; Morel and Maritorena, 2001; Reynolds
et al., 2001). As for the IOPs and the 𝑅𝑟𝑠 connection, the latter can
be mathematically modelled as a quadratic function of 𝑎 and 𝑏𝑏, using
the quasi single scattering approximation of the radiative transfer
equation (Gordon et al., 1988; Lee et al., 1994; Sathyendranath and
latt, 1997). These fundamental concepts form the basis of the forward
odelling that we develop in this study.

Due to issues around ambiguity (Defoin-Platel and Chami, 2007),
interpreting phytoplankton information using ocean colour data poses
a significant challenge (Sun et al., 2023). Phytoplankton diversity is one
f the main causes of this issue. For example, the phytoplankton size
tructure in the water can impact the colour of the ocean, represented
y 𝑅𝑟𝑠, and the same 𝑅𝑟𝑠 may correspond to various size composi-
ions and Chl-a concentrations (Brewin et al., 2014; Sathyendranath

et al., 2017). This is related to changes in phytoplankton absorption
oefficients (𝑎𝑝ℎ), caused by cell size and taxon-specific changes in

pigmentation (Hoepffner and Sathyendranath, 1991; Bricaud et al.,
2004), which ultimately have an effect on 𝑅𝑟𝑠 (Taylor et al., 2011a;
Uitz et al., 2015; Brewin et al., 2019). To address the ambiguity
caused by phytoplankton size, we introduced the effect of sea surface
temperature (SST) on the relationship between Chl-a and PSCs (Ward,
2015; Brewin et al., 2017; Sun et al., 2023), which is based on the
following considerations. Firstly, the size composition of phytoplankton
is influenced by temperature, either directly through the impact on
the physiological characteristics of phytoplankton, such as rates of
nutrient uptake, or indirectly through its covariation with resource
availability, including light and nutrients (López-Urrutia and Morán,
2015; Marañón et al., 2015). Secondly, remotely sensed SST is highly
ccurate (Minnett et al., 2019), which could serve as an explana-
ory independent variable useful for enriching our interpretation of
cean colour data and reducing ambiguity (Defoin-Platel and Chami,

2007). Another issue regarding the ambiguity problem concerns non-
algal substances and their optical properties, which impact the NAP
absorption (𝑎𝑑), CDOM absorption (𝑎𝑔), and particulate backscattering
(𝑏𝑏𝑝) coefficients. Many investigations have demonstrated that in Case-1

aters, these IOPs can be empirically modelled as a function of Chl-
 (Huot et al., 2008; Morel, 2009). Nonetheless, these IOPs are not

constant in space and time, may be subject to changes with climate, and
an show variability for the same Chl-a concentration (Organelli et al.,
2 
2014; Devred et al., 2022). Changes in the optical properties of non-
algal substances for the same phytoplankton biomass and size structure
can also result in different 𝑅𝑟𝑠 (Huot and Antoine, 2016). Therefore, it is
essential to develop forward models that accurately represents diverse
oceanic environments globally, whilst accounting for potential sources
of ambiguity.

Building on a previously developed ecological model (Sun et al.,
2023), which explicitly incorporates the dependency of model param-
eters on temperature, this second work aims to present a new global
theoretical Ocean Colour Modelling Framework (OCMF). We compile
an extensive global dataset of in-situ optical properties, including all
the key IOPs (i.e., 𝑎𝑝ℎ, 𝑎𝑑 , 𝑎𝑔 , and 𝑏𝑏𝑝) and 𝑅𝑟𝑠, each of which is
accompanied by concurrent in-situ Chl-a and remotely sensed SST data.
By applying the SST-dependent phytoplankton size structure model
from Sun et al. (2023), the total in-situ Chl-a is partitioned into the
ontributions of PSCs. We then construct IOP models driven by the
hl-a of each PSC, obtaining chlorophyll-specific IOPs for each class
pplicable on a global scale. We compare and assess the performance
f the proposed IOP models with previous research. These IOP models
re then assembled to construct a 𝑅𝑟𝑠 forward model. Validation of
he OCMF is performed using multiple independent datasets and com-
ared against existing methods. The OCMF presented here explicitly
efines the optical environments of different phytoplankton groups and
nriches our interpretation of ocean colour using SST. This approach
ay ultimately improve our ability to extract ecological information

rom the ever growing satellite ocean colour record.

2. Data

2.1. In-situ datasets

This section provides information on the in-situ datasets used in this
study, including data sources, variables, and processing procedures.
More details about the in-situ datasets are available in Sections S3.1
nd S3.2 of the Supplementary. All the abbreviations and symbols are
efined in Table A.1 in Appendix A.

2.1.1. Data sources
This study uses 47,295 measurements of optical properties and Chl-

, collected in the global surface ocean between 1994 and 2021 (Fig. 1).
he dataset was compiled from various public repositories, including:

(1) IMOS (2022) from the AODN (Australian Ocean Data Network)
ortal; (2) the time series BOUSSOLE (Bouée pour l’acquisition de
éries Optiques à Long Terme) Project (Antoine et al., 2006, 2008;

Golbol et al., 2000); (3) NASA SeaBASS (SeaWiFS Bio-optical Archive
and Storage System); (4) NOMAD (NASA bio-Optical Marine Algorithm
Dataset, version 2.a, Werdell and Bailey, 2005); and (5) published
atasets (Bricaud et al., 1998a; Stramski et al., 2008a; Garaba et al.,

2011; Taylor et al., 2011b; Taylor and Bracher, 2012a,b; Moutin and
Claustre, 2013; Soppa et al., 2013a,c,b,d; Zielinski et al., 2013; Bracher,
2014a,b; Peeken and Nachtigall, 2014; Bracher et al., 2015; Bracher,
2015; Peeken and Murawski, 2016; Boss et al., 2017; Bracher, 2017a,b;
Taylor and Bracher, 2017; Bracher et al., 2018; Gonçalves-Araujo et al.,
2018a,b; Liu et al., 2018b,c,a; Bracher, 2019; Bracher and Wiegmann,
2019; Liu et al., 2019c,b,a; Wiegmann et al., 2019; Bracher et al., 2020,
2021b,a,d,f,j,k; Bracher and Taylor, 2021b,a; Bracher and Liu, 2021a,b;
Bracher et al., 2021c,l,g,e,i,h,m,n; Kramer et al., 2021; Xi et al., 2021;
Bracher and Cheah, 2022; Bracher and Wiegmann, 2022b; Bracher and
Röttgers, 2022; Bracher and Wiegmann, 2022a; Valente et al., 2022;
Röttgers et al., 2023) from PANGAEA.

Additional measurements included in the in-situ dataset were ob-
tained from: (1) the Atlantic Ocean (Atlantic Meridional Transect
(AMT) cruises, Dall’Olmo et al., 2012; Brewin et al., 2023a), (2)
 dataset compiled by Shubha Sathyendranath and Trevor Platt at
he Bedford Institute of Oceanography (Sathyendranath et al., 2001;

Devred et al., 2006), (3) the Indian Ocean (Barlow et al., 2008, 2011),
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Fig. 1. Locations of in-situ datasets used in this study, including six datasets of 𝑎𝑝ℎ (𝑁 = 13,988), 𝑎𝑑 (𝑁 = 6758), 𝑎𝑔 (𝑁 = 4639), 𝑏𝑏𝑝 (𝑁 = 18,663), in-situ 𝑅𝑟𝑠 (𝑁 = 3247), and
OC-CCI derived 𝑅𝑟𝑠 that correspond to the in-situ Chl-a measurements from Graban et al. (2020) (𝑁 = 9050). Note that the data presented here have undergone quality control
and data screening procedures. More detailed information on the datasets can be found in Sections 2.1 and 2.3.3, Supplementary Table S1, Supplementary Figures S1-1–S1-6, and
Supplementary Section S3.1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
(4) the Mediterranean Sea (Westberry et al., 2010; Dall’Olmo et al.,
2011), (5) the Red Sea (Kheireddine et al., 2018b,a, 2021), (6) the
eastern China seas (Sun et al., 2022), (7) the Arctic Ocean (Lewis and
Arrigo, 2020), and (8) a global underway bio-optical dataset (Graban
et al., 2020).

More detailed information on each public data source, such as
website, access time, and the number of samples included, can be found
in Section S3.1 of the Supplementary. Supplementary Table S1 provides
details of the in-situ datasets, including collection dates, study areas,
cruise details, contributors’ names, and citations.

2.1.2. Data variables and pre-processing procedures
This section presents an overview of data variables used in the

study, including the absorption coefficient of phytoplankton (𝑎𝑝ℎ(𝜆)),
the absorption coefficient of NAP (𝑎𝑑 (𝜆)), the absorption coefficient
of CDOM (𝑎𝑔(𝜆)), the backscattering coefficient of particles (𝑏𝑏𝑝(𝜆)),
and the remote sensing reflectance (𝑅𝑟𝑠(𝜆)). For each optical property
sample, only those with concurrent Chl-a measurements were retained.
Four types of Chl-a measurements were used in this study, including
those derived from the HPLC (High Performance Liquid Chromatogra-
phy) method, the in-vitro fluorometric method, the line-height method,
and the in-vivo fluorescence sensor. When multiple sources of Chl-a data
were available, HPLC and in-vitro fluorometric methods were preferred,
with HPLC given the highest priority.

During pre-processing procedures, we applied consistent procedures
to all the in-situ optical properties, including: (1) analysing each opti-
cal property individually with its concurrent Chl-a concentration; (2)
restricting the spectral range to 400–700 nm; (3) using IOPs with 1-
nm spectral resolution (raw or interpolated) for model development
and validation; (4) utilising the water type information derived from
OC-CCI satellite data (see Section 2.2 for more information) to filter
optical properties for Case-1 open ocean conditions, except the phy-
toplankton absorption coefficients; (5) removing samples with Chl-a
less than 0.001 mg m−3; (6) using samples collected from the upper
20 m of the water column (Montégut et al., 2004); (7) treating multiple
observations at the same station but different depths as individual
measurements, rather than averaging them; (8) dividing the entire
dataset into training and validation datasets according to the sampling
3 
time, specifically before and after 2016, to ensure independence in the
validation dataset (Stock and Subramaniam, 2022).

Detailed descriptions of the methods employed for the measurement
of optical properties, the spectral resolution of the measurements,
and the pre-processing and quality control procedures are provided
in Section S3.2 of the Supplementary. A comprehensive overview of
each optical dataset, including the spatial and frequency distribution
of various attributes, is presented in Supplementary Figures S1-1–S1-6.

2.2. OC-CCI satellite data

Monthly OC-CCI (Ocean Colour Climate Change Initiative) 𝑅𝑟𝑠 (ver-
sion 6.0, 4 km resolution, Sathyendranath et al., 2021) were used in this
study (https://climate.esa.int/en/projects/ocean-colour/). Water class
memberships, specifically 14 optical water classes assigned to each
pixel are included in this dataset (Jackson et al., 2017), where classes
range from oceanic waters to coastal waters as the number of classes
increases. This information was used to identify samples collected in the
highly-scattering coastal waters. The OC-CCI monthly 𝑅𝑟𝑠 data for the
past 25 years (1998–2022) were used to identify water classes. For each
pixel, the mean values of all 14 classes were calculated, and the class
with the highest value was designated as the representative water class
for that pixel in that month. Samples (except for 𝑎𝑝ℎ) falling into water
classes 12, 13, and 14, characterised as turbid coastal waters (Jackson
et al., 2017), were excluded prior to analysis.

Daily 𝑅𝑟𝑠 (4 km resolution, version 6.0) from OC-CCI were also
included in this study. This dataset was used to obtain corresponding
satellite 𝑅𝑟𝑠 that match the global in-situ Chl-a dataset from Graban
et al. (2020) (see Section 2.3.3 and Fig. 1).

2.3. Auxiliary datasets

2.3.1. OISST
Daily OISST (Optimal Interpolation Sea Surface Temperature, ver-

sion 2, 1/4◦ resolution), distributed by NOAA PSL, were downloaded
from: https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.ht
ml. The OISST is a long-term climate data record containing obser-
vations from different platforms, including satellites, ships, buoys and
Argo floats. We matched each in-situ sample spatially (nearest latitude
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Fig. 2. Schematic of the OCMF. The blue drop represents the ocean and the red
thermometer symbolises the inclusion of temperature in the model development. Within
the ocean, the dark blue, green, and orange concentric circles are the environments
dominated by pico- (𝑖 = 1), nano- (𝑖 = 2), and microplankton (𝑖 = 3), with the inner
and outer circles representing the influence of phytoplankton and non-algal substances
for each PSC, respectively. The grey dotted and light blue dashed circles illustrate the
background of non-algal particles and pure water. The definitions of all relevant IOPs
used in this study can be found in the Appendix Table A.1. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

and longitude) and temporally (daily). Only samples with SST values
between −1.8 ◦C and 40 ◦C were retained. Due to the lack of concurrent
temperature data in many in-situ optical datasets, we used daily OISST
SST match-ups for model development and validation, which have
shown high correlation with in-situ measurements in our previous study
(see Supplementary Figure S4 in Sun et al. (2023)).

2.3.2. GEBCO gridded bathymetric data
The GEBCO2021 (General Bathymetric Chart of the Oceans), ob-

tained from https://www.gebco.net/data_and_products/gridded_bathy
metry_data/#global, was used to extract the bathymetric depth of
each in-situ sample. We spatially matched each sample to gridded
bathymetric data with the nearest latitude and longitude, and retained
samples with bathymetric depth below 0 m sea level elevation for
further analysis.

2.3.3. A separate validation dataset
The global in-situ Chl-a dataset from Graban et al. (2020) was used

as an additional dataset to validate the proposed OCMF. It includes
in-situ Chl-a concentrations estimated from underway 𝑎𝑝 using the
line-height method (Boss et al., 2007) and de-biased using the Chl-a
derived from the HPLC method. Concurrent daily OC-CCI 𝑅𝑟𝑠 data were
matched with in-situ Chl-a by pairing each in-situ sample in space (3x3
pixel window) and time (daily). The median in-situ Chl-a was taken
within the 4-km pixel to avoid redundancy. For match-ups with five
or more valid pixels out of nine, the median satellite 𝑅 from the
𝑟𝑠

4 
nine pixels surrounding the in situ data point was used. The water class
information derived from the OC-CCI satellite data was also applied to
this dataset (excluding classes 12, 13 and 14), leaving a total of 9050
samples for validation. Note that this dataset is not a fully independent
dataset, since samples collected both before 2016 and after 2016 were
used, to cover a broader range of samples with varying Chl-a and SST
values.

3. Ocean colour modelling framework development

This section introduces the Ocean Colour Modelling Framework
(OCMF), mainly based on the classical Case-1 assumption (Morel and
Prieur, 1977), that optical properties of the water can be related to Chl-
a (Fig. 2). The OCMF incorporates three assemblages of phytoplankton
divided by size (i.e., pico- (< 2 μm), nano- (2–20 μm), microplank-
ton (> 20 μm), Sieburth et al., 1978), and assumes the presence of
an independent background of NAP. It considers the Chl-a in each
size class and how this varies with total Chl-a and SST (Sun et al.,
2023). The bio-optical environment representing the dominance of each
size class is quantified by assigning chlorophyll-specific IOPs to each
size class for each optically active constituent, except that of pure
water (Alvain et al., 2012). Where possible, model parameters are de-
signed to be interpretable from a bio-optical or biological perspective.
In the following subsections, we describe the components of the OCMF
(i.e., SST-dependent size structure and IOPs), model parameterisation,
and independent validation. The Pearson linear correlation coefficient
(𝑟), 𝑝-value (𝑝), coefficient of determination (𝑟2), bias (𝛿), mean ab-
solute difference (MAD, 𝜖), root mean squared difference (RMSD, 𝜓),
and centre-patterned root mean square difference (𝛥), were calcu-
lated between measurements and model estimates to evaluate model
performance. All statistical test computation equations are given in
Supplementary Section S3.3. IOP statistical tests were carried out in
log10 space, whereas 𝑅𝑟𝑠(𝜆) calculations were made in linear space.

3.1. Three-component models of phytoplankton size structure

We start by considering that the Chl-a within three size classes of
phytoplankton, picoplankton (𝐶1), nanoplankton (𝐶2) and microplank-
ton (𝐶3), combine to form the total chlorophyll-a concentration (𝐶),
such that,

𝐶 =
3
∑

𝑖=1
𝐶𝑖. (1)

Brewin et al. (2010) presented a three-component model that relates
Chl-a to the three size classes, by defining relationships between 𝐶 and
𝐶1,2 (pico- and nanoplankton, < 20 μm) and 𝐶 and 𝐶1,

𝐶1,2 = 𝐶𝑚1,2[1 − exp(−𝐷1,2

𝐶𝑚1,2
𝐶)], (2)

and

𝐶1 = 𝐶𝑚1 [1 − exp(−𝐷1
𝐶𝑚1

𝐶)], (3)

where parameters 𝐷 determine the fractions of Chl-a as total Chl-a
approaches to zero, and parameters 𝐶𝑚 are the asymptotic maximum
values, respectively. The Chl-a in microplankton (𝐶3) and nanoplankton
(𝐶2) are calculated as 𝐶3 = 𝐶 − 𝐶1,2 and 𝐶2 = 𝐶1,2 − 𝐶1, respectively.
By dividing Chl-a of PSCs (𝐶1, 𝐶2, and 𝐶3) by 𝐶, the size fractions (𝐹𝑖,
where 𝑖 = 1, 2, and 3) can be computed.

It has been demonstrated that model parameters in Eqs. (2) and (3)
vary predictably with temperature (Ward, 2015; Brewin et al., 2017).
Specifically, Brewin et al. (2017) quantified these relationships using a
series of logistic functions,

𝐶𝑚1,2 = 1 −
{

𝐺𝑎
1 + exp[−𝐺𝑏(SST − 𝐺𝑐 )]

+ 𝐺𝑑

}

, (4)

𝐶𝑚 = 1 −
{

𝐻𝑎 +𝐻
}

, (5)
1 1 + exp[−𝐻𝑏(SST −𝐻𝑐 )]
𝑑
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𝐷1,2 =
𝐽𝑎

1 + exp[−𝐽𝑏(SST − 𝐽𝑐 )]
+ 𝐽𝑑 , (6)

and

𝐷1 =
𝑂𝑎

1 + exp[−𝑂𝑏(SST − 𝑂𝑐 )]
+ 𝑂𝑑 , (7)

where parameters 𝐺𝑖 (𝑖 = 𝑎 − 𝑑), 𝐻𝑖, 𝐽𝑖, and 𝑂𝑖 are parameters
that control the relationships between 𝐶𝑚1,2, 𝐶

𝑚
1 , 𝐷1,2, 𝐷1 and SST,

respectively. Hereafter, this model was denoted as the 16-parameter
model. Additionally, Sun et al. (2023) introduced a new SST-dependent
model that relate 𝐶𝑚1,2 and 𝐶𝑚1 to SST, according to
𝐶𝑚1,2 = 𝑈𝑎SST

2 + 𝑈𝑏SST + 𝑈𝑐 , (8)

and

𝐶𝑚1 = 𝑉𝑎 exp[−(
SST − 𝑉𝑏

𝑉𝑐
)2] + 𝑉𝑑 exp[−(

SST − 𝑉𝑒
𝑉𝑓

)2], (9)

where parameters 𝑈𝑖 (𝑖 = 𝑎 − 𝑐) and 𝑉𝑖 (𝑖 = 𝑎 − 𝑓 ) control
the relationships between SST and 𝐶𝑚1,2 or 𝐶𝑚1 , respectively. Hereafter,
this model was denoted as the 17-parameter model. The parameters
and their uncertainties in Eqs. (4)–(9) are taken from our previous
study (Sun et al., 2023), as shown in the Table S2 in the Supplementary.

he SST-dependent models (i.e., 16- and 17-parameter models) have
emonstrated better statistical performance than the SST-independent
odel using a global dataset (see Table S4 in Sun et al., 2023) and

herefore are used in the OCMF. Detailed information on the under-
ying concepts, development, validation, and discussion of the three-

component model can be found in Sun et al. (2023) and references
therein.

3.2. Absorption

The absorption coefficient represents the sum of all absorbing com-
onents, including particulate (i.e., phytoplankton and NAP) and dis-

solved (i.e., CDOM) constituents, along with water molecules. In the
OCMF, every absorption component can be represented as the product
of its Chl-a concentration and its chlorophyll-specific absorption spec-
trum, with the exception of water and an independent background of
NAP.

3.2.1. Absorption by phytoplankton
Phytoplankton absorption, 𝑎𝑝ℎ(𝜆), can be modelled as the addi-

tive sum of Chl-a in each PSC (𝐶𝑖) multiplied by its correspond-
ing chlorophyll-specific phytoplankton absorption coefficient (𝑎∗𝑝ℎ(𝜆))
(Brewin et al., 2011; Devred et al., 2011), such that,

𝑎𝑝ℎ(𝜆) =
3
∑

𝑖=1
𝑎∗𝑝ℎ,𝑖(𝜆)𝐶𝑖. (10)

Using Eq. (10), 𝑎∗𝑝ℎ(𝜆) for each size class can be derived, with in-situ
𝑝ℎ(𝜆), 𝐶, and SST as inputs. Firstly, the size-fractionated Chl-a, 𝐶𝑖, were
alculated from 𝐶 and SST through SST-dependent models (Eqs. (2)–

(9)). Secondly, the 𝑎∗𝑝ℎ(𝜆) for each size class were derived through
minimisation (‘lmfit’ package in Python) from 𝐶𝑖 and log10-transformed
𝑎𝑝ℎ(𝜆) data. The results of 𝑎∗𝑝ℎ(𝜆) at wavelengths between 400 and
700 nm are shown in Table S3 in the Supplementary. Due to the use
of two SST-dependent models (16- and 17-parameter models), there
are two sets of size-fractionated Chl-a obtained from a given pair of 𝐶
and SST, resulting in two sets of specific bio-optical properties for each
water constituent. To avoid redundancy, the results derived from the
16-parameter model are presented in the main text, while the results
from the 17-parameter model are provided in the Supplementary.

Fig. 3a shows that the 𝑎∗𝑝ℎ of picoplankton are the highest, with the
steepest spectral shape, followed by nano- and microplankton, which
are consistent with many previous findings (Uitz et al., 2008; Bracher
et al., 2009; Devred et al., 2011; Kheireddine et al., 2018b). The 𝑎∗𝑝ℎ(𝜆)
for all the PSCs show two peaks around 440 and 675 nm, related
to chlorophyll-a. The variations in shape and magnitude among each
 f

5 
class are due to the size structure and pigment composition (Bracher
and Tilzer, 2001; Lohrenz et al., 2003; Kheireddine et al., 2018b).
or example, the highest values at blue wavelengths for picoplankton
re caused by their small size, and the gradual decrease at 490 nm
ould be attributed to the pigment zeaxanthin (Barlow et al., 2002).
he strong peak at 465 nm in nanoplankton may be due to pigments
9’-butanoyloxyfucoxanthin and 19’-hexanoyloxyfucoxanthin (Jeffrey
t al., 2011). The strong package effect in microplankton is the reason

for its low values (Sathyendranath et al., 2004). The observed variation
in 𝑎∗𝑝ℎ within the same size class, indicated by the confidence intervals
f the 𝑎∗𝑝ℎ(𝜆) obtained through minimisation, can be attributed to

the shifts in taxonomic composition (Sun et al., 2022), physiological
acclimation of phytoplankton to environmental conditions (e.g., light,
temperature, Bouman et al., 2003; Organelli et al., 2017), or spa-
tiotemporal variations in the dataset (Bricaud et al., 1995; Lee et al.,
2020).

The retrieved 𝑎∗𝑝ℎ were then used to compare the modelled esti-
mates of 𝑎𝑝ℎ with observations, using both the parameterisation and
independent validation datasets, with Chl-a and SST as inputs. It can
e seen that the model functions effectively, as indicated by high
orrelations (𝑟) and low biases (𝛿) for six wavelengths covering the

visible spectrum (Figs. 3b1–b6). As for the independent validation, the
odel shows a good performance (Figs. 3c1–c6), with 𝑟 ranging from
.859 to 0.917 and 𝜓 from 0.220 to 0.262. A slight overestimation of
𝑝ℎ was observed for all the wavelengths in the independent validation,
s indicated by the positive 𝛿, and the highest 𝛥 (0.249) was observed at
60 nm. The validation results align with other research that developed
odels of 𝑎𝑝ℎ as a function of Chl-a and explicitly considering size

tructure (Devred et al., 2006; Zhang et al., 2015; Brewin et al.,
2019). The two SST-dependent models show little differences on the
etrieved 𝑎∗𝑝ℎ and the validation statistics (see Fig. 3 and Figure S2 in

Supplementary). The proposed 𝑎𝑝ℎ model was compared with previous
models (Bricaud et al., 1995; Brewin et al., 2011), demonstrating
improved accuracy (see Section S3.4.1 in Supplementary for details).

3.2.2. Absorption by NAP
NAP absorption, 𝑎𝑑 (𝜆), can be modelled as additive sum of Chl-a

in each PSC (𝐶𝑖) multiplied by the chlorophyll-specific NAP absorption
coefficient (𝑎∗𝑑 (𝜆)). Different from Eq. (10) for phytoplankton, we made
the assumption that a background of NAP exists in the ocean (Stramski
et al., 2001; Dupouy, 2003), such that,

𝑎𝑑 (𝜆) =
3
∑

𝑖=1
𝑎∗𝑑 ,𝑖(𝜆)𝐶𝑖 + 𝑎𝑘𝑑 (𝜆), (11)

where 𝑎𝑘𝑑 (𝜆) represents the 𝑎𝑑 for the background. The 𝑎𝑑 (𝜆) has a
pectral shape that decreases exponentially with wavelength (Roesler

et al., 1989), and therefore, Eq. (11) can be further written as

𝑎𝑑 (𝜆) =
3
∑

𝑖=1
𝑎∗𝑑 ,𝑖(𝜆0)𝐶𝑖 exp[−𝑆𝑑 ,𝑖(𝜆 − 𝜆0)] + 𝑎𝑘𝑑 (𝜆0) exp[−𝑆𝑘𝑑 (𝜆 − 𝜆0)], (12)

where 𝑆𝑑 ,𝑖 represents the slope of exponent for each PSC (𝐶𝑖), the
𝑆𝑘𝑑 represents the slope of the exponent for the background, and the
reference wavelength 𝜆0 is 440 nm. The 𝑎∗𝑑 ,𝑖(𝜆0) and 𝑆𝑑 ,𝑖 for each size
class, as well as 𝑎𝑘𝑑 (𝜆0) and 𝑆𝑘𝑑 for the background, were derived through
minimisation (‘lmfit’ package in Python) from 𝐶𝑖 (calculated from 𝐶
and SST through Eqs. (2)–(9)) and log10-transformed 𝑎𝑑 (𝜆) data. The
parameters are provided in Table S4 in the Supplementary.

The two SST-dependent models show distinct influences on the
retrieval results (Fig. 4a and Figure S3a in Supplementary). However,
similar trends in magnitude were observed for the three size classes,
with nanoplankton showing the highest 𝑎∗𝑑 (𝜆0), followed by pico- and
microplankton. As for the slope 𝑆𝑑 , picoplankton shows the highest
alue, followed by micro- and nanoplankton. When the 17-parameter
odel was employed, a more noticeable spectral dependency was seen

cross different size classes. The 𝑆𝑑 values are in line with the range
ound in oceanic waters (Babin et al., 2003; Bricaud et al., 2010; Devred
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Fig. 3. Chlorophyll-specific absorption coefficients of phytoplankton (𝑎∗𝑝ℎ,𝑖(𝜆), m2 (mg C)−1) retrieved from the 𝑎𝑝ℎ model, with shaded areas representing the 5.55 and 94.45%
confidence intervals on the distribution (a). Comparison between in-situ (x-axis) and modelled (y-axis) 𝑎𝑝ℎ(𝜆) at six wavelengths, using the parameterisation dataset (b1–b6) and
using the independent validation dataset (c1–c6), respectively. The 𝑝-values are less than 0.05 for all wavelengths in both datasets. Red line refers to 1:1 line. The model is based
on the 16-parameter model (Sun et al., 2023). Results using the 17-parameter model are shown in Supplementary Figure S2. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
et al., 2022). Physical and biological fragmentation of phytoplankton
are important sources of NAP in the open ocean, and the size of
NAP likely correlates with the dominant size class of phytoplankton
in the water. Consequently, the highest slopes are typically associated
with the clearest oligotrophic waters, and as turbidity increases, slope
values tend to decrease with increasing size, consistent with previous
6 
observations (Bricaud et al., 2010). Note that our pre-processing of all
optical datasets (except 𝑎𝑝ℎ) excluded samples collected in the highly-
turbid coastal waters potentially dominated by larger cell size classes
prior to analysis, which may explain the higher 𝑆𝑑 in microplankton
than nanoplankton. In addition to phytoplankton, factors like zooplank-
ton grazing, bacterial and viral activities also contribute to the NAP
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pool. However, the effects of these factors and other processes such
as aggregation are not incorporated here. The 𝑎𝑘𝑑 (𝜆) values derived
sing two SST-dependent models are very similar (see Table S4 in the
upplementary).

The estimated 𝑎𝑑 values closely align with parameterisation obser-
ations, with all 𝛿 being close to zero (Figs. 4b1–b6). Independent val-
dation results (Figs. 4c1–c6) show that the model is reliable, with 𝑟 ≥

0.625 for all five wavelengths with the exception of 665 nm, where the
𝑎𝑑 values are typically at a minimum. The inclusion of 𝑎𝑘𝑑 does appear to
ntroduce a slight static cut-off in the lower range for each wavelength.
ifferences between the validation and parameterisation datasets, espe-
ially concerning the content of 𝑎𝑘𝑑 , may account for the overestimation
f low 𝑎𝑑 values in the independent validation. The contribution of
ackground particles to 𝑎𝑑 cannot be neglected (Stramski and Kiefer,

1990; Stramski and Mobley, 1997). However, when accounting for the
spatiotemporal variability (Dupouy, 2003), the constant background
values used here may overestimate 𝑎𝑘𝑑 in some regions with limited
background NAP. The validation results were minimally affected by the
two SST-dependent models, with slightly better performance observed
when using the 16-parameter model (Fig. 4 and Figure S3 in Supple-

entary). The proposed 𝑎𝑑 model compares favourably with models
rom previous studies (Bricaud et al., 1998b, 2010), as shown in Section

S3.4.2 in Supplementary.

3.2.3. Absorption by CDOM
CDOM absorption, 𝑎𝑔(𝜆), can be modelled as additive sum of Chl-

a in each size class (𝐶𝑖) multiplied by the chlorophyll-specific CDOM
absorption coefficient (𝑎∗𝑔(𝜆)) (Brewin et al., 2015a), such that,

𝑎𝑔(𝜆) =
3
∑

𝑖=1
𝑎∗𝑔 ,𝑖(𝜆)𝐶𝑖. (13)

The spectral shape of 𝑎𝑔(𝜆) typically follows a smooth exponential
relationship with wavelength (Bricaud et al., 1981), so that Eq. (13)
an be expressed as,

𝑎𝑔(𝜆) =
3
∑

𝑖=1
𝑎∗𝑔 ,𝑖(𝜆0)𝐶𝑖 exp[−𝑆𝑔 ,𝑖(𝜆 − 𝜆0)], (14)

where 𝑆𝑔 ,𝑖 is the exponential slope for each PSC, and the reference
wavelength 𝜆0 is 440 nm. The 𝑎∗𝑔 ,𝑖(𝜆0) and 𝑆𝑔 ,𝑖 values were derived
through minimisation (‘lmfit’ package in Python) from 𝐶𝑖 (calculated
from 𝐶 and SST through Eqs. (2)–(9)) and log10-transformed 𝑎𝑔(𝜆) data.

During the minimisation process, obtaining valid 𝑎∗𝑔(𝜆0) values for
microplankton using both SST-dependent models was challenging, as
they were found to be very close to zero. This may be due to the
exclusion of samples collected in the coastal waters, which typically
ave a high proportion of microplankton. More data in the open ocean
t high Chl-a concentrations is likely needed to improve the discrimina-
ion of spectral characteristics among different size classes. However,
t is crucial to include reasonable 𝑎𝑔 values for waters dominated by
icroplankton, given their significant contribution and to maintain

consistency with the OCMF structure. To address this issue, we fixed
the 𝑎∗𝑔 ,3(440) and 𝑆𝑔 ,3, by fitting 𝑎∗𝑔(440) and 𝑆𝑔 with the 𝐹3, respec-
tively, and extrapolating to where 𝐹3 = 1 (microplankton dominance).
The retrieved 𝑎∗𝑔 ,3(440) values are 0.0222 (0.0182–0.0270) and 0.0177
(0.0151–0.0207) for 16- and 17-parameter models, respectively, with
the unit of m2 (mg C)−1. The 𝑆𝑔 ,3 is 0.155 nm−1 for both models, with
confidence interval ranging from 0.150 to 0.159 nm−1. The retrieved
model parameters are shown in the Table S5 in the Supplementary.

Values of 𝑎∗𝑔(𝜆0) are higher than 𝑎∗𝑑 (𝜆0) for all the PSCs, with
picoplankton having the highest value, followed by nano-, and mi-
croplankton. Previous studies have demonstrated that in oceanic wa-
ters, CDOM is typically produced by a variety of biological processes,
including those involving bacteria, viruses, phytoplankton, and zoo-
plankton (Siegel et al., 2002; Coble, 2007), where phytoplankton
rowth, grazing, and degradation may all be significant factors in this
rocess (Hu et al., 2006; Organelli and Claustre, 2019). The positive
 b
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relationship between 𝑎𝑔(𝜆) and Chl-a (Bricaud et al., 2010), as shown
in Section S3.4.3 in the Supplementary, along with the relationship
between size structure and Chl-a, may explain the variations of 𝑎∗𝑔(𝜆0)
in different size classes here. Similarly, the 𝑆𝑔 values are on average
higher than the 𝑆𝑑 values. The range of the size-specific 𝑆𝑔 retrieved
in this study was broader than previous findings while remaining con-
sistent with them (Babin et al., 2003; Organelli et al., 2014), possibly
due to the large in-situ dataset used here. The 𝑆𝑔 has been proposed
as an indicator of the CDOM composition driven by photobleaching
or production (Nelson and Siegel, 2013). Variations in 𝑆𝑔 values are
primarily due to the process of photobleaching in surface oceanic
waters (Twardowski and Donaghay, 2002), which are typically less
affected by riverine inputs, have higher solar radiation and increased
stratification, and tend to be dominated by smaller size classes (Bricaud
et al., 2012).

Compared to 𝑎𝑝ℎ and 𝑎𝑑 , the 𝑎𝑔 data points show greater dispersion,
resulting in relatively weak correlations between in-situ and modelled
values using the parameterisation dataset (Figs. 5b1–b6). As for the in-
dependent validation in Figs. 5c1–c6, there is good agreement between
model estimates and observations, with 𝑟 above 0.629 at short wave-
engths (≤ 510 nm). While at longer wavelengths, the model manages
o represent the overall trends in 𝑎𝑔 with relatively similar 𝛿, despite
he scattered nature of the data points. The scatter can be attributed
o very low values in the in-situ observations at longer wavelengths,
esulting from a reduced signal-to-noise ratio and increased measure-
ent uncertainty. This is due to the nature of CDOM, such as its weak

ignal, variability in composition, and temporal variations in sources
nd sinks (Nelson et al., 1998), making 𝑎𝑔 a difficult IOP to measure.
he two SST-dependent models show little influence on the retrieval

results and the validation results, with slightly better performance
bserved when using the 16-parameter model (Fig. 5 and Figure S4 in

Supplementary). The proposed 𝑎𝑔 model was compared with models
from previous studies (Morel, 2009; Bricaud et al., 2010; Dall’Olmo
et al., 2017), as shown in Section S3.4.3 in the Supplementary.

3.2.4. Total absorption
With the development of models for all particulate and dissolved

absorbing components, the total absorption coefficients, 𝑎(𝜆), can be
xpressed as the additive sum of these constituents and water (Prieur

and Sathyendranath, 1981), such that,

𝑎(𝜆) = 𝑎𝑤(𝜆) + 𝑎𝑝ℎ(𝜆) + 𝑎𝑑 (𝜆) + 𝑎𝑔(𝜆), (15)

where 𝑎𝑝ℎ(𝜆), 𝑎𝑑 (𝜆), and 𝑎𝑔(𝜆) were described in the sections above. The
absorption coefficient of pure water, 𝑎𝑤(𝜆), is obtained from Lee et al.
(2015), where values below 550 nm are derived from 𝑅𝑟𝑠 measure-
ments in oligotrophic oceans, and values beyond 550 nm are adopted
from Pope and Fry (1997). The effect of temperature on 𝑎𝑤(𝜆) was not
onsidered in this study, since Wei et al. (2021) suggested that the
emperature has a negligible effect on 𝑎𝑤(𝜆) within the range of 19–

27 ◦C, which covers the most oligotrophic waters where 𝑎𝑤 tends to
have a more significant effect on the 𝑅𝑟𝑠.

3.3. Backscattering

The backscattering coefficient is contributed by particulate con-
stituents and water molecules. Similar to absorption, the particulate
component, excluding the NAP background, can be represented as the
roduct of its chlorophyll-specific backscattering spectrum and Chl-
 concentration. In the OCMF, we start by modelling the particle
ackscattering that can be measured directly from the ocean. Then, we
plit the particle backscattering into contributions from phytoplankton
nd NAP.

3.3.1. Backscattering by particles
Following Brewin et al. (2012), particle backscattering, 𝑏𝑏𝑝(𝜆), can

e modelled as an additive sum of the Chl-a in each PSC (𝐶 ) multiplied
𝑖
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Fig. 4. Chlorophyll-specific absorption coefficients of NAP (𝑎∗𝑑 ,𝑖(𝜆), m2 (mg C)−1) and the absorption coefficient of background (𝑎𝑘𝑑 (𝜆), m−1), retrieved from the 𝑎𝑑 model, with
shaded areas representing the 5.55 and 94.45% confidence intervals on the distribution (a). Note that the shaded areas may appear less pronounced due to the narrow range of
the confidence intervals. Comparison between in-situ (x-axis) and modelled (y-axis) 𝑎𝑑 (𝜆) at six wavelengths, using the parameterisation dataset (b1–b6) and using the independent
validation dataset (c1–c6), respectively. The 𝑝-values are less than 0.05 for all wavelengths in both datasets. Red line refers to 1:1 line. The model is based on the 16-parameter
model (Sun et al., 2023). Results using the 17-parameter model are shown in Supplementary Figure S3. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 5. Chlorophyll-specific absorption coefficients of CDOM (𝑎∗𝑔 ,𝑖(𝜆), m2 (mg C)−1) retrieved from the 𝑎𝑔 model, with shaded areas representing the 5.55 and 94.45% confidence
intervals on the distribution (a). Note that the shaded areas may appear less pronounced due to the narrow range of the confidence intervals. Comparison between in-situ (x-axis)
and modelled (y-axis) 𝑎𝑔 (𝜆) at six wavelengths, using the parameterisation dataset (b1–b6) and using the independent validation dataset (c1–c6), respectively. The 𝑝-values are
less than 0.05 for all wavelengths in both datasets. Red line refers to 1:1 line. The model is based on the 16-parameter model (Sun et al., 2023). Results using the 17-parameter
model are shown in Supplementary Figure S4. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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by the chlorophyll-specific backscattering coefficient of particles (𝑏∗𝑏𝑝,𝑖),
and a constant background (𝑏𝑘𝑏𝑝, akin to 𝑎𝑘𝑑 (𝜆) in absorption), mainly as-
ociated with a background of NAP (Bellacicco et al., 2019; Kheireddine

et al., 2021),

𝑏𝑏𝑝(𝜆) =
3
∑

𝑖=1
𝑏∗𝑏𝑝,𝑖(𝜆)𝐶𝑖 + 𝑏𝑘𝑏𝑝(𝜆). (16)

Assuming that 𝑏𝑏𝑝(𝜆) can be expressed as a power-law function of
avelength (Lee et al., 2002), Eq. (16) can be formulated as follows:

𝑏𝑏𝑝(𝜆) =
3
∑

𝑖=1
𝑏∗𝑏𝑝,𝑖(𝜆0)(𝜆∕𝜆0)

−𝛾𝑖𝐶𝑖 + 𝑏𝑘𝑏𝑝(𝜆), (17)

where 𝛾
𝑖

determines the spectral shape of the backscattering, and 𝜆0
is the reference wavelength at 550 nm. When the 𝑏𝑘𝑏𝑝(𝜆) was also
expressed as a power function (i.e., 𝑏𝑘𝑏𝑝(𝜆0)(𝜆∕𝜆0)

−𝛾𝑘 ) and parameters
for both phytoplankton and the background were retrieved simultane-
ously, obtaining stable retrieval results during the minimisation process
ecame challenging. Therefore, to simplify the equation and obtain
ealistic results, the 𝑏𝑘𝑏𝑝(𝜆) for each wavelength was fixed by computing
he 5th percentile of the in-situ 𝑏𝑏𝑝(𝜆) values from ultra-oligotrophic
aters (i.e., Chl-a < 0.04 mg m-3, Alvain et al., 2008; Leonelli et al.,

2022). The remaining backscattering coefficients, 𝑏𝑏𝑝(𝜆) - 𝑏𝑘𝑏𝑝(𝜆), were
then used for deriving 𝑏∗𝑏𝑝,𝑖(𝜆0) and 𝛾

𝑖
in each size class, through

minimisation (‘lmfit’ package in Python). The inputs of Eq. (17) were 𝐶𝑖
calculated from 𝐶 and SST through Eqs. (2)–(9)) and log10-transformed
𝑏𝑏𝑝(𝜆).

Similar to the results found in CDOM absorption (Section 3.2.3),
𝑏∗𝑏𝑝(𝜆0) values for microplankton approached zero in the initial min-
misation process. To include valid 𝑏𝑏𝑝 values for waters dominated by
icroplankton and maintain alignment with the OCMF, the 𝑏∗𝑏𝑝,3(550)
as fixed, by fitting 𝑏∗𝑏𝑝(550) (with 𝑏𝑘𝑏𝑝(550) removed) with the 𝐹3,
nd extrapolating to where 𝐹3 = 1 (microplankton dominance). The
etrieved 𝑏∗𝑏𝑝,3(550) values are 0.0022 (0.0021–0.0022) and 0.0021
0.0021–0.0022) (m2 (mg C)−1) for 16- and 17-parameter models, re-
pectively. Since a previous study found the 𝛾

3
value not statistically

ifferent from zero for microplankton-dominated waters (Brewin et al.,
2012), it was fixed at 0. Table S6 in the Supplementary shows the
parameters used in Eq. (17).

Fig. 6a shows the retrieved results of 𝑏∗𝑏𝑝(𝜆) and 𝑏𝑘𝑏𝑝(𝜆). In general,
the water dominated by nanoplankton and their covarying particles has
the highest specific backscattering value over the entire spectrum. It is
followed by picoplankton-dominated water, with relatively little dif-
ference between the two size classes. The lowest values were observed
in water dominated by microplankton, where the values were fixed.
The 𝑏∗𝑏𝑝(550) retrieved in this study for pico- and nanoplankton align
with established observations (Brewin et al., 2012; Martinez-Vicente
et al., 2012), and lower values for larger cells are in agreement with
previous studies (Dall’Olmo et al., 2012; Barbieux et al., 2018; Soja-
Woźniak et al., 2020). As for the slope, pico- and nanoplankton show
imilar 𝛾 values that are statistically different from zero, consistent with
xpectation that a steeper power exponent is likely to be associated
ith low Chl-a water that is dominated by small particles (Loisel et al.,

2006; Kostadinov et al., 2009; Reynolds and Stramski, 2019). The 𝑏𝑘𝑏𝑝(𝜆)
alues obtained in this study are within the range observed in the global
cean (Bellacicco et al., 2019). However, they show a modest difference

from those reported in other oceanic regions (Behrenfeld et al., 2005;
Brewin et al., 2012; Kheireddine et al., 2021), suggesting that 𝑏𝑘𝑏𝑝(𝜆) has
patiotemporal variability (Bellacicco et al., 2019).

With the exception of a few outliers within a large dataset, the
𝑏𝑏𝑝 model performs well when compared with the observations from
oth the parameterisation and validation datasets (Figs. 6b1–b6 and

6c1–c6), with comparable statistics. When compared to in-situ values
at all six wavelengths, independent validation shows that the model
provides satisfactory estimation of 𝑏𝑏𝑝, with 𝑟 over 0.593 and low
differences (𝜓 < 0.225). The model slightly underestimates 𝑏 at larger
𝑏𝑝
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values, as indicated by a negative bias. Both SST-dependent models
had minimal impact on the retrieval results and validation results, with
a slight improvement observed when using the 17-parameter model
Fig. 6 and Figure S5 in Supplementary). The proposed 𝑏𝑏𝑝 model

compares favourably with models from previous studies (Huot et al.,
2008; Dall’Olmo et al., 2009; Brewin et al., 2012), as shown in Section
S3.4.4 in the Supplementary.

3.3.2. Backscattering by phytoplankton and NAP
Particulate backscattering is composed of both phytoplankton and

NAP (e.g., detritus), referred to as 𝑏𝑏𝑝ℎ(𝜆) and 𝑏𝑏𝑑 (𝜆), respectively
(Fig. 2). In this study, we extended the particulate backscattering model
(Section 3.3.1) to distinguish between the algal and non-algal contri-
butions. The 𝑏𝑏𝑝ℎ(𝜆) can be expressed as an additive sum of the Chl-a
in each PSC (𝐶𝑖) multiplied by its corresponding chlorophyll-specific
backscattering coefficient of phytoplankton (𝑏∗𝑏𝑝ℎ,𝑖(𝜆)), such that,

𝑏𝑏𝑝ℎ(𝜆) =
3
∑

𝑖=1
𝑏∗𝑏𝑝ℎ,𝑖(𝜆0)(𝜆∕𝜆0)

−𝛾𝑝ℎ,𝑖𝐶𝑖, (18)

where 𝛾
𝑝ℎ,𝑖

is the power coefficient of the phytoplankton backscatter-
ing, and 𝜆0 is the reference wavelength at 550 nm. In Eq. (18), the
nput 𝑏𝑏𝑝ℎ(𝜆) on the left was calculated using a 1% quantile regres-
ion under the assumption that 1% of the 𝑏𝑏𝑝(𝜆)-𝑏𝑘𝑏𝑝(𝜆) is contributed
y phytoplankton, which is akin to estimating phytoplankton carbon

contributions to particulate organic carbon at different Chl-a concentra-
ions (Sathyendranath et al., 2009), as well as estimating phytoplankton

carbon and nitrogen from Chl-a (Maniaci et al., 2022). The fitted
1% quantile data was then used to retrieve parameters in Eq. (18).
imilar to 𝑏∗𝑏𝑝(𝜆0), the 𝑏∗𝑏𝑝ℎ(𝜆0) values for microplankton approached
ero during the minimisation process. Therefore, the 𝑏∗𝑏𝑝ℎ,3(550) was

fixed at 0.0002 m2 (mg C)−1, taken from backscattering measurements
of uni-algal cultures, e.g., Prorocentrum micans (Table 1 in Ahn et al.,
1992) and Ditylum brightwellii (Figure 5C in Whitmire et al., 2010).

he 𝛾
𝑝ℎ,3

was set to zero. Consequently, the 𝑏∗𝑏𝑑 (𝜆) for three size classes
were calculated through subtracting 𝑏∗𝑏𝑝ℎ(𝜆) from 𝑏∗𝑏𝑝(𝜆). Since the 𝑏𝑏𝑑 (𝜆)
an also be written as an additive sum of the chlorophyll-specific
AP backscattering coefficient (𝑏∗𝑏𝑑 ,𝑖(𝜆)) multiplied by its corresponding

Chl-a (𝐶𝑖), it can be expressed as

𝑏𝑏𝑑 (𝜆) =
3
∑

𝑖=1
𝑏∗𝑏𝑑 ,𝑖(𝜆0)(𝜆∕𝜆0)

−𝛾𝑑 ,𝑖𝐶𝑖 + 𝑏𝑘𝑏𝑝(𝜆), (19)

the 𝑏∗𝑏𝑑 (𝜆0) and 𝛾
𝑑 ,𝑖 can be retrieved from fitting the 𝑏∗𝑏𝑑 (𝜆) to the power-

law function. The parameters used in the Eqs. (18) and (19) are listed
in the Table S7 in the Supplementary.

Fig. 7a indicates that phytoplankton size could affect 𝑏∗𝑏𝑝ℎ(𝜆), with
icoplankton having the highest value, followed by nano- and mi-
roplankton. Note that in this study, the 𝑏𝑏𝑝(𝜆) are the fitting re-
ults obtained from the power-law function of the multispectral 𝑏𝑏𝑝
easurements, with the corresponding 1% quantile fraction being
𝑏𝑝ℎ(𝜆). Therefore, finer backscattering spectral features of phytoplank-
on (Whitmire et al., 2010) are not considered here. Because of the

1% quantile assumption for the 𝑏𝑏𝑝ℎ(𝜆) established earlier, specific
backscattering of NAP are often higher than those of phytoplankton
for all three size classes (Fig. 7b). Nonetheless, the sources of backscat-
tering and its variability remain controversial (Stramski et al., 2001;
Dall’Olmo et al., 2009; Organelli et al., 2018). Further investigations
are required on the 1% assumption to determine whether an alter-
native percentage should be considered. The higher 𝑏∗𝑏𝑝(𝜆) and 𝑏∗𝑏𝑑 (𝜆)
in nanoplankton-dominated waters might result from the enhanced
backscattering of inorganic particles per unit Chl-a, which calcifying
phytoplankton like coccolithophores may be responsible for (Balch
et al., 1991; Terrats et al., 2020), a common nanoplankton species
worldwide. Slopes of phytoplankton backscattering, 𝛾

𝑝ℎ,𝑖
, are in general

higher than those of total particles (𝛾
𝑖
) and NAP (𝛾

𝑑 ,𝑖 ), suggesting that
NAP sizes may be larger than phytoplankton for each class (Slade
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Fig. 6. Chlorophyll-specific backscattering coefficients of particles (𝑏∗𝑏𝑝,𝑖(𝜆), m2 (mg C)−1) and the backscattering coefficient of background (𝑏𝑘𝑏𝑝(𝜆), m−1), retrieved from the 𝑏𝑏𝑝
model, with shaded areas representing the 5.55 and 94.45% confidence intervals on the distribution (a). Note that the shaded areas may appear less pronounced due to the narrow
range of the confidence intervals. Comparison between in-situ (x-axis) and modelled (y-axis) 𝑏𝑏𝑝(𝜆) at six wavelengths, using the parameterisation dataset (b1–b6) and using the
independent validation dataset (c1–c6), respectively. The 𝑝-values are less than 0.05 for all wavelengths in both datasets. Red line refers to 1:1 line. The model is based on the
16-parameter model (Sun et al., 2023). Results using the 17-parameter model are shown in Supplementary Figure S5. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 7. Chlorophyll-specific backscattering coefficients of phytoplankton (𝑏∗𝑏𝑝ℎ,𝑖(𝜆), m2 (mg C)−1) retrieved from the 1% quantile of the 𝑏𝑏𝑝-𝑏𝑘𝑏𝑝 (a). Chlorophyll-specific backscattering
coefficients of NAP (𝑏∗𝑏𝑑 ,𝑖(𝜆), m2 (mg C)−1) retrieved from subtraction of 𝑏∗𝑏𝑝ℎ(𝜆) from 𝑏∗𝑏𝑝(𝜆) (b). The shaded areas represent the 5.55 and 94.45% confidence intervals on the
distribution. Note that the shaded areas may appear less pronounced due to the narrow range of the confidence intervals. The model is based on the 16-parameter model (Sun
et al., 2023). Results using the 17-parameter model are shown in Supplementary Figure S6. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
and Boss, 2015), possibly due to particle aggregation (Stemmann and
Boss, 2012). It is essential to acknowledge that the natural ocean
contains diverse water constituents with varying backscattering proper-
ties (Stramski et al., 2004), whereas this study focuses on a limited set,
including phytoplankton and NAP. Therefore, the chlorophyll-specific
backscattering for each constituent and the spectral slope are intended
to capture broad distinctions in size classes, and may require further
refinement in the future.

3.3.3. Total backscattering
The total backscattering coefficients, 𝑏𝑏(𝜆), can be expressed as the

additive sum of backscattering coefficients of pure water (𝑏𝑏𝑤(𝜆)) and
those particles mentioned above, such that,

𝑏𝑏(𝜆) = 𝑏𝑏𝑤(𝜆) + 𝑏𝑏𝑝(𝜆), (20)

or

𝑏𝑏(𝜆) = 𝑏𝑏𝑤(𝜆) + 𝑏𝑏𝑝ℎ(𝜆) + 𝑏𝑏𝑑 (𝜆). (21)

The 𝑏𝑏𝑤(𝜆) used in this study was calculated following previous stud-
ies (Zhang and Hu, 2009; Zhang et al., 2009), which changes with tem-
perature and salinity. In this study, the temperature used in the 𝑏𝑏𝑤(𝜆)
was obtained from the matched daily OISST data (see Section 2.3.1)
and the salinity was kept at 35 ppt.

3.4. Remote sensing reflectance

Using a forward model that explicitly considers the particle and
molecule scattering phase-function effects (Lee et al., 2013), the re-
mote sensing reflectance (not accounting for Raman scattering), 𝑅𝑟𝑠(𝜆),
can be estimated from the total absorption and total backscattering
coefficients (Sections 3.2 and 3.3), such that,

𝑅𝑟𝑠(𝜆, 𝛺) = (𝐺𝑤0 (𝛺) + 𝐺𝑤1 (𝛺)
𝑏𝑏𝑤(𝜆)
𝜅(𝜆)

)
𝑏𝑏𝑤(𝜆)
𝜅(𝜆)

+ (𝐺𝑝0(𝛺) + 𝐺𝑝1(𝛺)
𝑏𝑏𝑝(𝜆)
𝜅(𝜆)

)
𝑏𝑏𝑝(𝜆)
𝜅(𝜆)

, (22)

where 𝛺 represents the sun-sensor angular geometry for 𝑅𝑟𝑠, including
solar zenith angle, sensor nadir-view angle, and sensor azimuth angle
in relation to the solar plane, and 𝜅(𝜆) = 𝑏𝑏(𝜆) + 𝑎(𝜆). For nadir-viewed
𝑅𝑟𝑠, 𝐺𝑤0 (𝛺), 𝐺𝑤1 (𝛺), 𝐺𝑝0(𝛺), and 𝐺𝑝1(𝛺) are 0.0604, 0.0406, 0.0402,
0.1310 sr−1, respectively (Lee et al., 2011).
12 
4. Results and discussion

4.1. Initial model assessment and CDOM absorption adjustment

With all the chlorophyll-specific IOPs derived, the 𝑅𝑟𝑠(𝜆) can be
calculated using the OCMF (Eq. (22)) with the input of Chl-a and SST.
The in-situ independent 𝑅𝑟𝑠 dataset collected after 2016 was used to
validate the accuracy of the OCMF. The green dashed line in Fig. 8
shows that the modelled 𝑅𝑟𝑠(𝜆) were underestimated at blue and green
wavelengths with notable negative biases, compared to the in-situ mea-
surements. Through individual assessments of the chlorophyll-specific
IOPs with previous models (Section S3.4 in Supplementary), we at-
tributed these biases to an overestimation of 𝑎𝑔(𝜆). As shown in Figure
S15 in the Supplementary, the 𝑎𝑔(443) estimated from our model is
the highest compared with two previous models of 𝑎𝑔 (Morel, 2009;
Dall’Olmo et al., 2017). Previous studies have highlighted that 𝑎𝑔 can
have a significant effect on 𝑅𝑟𝑠 at blue wavelengths, especially at
the lower Chl-a range where the blue signal is highest (Morel and
Gentili, 2009; Naik et al., 2013; Huot and Antoine, 2016). Therefore,
an adjustment of 𝑎∗𝑔 parameters was performed using the in-situ training
𝑅𝑟𝑠 dataset collected prior to 2016 (𝑁 = 2668), to improve radio-
metric closure between 𝑅𝑟𝑠 and IOPs. Parameter values for 𝑎𝑤, 𝑎𝑝ℎ,
𝑎𝑑 , 𝑏𝑏𝑤, and 𝑏𝑏𝑝 were sourced from the developed OCMF, while we
linearly scaled the three 𝑎∗𝑔(440) parameters (same scaling factor for
each PSC), leaving the three 𝑆𝑔 values unchanged (i.e., those derived
from Eq. (14)). The scaling factors were obtained for 16- and 17-
parameter models separately through minimisation (‘lmfit’ package in
Python) on 𝑅𝑟𝑠. The resulting scaling factors are 0.44 (±0.001) and
0.45 (±0.001), respectively, suggesting that the initial values of 𝑎∗𝑔 were
overestimated by more than twice. The adjusted 𝑎∗𝑔 parameters results
in better agreement with the two previous models (Figure S15 in the
Supplementary). Interestingly, in both these studies, the models were
either parameterised using similar closure experiments (Morel, 2009),
or parameterised using a new technique to measure 𝑎𝑔 (Dall’Olmo
et al., 2017), rather than the traditional methods used in our compiled
dataset. Our proposed 𝑎𝑔 adjustment may require refining as more data
become available, and better techniques for measuring 𝑎𝑔 emerge.

The adjustment of 𝑎𝑔 is found to significantly improve the accuracy
of the OCMF in estimating the 𝑅𝑟𝑠, but a slight underestimation remains
(red line in Fig. 8). These uncertainties may be related to systematic
differences in the 𝑅𝑟𝑠 datasets pre- and post-2016, or may arise from
proposed IOP models of other water constituents. For example, the



X. Sun et al. Remote Sensing of Environment 316 (2025) 114487 
Fig. 8. The bias between in-situ measured and modelled 𝑅𝑟𝑠(𝜆) using the OCMF at all wavelengths, using the independent validation dataset (𝑁 = 579). The red solid and green
dashed lines represent the results using the initial and adjusted 𝑎∗𝑔 , respectively. Note that here the bias was computed in linear space, with the unit of sr−1. The model is based
on the 16-parameter model (Sun et al., 2023). Results using the 17-parameter model are shown in Supplementary Figure S7. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
overestimation of 𝑎𝑑 (Fig. 4) and the underestimation of 𝑏𝑏𝑝 (Fig. 6) at
short wavelengths could also lead to the underestimation of 𝑅𝑟𝑠. The
𝑎𝑤(𝜆) in Lee et al. (2015) has been refined for shorter wavelengths
to achieve a better closure of 𝑅𝑟𝑠–IOPs (Yu et al., 2019). However,
its dependency on temperature and salinity was not considered in the
OCMF (Röttgers et al., 2014). The 𝑏𝑏𝑤(𝜆), modelled as functions of
temperature and salinity, has shown excellent precision (Zhang et al.,
2009); however, salinity was set to 35 ppt in this study for model sim-
plification. The IOPs of pure water need refinement to further reduce
uncertainties (Werdell et al., 2018). It is crucial to account for Raman
scattering because of its importance in clear oceans (Sathyendranath
and Platt, 1998; Westberry et al., 2013). Despite not being included
directly in our proposed forward model, the Raman scattering was
removed (Lee et al., 2013) from the in-situ 𝑅𝑟𝑠 in these comparisons.
Other sources of inelastic scattering are not considered here either, such
as the fluorescence caused by the Chl-a and CDOM (Lee et al., 1994; Li
et al., 2016), but could be included in the future. Moreover, complete
details regarding the collection of in-situ 𝑅𝑟𝑠 datasets from various
sources were not always available. As a result, the BRDF (bidirectional
reflectance distribution function) correction (Morel et al., 2002; Lee
et al., 2011) was not considered here, and the measured 𝑅𝑟𝑠 might be
higher than the modelled, simply due to differences in angular light
conditions.

In addition to uncertainties in model parameters and in the forward
modelling framework, biases between modelled and measured 𝑅𝑟𝑠 can
arise from the quality of the in-situmeasurements (Tonizzo et al., 2016).
Despite our extensive efforts to gather data from aquatic environments
globally, variability in instrumentation, spectral resolutions, processing
approaches and correction methods all introduce uncertainty into the
modelling process (Valente et al., 2022). This variability is further am-
plified by the environmental variability that characterise each sample,
such as those in the 𝑅𝑟𝑠 dataset (Rudorff et al., 2014). Furthermore,
the compiled 𝑏𝑏𝑝 dataset include four types of Chl-a measurements
(i.e., HPLC, line-height, in-vitro fluorometric, or in-vivo fluorescence
methods), each of which contain varying levels of uncertainty (Roesler
et al., 2017). The independent collection of each optical dataset within
this study leads to mismatches between in-situ IOPs and 𝑅𝑟𝑠 mea-
surements across time and space, which may introduce additional
13 
uncertainties. This makes full closure assessments (e.g., total absorption
and total backscattering) and temporal variability assessments chal-
lenging. These limitations highlight the need for high quality optical
matching datasets for accurate closure interpretation (Pitarch et al.,
2016).

4.2. Forward model validation and comparison

Using in-situ Chl-a and the matched SST, alongside all the derived
parameters of the OCMF after CDOM adjustment (Tables S2–S7), the
𝑅𝑟𝑠 were calculated for all wavelengths and compared with the in-
dependent in-situ 𝑅𝑟𝑠 validation dataset (post 2016, 𝑁 = 579), to
evaluate the OCMF performance. Overall, the OCMF is seen to perform
reasonably well in estimating 𝑅𝑟𝑠 (Fig. 9). Statistical tests indicate that
the best agreements in magnitude are observed at wavelengths 412 and
443 nm, with 𝑟 surpassing 0.697 and 𝜓 values of 0.00149 and 0.00129
sr−1, respectively, followed by 560 and 665 nm, where 𝑟 exceeds
0.559 and 𝜓 are 0.00053 and 0.00015 sr−1, respectively (Figs. 9a1–
a6). However, the model captures less of the variability in in-situ 𝑅𝑟𝑠
at 490 and 510 nm, with lower 𝑟2 values. This may be due to the 𝑎𝑝ℎ
model performing less accurately at these wavelengths (Fig. 3), where
variability can increase depending on the composition of phytoplankton
present and their accessory pigment structure (Bricaud et al., 2004).
Additionally, the variability in 𝑎𝑔 for green wavelengths is high (Fig. 5),
and the overestimation of 𝑎𝑑 values when Chl-a is low (Fig. 4) could
also contribute to higher uncertainty at these wavelengths. The biases
(𝛿) indicate that the OCMF has a slight tendency to underestimate 𝑅𝑟𝑠
at all six wavelengths, with the largest bias of −0.00030 sr−1 observed
at 443 nm, although the closeness between RMSD and centre-patterned
RMSD indicates this systematic difference is small compared to ran-
dom differences between the model and the data. To evaluate further
the sensitivity of the OCMF, we conducted Monte Carlo (bootstrap)
simulations, and used the independent validation dataset to test the
sensitivity of the validation metrics to uncertainty in model parameters
(Tables S2–S7 in the Supplementary). One thousand simulations were
performed, and for each iteration, model parameters were randomly
assigned values within their confidence intervals, and statistical tests
were calculated for each iteration. The mean and standard deviation
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of the 1000 iterations were then determined. Results showed that the
statistical tests of the 𝑅𝑟𝑠 validation with randomly selected model pa-
rameters were close to the results in Fig. 9 (not shown), demonstrating
these validation metrics were not sensitive to uncertainties in model
arameters. The band ratios of 𝑅𝑟𝑠 were also validated, given that
any biogeochemical properties depend on the shape of 𝑅𝑟𝑠 (O’Reilly

t al., 1998; Stramski et al., 2008b; Blondeau-Patissier et al., 2014). The
odelled 𝑅𝑟𝑠 shape, normalised at 560 nm, agreed well with the shape

of the in-situ 𝑅𝑟𝑠, with 𝑟 over 0.862 at four wavelengths except 665 nm
and low 𝜓 values across most wavelengths (Figs. 9b1–b6). Differences
between the two SST-dependent phytoplankton size structure models
on the validation results of 𝑅𝑟𝑠 were found to be negligible (Fig. 9 and
igure S8 in the Supplementary).

To further assess the proposed OCMF, particularly the impact of
ncorporating the effect of temperature on the ocean-colour, we use a
ase-1 model assembled from a previous study for comparison (Model J

in Brewin et al. (2015b), see their Section 3.1.10). Model J is a forward
odel in which all the IOP models and 𝑅𝑟𝑠 model used differ from our
roposed OCMF. This model was deemed suitable, given it performed
ell in an inter-comparison study (Brewin et al., 2015b). Owing to

he small size of the independent validation 𝑅𝑟𝑠 (𝑁 = 579), we were
estricted to further subdivide it for temperature related assessments.
herefore, we used an extra published global dataset from Graban

et al. (2020) that is independent of our dataset (see Section 2.3.3).
Note that in this dataset, rather than in-situ radiometric measurements,
the corresponding 𝑅𝑟𝑠 of in-situ Chl-a measurements are from OC-CCI
atellite data. Furthermore, both pre and post 2016 samples from the
ataset were used, resulting in a larger number of samples with broader
anges of Chl-a and temperature.

Using the whole Graban et al. (2020) dataset (𝑁 = 9050), the
OCMF shows higher accuracy, with biases closer to zero at all six
wavelengths, where there is significant underestimation of the Model
J from Brewin et al. (2015b), regarding both magnitude and shape of
the 𝑅𝑟𝑠 (Figs. 10a1 and 10b1). The underestimation of 𝑅𝑟𝑠 using the
OCMF at the blue wavelengths aligns with the independent validation
result (Fig. 9). To assess the performance of the OCMF across different
emperature ranges, the whole Graban et al. (2020) dataset was evenly

partitioned into five sub-datasets based on temperature, encompassing
low (−0.61 to 15.07 ◦C), low-medium (15.10 to 20.34 ◦C), medium
(20.38 to 24.10 ◦C), medium-high (24.12 to 26.48 ◦C), and high (26.49
to 30.82 ◦C) ranges. The biases were then compared within each tem-
erature range (Figs. 10a2–a6 and 10b2–b6). Results indicate that the

OCMF has biases consistently closer to zero under varying temperature
onditions, effectively highlighting that incorporating size structure
nd temperature into the OCMF significantly improves the accuracy in
odelled 𝑅𝑟𝑠 compared to the Model J from Brewin et al. (2015b).

There are exceptions for a few wavelengths in the low-temperature
aters (Figs. 10a2 and 10b2), where the temperature range is wider

than other sub-datasets. In these cases, Model J shows a smaller bias.
his overestimation might result from the limited availability of data

in low-temperature water available for model parameterisation (Sup-
plementary Figures S1-1–S1-5). Additionally, the small quantity of
ow-temperature waters in Graban et al. (2020) dataset may also con-

tribute to these differences (Supplementary Figure S1-6). It will be
important to further refine and validate the proposed OCMF as more
samples in low-temperature waters become available. The comparison
of bias between the two models has valuable implications for studying
the impact of changing environmental conditions, such as those driven
by temperature-affected climate change, on ocean colour. Similar com-
parison results were also obtained when using the 17-parameter model
(Figure S9 in Supplementary).

The IOP models used in Model J from Brewin et al. (2015b) were
compared with those proposed in this study, which showed comparable
but slightly lower accuracy, based on in-situ datasets (details in the
Section S3.4 in Supplementary). Besides, differences in the sources of
14 
𝑎𝑤, 𝑏𝑏𝑤, and the 𝑅𝑟𝑠 model used between the OCMF and Model J may
also be responsible for the variations in the accuracy of the modelled
𝑅𝑟𝑠. To evaluate the impact of these differences, a stepwise replacement
f each component in Model J with its counterpart from the OCMF
odel was performed by comparing the biases, similar to Figs. 10a1

and 10b1, using the whole (Graban et al., 2020) dataset (not shown).
egarding the 𝑅𝑟𝑠 magnitude, substituting the 𝑏𝑏𝑝 model resulted in
 modest reduction of the underestimation observed in the original
odel J, followed by the substitutions of the 𝑎𝑤, 𝑅𝑟𝑠, 𝑎𝑝ℎ, and 𝑎𝑔
odels with limited improvements. As for the shape of 𝑅𝑟𝑠, applying

he 𝑎𝑤 model from Lee et al. (2015) resulted in notable reductions in
underestimation. This substitution improved the closure of 𝑅𝑟𝑠–IOPs,
especially in the blue wavelength range, and brought the bias closer
to the OCMF proposed in this study. Furthermore, replacing the 𝑎𝑝ℎ,
𝑎𝑔 , 𝑅𝑟𝑠, and 𝑏𝑏𝑤 models, as proposed in this study, also contributed to
accuracy improvements, although relatively small.

4.3. Impacts of temperature on size structure and resulting effects on remote
sensing reflectance

Fig. 11 shows the maximum band ratio of 𝑅𝑟𝑠 estimated using
the proposed OCMF with the inputs of simulated Chl-a and SST. The
regionally-tuned OC3 algorithms for the Southern Ocean (Johnson
t al., 2013; Pereira and Garcia, 2018) and globally-tuned OC3 al-

gorithm (O’Reilly and Werdell, 2019) are overlaid for comparison.
All these algorithms are applied using MODIS (Moderate Resolution
Imaging Spectro-radiometer) wavelengths.

The maximum band ratio shows relatively small variations for
higher Chl-a ranges (>1 mg m−3), whereas lower Chl-a ranges show

ore pronounced variations (Fig. 11a). As SST decreases for the same
Chl-a concentration, the dominant size classes of phytoplankton shift
from smaller cells to larger cells (Figs. 11b–d), leading to a significant
ncrease in blue-to-green ratio. These findings are in agreement with

a early regional work in the North Atlantic Ocean, which used an
ocean-colour model integrated with an SST-dependent phytoplankton
group absorption (Brewin et al., 2019). The globally-tuned OC3 al-
gorithm (O’Reilly and Werdell, 2019) agrees well with the proposed

odel estimates in warmer water conditions, especially in regions with
low Chl-a concentration. This agreement could be due to the dataset
distribution employed in calibrating the OC3 algorithm, given that sub-
tropical regions are typically associated with warm and low-chlorophyll
waters.

Remarkably, the maximum band ratio simulations are consistent
with findings from the regional studies in cold waters (e.g., South-
rn Ocean, Johnson et al., 2013; Pereira and Garcia, 2018). Their
egionally-tuned OC3 algorithms produced higher maximum band ra-
ios for a given Chl-a, which may be due to a higher fraction of
arge-celled phytoplankton typically found in colder waters. These re-
ults align with previous findings, showing that the Southern Ocean has
istinct bio-optical properties (Arrigo et al., 1998; Ferreira et al., 2018;

Robinson et al., 2021), for example, high blue–green reflectance ratios,
low backscattering, and low chlorophyll-specific absorption. These ev-
idences back up the higher contribution of large celled phytoplankton
in the area and suggest that standard ocean-colour algorithms are
unsuitable for this region. For example, a study showed that Chl-a tends
to be underestimated by about 50% (Szeto et al., 2011), possibly due
o different phytoplankton size composition (and pigment composition)
nd different amounts of non-algal substances (Clementson et al., 2001;

Reynolds et al., 2001). These differences are explicitly considered in our
OCMF.

However, there are some differences in the maximum band ratio be-
tween the proposed OCMF and other regionally-tuned Chl-a algorithms.
For example, the OC3 algorithms adjusted for the Mediterranean Sea
and the Red Sea (Santoleri et al., 2008; Brewin et al., 2015a), which
represent warm waters, showed significantly lower ratios at a given
Chl-a concentration compared to the OCMF. Similarly, the regional
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Fig. 9. Independent validation of 𝑅𝑟𝑠 between in-situ measurements (x-axis) and OCMF estimates (y-axis), 𝑁 = 579. The a1–a6 are the magnitude of 𝑅𝑟𝑠, and the b1–b6 are the
𝑅𝑟𝑠 normalised at 560 nm (b2 is missing because 560 nm is the denominator). The statistical tests are shown in each subplot. For 𝑅𝑟𝑠 magnitude, 𝑝-values are less than 0.05 for
all wavelengths except 510 nm, while for 𝑅𝑟𝑠 ratio, 𝑝-values are less than 0.05 for all wavelengths. Red line refers to 1:1 line. Note that here the statistical test is computed in
linear space, with the unit of sr−1 for magnitude and dimensionless for shape. The model is based on 16-parameter model (Sun et al., 2023). Results using the 17-parameter model
are shown in Supplementary Figure S8. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. The bias comparison of 𝑅𝑟𝑠(𝜆) between modelled and OC-CCI-derived values at six wavelengths, using the Graban et al. (2020) dataset (𝑁 = 9050). The OCMF is shown
in red line, and Model J from Brewin et al. (2015b) is in green. The a1–a6 are the magnitude of 𝑅𝑟𝑠, and the b1–b6 are the shape of 𝑅𝑟𝑠 normalised at 560 nm. Since 560 nm
is used as the denominator in calculating the 𝑅𝑟𝑠 shape, the bias at 560 nm in b1–b6 is not displayed. The a1 (b1) refers to the whole dataset, while a2–a6 (b2–b6) represent
results from sub-datasets divided into five temperature groups. Each sub-dataset includes approximately 1810 samples, with statistics of temperature shown in each subplot, with
the unit of ◦C. Note that here the bias is computed in linear space, with the unit of sr−1 for magnitude and dimensionless for shape. The model is based on the 16-parameter
model (Sun et al., 2023). Results using the 17-parameter model are shown in Supplementary Figure S9. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
algorithms designed for the Arctic waters also exhibit lower band
ratios (Lewis et al., 2016). These deviations were not accommodated by
the OCMF. Previous studies suggested that the low band ratios in these
regions could be caused by excess of CDOM concentration (Organelli
et al., 2014; Kheireddine et al., 2018a; Lewis and Arrigo, 2020), com-
pared to other open ocean waters. It is noteworthy that the proposed
OCMF is designed for standard open ocean conditions and may not
fully capture the influence of optically active components independent
of phytoplankton on 𝑅𝑟𝑠 in specific regions. This highlights the impor-
tance of evaluating and potentially refining the OCMF to better account
for the bio-optical characteristics of these unique environments.
16 
4.4. Model applications

The OCMF presented in this study has been inspired by earlier
work (Brewin et al., 2015a, 2019), which partitioned IOPs into different
PSCs, based on the assumption that each class inhabits distinctive
optical environments (Alvain et al., 2012). These IOPs show variations
with Chl-a, representing the changes in bio-optical properties in waters
due to the variations in phytoplankton size structure (Neukermans
et al., 2016; Reynolds and Stramski, 2019). Meanwhile, temperature
serves as an useful variable in predicting differences in optical prop-
erties for similar Chl-a concentrations, and may be useful to study
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Fig. 11. The maximum band ratio of 𝑅𝑟𝑠 plotted against Chl-a, using the proposed OCMF and the simulated data, with Chl-a ranging from 0.01 to 10 mg m−3 and SST ranging
from −1.8 to 33 ◦C. The coloured mesh plot represents the influence of SST variations on the maximum band ratio estimation (a), and fractions of each phytoplankton size class
for the same model simulations (b–d). The 𝐹1, 𝐹2, and 𝐹3 represent the fraction of pico-, nano-, and microplankton, respectively. The red dashed, purple dash-dot and black dotted
lines represent the OC3 maximum band ratio algorithms of Johnson et al. (2013), Pereira and Garcia (2018) and O’Reilly and Werdell (2019), respectively. The model is based
on the 16-parameter model (Sun et al., 2023). Results using the 17-parameter model are shown in Supplementary Figure S10. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)
effects of climate change on ocean colour (Sun et al., 2023). One can
also consider OCMF as a flexible tool to explore how phytoplankton
community structure impacts the reflectance spectrum. For example, it
could be used to simulate the reflectance spectrum of an environment
purely dominated by only one of the three size classes. This could
be helpful in developing methods for detecting phytoplankton com-
munities directly (Sathyendranath et al., 2004; Alvain et al., 2005),
with future efforts potentially leveraging emerging hyperspectral ocean
colour sensors (e.g., NASA PACE [Plankton, Aerosol, Cloud, ocean
Ecosystem]). With the incorporation of the specific IOPs of phyto-
plankton community structure, the OCMF has potential to improve the
description of optics in radiative transfer models (Bracher et al., 2017;
Bi et al., 2023), and enhance our understanding of how light and optical
constituents affect the ocean biogeochemistry (Xiu and Chai, 2014;
Dutkiewicz et al., 2015; Álvarez et al., 2022).

The OCMF parameters (i.e., chlorophyll-specific IOPs) obtained in
this study will serve as essential inputs, along with 𝑅𝑟𝑠 and SST mea-
surements, for retrieving phytoplankton information (e.g., Chl-a) using
inversion methods, which will be further explored in subsequent stud-
ies. The inversion process can simultaneously provide the bio-optical
17 
properties, as well as their size fractions, from 𝑅𝑟𝑠, significantly expand-
ing the utility and applicability of the model. An increasing number
of studies underscored the importance of employing IOPs to enhance
our comprehension of biogeochemical cycles (Werdell et al., 2018,
and references therein). The 𝑏𝑏𝑝ℎ and 𝑏𝑏𝑑 models (Section 3.3.2) could
offer valuable insights in characterising particulate assemblages and un-
derstanding their impact on the backscattering coefficient, potentially
aiding in the analysis of phytoplankton carbon and suspended particu-
late matter (Brewin et al., 2023b). By considering independent changes
in size structure for the same Chl-a, the ambiguity problem (Defoin-
Platel and Chami, 2007) might be better constrained in the open
ocean.

The forward OCMF mainly focuses on the open ocean, where IOPs
can be tied to phytoplankton, represented by Chl-a (Morel and Prieur,
1977). However, climate change can have an impact on a variety of wa-
ter bodies, such as coastal regions that contribute significant amounts
of non-algal substances (van Oostende et al., 2023). Consequently,
how the model can be adapted to diverse aquatic environments needs
to be considered. In future inverse modelling, spectral-independent
multiplicative factors which capture an excess or deficit of non-algal
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substance will be introduced, akin to the parameter 𝛷 in Morel and
entili (2009). They can address potential overestimation or underes-

imation of the model parameters when applied to waters with different
bio-optical properties. In the oceanic waters, for example, these factors
are likely to be close to one, indicating that the model performs well
without adjustments. However, in coastal waters with substantial non-
lgal substances, these factors are likely to exceed one, as seen in the

Red Sea and Mediterranean Sea (Brewin et al., 2015a; Pérez et al.,
2016). This approach may extend the applicability of the model to
iverse water types worldwide.

The development of OCMF relies on global standard ocean con-
ditions, and its focus on synoptic patterns raises concerns about its
bility to accurately represent higher spatial and temporal variability.
or example, the OCMF may not adequately capture the unique bio-
ptical characteristics of specific regions, such as coastal waters with
igh suspended sediment concentrations or marginal seas with elevated
DOM levels (D’Sa et al., 2006; Naik et al., 2013). Additionally, es-

calating extreme events under climate change such as algal blooms
and wildfire can significantly alter bio-optics (Zhao et al., 2009; Li
t al., 2021), which are not currently validated within the proposed

OCMF. Moreover, the OCMF does not consider short-term fluctuations,
such as diel changes in phytoplankton responses to temperature, which
can affect optical properties (Kheireddine and Antoine, 2014; Poulin
t al., 2018). It is worth noting that the OCMF may not provide

optimal performance under all circumstances and across all water types
lobally. However, ongoing efforts will be made to refine the model and
dapt it as more data become available.

5. Summary

We compiled the most extensive global (to the best of our knowl-
edge) in-situ dataset of optical properties within the surface ocean
(≤ 20 m depth). The dataset spans from 1994 to 2021 and includes
47,295 samples, gathered from various sources. It comprises inde-
pendent datasets with IOPs including absorption (𝑎𝑝ℎ, 𝑎𝑑 , 𝑎𝑔) and
backscattering (𝑏𝑏𝑝) coefficients, as well as remote sensing reflectance
(𝑅𝑟𝑠). These datasets are accompanied by concurrent in-situ Chl-a and
OISST-derived SST, and were divided into training (pre 2016) and
validation (post 2016) datasets to ensure independent validation.

Using the training dataset, we developed a forward modelling
framework (OCMF) that can estimate 𝑅𝑟𝑠 in open ocean waters for
any given pair of Chl-a and SST measurements. The basis of the OCMF
is the integration of the absorption and backscattering coefficients of
each water constituent, all of which (except for water itself) respond
to changes in Chl-a and temperature. To achieve this, we integrated
the ecological model (Sun et al., 2023) that partitions phytoplankton
nto three size classes. We also accounted for the effect of a back-
round of non-algal particles on ocean optics. Each IOP within the
odel was parameterised and independently validated, and found to

ompare favourably with conventional models from previous studies.
Chlorophyll-specific IOPs were assigned to each size class in the OCMF.
When compared with a previous forward model, the OCMF shows
advantages in estimating 𝑅𝑟𝑠 with higher accuracy under varying
temperature conditions.

The development of the OCMF is a critical component for establish-
ing a Chl-a algorithm that is more considerate of the impact of climate
change on ocean colour. Serving as a link between ecological concepts
nd optical models, the OCMF provides essential model parameters

with both biological and optical significance for the forthcoming inver-
sion model. It expands the scope of forward ocean colour modelling
by addressing potential ambiguity in ocean-colour data. Subsequent
studies will involve monitoring the variability of phytoplankton and
their size distribution over long periods to better understand their
responses to climate change.
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Table A.1
Definitions of the abbreviations and symbols used in this manuscript.

Abbreviation symbol Definition Units (‘∖’ indicates an abbreviation)

BRDF Bidirectional reflectance distribution function ∖
CDOM Coloured dissolved organic matter ∖
Chl-a Chlorophyll-a concentration mg m−3

HPLC High performance liquid chromatography ∖
NAP Non-algal particles ∖
OCMF Ocean Colour Modelling Framework ∖
OC-CCI Ocean Colour Climate Change Initiative ∖
OISST Optimal Interpolation Sea Surface Temperature ∖
PSCs Phytoplankton size classes ∖
SST Sea surface temperature ◦C

𝑎(𝜆) Total absorption coefficient m−1

𝑎𝑑 (𝜆) Absorption coefficient of non-algal particles m−1

𝑎𝑘𝑑 (𝜆) Absorption coefficient of background of non-algal
particles

m−1

𝑎∗𝑑 (𝜆) Chlorophyll-specific absorption coefficient of
non-algal particles

m2 (mg C)−1

𝑎𝑔 (𝜆) Absorption coefficient of coloured dissolved
organic matter

m−1

𝑎∗𝑔 (𝜆) Chlorophyll-specific absorption coefficient of
coloured dissolved organic matter

m2 (mg C)−1

𝑎𝑝(𝜆) Absorption coefficient of particles m−1

𝑎𝑝ℎ(𝜆) Absorption coefficient of phytoplankton m−1

𝑎∗𝑝ℎ(𝜆) Chlorophyll-specific absorption coefficient of
phytoplankton

m2 (mg C)−1

𝑎𝑤(𝜆) Absorption coefficient of water m−1

𝑏𝑏𝑑 (𝜆) Backscattering coefficient of non-algal particles m−1

𝑏∗𝑏𝑑 (𝜆) Chlorophyll-specific backscattering coefficient of
non-algal particles

m2 (mg C)−1

𝑏𝑘𝑏𝑝(𝜆) Backscattering coefficient of background of
non-algal particles

m−1

𝑏𝑏𝑝(𝜆) Backscattering coefficient of particles m−1

𝑏∗𝑏𝑝(𝜆) Chlorophyll-specific backscattering coefficient of
particles

m2 (mg C)−1

𝑏𝑏𝑝ℎ(𝜆) Backscattering coefficient of phytoplankton m−1

𝑏∗𝑏𝑝ℎ(𝜆) Chlorophyll-specific backscattering coefficient of
phytoplankton

m2 (mg C)−1

𝑏𝑏𝑤(𝜆) Backscattering coefficient of water m−1

𝐶 In-situ Chl-a concentration mg m−3

𝐶1, 𝐶2, 𝐶3, 𝐶1,2 Chl-a concentration of picoplankton, nanoplankton,
microplankton, and combined pico- and
nanoplankton

mg m−3

𝐶𝑚
1,2, 𝐶

𝑚
1 Asymptotic maximum values for combined pico-

and nanoplankton and picoplankton
mg m−3

𝐷1,2, 𝐷1 Fraction of Chl-a as total Chl-a tends to zero for
combined pico- and nanoplankton and
picoplankton

Dimensionless

𝐹1, 𝐹2, 𝐹3, 𝐹1,2 Fraction of Chl-a for picoplankton, nanoplankton,
microplankton, and combined pico- and
nanoplankton

Dimensionless

𝐺𝑎, 𝐺𝑏, 𝐺𝑐 , 𝐺𝑑 Parameters for 𝐶𝑚
1,2 in 16-parameter model, where

𝐺𝑎 and 𝐺𝑑 control the upper and lower bounds,
𝐺𝑏 represents the slope of the change, 𝐺𝑐 is the
SST mid-point of slope

mg m−3, ◦C−1, ◦C, mg m−3

𝐺𝑤
0 (𝛺), 𝐺𝑤

1 (𝛺), 𝐺𝑝
0(𝛺), 𝐺𝑝

1(𝛺) Parameters for the optical model of Lee et al.
(2013)

sr−1

𝐻𝑎, 𝐻𝑏, 𝐻𝑐 , 𝐻𝑑 Parameters for 𝐶𝑚
1 in 16-parameter model, same as

𝐺𝑎-𝐺𝑑
mg m−3, ◦C−1, ◦C, mg m−3

𝑖 𝑖 = 1, 2, and 3 for pico-, nano-, and microplankton ∖
𝐽𝑎, 𝐽𝑏, 𝐽𝑐 , 𝐽𝑑 Parameters for 𝐷1,2 in 16-parameter model, same

as 𝐺𝑎-𝐺𝑑
Dimensionless, ◦C−1, ◦C, dimensionless

𝑂𝑎, 𝑂𝑏, 𝑂𝑐 , 𝑂𝑑 Parameters for 𝐷1 in 16-parameter model, same as
𝐺𝑎-𝐺𝑑

Dimensionless, ◦C−1, ◦C, dimensionless

𝑝 𝑝-value Dimensionless
𝑟 Pearson linear correlation coefficient Dimensionless
𝑅𝑟𝑠(𝜆) Remote sensing reflectance sr−1

𝑟2 Coefficient of determination, 𝑟-squared Dimensionless
𝑆𝑑 Slope of non-algal particles absorption nm−1

𝑆𝑘𝑑 Slope of background of non-algal particles
absorption

nm−1

𝑆𝑔 Slope of coloured dissolved organic matter
absorption

nm−1

𝑈𝑎, 𝑈𝑏, 𝑈𝑐 Parameters for 𝐶𝑚
1,2 in 17-parameter model mg m−3 ◦C−2, mg m−3 ◦C−1, mg m−3

(continued on next page)
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Table A.1 (continued).
Abbreviation symbol Definition Units (‘∖’ indicates an abbreviation)

𝑉𝑎, 𝑉𝑏, 𝑉𝑐 , 𝑉𝑑 , 𝑉𝑒, 𝑉𝑓 Parameters for 𝐶𝑚
1 in 17-parameter model, 𝑉𝑎 and

𝑉𝑑 are the height of peaks, 𝑉𝑏 and 𝑉𝑒 are the
positions of peak centres, and 𝑉𝑐 and 𝑉𝑓 control
the width of the curve

mg m−3, ◦C, ◦C, mg m−3, ◦C, ◦C

𝛾 Slope of particulate backscattering Dimensionless
𝛾
𝑑 ,𝑖 Slope of non-algal particulate backscattering Dimensionless
𝛾
𝑝ℎ,𝑖

Slope of phytoplankton backscattering Dimensionless
𝛿 Bias The unit depends on the input
𝛥 Centre-patterned root mean square difference The unit depends on the input
𝜖 MAD, mean absolute difference The unit depends on the input
𝜅 The total of absorption and backscattering

coefficient
m−1

𝜆 Wavelength nm
𝜆0 Reference wavelength nm
𝜓 RMSD, root mean squared difference The unit depends on the input
𝛺 Sun-sensor angular geometry for 𝑅𝑟𝑠 Rad
Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.rse.2024.114487.

Data availability

Data will be made available on request.
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