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Abstract

The rapid adoption of electric vehicles (EVs) is driving increasing de-
mand for efficient and strategically placed charging stations. While
numerous studies have explored optimization methods for the place-
ment of EV charging stations, most focus on smaller geographic
areas, leaving the challenge of optimizing station distribution across
larger regions unresolved. This paper presents a novel approach
for optimizing both the placement and capacity of EV charging
stations using the H3 spatial grid system and queuing theory. By
leveraging the hexagonal structure of the H3 grid, we accurately
model spatial data and analyze EV charging demands in both ur-
ban and non-urban areas. Queuing theory is employed to predict
station utilization and optimize the allocation of charging points,
minimizing user wait times and ensuring efficient resource distri-
bution. The proposed method is adaptable to future growth in EV
adoption and addresses infrastructure needs in both high-demand
and underserved regions. This paper outlines the framework devel-
oped for the 13th SIGSPATIAL Cup (GISCUP 2024), which achieved
top-1 performance. Results based on real-world data demonstrate
the model’s effectiveness in enhancing the spatial distribution of
charging stations, improving accessibility and efficiency in EV in-
frastructure.

CCS Concepts

« Applied computing — Transportation; - Computing method-
ologies — Machine learning; - Information systems — Geo-
graphic information systems.
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1 Introduction

With the global rise in electric vehicle (EV) adoption, building an
efficient, accessible, and scalable network of charging stations has
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become a critical infrastructure challenge. Urban centers, where
traffic density is high, demand more charging stations to meet
growing needs[1], while rural or underserved areas require strate-
gic placements to support EV users in less populated regions[2].
Addressing these diverse needs calls for an intelligent system that
balances demand, accessibility, and future scalability.

The problem of optimal EV charging station placement has
been widely studied. Existing methods primarily include multi-
criteria decision-making (MCDM) and mathematical programming
approaches. For example, [3] utilized hexagonal grids to determine
optimal charging station locations using the MCDM approach. Al-
though MCDM is effective, mathematical programming tends to
offer more precision, although at a higher computational cost, es-
pecially when applied to large-scale road networks[4].

Mathematical programming approaches for planning charging
infrastructure can be divided into three main categories[5]: the
Charging Station Owner (CSO) approach[6],[7], the Distribution
Network Operator (DNO) approach[6], and the Electric Vehicle
Users (EVU) approach([8],[7]. As EV adoption grows and charging
technology advances, it becomes increasingly necessary to incor-
porate queuing models to account for situations where demand
exceeds the station’s charging capacity. For example, [9] integrates
queuing theory into the EV charging station optimization problem
to address this.

This paper introduces a novel optimization model that lever-
ages the H3 spatial grid system and queuing theory to address EV
charging station placement. The H3 grid system, with its hexagonal
structure, facilitates seamless aggregation and analysis of geospatial
data. Unlike traditional grids, H3 dynamically adjusts resolution,
making it adaptable to varying population densities and regional
demands.

Queuing theory enhances this model by optimizing station ca-
pacity, minimizing user wait times, and ensuring cost-effective
infrastructure investments. By simulating charging station behav-
ior under different demand scenarios, we determine the optimal
number of charging points per station based on expected utilization,
balancing efficiency and scalability.



Building upon prior work in spatial optimization and infras-
tructure planning, this research combines geospatial analysis with
operational efficiency models. Our approach not only addresses cur-
rent EV charging needs but also adapts to projected future growth,
offering a scalable, future-proof solution.

2 Data Processing

This study integrates multiple data sources to improve the spa-
tial analysis of Electric Vehicle (EV) charging infrastructure across
Georgia. We utilize the H3 spatial grid system[10] at resolution 8,
dividing the state into 282,771 hexagonal cells. Each H3_8 cell ag-
gregates features such as demographic data, traffic flow[11], Points
of Interest (POIs), power infrastructure, and geospatial attributes,
including building area, main route overlap, EV adoption rates, and
night-time light intensity. The H3 framework supports 16 resolu-
tions, where each finer resolution divides the area of the coarser
resolution approximately into seven smaller hexagons, as the figure
1 shows. Despite the approximation, the system enables efficient
indexing by truncating the identifiers of the child cells to find their
parent cell.

2.1 Converting Spatial Data to H3 Grid System

The section outlines a method for standardizing spatial data using
the H3 hexagonal grid system, which simplifies the analysis of geo-
graphic features. Irregular polygons are converted into H3 indexes
based on their centroids, and raster data (e.g., night light intensity)
is aggregated within H3 cells. Key features, such as main route over-
lap length, building area, and population, are also integrated at the
H3_8 level. This approach facilitates scalable geospatial analysis by
providing a uniform grid structure that enhances the understanding
of urbanization patterns and infrastructure needs.

2.2 POI Classification and Scoring

To systematically classify and score the 385,233 POIs in Georgia, we
used a zero-shot classification approach using the LLM model. This
method facilitated the categorization of diverse POI data into prede-
fined categories relevant to EV infrastructure, improving the spatial
analysis for optimal charging station placement. The classification
process involved: 1. Extracting and cleaning unique POI categories
from the dataset. 2. Mapping each POI to a set of candidate labels
representing high-level categories (e.g., Commercial, Residential,
Transportation). 3. Assigning a priority score to each category based
on its relevance to EV charging demand, with higher scores indicat-
ing greater importance. The priority score for each H3_8 cell was
then calculated by summing the scores of all POIs within the cell.
This scoring mechanism enabled the identification of high-priority
areas where EV infrastructure is likely to be more beneficial. By
leveraging Al-based classification, our approach provided a flexible
and scalable solution for handling large-scale POI datasets, facili-
tating more effective spatial optimization of EV charging station
placement.

3 Method

To optimize the placement of EV charging stations, it is essential
to distinguish between Urban, Suburban, and Rural areas, as their
infrastructure requirements vary significantly. In Suburban and

Rural regions, where Points of Interest (POIs) and traffic flow may
be sparse, safety and accessibility can be ensured by providing at
least one station with five DC Fast Charging (DCFC) piles within a
50 km radius. Conversely, in Urban and Suburban areas, placement
strategies rely more heavily on each grid’s geospatial features and
origin-destination (OD) traffic patterns 3.2, allowing for a data-
driven approach tailored to local demand.

3.1 Clustering Urban, Suburban, and Rural
Areas
To categorize areas into Urban, Suburban, and Rural, we applied

K-Means clustering based on spatial features that capture variations
in population density, infrastructure, and night-time light intensity.

3.1.1 Feature Selection and Standardization. We selected the fol-
lowing features: - x1: Census Population (number of residents). -
x2: Building Area (total built-up space). - x3: Total POI Score (sum
of priority scores for Points of Interest). - x4: Average Night-Time
Light Intensity. The features were standardized using:
X—yp
o
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Xscaled =
where p and o are the feature’s mean and standard deviation.

3.1.2  Clustering and Area Type Mapping. We applied the Elbow
Method to determine k = 3 clusters by minimizing the within-
cluster sum of squares:

k
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K-Means then assigned each data point to one of three clusters
based on proximity to cluster centroids. Clusters were labeled as
"Urban,' "Suburban," and "Rural" by sorting cluster centers based on
the population metric x1, higher populations indicate urban areas

3.1.3  Result Interpretation. The clusters represent and verification:
Urban: High x1, x2, x4; uburban: Intermediate feature values; Rural:
Low x1, x2, x4. The clustering results segment geographic regions
into "Urban," "Suburban," and "Rural” effectively, with urban ar-
eas exhibiting higher population, building area, and night light
intensity values. Verification using thresholds for night light in-
tensity, inspired by VIIRS DNB methods, shows consistency with
established techniques for urbanization detection. Specifically, we
employed a threshold of 8 nW/cm?/sr for the night light feature,
based on careful examination of stable lights within urban areas
as suggested in [12]. A Pearson correlation of 0.7761 between the
night light intensity and the classified area types further validates
our approach, indicating a strong relationship between night light
data and the level of urbanization. Discrepancies in the suburban
classification suggest potential areas for refining the thresholds to
enhance accuracy.

3.2 Queuing model

In order to determine the optimal number of service channels at
each station, we employ an M/M/c queuing model. This model
assumes that electric vehicles arrive at charging stations following
a Poisson process with a rate of A vehicles per hour, and that each
station can service vehicles at an exponential rate of y vehicles



(a) H3_6

(b) H3_6 and H3_7

(c) H3_6, H3_7, and H3_8

Figure 1: H3 enables the user to subdivide areas into smaller hexagons, increasing the resolution for finer spatial analysis.
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Figure 2: Urban, Suburban and Rural

per hour. The goal is to minimize the average waiting time while
maintaining a reasonable utilization rate. To account for charging
station outages[13], we introduce the concept of an outage rate (p),
which adjusts the total number of available charging stations (c).

_ 2(Og4 x Hg)
Hiotal X Diotal

©)

Where, O4 = Outage days,H; = Affected households per day, Hgtal
= Total households,Dyut,) = Total days. The effective number of
charging stations (c.fr) is given by:

Ceff =cX(1-p) 4)

where c is the total number of stations, and p is the outage rate.
The effective utilization rate (p.f ) is then calculated as:

A
CeffH ¢ (1=p)p

Peff = (5)

where A is the EV arrival rate, and p is the service rate per charging
station.

The objective is to minimize the average waiting time (W),
which is a function of the average queue length (Lg). The probability

of zero vehicles in the system (Py) can be computed as:
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Using Py, the average queue length (Lg) is:
Py @t pepy -
T Leeppl! (1= pegp)?
Finally, the average waiting time in queue (W) is given by:
L
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Optimization Goal: The goal is to determine the optimal num-
ber of charging stations (c) that minimizes the average waiting
time (Wy), subject to the constraint that the utilization rate (p, ff)
remains below a reasonable threshold (e.g., 0.9). The optimization
problem can be formulated as:

L
. q .
min Wy = 5 subjectto  perr < 0.9 9)

To estimate the EV arrival rate A, we calculate the number of
vehicles arriving per hour at a given location, n;, and multiply this
by the percentage of EVs in the local market, f;, to get the EV
arrival rate y;; = n; X fi. The peak period (e.g., 8am to 8pm) is
used to compute the average EV arrival rate, A, during the busiest
time of day. Different types of charging stations have varying ser-
vice rates (). For DC Fast Chargers (DCFC), the average service
rate is approximately 2 vehicles per hour (assuming a full charge
in 30 minutes). For Level 2 chargers, the service rate is lower, at
approximately 0.25 vehicles per hour (assuming a charge time of 4
hours).

3.3 Geospatial Optimization of Charging
Station Distribution

We use the H3 hierarchical grid system to standardize the spatial

representation of geographic regions, optimizing the placement of

EV charging stations based on urbanization levels and infrastructure

needs across Urban, Suburban, and Rural areas.



3.3.1 Grid-Based Spatial Analysis Using H3 Indexes. Administrative
polygons are converted to H3 indexes at resolution 8 (H3_8) for
standardized analysis, with approximately 2 km spacing between
cells. If an H3_8 cell’s site capacity exceeds 30 charging stations,
we subdivide it into H3_9 cells to enable finer placement decisions.
POI-based prioritization helps identify the top H3_9 cells, and K-
Means clustering is used to optimize placement considering POI
distribution and socio-economic factors.

3.3.2 Optimizing Placement for Suburban and Rural Areas. For
larger suburban and rural polygons, we adopt a hierarchical ap-
proach. Suburban Areas: aggregate H3_8 cells into parent H3_7
cells, then subdivide into child H3_8 cells. Prioritize based on POI
scores, with K-Means clustering used for placement optimization.
Rural Areas: Aggregate H3_8 cells into H3_6, then subdivide into
child H3_8 cells. The top-ranked cells are selected for placement
using a similar approach.

Table 1: Priority Scores for POI Categories

POI Category Priority Level
Commercial and Retail Centers 1
Parking Facilities
Transportation Hubs
Workplaces and Offices
Government and Public Services
Residential Areas

AN U W

3.3.3 POI-Based Prioritization. Each H3 cell’s priority is deter-
mined by the types and quantities of POIs, with scores assigned
based on relevance to EV users. Table 1 outlines the priority levels
for various POI categories. The priority level for an H3 cell is ranked
for all POIs within that cell.

3.3.4 Additional Considerations for Optimal Placement. Optimal
H3 cells should ideally include existing infrastructure (e.g., power
towers, streetlights) and be located near main transportation routes
to enhance accessibility. This concise approach retains the core
methodology while streamlining the explanation for clarity.

4 Results and discussions

The results indicate that the H3 hierarchical grid system effectively
tailors the placement of EV charging stations to the specific needs
of Urban, Suburban, and Rural areas. In Urban regions, prioritiz-
ing high-density zones near essential POIs optimized accessibility
based on traffic patterns, while in Suburban and Rural areas, the
strategy balanced coverage with local demand and safety needs, pro-
viding coverage within a 50 km radius. An important enhancement
identified is the potential for further optimization through a more
fine-grained H3 resolution that incorporates land use data. This
approach could significantly improve siting accuracy but would re-
quire increased computational resources to manage the finer spatial
analysis. Future work could focus on leveraging these fine-grained
data to refine placement decisions dynamically, based on evolving
usage patterns.

On the other hand, the results show that the optimization model
based on queuing theory can generate appropriate capacity num-
bers for EV charging stations. Future research could consider more
conditions, such as the grid’s capacity limitations and the actual
costs of setting up charging stations, to make the results more accu-
rate. More complex optimization methods, such as meta-heuristic
approaches, could also be explored to estimate the optimal solution.
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Figure 3: Charging station distribution

The optimized EV charging station placements across Georgia
can be explored on this interactive map link, showcasing tailored
strategies for urban, suburban, and rural areas.
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