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On the impact of the camera field-of-view to Direct Visual Servoing
robot trajectories when using the

Photometric Gaussian Mixtures as dense feature

Sinta Schulte1, Antoine N. André 1, Nathan Crombez2, Guillaume Caron1,3

Abstract— This paper studies the impact of cameras with
different fields of view (FoV) on Direct Visual Servoing to
control robot motions from pixel intensities. Focusing on the
Photometric Gaussian Mixture Visual Servoing that showed
great convergence domains, this paper investigates two types
of FoV: the seminal perspective case and the novel full om-
nidirectional case. Implemented with our open-source generic
software framework libPeR for a fair comparison, the Visual
Servoing experiments on a 6 degrees-of-freedom robot arm
provide an in-depth evaluation of the impact of each FoV on
the convergence domain, straightness of the trajectory and time
to reach convergence.

I. INTRODUCTION

Visual Servoing (VS) leverages the information contained
in the image to control the movement of a robot and reach
a desired position by designing a control law aiming to
minimize the error between the current and the desired image
[1], [2]. For the past decades, numerous research studies
have investigated how to increase the performances of VS
schemes, exploring various approaches and camera models.

One approach is Indirect Visual Servoing (IVS), which
relies on the extraction of geometric features to compute
the control law [3]. While this method ensures a large
convergence domain, allowing convergence as long as the
detected geometric features are matched in both current and
desired images, its major drawback is the feature extraction,
thus limiting both accuracy and robustness.

Another approach is Direct Visual Servoing (DVS), which
utilizes all the photometric information present in the image.
DVS is used as a dense feature to compute the control law,
such as the seminal Photometric Visual Servoing (PVS) [4].
Contrary to IVS approaches, DVS methods can perform VS
tasks without relying on any geometrical feature present
in the studied scene. The main advantage of using the
whole image is its robustness and sub-millimetric accuracy
at convergence. However, this accuracy comes at the cost of
curvy trajectories and a narrower convergence domain.

The latter problem has been widely investigated in a first
line of works focusing on the visual information to consider
as input of the control law, including deeper image analysis
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through space changes [5], [6], [7] and by smoothing the
images either digitally [8] or optically [9]. Image smoothing,
especially when considering Photometric Gaussian Mixtures
(PGM), proved to greatly increase the convergence domain
without affecting the precision at convergence [8].

Another possibility to enlarge DVS’ convergence domain
is increasing the camera FoV. Indeed, thanks to the miniatur-
ization of omnidirectional cameras, they have become easier
to embed in robotic systems for various purposes including
robot attitude estimation, place recognition and dense-scene
geometry prediction [10], [11], [12], [13]. VS tasks also ben-
efit from large FoV as demonstrated by gradually enhancing
PVS’ convergence domain, from using a single panoramic
camera [14] to full 360◦ cameras [15].

Leveraging the above state-of-the-art works, the core con-
tributions of this paper are:

1) combine the two approaches of enhancing DVS’ con-
vergence domain to introduce the PGM VS using a 360◦

camera.
2) propose a new VS quantitative evaluation methodology

based on ideal and achieved trajectories.
The first contribution is achieved by considering the so-

called equirectangular single image representation of the
360◦ FoV captured. Thus, we coin the term equirectangular
camera for the rest of this paper. Furthermore, dedicated
attention in both the mathematical and software develop-
ments enables switching seamlessly between perspective
and equirectangular cameras within the same framework
(see Sec. II) for a fair assessment of the impact of the
camera FoV to the DVS scheme using the same PGM visual
information. The latter comparison follows the methodology
of the second contribution to conclude based on a quantitative
analysis comparing the achieved robot trajectories to the
ideal ones, as defined in Section III. Section IV presents
the VS results using perspective and equirectangular cameras
on the same 6 Degrees-of-Freedom (DoF) robot arm and
Section V concludes the paper.

II. EQUIRECTANGULAR PHOTOMETRIC GAUSSIAN
MIXTURES-BASED VISUAL SERVOING

This section first recalls the PGM formulation and the
control law regulating to zero the error defined between the
PGM of the current image and the PGM of the desired image,
including the generic expression of the interaction matrix
linking the variation of the error to the one of the camera



DoFs. After that, the new interaction matrix expressed con-
sidering the equirectangular camera is developed.

A. Photometric Gaussian Mixture

Instead of considering each image pixel
I(u) : U ⊂ N2 7−→ [0, 255] ⊂ N, as a pulse whose
magnitude equals the captured intensity, a PGM transforms
every pixel pulse as Photometric Gaussians (PG) that
spread each pixel’s attractive potential to the rest of the
image plane. Thus, stacking every pixel of the image I
as a vector I and considering the same Gaussian extent
λg ∈ R+\{0} for every PG, the PG g evaluated at location
ug = (ug, vg)

T ∈ U is expressed as:

g(I,ug,u, λg) = I(u)E(ug − u), (1)

where E(ug − u) refers to the Gaussian function:

E(ug − u) = exp

(
− (ug − u)2 + (vg − v)2

2λ2
g

)
. (2)

Then, the PGM G of an image I is nothing but the sum
of all g:

G(I,ug, λg) =
∑
u∈U

g(I,ug,u, λg). (3)

The extension parameter λg and its effects can be observed
as an image smoothing factor about which Figure 1 reports
example images for two types of cameras, one perspective
and one equirectangular.

B. PGM-based Visual Servoing

Following the general Visual Servoing methodology [2],
PGM VS (noted short for compactness) aims at regulating
to zero the difference between the PGM G of the current
image I captured at the camera pose p ∈ R6 with respect to
the PGM G∗ of the desired image I∗ defined at the desired
camera pose p∗ ∈ R6. In each pose vector, the first three
elements are the tridimensional translation and the three last
are the tridimensional rotation represented as axis-angle.

Stacking for all ug ∈ U , all current Gaussian mixture
elements G(ug) in a vector G(p) ∈ R|U|, and desired ones
G∗(ug

∗) in a vector G∗(p∗) ∈ R|U|, we express the cost
function between desired and current dense features [8]:

C(p) =
1

2
||G(p)−G∗(p∗)||2. (4)

To minimize (4) with PGM VS, we highlight the so-called
interaction matrix LG ∈ R|U|×6 relating the time derivative
of the dense features G(p) to the camera velocity v ∈ R6:

Ġ = LGv, (5)

where p has been dropped from G(p) for conciseness.
Finally, considering a gain µ ∈ R+ and the matrix

pseudo-inverse operator +, we express the control law to
compute the velocity that the camera should follow in order
to minimize (4) with an exponential decay:

v = −µ LG
+(G(p)−G∗), (6)

where p∗ has been dropped from G∗(p∗) for conciseness.

In order to highlight the role of the camera projection
model, let us remind that the interaction LG is the stacking
of all interaction matrices LG(ug) for all ug ∈ U , each of
them being analytically expressed thanks to the derivatives
chain rule as a product Jacobian matrices [8]:

LG(ug) =
∂G

∂ug

∂ug
({p,e})

∂X
LX, (7)

where X ∈ R3 is the tridimensional point expressed in the
camera coordinate system projecting in ug according to the
camera projection model (denoted in (7), noted with the ex-
ponent (p) for perspective camera and (e) for equirectangular
camera, as described in Sec. II-C) and LX is the interaction
matrix related to X. We refer to [2] for the details to obtain
the expression of LX as:

LX =

−1 0 0 0 −Z Y
0 −1 0 Z 0 −X
0 0 −1 −Y X 0

 , (8)

and to [8] for the expression of
∂G

∂ug
:

∂G

∂ug
= −

∑
u∈U

I(u)

[
−(ug − u)/λ2

g

−(vg − v)/λ2
g

]
E(ug − u). (9)

The next subsection details the expressions for
∂ug

({p,e})

∂X
.

C. Partial derivatives of camera models

As this article mainly focuses on the impact of the FoV
on DVS, let us consider the extreme cases of the conven-
tional perspective camera and of the widest field-of-view
that is the equirectangular camera of 360◦ field-of-view.
For the classical perspective case, a tridimensional point
X = (X,Y, Z)T is projected on the normalized image plane
as x = (x, y)T ∈ R2 with:{

x = X/Z
y = Y/Z

. (10)

Then, considering the perspective camera projection model
p, ug

(p) is obtained from x using the camera principal point
u0, v0 ∈ R2, focal length f ∈ R+ and photodiode sides
ku ∈ R+ and kv ∈ R+:{

u
(p)
g = f

ku
x+ u0 = αux+ u0

v
(p)
g = f

kv
y + v0 = αvy + v0

, (11)

where intrinsic parameters αu, αv , u0, v0 are generally
obtained with camera calibration.

Thus, we develop the Jacobian
∂ug

(p)

∂X
in (7) to:

∂ug
(p)

∂X
=

∂ug
(p)

∂x

∂x

∂X
, (12)

where it is trivial to express
∂x

∂X
, resp.

∂ug
(p)

∂x
, from (10),

resp. (11) (see [2]).
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Fig. 1: Impact of λg = [0.1, 5, 10, 25] on gray scale picture acquired by (a-d) perspective and (e-h) panoramic camera

Then, for the equirectangular camera, since its image
plane represents the azimuth θ ∈ [−π, π] and elevation
ϕ ∈ [−π/2, π/2] angles of X, let us express:{

θ = arctan X
Z

ϕ = arctan Y√
X2+Y 2

. (13)

We transform θ and ϕ to the digital image of width W ∈ N
and height H ∈ N to finalize the equirectangular projection
model expressing ug

(e) as:{
u
(e)
g = W

2π θ +
W
2 = ϵuθ + ue

v
(e)
g = H

π ϕ+ H
2 = ϵvϕ+ ve

, (14)

where ue and ve are used for convenience.
Finally, noting θ = [θ, ϕ]T , we develop the Jacobian

∂ug
(e)

∂X
in (7) to:

∂ug
(e)

∂X
=

∂ug
(e)

∂θ

∂θ

∂X
, (15)

which details, thanks to the partial derivatives of (13),
resp. (14), as:

∂θ

∂X
=

[
Z

X2+Z2 0 − X
X2+Z2

− XY√
X2+Z2ρ2

√
X2+Z2

ρ2 − Y Z√
X2+Z2ρ2

]
, (16)

with ρ2 = X2 + Y 2 + Z2, resp.:

∂ug
(e)

∂θ
=

[
ϵu 0
0 ϵv

]
. (17)

III. VISUAL SERVOING TRAJECTORY EVALUATION

Contrary to Visual Odometry (VO) and Simultaneous Lo-
calization And Mapping (SLAM) that have adopted standard
evaluation routines of estimated camera trajectories [16],
DVS lacks standard metrics and tools to compare robot
trajectories achieved by control laws beyond the initial pose
error, the accuracy at convergence and time to reach the
desired pose. Evaluations of VO and SLAM use metrics
such as differences in trajectory lengths, Absolute Pose Error
(APE), Relative Pose Error (RPE), and variants. But their
implementation within tools such as the evo package [17],

which has become a de facto standard, need a reference
trajectory, i.e. an ordered set of timestamped ground truth
poses. However, in the context of a DVS experiment, there
is no ground truth reference camera trajectory. We therefore
introduce a procedure for generating a sequence of reference
poses based on the desired pose p∗, the initial pose pinit, and
the total number of iterations N of a completed VS exper-
iment. By doing so, VO and SLAM evaluation metrics and
tools become available for fair quantitative and qualitative
evaluations of VS.

Thus, we consider the straight line between the initial
and the desired positions as the reference trajectory, i.e. the
optimal Cartesian trajectory that would be nice to achieve
even if the visual error in DVS is not explicitly defined
to achieve a straight line in the tridimensional space. This
trajectory is discretized into N reference poses pref as
follows:

pref i = pinit + ti(p
∗ − pinit) , i ∈ {0, ..., N − 1}, (18)

where the poses’ orientation are quaternions computed
from the axis-angle representation, and where vector
t = [..., ti, ...]

T ∈ [0, 1]N contains N interpolation factors
evenly spaced from 0 to 1 on a logarithmic scale in order to
match the exponential decay that the VS control law (6) aims
at achieving. The resulting set of poses is considered as the
reference trajectory of the studied VS experiment, allowing
its evaluation and analysis using the various tools included,
for instance, in the evo package (e.g. see Fig. 2).

This proposed protocol is shared open-source as evs
software1.

IV. COMPARISON STRUCTURE

A. Experimental Setup

The experiments are performed with an UR5e industrial
collaborative robot, with the cameras attached one-by-one to
its end-effector (Fig. 3). The C-mount Flir Flea3 USB3 (FL3-
U3-13E4C) camera with a 1/1.8” sensor and 8 mm focal
length Computar lens M0814MP2, as well as the dual-fisheye

1https://github.com/NathanCrombez/evs

https://github.com/NathanCrombez/evs
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Fig. 2: Comparison results for PGMVS tasks using perspective and 360°cameras. Subfigures (a) and (b) show PGM VS
trajectories with identical initial and desired positions for the Flea3 and Insta360 (blue lines are the ideal reference trajectory).
Subfigure (c) plots together trajectories with the perspective (red) and the 360°(green) camera and (d) shows the corresponding
PGM cost over iterations. Corresponding xyz (e) and rpy (f) elements of robot end-effector poses throughout the trajectories.

Insta360 ONE X2 camera are utilized. Thus, the Flea3
camera captures images with a FoV of 51.9° (diagonal),
42.5° (horizontal) and 32.4° (vertical). The Insta360 camera
offers a 360° FoV.

On the software side, the C++ open-source robot per-
ception library libPeR2 is used to compute the visual
features and the control laws, in combination with ROS for
integration.

B. Experimental results

For the first series of experiments, PGM VS with each
camera is using identical parameters, with λg set to 0.805
(except differently stated), the gain µ to 0.8, and a scene
depth Z of 0.5 m corresponding approximately to the dis-
tance between the camera and the printed picture (Fig. 3)
very common in many DVS articles. The experimental setup
is designed such that the capturing of the desired image
for the perspective camera has said picture in the frame.
The initial displacements in Table I are defined with gradual
difficulty such that the first 10 lead to an overlap between
the desired and initial images for the Flea3 camera, while
the last two have none. To provide the robot with velocity
vectors at the same rate as the camera capture frequency and
with minimum latency, the images are resized to a resolution
of 80×64 pixels for the Flea3 and 184×92 pixels for the
Insta360. Such low image resolutions are known to not
prevent accuracy at convergence with the PGM feature [8].

2https://github.com/PerceptionRobotique/libPeR_base

# Initial displacement Ideal Actual
(persp.)

Actual
(360)

1 (0cm, 0.5cm, 0.5cm, 0◦, 0◦, 0◦) 0.7cm +1.1 +0.4
2 (5cm, 5cm, 0cm, 0◦, 0◦, 0◦) 7.1cm +16.8 +5.8
3 (2cm, 6cm, 5cm, 0◦, 0◦, 0◦) 8.1cm +24.4 +6.2
4 (-6cm, 5cm, 2cm, 0◦, 0◦, 0◦) 8.1cm +8.1 +2.1
5 (0cm, 5cm, -10cm, 0◦, 0◦, 0◦) 11.2cm +34.2 +1.5
6 (0cm, 0cm, 0cm, 15◦, 0◦, 0◦) 0cm +6.1 +14.7
7 (0cm, 0cm, 1cm, 10◦, 10◦, 0◦) 1cm x +5.8
8 (0cm, -5cm, -5cm, 0◦, 10◦, 10◦) 7.1cm x +8.8
9 (-4cm, -5cm, 2cm, 0◦, 0◦, -20◦) 6.7cm x +16.2
10 (3cm, 2cm, 5cm, 0◦, 5◦, 10◦) 6.2cm x +2.9
11 (5cm, 10cm, 20cm, 0◦, 0◦, 0◦) 22.9cm x +10.9
12 (0cm, -20cm, 50cm, 0◦, 20◦, 0◦) 53.4cm x +91.1

TABLE I: Initial displacement in robot end-effector frame,
ideal path length to convergence, additional path length in
cm (diverging trajectory noted x).

For the perspective camera, the visual servoing relies
exclusively on the content of the desired image. This fact
can cause divergence if the initial pose leads to insufficient

Fig. 3: UR5e experimental setup with Flea3 and Insta360
camera mounted to its endeffector

https://github.com/PerceptionRobotique/libPeR_base


overlap with the desired image content. The experiments
demonstrate that this camera type generates curvy trajecto-
ries, longer (third column of Tab. I) than the ideal reference
trajectories (second column of Tab. I) computed as described
in Section III.

In contrast, the equirectangular camera captures a com-
prehensive view of the entire scene, thus utilizing a broader
range of visual information. Hence, this type of camera
shows a larger convergence domain than the perspective one,
successfully converging for all initial poses considered. The
perspective camera successfully converges only in six out
of twelve trials, with the last two experiments diverging
as predicted due to a lack of visual overlap. Notably, for
the experiment involving a pure rotational initial error, the
trajectory path for the perspective camera is shorter than that
of the 360-degree camera. However, this is the only instance
in which the perspective camera reaches convergence under
rotational conditions, highlighting its limited robustness in
handling rotations.

For the fifth experiment in Tab. I, Fig. 2 visualizes the
trajectories, residuals and velocities. The trajectory length
to convergence for the perspective camera case is about
3.5 times longer than for the equirectangular camera and
it can be observed that the latter follows a straighter path.
Fig. 2d displays the PGM cost (4) with respect to iterations.
Comparing the desired and initial view of the two cameras
in Fig. 4 and 5 explains the higher residuals of the Flea3
at the beginning of the VS task. The residuals for the
Insta360 demonstrate a smooth exponential decay, whereas
the perspective camera, even overall showing a decrease of
the cost, is not monotonous and requires a higher amount of
iterations to converge.

Extending a bit the fifth experiment of Tab. I, instead
of solely setting λg = 0.805, we consider a recom-
mendation of [8] that introduced a second run of PGM
VS with smaller λg to ensure accuracy at convergence.
When finishing the PGM VS with λg = 0.5, the fi-
nal error changes from a Euclidean position and angu-
lar distance of error e = (2.69mm, 6.1mrad) to e =
(0.28mm, 0.6mrad) for the perspective camera, respectively
from e = (7.12mm, 5mrad) to e = (1.7mm, 1.9mrad) for
the 360-degree camera.

Fig. 4: Flea3: desired and initial view

Fig. 5: Insta360: desired and initial view

V. CONCLUSIONS

In this paper, we investigated the impact of the cam-
era field-of-view on Direct Visual Servoing, leveraging the
Photometric Gaussian Mixtures image representation. A fair
comparison between perspective and omnidirectional cam-
eras to control the motion of a robot arm has been conducted
thanks to the novel evaluation approach of achieved trajec-
tories with respect to computed ideal ones. After recalling
the design of VS control laws, we presented an experimental
setup and protocol to quantify the performance differences
between both small (51◦) and wide (360◦) field-of-view.
In particular, this study demonstrated straighter trajectories
with an omnidirectional camera than with a perspective one.
Further studies will investigate the impact of other field-of-
view and of other types of dense visual features, such as
Mixtures of Photometric Potentials which already proved to
be a strong candidate to widen the convergence domain of
visual alignment tasks.
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