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Abstract 14 

In this review, selected examples are presented to demonstrate how microfluidic approaches can be 15 
utilized for investigating microbial life from deep geological environments, both from practical and 16 
fundamental perspectives. Beginning with the definition of the deep underground biosphere and the 17 
conventional experimental techniques employed for these studies, the use of microfluidic systems for 18 
accessing critical parameters of deep life in geological environments at the microscale is 19 
subsequently addressed (high pressure, high temperature, low volume). Microfluidics can simulate a 20 
range of environmental conditions on a chip, enabling rapid and comprehensive studies of microbial 21 
behavior and interactions in subsurface ecosystems, such as simulations of porous systems, 22 
interactions among microbes/microbes/minerals, and gradient cultivation. Transparent microreactors 23 
allow real-time, noninvasive analysis of microbial activities (microscopy, Raman spectroscopy, FTIR 24 
microspectroscopy, etc.), providing detailed insights into biogeochemical processes and facilitating 25 
pore-scale analysis. Finally, the current challenges and opportunities to expand the use of 26 
microfluidic methodologies for studying and monitoring the deep biosphere in real time under deep 27 
underground conditions are discussed.  28 
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List of acronyms 29 

EOR: Enhanced Oil Recovery 30 

FTIR: Fourier transform infrared 31 

MEOR: Microbial Enhanced Oil Recovery 32 

PMMA: Poly(methyl methacrylate) 33 

PDMS: Polydimethylsiloxane 34 

MICP: Microbiologically induced calcite precipitation 35 

SLiMES: Subsurface Lithoautotrophic Microbial Ecosystems 36 

X-ray CT: X-ray computed tomography  37 
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1 Introduction 38 

The depths of our planet, particularly in continental systems, have gained increasing attention, as 39 

they have been suggested to be the home of millions of undiscovered microbial organisms (Bar-On, 40 

2018; Magnabosco, 2018). This intraterrestrial world has rarely been investigated, especially for 41 

technical and economic issues, although several national and international multidisciplinary 42 

programs have emerged to facilitate exploration and determine the impact of autochthonous 43 

microorganisms on deep geochemical cycles, such as the International Ocean Discovery Program, the 44 

International Continental Scientific Drilling Program or the Deep Carbon Observatory’s Census of 45 

Deep Life (Colwell, 2013; Pedersen, 2000; Fry, 2008; Edwards, 2012; McMahon, 2014; Escudero, 46 

2018; Mangelsdorf, 2010). 47 

The deep underground biosphere and its investigation. In addition to the absence of sunlight, the 48 

key parameter driving the definition of deep environments—to distinguish them from classical 49 

surface environments—is pressure (typically p > 10 MPa). The lithostatic pressure can exhibit strong 50 

lateral and depth heterogeneity, such as in three typical geological formations: (i) unmineable coal 51 

reservoirs, (ii) oil reservoirs, and (iii) deep saline aquifers (De Silva, 2015; Jayasekara, 2020; Liu, 52 

2020). Investigating the role of the deep biosphere in global cycles and its interaction with human 53 

activities is not straightforward. These environments are extremely difficult to access and require 54 

scientific drilling, the implementation of protocols to recover characteristic samples or sampling 55 

campaigns in mines such as those in South Africa or China (Takai, 2001; Zhang, 2005; Mangelsdorf, 56 

2010; Ranchou-Peyruse, 2023). The pioneers of high-pressure (HP) microbiology developed devices 57 

to sample and investigate deep-living organisms at the laboratory scale, including high-pressure flow 58 

environments (Jannasch, 1996; Parkes, 2009). Such experimental breakthroughs have demonstrated 59 

the extended pressure and temperature limits of life (Takai, 2008; Yayanos, 1981; Zeng, 2009) and 60 

offered a better understanding of microbes’ adaptation to harsh environments, including 61 

biophysiological mechanisms (Cario, 2015; Cario, 2016; Amrani, 2016). However, the current 62 

equipment mostly uses large volumes and cannot easily accommodate in situ characterization 63 

techniques. Thus, Garel and colleagues (2019) developed an equipressure transfer procedure via 64 

high-pressure bottles (stainless steel coated with PEEK), allowing subsampling to carry out a series 65 

of experiments. This means that conventional HP microbiology methods (phenotyping, 66 

characterization, etc.) are time-consuming and often favor well-known fast-growing organisms that 67 

outcompete others in culture. In addition, sample decompression, which is required for microbial 68 
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characterization, is a common process that can skew community diversity and structure, and isolate 69 

physiology (Jayasekara, 2020). The main challenge in reproducing acceptable deep environmental 70 

conditions in the laboratory is therefore the need for suitable experimental tools in terms of the 71 

observation scale and pressure/temperature range. 72 

The rise of microfluidics. Microfluidics is a field of research that addresses the precise manipulation 73 

of fluids at small scales, typically from microliter to picoliter volumes. This interdisciplinary area 74 

combines principles from physics, engineering, chemistry, and biology to create devices known as 75 

"lab-on-a-chip" systems. Microfluidic devices utilize micron-sized channels, chambers, and valves to 76 

integrate various functionalities, such as mixing, separation, and analysis, into compact microscale 77 

platforms, typically of the size of a credit card (see Figure 1). By enabling precise control over fluids 78 

at the microscale, microfluidics has revolutionized experimentation and analysis, opening new 79 

avenues for scientific discovery and technological innovation. Microfluidic tools have been 80 

extensively used over the past 20 years for microbiology (Duncombe, 2015; El-Ali, 2006), 81 

thermodynamics (Pinho, 2014), hydrodynamics (Zhang, 2018), materials synthesis (Marre, 2010) and 82 

chemistry (Hartman, 2009; Jensen, 2014). Microfluidic tools have inherent advantages, such as low 83 

sample consumption, faster equilibrium times, better control of the experimental conditions, 84 

flexibility in terms of designs for recreating complex geometries (Morais, 2020) and high-throughput 85 

capabilities. For example, we recently demonstrated the use of confined microfluidic chambers for 86 

HP microbial phenotyping (Cario, 2022) under anoxic conditions, whereas others used similar 87 

approaches to simulate and observe fluid mixtures in real time to understand precipitation 88 

mechanisms during pH variations in the case of hydrothermal vents on the ocean floor (Weingart, 89 

2023). On the basis of these characteristics, microfluidics has largely been involved in accelerating 90 

discoveries in microbiology, although far focusing almost exclusively on biomedical and health 91 

applications along with investigations of human cells. These studies considered only pressure and 92 

temperature conditions close to ambient conditions with “conventional” laboratory model 93 

microorganism strains and were mostly interested in investigating fundamental microbial 94 

mechanisms and their responses to stimuli. Only a few reports exist on applications of microfluidics 95 

for environmental microbiology, such as planktonic and microalgal research (Wang, 2020; Girault, 96 

2019), but again, these reports are close to ambient conditions. Nevertheless, given the flexibility 97 

provided by photolithography, it is rather straightforward to reproduce “micromodels” mimicking the 98 

porous geometry of deep underground environments, which has driven the use of microfluidics to 99 

investigate—at the laboratory scale—subsurface processes, particularly those linked with human 100 
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activities (geological CO2 storage, EOR, etc.) (Lifton, 2016; Morais, 2016; Morais, 2020). The 101 

resulting microfluidic devices generally consist of 2D patterns extruded in the third shallower 102 

dimension on a substrate (glass, silicon, PMMA (poly(methyl methacrylate)) or cast on a mold 103 

(polydimethylsiloxane (PDMS)) and chemically or physically sealed with a transparent material 104 

(Morais, 2020). However, it is important to note that access to 3D micromodels is also possible 105 

owing to multiple etching steps, leading to multidepth geometrical profiles (Park, 2015). 106 

Additionally, minerals can also be inserted inside microchannel geometries to reproduce full 3D 107 

porous media (Bowden, 2016). These micromodels have demonstrated that they can be powerful 108 

tools to complement more conventional experimental methods, such as core flood experiments, 109 

particularly when they are compatible with experimental work performed under harsh conditions. As 110 

an illustration, Table 1 summarizes some advantages and limitations of conventional and 111 

microfluidic approaches for investigating the deep underground biosphere. 112 

Hence, investigating the biological processes in micromodels enables real-time observations and 113 

monitoring of microorganism metabolism in realistic microporous media (Almeida, 2018; Lee, 2017; 114 

Sun, 2011; Tang, 2014; Xu, 2013). 115 

On the basis of these advantages, through selected examples, current studies concerning the use of 116 

micromodels for studying the interactions between the deep biosphere and a selection of human 117 

activities in deep geological porous reservoirs are presented in this review. Then, several challenges 118 

and opportunities related to the utilization of microreactors for such studies are discussed. High-119 

pressure and high-temperature transparent microfluidic systems are powerful tools whose use 120 

deserves to be developed to simulate exploitation scenarios and generate missing experimental data 121 

for large-scale modeling of the evolution of exploited reservoirs and address certain fundamental 122 

questions related to deep underground life (Figure 1). 123 

2- Microfluidics approaches for evaluating the impact of microbiology on deep underground 124 

anthropogenic activities. 125 

Micromodels have been extensively used to investigate several bioprocesses occurring in geological 126 

environments at the pore scale. These micromodels provide critical physicochemical information, 127 

which are some keys to driving the efficient injection and recovery of fluids, both in deep geological 128 

reservoirs and in geochemical reactions, reactive flows or biofilm formation and monitoring. 129 
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We discuss hereafter some selected examples of the use of microfluidics and micromodels for 130 

accessing a deeper understanding of how the deep biosphere interacts with human exploitation of 131 

geology underground. 132 

2.1 Biosurfactant generation influence on interfacial phenomena 133 

Microbial enhanced oil recovery (MEOR) is a technology developed to accelerate and increase 134 

underground oil recovery via the use of microorganisms. A combination of various mechanisms 135 

improves the sweep and displacement efficiency. In the literature, the following mechanisms are 136 

commonly quoted and investigated: 137 

- An improvement in mobility due to changes in oil and water/brine viscosities is mainly 138 

related to the dissolution of gases (CO2, H2, N2 and CH4) produced by microbial metabolism 139 

(Alkan, 2014; Sugai, 2014). 140 

- An increase in microscopic sweep efficiency due to changes in interfacial tension (Armstrong, 141 

2012; Paulsen, 1999; Nourani, 2007) and wettability (Polson, 2010; Armstrong, 2012; Al-142 

Raoush, 2009) decreases capillary forces. 143 

- Biofilm formation (bio-plugging) reduces the permeability in high-permeability zones or 144 

fractures (Kaster, 2012; Jenneman, 1984; Gray, 2008; Karambeigi, 2013) and causes the 145 

corrosion of pipelines (production of H2S) in some cases (Zhou, 2022). 146 

- The production of acids can lead to rock dissolution. 147 

The change in wettability and the reduction in interfacial tension (IFT) caused by biosurfactants are 148 

key parameters for MEOR processes. They strongly affect the fluid displacement mechanisms at the 149 

microscale, and an increase of three orders of magnitude is necessary to displace oil from capillaries 150 

of 10–100 µm (Karimi, 2012; Reed, 1977; Crescente, 2008; Kowalewski, 2006). Hence, 151 

microfluidics may help overcome the lack of microscale information. Indeed, over the past 30 years, 152 

microfluidics approaches have proven that they are indubitably suitable for studying wettability 153 

effects on drainage or imbibition for problematic EOR or geological CO2 storage and sequestration 154 

investigations (Bora, 2000; Cao, 2019; Gerami, 2018; Lifton, 2016; Nguyen, 2002; Sohrabi, 2001; 155 

Jamaloei, 2009). 156 

Bryant et al. studied the feasibility of enhancing oil recovery via the injection of microorganisms into 157 

a reservoir (Bryant, 1990; Bryant, 1988; Buciak, 1996). These microorganisms provide amphiphilic 158 

molecules that act as biosurfactants, leading to the detachment of the oil from the reservoir rocks. 159 
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Studies have shown that Bacillus licheniformis, which was isolated from a pristine oilfield, was the 160 

most effective (da Cunha, 2006). Three decades later, Afrapoli et al. explored the performance and 161 

mechanisms of model bacterial strain flooding at the pore scale (Afrapoli, 2012; Afrapoli, 2011). 162 

They investigated the improvement in oil (dodecane) recovery essentially due to an alkane-oxidizing 163 

Rhodococcus sp. strain 094 in glass micromodels with three different configurations (the ratio of the 164 

pore diameter to the pore throat dimension) and different wettabilities (water wet or oil wet). The 165 

emulsification process occurs while the cells are growing exponentially and involves IFT reduction, 166 

wettability changes and pore blocking mechanisms (Bredholt, 1998; Crescente, 2008). 167 

Microorganisms produce biosurfactants to access hydrophobic compounds, effectively reducing 168 

interfacial tension (IFT), altering wettability, modifying flow patterns, and decreasing oil viscosity 169 

(Soudmand-asli, 2007). Indeed, a study with a glass micromodel showed that the use of a surfactant 170 

produced by B. subtilis led to additional oil recovery (Hadia, 2019). The presence of bacterial cells 171 

appears to amplify the oil recovery effect of biosurfactants, underscoring the increasing importance 172 

of interactions between microorganisms and their environment. White and colleagues published work 173 

on the interaction of a single oil droplet and bacterial strains via a microfluidic platform, ecology-on-174 

a-chip (White, 2019). Owing to the layer-by-layer hydrophilic polyelectrolyte coating of the surface 175 

of the microchannel, an oil drop was immobilized for over a month. The authors observed the 176 

aggregate morphology as well as the interfacial response between the oil and the microbial 177 

environment. This approach represents a tremendous step forward in the matter of long-term 178 

observation of the MEOR process in microfluidics. While most MEOR studies in the literature are 179 

conducted under atmospheric pressure and oxic conditions, some strive to replicate actual 180 

environmental conditions more accurately. For example, Gaol and colleagues (Gaol, 2019) succeeded 181 

in investigating the pore-scale mechanisms of MEOR under relatively harsh processing conditions 182 

(37 °C, 0.6 MPa). Nonetheless, these conditions are far from realistic reservoir conditions, typically 183 

between 6 MPa and 15 MPa and between 30 °C and 80 °C (Morais, 2020; Morais, 2016). The 184 

development of HP microfluidics could help address this gap (Marre, 2010). Moreover, microfluidic 185 

approaches combined with image reprocessing now make it possible to monitor the growth of 186 

microorganisms in real time while tracking their behavior in relation to the studied activity in general 187 

(Strobel, 2023) and their interaction with oil droplets in the particular case of MEOR (Gaol, 2021). 188 

In addition to planktonic microorganisms, biofilm formation and monitoring are critical parameters 189 

to investigate when considering deep underground utilization since they can severely change some 190 

operating parameters, such as injectivity and reservoir rock stability. Thus it is important to 191 
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investigate the interactions between the considered substrates and the microorganisms. Microfluidics 192 

has been used to recreate several geometrical parameters from porous media while allowing in situ 193 

observations. These observations can provide deeper insight into the behavior of biofilms in confined 194 

geometries, as discussed in the next section. 195 

2.2 Biofilm growth, metabolism, survival and degradation in confined environments 196 

In deep porous environments, microorganisms are known to grow mainly by attaching themselves to 197 

rock surfaces (Whitman, 1998; Bar-On, 2018; McMahon, 2014; Griebler, 2002). MEOR applications 198 

can create barriers through pore clogging, leading to a reduction in the permeability of the reservoir 199 

(Kim, 2000; Lappan, 1996). Conversely, investigations revealed that similar bioclogging mechanisms 200 

can contribute to decreases in porosity and permeability in geological CO2 storage reservoirs 201 

(Glatstein, 2014; Mitchell, 2009; Thullner, 2002). 202 

One of the pioneering works concerning biofilm processes at the microscale in porous media 203 

(Dunsmore, 2004) showed that, for the formation of a biofilm developed by cells of sulfate reducers 204 

(Desulfovibrio sp. EX265), a decrease in permeability was associated with biofilm growth. From that 205 

observation, correlations were established with the bioclogging of the pore space, which was 206 

previously detected at the core scale and field scale (Cunningham, 1991). Later, the same team 207 

coupled image analyses and chemical analyses to investigate the effects of nitrate treatment on 208 

oilfield microbial biofilms (Dunsmore, 2006). This time, they used glass capillary flow cells. They 209 

demonstrated the influence of nitrate treatment on sulfate reducer biofilms as well as changes in 210 

biofilm cell morphology. Additionally, chemical analyses revealed that the injection of nitrate ions 211 

into the flow cell changed the dominant metabolic process from sulfate to nitrate reduction. Another 212 

study including the use of a PDMS-based microfluidic channel revealed that the resistance of a 213 

biofilm developed by Pseudomonas aeruginosa was due mainly to the formation of stable 214 

extracellular polymeric substances, which provide a mechanical shield (Park, 2011). 215 

Investigations at the microscale have been increasingly conducted to better understand how biofilms 216 

initiate their formation in different environments (Zhang, 2019) and how biofilms impact mineral 217 

surface properties, geochemistry and hydrodynamics in porous media (Liu, 2019). A recent study 218 

focused on sulfate reducer colonization in shale fractures, which promotes biosouring in oil and gas 219 

reservoirs (Zhou, 2022). In this context, a shale-based microfluidic flow cell reactor allows the 220 

quantification of both sulfate reduction rates and biomass growth while looking for biocide 221 
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inhibition. This experiment revealed that biocides had little effect on biomass removal and opened 222 

shale fractures, which could contribute to the development of mitigation strategies for preventing 223 

environmental impacts on underground processes. As micromodels provide access to direct 224 

observations of biofilm evolution at the microscale (Yawata, 2016; Lam, 2016), they allow full 225 

visualization of the environmental effects of nutrient concentration, cells, surface properties 226 

(wettability, IFT) or shear stress on these biological formations (Skolimowski, 2010; Wang, 2018; 227 

Wilkins, 2014; Zhang, 2019). These microscale approaches are already used to study the properties 228 

of biofilms, such as stress/growth curves or deformation and cell detachment, through 229 

microrheological studies (Klapper, 2002; Dunsmore, 2002; Stoodley, 2002; Stoodley, 1999; Billings, 230 

2015; Liu, 2023). Undeniably, these tools provide the ability to observe different phenomena in detail 231 

and collect quantitative data from the growth of the biofilm through the effects of starvation 232 

conditions (Kim, 2000), the estimation of the intrinsic permeability of the biofilm itself 233 

(Hassannayebi, 2021), or biodegradation in porous media at the pore scale (Vayenas, 2002). 234 

Another interesting aspect of microfluidic approaches is the ability to decouple complex 235 

simultaneous effects such as the effect of nutrient flow velocity and the impact of shear stress on 236 

biofilm formation (Liu, 2019). Authors performed a hydrodynamic study on biofilm growth (from 237 

Thalassospira sp.) and experimented with biofilm detachment with a T-shaped microchannel. Direct 238 

observation through a glass microsystem allowed spatial localization of biofilm accumulation and 239 

evolution of the adhesive strength with various flow velocities and nutrient concentrations. This 240 

permitted (i) the determination of the conditions that lead to a plugging effect and (ii) the estimation 241 

of the capacity of biofilm formation to reduce the permeability of model deep underground porous 242 

media. 243 

Sygouni and coauthors (Sygouni, 2016) studied the impact of CO2 injections on a Pseudomonas 244 

putida biofilm in a micromodel. After inoculation in a glass/glass pore network and over the course 245 

of 18 days, nutrient broth was injected into the micromodel to induce the growth of the biofilm. A 246 

series of CO2 injections were subsequently performed at different times. They observed a pH 247 

reduction immediately after each CO2 injection, leading to cell stress and inducing partial detachment 248 

of the P. putida biofilm. However, this gas injection had only a temporary effect on the biofilm, as 249 

evidenced by the regrowth after the completion of each injection. As the nutrient flow compensates 250 

for the porous media and CO2 is consumed by various buffering reactions, its concentration then 251 

decreases, and biofilm saturation progressively reaches its initial value. The same observation was 252 
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made for the permeability, which recovered quickly from its initial low value (due to the presence of 253 

the biofilm at the beginning of the experiment). The study highlighted that biofilm age is crucial, 254 

with older biofilms being denser and more resistant to degradation. 255 

In a study on MEOR efficiency with microorganisms and their associated bioproduced surfactants, 256 

biofilm formation was also observed (Armstrong, 2012). In a 2D transparent porous medium, 257 

changes in the pore morphology through the propagation of the biofilm and the redirection of the 258 

flow were observed, creating a new preferential path pattern. This investigation confirmed the 259 

suitability of 2D porous media for studying the hydrodynamic impacts of biofilms (Aufrecht, 2019). 260 

In addition to microbial production, the hydrodynamics of a whole geological reservoir can also be 261 

impacted by microbial activity. Indeed, chemical gradients and chemotaxis have been shown to 262 

influence the dispersion of degrading microorganisms within a porous matrix (de Anna, 2021; Wang, 263 

2012; Wang, 2015; Wang, 2016). 264 

2.3. Mineralization induced by microorganisms at the microscale. 265 

Biomineralization is yet another effect of deep underground microorganisms, especially in storage 266 

applications, that can affect the evolution of geological reservoirs, and it has been observed at the 267 

core and field scales that the precipitation of carbonates through biomineralization metabolism leads 268 

to clogging in porous reservoirs (Dupraz, 2009; Mitchell, 2010; Fujita, 2008). Microfluidic 269 

technologies have the ability to perform biomineralization experiments in model porous media and 270 

allow direct observation of crystal growth during microbiologically induced calcite precipitation 271 

(MICP) processes (Singh, 2015; Wang, 2019; Wang, 2019; Wang, 2020). Several studies have shown 272 

that quantifying biomineral precipitation at the pore scale via image processing is possible (Kim, 273 

2018; Kim, 2020; Xiao, 2021; Xiao, 2024). These findings showed that characterizing biomineral 274 

precipitation in porous media is complex because of the involvement of multiphase reactive transport 275 

and interactive processes (Dejong, 2013; Hommel, 2016). For example, the nucleation and growth of 276 

crystals as well as the quantification of the crystal kinetics were performed in a Y-shaped sand-277 

containing microchip. Such biomineralization process monitoring at the pore scale provides new 278 

insights for optimizing underground processes in geotechnical engineering, such as biocementation 279 

(Zheng, 2023; Elmaloglou, 2020). MICP experiments carried out under high-pressure conditions 280 

(100 bar) with Sporosarcina pasteurii resulted in lower CaCO3 crystallization yields than those at 281 

atmospheric pressure (Liu, 2023), possibly because of the lower activity of the considered model 282 
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bacterium induced by HP conditions. For those interested in more information on MICP-based 283 

microfluidic techniques and modeling results, we recommend consulting the review by Xiao et al. 284 

(Xiao, 2023). 285 

HP studies are still scarce, but integrating them with conventional HP microbiology tools could offer 286 

new insights and accelerate discoveries in this field, as discussed in the next section. 287 

3- Challenges, opportunities and limitations 288 

Many microbiology laboratories have equipment for handling strictly anaerobic microorganisms 289 

(anaerobic chambers) and culturing them under controlled atmospheres at near-atmospheric pressure. 290 

However, one of the main difficulties faced by microbiologists specializing in deep environments is 291 

working safely under HP conditions, especially when working with flammable (CH4, H2), toxic and 292 

corrosive gases (CO2, H2S). Many microbiology laboratories cannot accommodate classical HP 293 

reactors (hundreds of milliliters to a few liters), mainly because of space, safety (explosion, gas 294 

leaks) and cost. Microfluidic tools can help overcome these constraints along with the possibility of 295 

performing experiments with high reproducibility given the improved control of the operating 296 

parameters compared with large-scale experiments and the ability to work at the scale of the 297 

microenvironments in which the microorganisms evolve. Microfluidic cells can be manipulated 298 

inside an anaerobic chamber to introduce anaerobic microorganisms. The cells are then taken out to 299 

be connected to the HP pump containing the strict volume of fluids required for the experiment. In 300 

addition, it is possible to screen various conditions simultaneously in a single experiment, generating 301 

high throughput with a low sample volume (Xu, 2017; Tang, 2014; Gantz, 2022). For example, the 302 

possibility of observing the effects of many chemical and physical variables simultaneously has not 303 

yet been fully exploited and could extend the scope of possibilities. Moreover, the ability to control 304 

gradients and dissociate the effect control separately for each experimental parameter at very small 305 

scales will allow strong multiplication of intercomparable results in a single experiment, as recently 306 

demonstrated for microbial phenotyping under pressure (Cario, 2022). Finally, the use of 307 

microfluidics lends itself naturally and easily to the study of organisms evolving in strictly anoxic 308 

conditions since such experiments can be perfectly well controlled (Mohr, 2010; Dickson, 2019; 309 

Cario, 2022). 310 

  311 
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 312 

3.1. Fast screening challenge under harsh conditions at the microscale 313 

On-chip multiple experimental conditions. It is possible to generate temperature gradients in 314 

microreactors to study, for example, the optimal culture conditions of a microbial strain, understand 315 

the behavior of a microbial community, or even perform the isolation of microorganisms from 316 

complex communities originating from the deep subsurface. Concentration gradients can also be 317 

easily generated on a chip to evaluate, for example, their influence on biofilm growth, attachment and 318 

interaction with mineral surfaces (Jeong, 2014; Yawata, 2014; Zhang, 2019). These gradient 319 

approaches can also be applied to other physicochemical parameters, such as salinity, pH, and 320 

molecules of interest (chemotaxis, toxicity), hence providing ways to perform multiple experimental 321 

conditions in a single experiment. Such methodologies can therefore speed up the rate at which deep 322 

underground related experiments can be performed. 323 

High-pressure/high-temperature microfluidics. Conventional transparent micromodels cannot 324 

withstand high-pressure conditions. However, it is possible to work at high pressures and 325 

temperatures with micromodels whose channels are etched in mechanically resistant materials such 326 

as silicon, onto which borosilicate glass slides are bonded (Marre, 2010; Trachsel, 2008). The use of 327 

such microfluidic reactors for microbiology studies under harsh conditions has already been 328 

demonstrated (Cario, 2022), but these require reflected light microscopy, which is not ideal for 329 

microbiology. However, such a setup precludes that the use of transmission optical microscopy 330 

would be efficient when coupled with transmitted light microscopy for optimum observation of 331 

microorganisms. While glass‒glass microreactors (Dietrich, 2005) have demonstrated HP capabilities 332 

up to 20 MPa or more (Tiggelaar, 2007), they are not able to cover a large range of conditions 333 

representative of the deep subsurface and are only transparent in the visible range. However, it is now 334 

possible to produce full sapphire microreactors capable of working at pressures of up to 80 MPa 335 

(Marre, 2021) while exhibiting transparency from UV to mid-IR, opening opportunities for further 336 

investigations under larger parameter window conditions. Hence, HP-compatible microfluidics tools 337 

exist that can be used in combination with more conventional HP reactors for studying the deep 338 

underground biosphere. Both experimental scales are equally important for investigating 339 

multiparameter biogeochemical processes from the pore scale to the core scale and further at the 340 

reservoir scale. Similarly, while microfluidics allows fast parameter screening, conventional larger 341 
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scale reactors can generally achieve better quantitative fluid analysis because of the large processed 342 

volumes. 343 

In situ live characterization of microbial activities in microfluidics. Working with transparent 344 

micromodels at a wide range of wavelengths opens up a wide range of possibilities for real-time 345 

analyses, starting with all types of microscopy: confocal, fluorescence, Raman spectroscopy (Liu, 346 

2012; Ochoa-Vazquez, 2019), FTIR microspectroscopy (Perro, 2016) and X-rays for analysis 347 

(Beuvier, 2015) and imaging (Morais, 2023). The combined use of such characterization techniques 348 

allows access to critical information on local biogeochemical processes and microbial metabolism 349 

without any external perturbation of the studied reactive medium. For example, Raman spectroscopy 350 

can be used to selectively identify different strains without any fluorescent labeling (Dhankhar, 2021; 351 

Rebrosova, 2022; Shakeel, 2022; Lister, 2022). Similarly, live imaging of living cells can be obtained 352 

by coupling FTIR microspectroscopy with microfluidics (Loutherback, 2016; Vaccari, 2012). The 353 

advantage of FTIR over Raman is that imaging can be performed (in contrast to dot-by-dot mapping), 354 

thus providing instant localized characterization. For example, Birarda and colleagues (Birarda, 355 

2016) developed a low-cost microfluidic platform (IR-Live) compatible with synchrotron FTIR 356 

imaging to study living eukaryotic cells. On the basis of the specific vibrational footprint of 357 

molecules, they were able to identify and localize proteins and lipids without any preliminary 358 

labeling. This technique is perfectly well suited for monitoring microbial activities in biofilms 359 

(Holman, 2009; Pousti, 2018) and could also be coupled with Raman spectroscopy, as proven 360 

concepts have already been developed with other methodologies (Gieroba, 2020; Muhamadali, 2015; 361 

Lima, 2022; Rohman, 2019) and could easily be adapted to microfluidic experimentation. 362 

3.2. Accessing realistic geometries and mineralogy on a chip 363 

Microfluidic experiments performed to study applications related to the utilization of deep 364 

underground provide excellent control and monitoring of operating parameters such as fluid velocity 365 

and composition, temperature and pressure (Morais, 2016). Additionally, micromodels enable 366 

laboratory simulations of the microporosity conditions characteristic of porous rocks encountered in 367 

deep environments, such as aquifers or hydrocarbon reservoirs. Owing to the development of 368 

microfabrication techniques, all types of designs can be created, providing a flexible way to meet the 369 

needs of mimicking realistic environments that are site-specific (see Section 2 from (Morais, 2020)). 370 

Most of the microreactors developed thus far for deep underground studies can be seen as 2D porous 371 

structures, which are perfectly suitable as “micromodels” to describe and study the biophysico-372 
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chemical mechanisms occurring inside; however, the third dimension is very small, and some 373 

researchers often raise concerns about the applicability of the results obtained in 2D compared with 374 

the real 3D world, which includes reactive fluid flow, dissolution/precipitation mechanisms, biofilm 375 

development, etc. Recent developments have allowed the access of 2.5- or 3D structures on a chip, 376 

which help account for vertical flows (similar to core flood experiments), but in a controlled manner 377 

owing to microfabrication protocols (Park, 2015). Of course, not all microbiologists have the know-378 

how and equipment to produce such micromodels. However, an increasing number of companies are 379 

offering products that can be adapted for sale to microbiologists and do not necessarily require 380 

advanced competencies. When studying microbial processes in porous media, surface chemistry is 381 

equally critical to account for since those interfaces are known to regulate mainly the exchanges and 382 

compositions of the fluids that surround the microbial cells. Hence, the use or inclusion of actual 383 

rocks and mineral surfaces that perfectly mimic the underground pore system is essential to obtain 384 

materials as close as possible to the fluid‒mineral surfaces encountered in the target environments. 385 

Recent developments in microfabrication and surface chemistry in microreactors promise to reach 386 

this goal. The microporous network can now be reproduced in actual rocks (Hauge, 2016; Singh, 387 

2017). The surface properties of micromodels can thus be modified and tuned with great flexibility, 388 

for example, by functionalization with molecules (Song, 2015) or minerals such as crystallized 389 

calcite and others (Yoon, 2012), or by directly fabricating micromodels “out-of-the-rock” (Song, 390 

2014), which can exhibit pressure resistance up to 100 bar (Porter, 2015). 391 

3.3. Some examples of current scientific challenges 392 

Microfluidic tools have the potential to revolutionize a wide range of research into microporous 393 

ecosystems, whether terrestrial or intraterrestrial. High pressure plays an obvious role in the 394 

physiology, morphology and behavior of prokaryotes (Abe, 2007). Thus, an increase in pressure has 395 

already been shown to be responsible for the decrease in acetate production to the benefit of formate 396 

by Clostridium ljungdahlii (Oswald, 2018). High-pressure conditions have repeatedly been shown to 397 

produce deformations associated with cell division problems (Welch, 1993; Ishii, 2004). The use of 398 

transparent HP micromodels would enable these adaptations to be observed in real time. The 399 

following questions and current challenges are just a few examples of the approaches that could 400 

benefit from microfluidic technologies to study life from the molecules to microbial communities and 401 

societal applications, although this list is by no means exhaustive. 402 
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Pore-scale view of geological CO2 and H2 storage. CO2, as a waste, and H2, as a strategic energy 403 

source, are key molecules to be stored deep underground, benefitting from the large volume offered 404 

by such an environment (Haddad et al., 2022). However, both molecules can directly interact with 405 

deep environments, either through geochemical or biogeochemical reactions. This means that for 406 

such applications, it is important to learn from the benefit of scientific feedback concerning what 407 

could be stored at each specific selected geological site and what could be the result of such storage 408 

(Ranchou-Peyruse et al., 2019). While local measurements can be made concerning site-specific 409 

properties in terms of geophysical and geochemical properties, performing realistic storage tests at 410 

the field scale is quite difficult, both for technical and economic reasons. Hence, laboratory-scale 411 

approaches could help obtain insights into further industrial strategies. In that context, microfluidic 412 

experiments exhibit several interesting specificities, which could be complementary to conventional 413 

core flood experiments, such as direct in situ visualization and biogeochemical characterization of the 414 

ongoing phenomena with relatively simple laboratory equipment. Some papers concerning geological 415 

CO2 storage (Morais, 2016; Morais, 2020) and, more recently, H2 storage (Lysyy, 2023; Liu, 2023; 416 

Lysyy, 2024) have been published, resulting in a pore-scale view and investigations of the 417 

geochemical and biochemical effects, particularly the effects of deep underground microorganisms. 418 

Similarly, another study reported the use of microfluidic approaches for the simulation of alkaline 419 

vents (Weingart et al., 2023). In all these studies, the interest of coupling conventional and 420 

microfluidic approaches to investigate energy or waste underground storage is evident since the 421 

obtained data can be combined for a multiscale view of the mechanisms. From that point, typical 422 

geochemical reactions such as carbonation or serpentinization could be studied on a chip. Indeed, in 423 

the presence of water and at specific temperatures, iron-bearing minerals can lead to geochemical 424 

reactions along with the production of H2. Olivine, greigite, magnetite and awaruite can act as 425 

catalysts for the subsequent formation of simple carbon-containing molecules (acetate, formate, 426 

pyruvate, and methanol) (Preiner, 2018; Preiner, 2020). These simple molecules can in turn feed 427 

entire microbial ecosystems and are at the origin of the SLiME concept for subsurface 428 

lithoautotrophic microbial ecosystems on the basis of H2 and CO2 (Stevens, 1995; Fry, 1997; 429 

Kotelnikova, 1997; Chapelle, 2002; Haveman, 2002; Takai, 2003; Lin, 2005; Basso, 2009; Crespo-430 

Medina, 2014). Moreover, such ecosystems can interact strongly with the injection of gas feedstocks, 431 

which are either anthropogenic waste (CO2) or energetic resources (natural gas, H2, etc.). Hence, 432 

microfluidics approaches can help mimic the geological environment at the laboratory scale to 433 

evaluate the impact of such injection on the local biosphere at the pore scale (consumption, reservoir 434 

stability, biofilm formation, variation in injectivity, process integrity, etc.). 435 
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Microfluidics fast screening approaches for database generation for numerical modeling and 436 

scale-up. Another gap is the need to experimentally assess the scaling-up effect between 437 

micromodels and larger and more traditional set-ups. In fact, the numerous studies presented here 438 

aimed to connect the conclusions from microfluidic studies with other observations in the laboratory 439 

or even at the reservoir scale. Modeling can partially address that need but does not satisfy the 440 

necessary experimental data and demonstrations. This is where microfluidics approaches can play a 441 

critical role. Indeed, one of the major interests with microfluidic experimentation concerns the ability 442 

to perform several experiments in a single run. This method has already been applied to 443 

crystallization (Bhattacharya, 2020; Chauhan, 2023), drug screening (Sun, 2019; Cui, 2019), organic 444 

chemistry, synthetic and structural biology (Kwon, 2023; Hansen, 2003) and microorganism 445 

cultivation (Cario, 2022; Watterson, 2020). 446 

In addition, numerous replicates can be realized on the same system, making it possible to envision 447 

more robust approaches supported by statistical processing while working under exemplary safety 448 

conditions. Hence, microfluidics has the ability to perform fast screening for generating multiple 449 

data, which could be implemented in machine-learning approaches to predict biogeochemical 450 

reactivity, permeability variation or biofilm development. All these aspects can further be used in 451 

numerical modeling from the pore scale to the reservoir scale, although the scale-up process is still 452 

not straightforward. To evaluate separate parameters to assess thermodynamics and kinetics, 453 

micromodels (on-chip porous media) can also be used to evaluate the impact of the deep biosphere 454 

on geological processes. This can be achieved by designing and microfabricating microreactors that 455 

mimic specific storage locations and/or different scenarios. For example, transparent high-pressure 456 

micromodel approaches coupled with X-ray imaging characterization, such as X-ray laminography 457 

(Morais, 2023), would enable a more detailed study of geochemical reactions under conditions 458 

simulating deep environments (pressure and temperature), providing additional information to more 459 

conventional methodologies based on core flooding coupled with X-ray CT (Minto, 2017; Davit, 460 

2011). 461 

Microbial interactions (microbe–mineral surface and microbe–microbial interactions). Within 462 

the deep subsurface, microorganisms interact with their environment from both biological (cell-to-463 

cell) and mineral (attachment and colonization) points of view. Getting access to such interactions at 464 

small scales can be performed with microfluidics. A recent study investigated the effects of exposure 465 

to short, low-carbon-weight compounds on biofilm formation on mica surfaces (Nuppunen-Puputti, 466 
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2023). The effects of the conditions tested (addition of methane, methanol and acetate) on the 467 

taxonomic diversity of the communities were then analyzed via high-throughput sequencing 468 

approaches performed on both water and rock samples. A complementary culturing approach using a 469 

mica-filled micromodel (Bhattacharjee, 2022) enabled real-time observation of the formation and/or 470 

disintegration of the biofilm formed as a function of the molecules injected to quantify 471 

microorganisms or to monitor the behavior of sessile and planktonic microorganisms. Similarly, 472 

competition or cooperation phenomena can be studied throughout incubation, depending on the 473 

parameters applied (substrate concentrations, flow rates, etc.). For example, Kubik and Holden 474 

(Kubik, 2023) studied the competition between different hydrogenotrophs belonging to three 475 

different species. The aim of this study was to understand the effects of H2 concentrations on the 476 

metabolism of these microorganisms, particularly to demonstrate that these microorganisms 477 

redirected their redox reactions from CH4 and H2S production to biomass production at lower H2 478 

concentrations. Axenic cultures and batch cocultures were generated at various incubation 479 

temperatures. Using existing microfluidic tools, it would be possible to create a temperature gradient 480 

(Mao, 2002) along with cocultivation on a chip to observe the cell distribution and interactions at a 481 

small scale (different cells can be easily identified in cocultures when an autofluorescent 482 

methanogenic archaeal strain (i.e., cofactor F420) and a bacterial strain) are mixed). 483 

Evolution of deep underground microbial communities. Omics approaches have been used to gain 484 

a more in-depth understanding of the functions of microbial communities in the deep subsurface but 485 

have also led to new questions. For example, in the past, any presence of aerobic microorganisms in 486 

anoxic deep continental environments was clearly identified as contamination during sampling, 487 

which quickly led to a debate. Recently, omics approaches have revealed the presence of active 488 

aerobic organisms (Ruff, 2023), even those known only as oxygenic phototrophs (Puente-Sánchez, 489 

2018), which has led to hypotheses on the presence of O2 in these environments (Winograd, 1982; 490 

Gutsalo, 1971; Kadnikov, 2018). Several biogeochemical explanations have been proposed to explain 491 

the presence of this electron acceptor, ranging from radiolysis to the dismutation of various 492 

molecules (Coates, 2004; Ettwig, 2010; Heck, 2010). In the case of cyanobacteria found in deep 493 

continental environments, H2 consumption via their hydrogenases was hypothesized. Omic 494 

approaches are very powerful and informative, but they do not exempt the microbiologist from 495 

testing the hypotheses formulated by cultural approaches that clearly demonstrate hypothetical 496 

metabolisms and calculate yields to understand the impact on the functioning of the microbial 497 

ecosystem. The rapid development of microfluidic tools for isolating and screening prokaryotes in 498 
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recent years (Yin, 2022; Wan, 2023) raises hopes for the transfer of such technologies to the deep 499 

biosphere community. Indeed, microbial isolation could be carried out directly on water samples 500 

from aquifers or faults and would consume only small volumes (a few microliters) of these often 501 

precious and rare samples. 502 

3.4 Current limitations of microfluidic approaches for studying the deep underground 503 

biosphere 504 

While microfluidics approaches can help address several scientific questions and complement 505 

conventional equipment and strategies to investigate the deep underground biosphere, some 506 

limitations specific to such methodologies exist. We discuss hereafter some of them along with 507 

remediation strategies. 508 

 509 

The difficulties in accessing microreactor technologies for new users and accessing adapted HP 510 

equipment. Microreactor technology, especially for polymer microfluidics, has become more 511 

accessible over 15 years (microfabrication kits are now commercially available), although they do 512 

not fully meet deep biosphere research needs. While robust materials such as glass or silicon require 513 

expertise, clean rooms are not always necessary—a fume hood suffices. The complexity of 514 

photolithography and etching may deter newcomers, but robust commercial microfluidic devices are 515 

available, simplifying the process. Several commercial companies now sell robust microfluidics 516 

devices in glass or silicon Pyrex to bypass the need to develop complex and expensive in-house 517 

microfabrication processes along with all the required equipment to proceed in a user-friendly way 518 

with microfluidic studies (Micronit, Little Things Factory, etc.). The overall equipment cost for 519 

performing microbial studies in a microreactor is, of course, slightly greater than that of conventional 520 

microbial incubation methods (with the exception of pressurized cultivation), but such approaches 521 

can (i) yield information that cannot be obtained otherwise (single-cell measurement, bioclogging in 522 

pore structures, etc.) and (ii) greatly reduce the experimental time owing to microfluidic fast-523 

screening strategies, thus reducing the overall cost in terms of consumables, for example. 524 

 525 

Microfluidic anoxic experiments. Most of the studies dealing with the deep underground biosphere 526 

require anoxic environments to be representative of realistic conditions. As mentioned earlier, 527 

conventional polymer microreactors cannot be considered for such conditions given that oxygen can 528 

diffuse through these materials. Hence, inorganic microfabrication materials are needed, which 529 
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increases the microfabrication protocol needed unless these materials are ordered from specialized 530 

companies. However, in addition to this limitation, anoxic experiments on a chip are similar to those 531 

on larger-scale reactors. This means that a glove or an intergas ramp box is generally needed to 532 

ensure the elimination of O2 when the starting culture medium is prepared. 533 

 534 

The implementation of characterization techniques in microreactors. While spectroscopy 535 

techniques can be easily implemented on a chip (Raman, FTIR, fluorescence, optical observations, 536 

etc.) and are relatively convenient for studying microbiological processes, they depend on the 537 

microreactor material, particularly in terms of transparency. Therefore, it is important to pay attention 538 

to the choice of construction materials. As mentioned earlier, X-ray analysis and imaging can also be 539 

used in association with microreactors, providing ways to characterize fluid flows and geochemistry 540 

in porous media. Spectroscopy techniques (Raman, FTIR, fluorescence) can be used directly inside 541 

microreactors without disturbing the system. Measurements of gases and metabolites in microscale 542 

volumes have already been reported using confocal Raman spectroscopy to quantitatively monitor 543 

the solubility of gases such as dissolved CO2 and CH4, electrode array detectors or fluorescence 544 

detection (Kraly et al. 2009; Liu et al. 2012). These are powerful approaches for performing direct 545 

biochemical imaging (especially when considering porous media), providing important spatial 546 

information on microbial activities (Loutherback et al. 2016; Marcsisin et al. 2012; Perro et al. 2016). 547 

Additionally, they could also possibly be used for strain identification and quantification on the basis 548 

of specific biomolecular fingerprints without staining. However, compared with conventional larger-549 

scale volume strategies, semiquantitative analyses are generally still considered. Hence, both 550 

methodologies need to be considered in parallel. In situ sequencing is still a tricky problem with 551 

microfluidic methodologies given the small sample volume considered, from picoliter (a drop) to few 552 

microliters (a chip). Hence, microreactors need to be coupled with milliliter-scale reactors to 553 

guarantee sufficient biomass for further analysis. However, recent trends in single-cell RNA/DNA 554 

sequencing (Clark et al. 2023; Zhou et al. 2021) could lead to the development of online 555 

microfluidics systems in the near future. 556 

 557 

Conclusions and perspectives 558 

While microfluidic tools have revolutionized molecular biology and health care in recent years, the 559 

possibilities of applying these approaches to the study of the deep biosphere have barely scratched 560 

the surface. However, these tools have long been used in the oil industry and in gas storage in the 561 

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sec/advance-article/doi/10.1093/fem
sec/fiae151/7900670 by IBG

C
C

N
R

S user on 22 N
ovem

ber 2024



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

broadest sense. Despite undeniable advantages over large-scale or core-scale methodologies, the 562 

main criticism that can be made to microfluidics is the problem of scaling up the results obtained 563 

with a micromodel to model a reservoir as a whole . For deep subsurface microbiologists, however, 564 

these reservations are not very important in view of the advantages of such approaches, such as (i) 565 

the ability to operate in a large range of experimental conditions (p, T, concentration, etc.), 566 

representative of the deep underground environment; (ii) the safety related to microscale 567 

experimentation; (iii) the possibility of finely tuning the design of the microreactor from very simple 568 

micromodels to the complex permeability and porosity of certain rocks; (iv) the implementation of a 569 

wide range of noninvasive in situ characterization techniques to monitor the growth and behavior of 570 

microorganisms, the composition of fluids, etc.; (v) the possibility of performing numerous replicates 571 

on the same micromodel, making it possible to confirm the results obtained via statistical approaches; 572 

and (vi) the ability to perform fast screening through the utilization of on-chip gradients (T, pH, 573 

concentration, etc.) for the exploration of multiple conditions in a single run and (vii) the isolation of 574 

microorganisms while maintaining pressure conditions and consuming minimal volumes of 575 

formation water. 576 
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Table 1: Comparison of conventional (high-pressure) techniques and microfluidics techniques for 1173 
the study of deep underground environments. 1174 

Set-up Material 
Conditions 

(P, T) 
Advantages Limitations References 

Core-flood Rock 
Up to 40 MPa 

and 400 °C 

Integration of 
mineralogy, 

porosity 

Nontransparent 
(except to X-

rays) 
(Sun, 2011) 

Flow-
through 

bioreactor 

Hastelloy, 
PEEK 

chamber 

Pressure up to 
20 MPa 

Temperature 
up to 120 °C 

 

Continuous 
monitoring  of 

geochemical and 
biogeochemical 

evolution 

Wide range of 
experiments with in 

situ conditions 

Large volumes (mL 
to L) 

Nontransparent 

 

(Dupraz, 
2009) 

Static 
pressure 
vessels 

Different 
alloys 

(stainless 
steel, etc.) 

Up to 80 MPa 
and 150 °C 

Large volumes 

Liquid and solid 
phases 

Requires 
decompression 
to subsample 

Nontransparent 

(Haddad, 
2022) 

Capillaries Glass 
Up to 100 MPa 

and 200 °C 

Transparent 

Precise conditions 

Small volume 
(µL–mL) 

Poor design 
flexibility 

(Li, 2014) 

Microchips 

Silicon 
substrate 

Up to 40 MPa 
and 400 °C 

Pore-scale studies 

Precise 
manipulation of 

fluids 

High throughput 
screening 

Small volume 
(nL to µL) 

(Lifton, 
2016; 

Morais, 
2016) Silicon-

Pyrex 
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  1176 

Rock-based 
(and 

polymers) 

3D geometry, 
reactive 

Single use (Park, 2011) 
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Figure 1: General scheme of the microreactor setup and applications for deep underground 1179 
biosphere investigations. 1180 
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