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Abstract. We propose a Reduced Order Model (ROM) of heavy-fluid cavities with the
objective to build a superelement in a finite element substructuring context. We consider the
non-symmetric displacement-pressure finite element formulation. While there are numerous
fluid-structure ROM in the literature, few are generalized to superelements. Typical
vibroacoustic substructuring methods involve modal synthesis using uncoupled rigid-wall fluid
modes and in vacuo structure modes. Vibroacoustic domains are composed of a structural
domain and a fluid domain coupled on a fluid-structure boundary. Each domain can be
modeled by symmetric monophysics formulations. Only the fluid-structure boundary requires
a non-symmetric multiphysics formulation. Being defined on a submanifold, this subproblem
is typically significantly smaller than the other subproblems. We propose to condense the
uncoupled subdomains onto the fluid-structure boundary and use a Petrov-Galerkin procedure
to obtain a reduced order representation of this loaded boundary. The captured boundary
dynamics is then propagated to each uncoupled subdomain. Galerkin procedures are also
applied to the uncoupled subproblems to increase the reduction bases. At the end, a Petrov-
Galerkin procedure is applied to the full order model to build the superelement. The proposed
superelement generation strategy is used to study an industrial water tank in a seismic analysis
context. Results show a significant improvement over typical uncoupled superelements at the
same reduction basis size. While the uncoupled superelements cannot describe the dynamics
of the model beyond the weakly-coupled sloshing regime, the proposed superelement accurately
captures the strongly-coupled dynamics in the studied frequency bandwidth.

1. Introduction
Industrial applications nowadays often involve the study of structural dynamics in a multiphysics
environment. From the automotive industry to civil engineering, vibroacoustics is a classical
example of such coupling. Vibroacoustics is commonly modeled in commercial software by
strongly coupled finite element formulations, implemented in monolithic solvers. The use of
finite element industrial models with millions of degrees of freedom is becoming more and more
common. With the digital twin paradigm, the trend is toward increasingly larger problem sizes
and more complex models. Furthermore, fluid cavities typically involve large acoustic domains
of numerous unknowns. In this context, ROM are required not only to speed up computations,
but also to enable a substructuring approach where complex models are partitioned into multiple
components for design and efficiency reasons. To that extent, superelements are defined with full
order interfaces for loading and component assembly while their internal domains are reduced

https://creativecommons.org/licenses/by/4.0/


XII International Conference on Structural Dynamics
Journal of Physics: Conference Series 2647 (2024) 232008

IOP Publishing
doi:10.1088/1742-6596/2647/23/232008

2

by technics such as component mode synthesis that are not a priori specialized on a prescribed
load-case.

Despite several vibroacoustic ROM proposed in the literature, the generalization to
vibroacoustic superelements is currently an active subject of research. Typical vibroacoustic
ROM are based on uncoupled monophysics fluid and structural modes. Commonly, fluid added
mass effects on the structure are considered [8], but other extensions are made like static coupling
between the structure and fluid modes [7] or structural added mass effects on the fluid [10]. ROM
and superelements can be found in [9] for several vibroacoustic formulations. More complex
approaches based on the enrichment of uncoupled bases have also been proposed [3][1][2].

In this study, we consider the vibroacoustic subproblem of heavy-fluid cavities with sloshing
effects. We propose a vibroacoustic superelement centered around multiphysics boundary modes
of the Fluid-Structure Interaction (FSI) subdomain. This superelement is used to study an
industrial water tank in a seismic analysis context. Results are compared to typical uncoupled
superelements, with the full order model as reference.

Notations
In this study, we write scalars 𝑥, vectors x and matrices X with the indices (·)𝛾 𝛽

𝑘 𝛼. 𝛼 refers to a
specific geometric domain. 𝛽 refers to a specific physics. 𝛾 refers to the solution of a direct or
transposed non-symmetric problem (respectively right 𝛾 = r or left 𝛾 = ℓ). 𝑘 refers to the index
of an element in a sequence. When two indices are juxtaposed without parenthesis, it refers to
the input and output of the transformation. For example, A12 is a transformation coupling the
physics 1 and 2, while A12 couples the geometric domains 1 and 2. When parenthesis are used,
we defines the specific meaning. We do not write the zero vector 0 and zero matrix O in block
vectors and matrices to avoid a cluttered notation. The interior of a set is denoted by int.

2. Full order model
Several formulations of a vibroacoustic problem are commonly used. In this study, we consider
a displacement and pressure (u,p) two-field formulation. Figure 1 describes a vibroacoustic
domain of dimensionality 𝑑 represented by the open set Ω(up). Let Ωu ⊂ R𝑑 and Ωp ⊂ R𝑑

be open sets that represents respectively the structural and fluid domains. The fluid-structure
interaction occurs at the (𝑑 − 1)-manifold boundary Γ𝑏 := 𝜕Ωu ∩ 𝜕Ωp. For the usual 3D case
(𝑑 = 3), Ω(up) is a volume while the FSI boundary Γ𝑏 is a surface. The substructuring master
domain Ωu

𝑚 ⊂ Ωu is defined for external loading or structural assembly with other components.
Compressibility of the fluid is considered. A fluid free submanifold Γp

free is present and sloshing
effects are considered.

Ωp Ωu

Γ𝑏

Γp
free

Ωu
𝑚

Γ𝜎
free

Figure 1. Vibroacoustic domain Ω(up).

2.1. Governing equations
We consider the non-symmetric finite element (u,p) formulation described in [9] and implemented
in the Ansys Mechanical APDL solver [4]. The problem is assumed to be conservative. The Full
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Order Model (FOM) is the discrete problem[︂
Muu

−𝜌0K
up⊺ Mpp

]︂{︂
ü
p̈

}︂
+

[︂
Kuu Kup

Kpp

]︂{︂
u
p

}︂
=

{︂
fu

fp

}︂
(1)

⇔:M

{︂
ü
p̈

}︂
+ K

{︂
u
p

}︂
= f , (2)

of size 𝑛 := 𝑛u + 𝑛p, with 𝑛u displacement unknowns u and 𝑛p pressure unknowns p. The
K and M matrices are sparse thanks to the finite element formulation. Sloshing effects due to
gravity are accounted for in the fluid matrix Mpp. 𝜌0 is the mean fluid density.

2.2. Left/right eigenspaces
The direct (K,M) (3) and transposed (K

⊺
,M

⊺
) (4) eigenproblems define the modes of the

FOM (1), with Λ its real spectrum, and Φℓ and Φr its real left and right eigenvectors. From the
sequence of increasingly larger eigenvalues, we define Λ as the spectral matrix diag( 𝜔2

1 , ..., 𝜔2
𝑛 ).

From the corresponding sequence of column eigenvectors, we define Φ· as the modal matrix[︀
ϕ·1 · · · ϕ·𝑛

]︀
.

K Φr = M Φr Λ ⇔:

[︂
Kuu Kup

Kpp

]︂ [︂
Φr u

Φr p

]︂
=

[︂
Muu

−𝜌0K
up⊺ Mpp

]︂ [︂
Φr u

Φr p

]︂
Λ, (3)

K
⊺
Φℓ = M

⊺
Φℓ Λ ⇔:

[︂
Kuu

Kup⊺ Kpp

]︂ [︂
Φℓ u

Φℓ p

]︂
=

[︂
Muu −𝜌0K

up

Mpp

]︂ [︂
Φℓ u

Φℓ p

]︂
Λ. (4)

The eigenvectors may be normalized to enforce either biorthonormalization Φℓ
⊺
Φr = I or

M-biorthogonality Φℓ
⊺
M Φr = I.

The specific structure of problems (4-3) causes the spectrum to be real and leads to a relation
between the left and right eigenvectors. For this vibroacoustic formulation, it can be proven that
a left eigenvector ϕℓ𝑗 is deduced from its corresponding right eigenvector ϕr𝑗 by{︃

ϕℓ u
𝑗

ϕ
ℓ p
𝑗

}︃
=

[︃
𝜔2

𝑗 I
1
𝜌0
I

]︃{︃
ϕr u
𝑗

ϕ
r p
𝑗

}︃
. (5)

While this structure enables symmetrization approaches as discussed in [1][2], we consider the
non-symmetric problem directly.

2.3. Singularities
An in vacuo vibroacoustic component may have a singular FOM (1) due to rigid body motions.
However, in a substructuring context, boundary conditions or assembly on the substructuring
subdomain Γu

𝑚 remove the rigid body motions in most cases.
In the presence of a fluid free surface Γp

free, a fluid nullspace mode ( ϕℓ0 , ϕr0 ) will appear, leading
to a singular problem (1). It corresponds to an uniform pressure field inside the acoustic domain
and the corresponding static deformation of the structure. It can be determined as the solution
of [︂

Kuu Kup

Kpp

]︂ [︂
ϕr u

0

1

]︂
= 0, (6)

with the trivial left eigenvector

ϕ
ℓ
0 =

[︂
0
1

]︂
(7)
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due to no coupling p → u at order 0 of eigenproblem (4). With this procedure, a normalization
step will be necessary to enforce biorthogonality.

In this study, we regularize ill-conditioned eigenproblems with a small initial spectral shift.
When we study an ill-conditioned linear problem or when we need an explicit pseudo-inverse of a
singular matrix, we use the bordering regularization technic [5]. These methods preserve matrix
sparsity.

2.4. Discrete domain subdivision
When building a superelement, the chosen master domain Ωu

𝑚 stays in physical space. The rest
of the domain Ω(up) ∖ Ωu

𝑚, called condensed domain, will be reduced to generalized unknowns.
The mesh used for the discrete problem (1) approximates the space corresponding to Ω(up). We
partition the problem (1) by defining nodal subsets of this mesh.

2.4.1. Condensed-master subdivision Let 𝒞u
𝑚 be the set of master nodes corresponding to Ωu

𝑚,
𝒞u
𝑐 the nodes corresponding to Ωu ∖ Ωu

𝑚 and 𝒞p
𝑐 the ones corresponding to Ωp. From (1), this

leads to the partitioned problem⎡⎣ Muu
𝑐𝑐 Muu

𝑐𝑚

−𝜌0K
up⊺
𝑐𝑐 Mpp

𝑐𝑐 −𝜌0K
up⊺
𝑚𝑐

Muu⊺
𝑐𝑚 Muu

𝑚𝑚

⎤⎦⎧⎨⎩ ü𝑐

p̈𝑐

ü𝑚

⎫⎬⎭+

⎡⎣ Kuu
𝑐𝑐 Kup

𝑐𝑐 Kuu
𝑐𝑚

Kpp
𝑐𝑐

Kuu⊺
𝑐𝑚 Kup

𝑚𝑐 Kuu
𝑚𝑚

⎤⎦⎧⎨⎩ u𝑐

p𝑐

u𝑚

⎫⎬⎭ =

⎧⎨⎩ fu𝑐
fp𝑐
fu𝑚

⎫⎬⎭ . (8)

2.4.2. Internal-boundary-master subdivision We further partition the condensed domain into
multiphysics and monophysics subdomains. The FSI boundary nodes corresponding to Γ𝑏 ∖ 𝜕Ωu

𝑚

are Σ𝑏 := 𝒞u
𝑐 ∩𝒞p

𝑐 . Then, internal nodes of each monophysics subdomain belong to 𝒞u
𝑖 := 𝒞u

𝑐 ∖Σ𝑏

and 𝒞p
𝑖 := 𝒞p

𝑐 ∖ Σ𝑏. From (1), this leads to the partitioned problem
⎡⎢⎢⎢⎢⎢⎢⎣
Muu

𝑖𝑖 Muu
𝑖𝑏 Muu

𝑖𝑚

Mpp
𝑖𝑖 Mpp

𝑖𝑏 −𝜌0K
up⊺
𝑚𝑖

Muu⊺
𝑖𝑏 Muu

𝑏𝑏 Muu
𝑏𝑚

Mpp⊺
𝑖𝑏 −𝜌0K

up⊺
𝑏𝑏 Mpp

𝑏𝑏 −𝜌0K
up⊺
𝑚𝑏

Muu⊺
𝑖𝑚 Muu⊺

𝑏𝑚 Muu
𝑚𝑚

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ü𝑖

p̈𝑖

ü𝑏

p̈𝑏

ü𝑚

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+

⎡⎢⎢⎢⎢⎢⎢⎣
Kuu

𝑖𝑖 Kuu
𝑖𝑏 Kuu

𝑖𝑚

Kpp
𝑖𝑖 Kpp

𝑖𝑏

Kuu⊺
𝑖𝑏 Kuu

𝑏𝑏 Kup
𝑏𝑏 Kuu

𝑏𝑚

Kpp⊺
𝑖𝑏 Kpp

𝑏𝑏

Kuu⊺
𝑖𝑚 Kup

𝑚𝑖 Kuu⊺
𝑏𝑚 Kup

𝑚𝑏 Kuu
𝑚𝑚

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u𝑖

p𝑖

u𝑏

p𝑏

u𝑚

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

fu𝑖
fp𝑖
fu𝑏
fp𝑏
fu𝑚

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (9)

Note that the internal subdomains 𝒞u
𝑖 and 𝒞p

𝑖 are not coupled, thus their corresponding
subproblems in (9) are monophysics and symmetric. Only the FSI boundary Σ𝑏 subproblem
is multiphysics and non-symmetric. Being defined on a (𝑑 − 1)-manifold, this subproblem is
typically significantly smaller than the condensed domain 𝒞u

𝑐 ∪ 𝒞p
𝑐 subproblem from (8) that is

defined on a 𝑑-manifold.

3. Reduced order model
In this study, we consider the fixed-interface approach to build a superelement. Thus, a reduced
order representation of the condensed domain 𝒞u

𝑐 ∪ 𝒞p
𝑐 is needed with the u𝑚 = 0 boundary

condition. Similarly to the Hurty/Craig-Bampton method [6] used in structural dynamics, the
master domain dynamics is propagated to the condensed domain through constraint modes.

3.1. Uncoupled superelement
The most common vibroacoustic ROM method is to use monophysics modes from the uncoupled
structural and fluid subproblems for the reduction. This classical strategy, leading to an
uncoupled superelement, is compared to our approach. We use two technics to reduce the
condensed domain 𝒞u

𝑐 ∪ 𝒞p
𝑐 : one using in vacuo structure modes and another one using modes of

the structure loaded with the fluid. In both approaches, rigid-wall fluid modes are used.



XII International Conference on Structural Dynamics
Journal of Physics: Conference Series 2647 (2024) 232008

IOP Publishing
doi:10.1088/1742-6596/2647/23/232008

5

3.1.1. Uncoupled reduction From partitioned FOM problem (8), applying the fixed-interface
u𝑚 := 0 and rigid-wall u𝑐 := 0 conditions leads to the uncoupled acoustic eigenproblem

Kpp
𝑐𝑐 Φ

p
𝑐 = Mpp

𝑐𝑐 Φ
p
𝑐Λ

p
𝑐 . (10)

Similarly to the FOM eigenproblem (3), eigenproblem (10) is ill-conditioned due to a fluid
nullspace mode. It is regularized by an initial spectral shift Kpp

𝑐𝑐 := Kpp
𝑐𝑐 − 𝑠0M

pp
𝑐𝑐 where 𝑠0

is chosen smaller than the lowest non-zero eigenvalue of (10).
From partitioned FOM problem (8), applying the fixed-interface u𝑚 := 0 and in vacuo

structure p𝑐 := 0 conditions leads to the uncoupled structural eigenproblem

Kuu
𝑐𝑐 Φ

u
𝑐 = Muu

𝑐𝑐 Φ
u
𝑐Λ

u
𝑐 . (11)

3.1.2. Added mass effects Assuming static response of the fluid, fluid added mass effects
can be accounted for several equivalent ways. Similar to [8], the uncoupled fluid subproblem
is regularized by the condition p = 0 on the corresponding fluid free surface 𝒞p

𝑐free :=
𝒞p
𝑐 ∖ (int 𝒞p

𝑐 ∪ Σ𝑏). The added mass matrix from the interior fluid domain 𝒞p
𝑐𝑖 := 𝐶p

𝑐 ∖ 𝒞p
𝑐free

is M
(p→u)
𝑐𝑐 = −𝜌0K

up
𝑐𝑐𝑖K

pp−1
𝑐𝑖𝑐𝑖 Kup⊺

𝑐𝑐𝑖 , leading to the loaded uncoupled structural eigenproblem

Kuu
𝑐𝑐 Φ

u
𝑐 = (Muu

𝑐𝑐 + M(p→u)
𝑐𝑐 )Φu

𝑐Λ
u
𝑐 . (12)

3.1.3. Monophysics superelement generalization Considering the monophysics approach to the
reduction of the condensed domain, we also take a monophysics approach to the constraint modes
between the condensed and master domains, similar to [3]. For that purpose, only the structural
constraint modes (13) need to be computed.

Ψu
𝑐𝑚 = −Kuu−1

𝑐𝑐 Kuu
𝑐𝑚. (13)

The bases Φu
𝑐 , Φ

u
𝑐 and Φp

𝑐 are truncated up to an arbitrary eigenfrequency threshold we call
cutoff frequency, or based on a target ROM size. From the truncated bases Φ̃

u
𝑐 , Φ̃

u
𝑐 , Φ̃

p
𝑐 and

constraint modes Ψu
𝑐𝑚, we build the reduction bases, leading to the approximation⎧⎨⎩ u𝑐

p𝑐

u𝑚

⎫⎬⎭ ≈

⎡⎣Φ̃u
𝑐 Ψu

𝑐𝑚

Φ̃
p
𝑐

I

⎤⎦⎧⎨⎩ qu
𝑐

qp
𝑐

u𝑚

⎫⎬⎭ =: Θ

⎧⎨⎩ qu
𝑐

qp
𝑐

u𝑚

⎫⎬⎭ , (14)

and the similar loaded structure approximation with Φ̃
u
𝑐 defining the Θ reduction basis.

The ROM matrices can be computed by the Galerkin method with the reduction basis Θ
or Θ. We call respectively uncoupled ROM and loaded uncoupled ROM these problems of size
𝑛̃u
𝑐 + 𝑛̃p

𝑐 +𝑛u
𝑚 and 𝑛̃u

𝑐 + 𝑛̃p
𝑐 +𝑛u

𝑚. However, we choose to propagate the singularity of the FOM (1)
to the ROM in order to avoid making any assumption in this study on the choice of regularization
technic. For this purpose, we increase the reduction bases with the non-symmetric fluid nullspace
mode (7-6), leading, without loss of generality, to a Petrov-Galerkin method.

3.2. Coupled superelement
While the monophysics modes from Θ (14) or Θ will be coupled during the Galerkin projection,
we make the assumption that accounting for some multiphysics information in the reduction
basis itself should improve the ROM performance for strongly-coupled models. Considering the
partitioning (9), we propose to compute multiphysics modes of the FSI boundary Σ𝑏 while keeping
a monophysics approach to the uncoupled internal structural 𝒞u

𝑖 and fluid 𝒞p
𝑖 subdomains.



XII International Conference on Structural Dynamics
Journal of Physics: Conference Series 2647 (2024) 232008

IOP Publishing
doi:10.1088/1742-6596/2647/23/232008

6

3.2.1. Domain subdivision-based reduction From partitioned FOM problem (9), applying the
fixed-interface u𝑚 := 0 condition leads to the coupled subproblem⎡⎢⎢⎢⎢⎣

Muu
𝑖𝑖 Muu

𝑖𝑏

Mpp
𝑖𝑖 Mpp

𝑖𝑏

Muu⊺
𝑖𝑏 Muu

𝑏𝑏

Mpp⊺
𝑖𝑏 −𝜌0K

up⊺
𝑏𝑏 Mpp

𝑏𝑏

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ü𝑖

p̈𝑖

ü𝑏

p̈𝑏

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭+

⎡⎢⎢⎢⎢⎣
Kuu

𝑖𝑖 Kuu
𝑖𝑏

Kpp
𝑖𝑖 Kpp

𝑖𝑏

Kuu⊺
𝑖𝑏 Kuu

𝑏𝑏 Kup
𝑏𝑏

Kpp⊺
𝑖𝑏 Kpp

𝑏𝑏

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u𝑖

p𝑖

u𝑏

p𝑏

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
fu𝑖
fp𝑖
fu𝑏
fp𝑏

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (15)

Assuming static response of the internal structural 𝒞u
𝑖 and fluid 𝒞p

𝑖 subdomains. The internal
unknowns are condensed by⎧⎪⎪⎨⎪⎪⎩

u𝑖
p𝑖
u𝑏
p𝑏

⎫⎪⎪⎬⎪⎪⎭ ≈

⎡⎢⎢⎣
−Kuu−1

𝑖𝑖 Kuu
𝑖𝑏

−Kpp−1
𝑖𝑖 Kpp

𝑖𝑏
I

I

⎤⎥⎥⎦{︂
u𝑏
p𝑏

}︂
=:

⎡⎢⎢⎣
Ψu

𝑖𝑏

Ψp
𝑖𝑏

I
I

⎤⎥⎥⎦{︂
u𝑏
p𝑏

}︂
. (16)

This is equivalent to studying the FSI boundary with the added mass of the internal structural
𝒞u
𝑖 and fluid 𝒞p

𝑖 subdomains. After applying by Galerkin projection the reduction (16) to problem
(15), we deduce the non-symmetric loaded FSI boundary eigenproblem

K𝑏𝑏

[︂
Φr u

𝑏

Φr p
𝑏

]︂
= M𝑏𝑏

[︂
Φr u

𝑏

Φr p
𝑏

]︂
Λ𝑏, (17)

with the left modes Φℓ 𝑏 deduced with a relation similar to (5).
Exploiting the fact that 𝒞u

𝑖 ∩ 𝒞p
𝑖 = ∅, the FSI boundary is simultaneously loaded by the

internal structural and fluid subdomains through the monophysics constraint modes Ψu
𝑖𝑏 and

Ψp
𝑖𝑏. Because the FSI boundary Σ𝑏 is a submanifold only comprised of the wetted face of the

structure and the corresponding fluid layer, the eigenproblem (17) is typically much smaller than
the eigenproblem corresponding to problem (15). This is an opportunity to capture efficiently in
Λ𝑏 and ( Φℓ 𝑏, Φr 𝑏) some of the multiphysics dynamics of problem (15).

Internal subdomain modes are also computed. From partitioned problem (15), applying both
the fixed-interface u𝑚 := 0 and the fixed FSI boundary u𝑏 := 0 and p𝑏 := 0 conditions leads
to the monophysics internal eigenproblems

Kuu
𝑖𝑖 Φ

u
𝑖 = Muu

𝑖𝑖 Φ
u
𝑖 Λ

u
𝑖 , (18)

Kpp
𝑖𝑖 Φ

p
𝑖 = Mpp

𝑖𝑖 Φ
p
𝑖 Λ

p
𝑖 . (19)

3.2.2. Multiphysics superelement generalization Considering our multiphysics approach to the
reduction of the condensed domain, we also take a multiphysics approach to the constraint modes
between the condensed and master domains, similar to [1][2]. To that extent, we compute the
multiphysics left and right constraint modes⎡⎢⎢⎢⎢⎣

Ψℓ uu
𝑖𝑚

Ψℓ pu
𝑖𝑚

Ψℓ uu
𝑏𝑚

Ψℓ pu
𝑏𝑚

⎤⎥⎥⎥⎥⎦ = −

⎡⎢⎢⎢⎢⎣
Kuu

𝑖𝑖 Kuu
𝑖𝑏

Kpp
𝑖𝑖 Kpp

𝑖𝑏

Kuu⊺
𝑖𝑏 Kuu

𝑏𝑏 Kup
𝑏𝑏

Kpp⊺
𝑖𝑏 Kpp

𝑏𝑏

⎤⎥⎥⎥⎥⎦
−⊺ ⎡⎢⎢⎢⎢⎣

Kuu
𝑖𝑚

Kup⊺
𝑚𝑖

Kuu
𝑏𝑚

Kup⊺
𝑚𝑏

⎤⎥⎥⎥⎥⎦ , (20)

⎡⎢⎢⎢⎢⎣
Ψr uu

𝑖𝑚

Ψr pu
𝑖𝑚

Ψr uu
𝑏𝑚

Ψr pu
𝑏𝑚

⎤⎥⎥⎥⎥⎦ = −

⎡⎢⎢⎢⎢⎣
Kuu

𝑖𝑖 Kuu
𝑖𝑏

Kpp
𝑖𝑖 Kpp

𝑖𝑏

Kuu⊺
𝑖𝑏 Kuu

𝑏𝑏 Kup
𝑏𝑏

Kpp⊺
𝑖𝑏 Kpp

𝑏𝑏

⎤⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎢⎣

Kuu
𝑖𝑚

Kuu
𝑏𝑚

⎤⎥⎥⎥⎥⎦ . (21)
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The bases Φu
𝑖 , Φ

p
𝑖 and ( Φℓ 𝑏, Φr 𝑏) are truncated either by applying a chosen frequency cutoff

or based on a chosen ROM size. From the truncated bases Φ̃
u
𝑖 , Φ̃

p
𝑖 and ( Φ̃

ℓ
𝑏, Φ̃

r
𝑏), and constraint

modes (16), (20) and (21), we build the reduction bases, leading to the approximation⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u𝑖

p𝑖

u𝑏

p𝑏

u𝑚

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
≈

⎡⎢⎢⎢⎢⎢⎢⎣
Φ̃

u
𝑖 Ψu

𝑖𝑏 Φ̃
r u

𝑏 Ψr uu
𝑖𝑚

Φ̃
p
𝑖 Ψp

𝑖𝑏 Φ̃
r p

𝑏 Ψr pu
𝑖𝑚

Φ̃
r u

𝑏 Ψr uu
𝑏𝑚

Φ̃
r p

𝑏 Ψr pu
𝑏𝑚

I

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
qu
𝑖

qp
𝑖

q
𝑏

u𝑚

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =: Жr

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
qu
𝑖

qp
𝑖

q
𝑏

u𝑚

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , (22)

with the corresponding left reduction basis

Жℓ :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ̃
u
𝑖 Ψu

𝑖𝑏 Φ̃
ℓ u

𝑏 Ψℓ uu
𝑖𝑚

Φ̃
p
𝑖 Ψp

𝑖𝑏 Φ̃
ℓ p

𝑏 Ψℓ pu
𝑖𝑚

Φ̃
ℓ u

𝑏 Ψℓ uu
𝑏𝑚

Φ̃
ℓ p

𝑏 Ψℓ pu
𝑏𝑚

I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (23)

By the Petrov-Galerkin method with reduction bases ( Жℓ , Жr ), we compute the ROM of
size 𝑛̃u

𝑖 + 𝑛̃p
𝑖 + 𝑛̃𝑏 + 𝑛u

𝑚 that we call coupled ROM. Without loss of generality, we also increase
the reduction bases with the non-symmetric fluid nullspace mode (7-6) to propagate the FOM
singularity to the ROM.

The superelement we propose could be viewed as a nested generalization of fixed-interface
substructuring to vibroacoustic problems. At the vibroacoustic component scale, this is a Petrov-
Galerkin generalization of the fixed-interface method. At the condensed domain scale, with the
FSI boundary considered a pseudo master domain, it is two Galerkin structural and fluid fixed-
interface methods with a further multiphysics interface reduction.

4. Numerical testing
4.1. Experimental procedure
We use as reference results the FOM truncated modes Λ̃ and ( Φ̃

ℓ
, Φ̃
r

) from eigenproblems (4) and
(3). We perform modal analyses after reduction on the uncoupled ROM, the loaded uncoupled
ROM and the proposed coupled ROM. Below a given cutoff frequency, we consider a ROM
accurate if both its spectrum does not deviate significantly from the FOM spectrum, and its
eigenvectors expanded in the FOM space span a similar subspace as the FOM eigenvectors.
We choose not to compute explicitly the matrix of the frequency response functions because it
becomes too computationally intensive even for relatively small models. It is also challenging to
interpret the results for numerous degrees of freedom and having a very high modal density.

The typical indicator of eigenvector similarity is the Modal Assurance Criterion (MAC).
Two eigenspaces can be compared by quantifying with the MAC the similarity of each of their
corresponding eigenvectors. However, in the general case of a model with high modal density and
with some degenerated modes, implementing this procedure is not trivial. Because some modes
may be missing or spurious in one of the eigenspace, the mode numbers are not equivalent
and cannot be used directly for identifying the eigenvectors to compare. Although modes
can be matched between the two result sources based on the nearest eigenvalues, additional
considerations must be taken for degenerated modes. For each repeated eigenvalue, using the
MAC requires studying the entire modal subspace. Degeneracy is almost always due to geometric
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symmetries. When the mesh structure breaks these symmetries, the computed eigenvalues of a
degenerated mode can significantly drift apart. At high modal densities, it can be impractical
to identify in a robust way all the repeated eigenvalues and the corresponding modal subspaces.
Vibroacoustic cavities often have geometric symmetries. Therefore, as an indicator of eigenspace
similarity that does not require mode matching, we propose a generalization of the subspace
similarity indicator proposed in [11]. Instead of always considering two bases of the same size,
we allow for one basis to be larger. We interpret the indicator as the capability of a basis to span
the subspace of the reference basis. In details, this indicator quantifies the loss of orthonormality
of the reference basis after application of the projector corresponding to the basis to characterize.
The studied bases need to be orthonormal, thus, in the general case of a non-symmetric and non-
biorthonormal transformation ( Tℓ , Tr ), we compute its orthogonal projector P( Tℓ , Tr ) as

P( Tℓ , Tr ) = Tr
(︁
Tℓ
⊺
Tr
)︁−1

Tℓ
⊺
. (24)

As a first approach, we investigate if the reduced space of each superelement is a good
approximation of the considered FOM eigenspace. While it does not guarantee an accurate
dynamics after reduction, the reduction bases should at least accurately span the FOM
eigenspace.

When comparing a ROM modal subspace to the FOM modal subspace, the truncation strategy
must be chosen with care. Because mode numbers are not in general equivalent, truncating the
two eigenspaces based on size may lead to omitting some degenerated eigenvectors at the end of
a basis. This artificially lowers the similarity indicator. A frequency truncation circumvents that
limitation. However, if there is a mode near the cutoff frequency with an overestimated ROM
frequency, it will be ommitted. Thus, we arbitrary choose to relax the cutoff frequencies of our
data points by +5% to only penalize bases with significantly overestimated frequencies.

4.2. Seismic analysis of an industrial water tank
4.2.1. Model As an example of a strongly-coupled model with sloshing effects, we use
the described superelements and experimental procedure to study an industrial water tank.
Compressibility effects are not significant in this model, however we use the general vibroacoustic
formulation considered in this development. The tank is of radius 7m and height 12m. Its
steel structure of thickness 1.5 cm is modeled with quadratic quadrangle shell elements. The
tank is filled to 80% of its height with water modeled with quadratic hexahedral acoustic
elements. The mesh used is represented by figure 2 and corresponds to 3056 degrees of freedom:
2184 displacement unknowns and 872 pressure unknowns. The FSI boundary Σ𝑏 corresponds
to 1080 displacement unknowns and 204 pressure unknowns. Because quadratic elements are
used, the partitioning requires that some additional pressure unknowns are assigned to the FSI
boundary Σ𝑏. The master domain 𝒞u

𝑚 is defined as the tank bottom face and corresponds to
672 displacement unknowns. An elastic support is added to the tank bottom to model concrete
foundations. Possible goals for this analysis setup would be to load the tank from the ground or
study directly its interaction with its foundations. In a low-frequency seismic analysis context,
we consider the FOM modes below 50Hz as our reference results.

The coupled ROM bases are truncated to 50Hz, leading to a total superelement size of 898
unknowns (226 modal and 672 master displacement unknowns). For a fair comparaison with
the less complex uncoupled and loaded uncoupled ROM, we truncate the uncoupled bases to
reach the same superelement size. This leads to truncating the uncoupled ROM bases at around
110Hz and the loaded uncoupled ROM bases at around 70Hz.

4.2.2. Results Figure 3 shows the ROM modal frequencies plotted versus the FOM frequencies
they are supposed to correspond to. Deviation from the reference FOM line is explained either
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Figure 2. Tank mesh.
Figure 3. Spectrum deviations between
ROM and FOM.

by errors on the frequencies, or missing or spurious modes shifting the mode numbers. We can
identify below 2Hz a weakly-coupled sloshing regime where the dynamics is dominated by fluid
sloshing modes statically coupled with the structure. The three ROM accurately describe the
FOM spectrum in that regime. However, only the coupled ROM we propose is accurate beyond
this regime into strongly-coupled solutions. The coupled ROM spectrum can be considered
accurate until around 35Hz.

Figure 4 shows the subspace similarity between the spaces spanned by the reduction bases and
the FOM eigensubspaces corresponding to truncations of the FOM eigenbasis at progressively
larger cutoff frequencies. The accuracy of the uncoupled reduction basis declines rapidly despite
its high frequency truncation of 110Hz relative to the bandwidth of interest. This suggests
that the reduction basis is inadequate for this problem. Both the loaded uncoupled and
coupled reduction bases are satisfactory representations of the FOM eigenspace across the studied
bandwidth. However, the proposed coupled method demonstrates an appreciable improvement
over the loaded uncoupled method below 30Hz.

Figure 4. Reduction bases and FOM
eigenspace subspace similarity.

Figure 5. ROM and FOM eigenspaces
subspace similarity.

Figure 5 shows the modal subspace similarity of the ROM eigenspaces and the FOM
eigenspace, both truncated at a progressively larger cutoff frequency. The loaded uncoupled
ROM eigenspace becomes dissimilar beyond the weakly-coupled sloshing regime due to numerous
missing modes at higher frequencies. The coupled ROM eigenspace maintains a high level of
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similarity up to around 35Hz.

5. Discussion
This study shows that superelements built from uncoupled bases cannot describe a strongly-
coupled vibroacoustic cavity beyond the weakly-coupled sloshing regime. We proposed a
reduction method centered around loaded FSI boundary modes. In a realistic analysis setup, the
proposed superelement demonstrates accurate results with a significant model size reduction.
Therefore, this superelement can be used for substructuring of strongly-coupled vibroacoustic
heavy-fluid cavities with compressibility and sloshing effects.

The proposed reduction procedure is designed to scale efficiently to most large problems by
exploiting the subdimensional property of the fluid-structure boundary. In the present work, we
have not quantified the computational cost of our method. We will investigate the optimization of
an eigensolver for the computation of the loaded FSI boundary modes. We will then characterize
the computational efficiency of our reduction procedure and compare it to a fully multiphysics
approach.

It would also be interesting to compare the accuracy and computational cost of the proposed
superelement to methods based on enrichment of uncoupled bases with multiphysics information
[1][2].
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