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Abstract: Generating functions hr(τ) of D4-D2-D0 BPS indices, appearing in Calabi-Yau

compactifications of type IIA string theory and identical to rank 0 Donaldson-Thomas invari-

ants, are known to be higher depth mock modular forms satisfying a specific modular anomaly

equation, with depth determined by the D4-brane charge r. We develop a method to solve the

anomaly equation for arbitrary charges, in terms of indefinite theta series. This allows us to

find the generating functions up to modular forms that can be fixed by computing just a finite

number of Fourier coefficients of hr.
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1. Introduction

The indices counting BPS states in compactifications of type II strings on Calabi-Yau (CY)

threefolds Y play a prominent role both in physics and mathematics. On the physics side,

they represent degeneracies of BPS black holes and encode weights of instanton corrections to

the low energy effective action. On the mathematics side, they coincide with the generalized

Donaldson-Thomas (DT) invariants whose importance for understanding geometry of the CY

threefolds can hardly be overestimated.

For non-compact CYs, there are various techniques to compute these BPS indices, which

are based on localization, quivers, spectral networks and their generalizations, relations to

topological and gauge theories, etc., see e.g. [1, 2, 3, 4, 5, 6]. However, for compact threefolds

most of these techniques cannot be applied and the problem becomes much more complicated.

There are actually two classes of BPS indices which, at least in principle, can be sys-

tematically calculated. First, for D6-brane charge equal to ±1, the BPS indices (at large

volume) coincide with the ordinary DT (respectively, PT (due to Padharipande-Thomas)) in-

variants. Their generating function is given by the famous MNOP formula [7, 8] in terms of

Gopakumar-Vafa (GV) invariants, which in turn can be found by computing the topological

string free energy, for example, by the direct integration method [9, 10, 11].

Second, for vanishing D6-brane charge, the BPS indices, known also as rank 0 DT invari-

ants, count D4-D2-D0 BPS states and can be organized in generating functions hp(τ) where

pa (with a = 1, . . . , b2(Y)) is the D4-brane charge which geometrically corresponds to a divisor
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Dp = paγa of Y where γa is a basis of H4(Y,Z).1 These functions turn out to possess nice

modular properties [12, 13, 14, 15] which severely restrict hp(τ) and, again at least in principle,

can be used to fix them up to a finite number of coefficients.

The precise modular properties of hp(τ) strongly depend on properties of the divisor Dp.

If the divisor is irreducible, the generating function must be a weakly holomorphic modular

form of weight −1
2
b2 − 1 [12], i.e. it has the expansion

hp(τ) =
∑

n≥nmin

cnq
n, q = e2πiτ , (1.1)

where nmin < 0, and transforms in the usual way under the standard SL(2,Z) transformations

acting on τ . The space of such modular forms is finite dimensional and its dimension is bounded

from above by the number of polar terms, i.e. terms with n < 0. This is why in this case

it is enough to compute only the polar terms in (1.1) to completely fix hp(τ). This idea was

applied long ago to a few one-parameters CY threefolds in [16, 17, 18, 19] and revised recently

in [20, 21]. In particular, in [21] a systematic way to compute first terms in the expansion

(1.1) has been suggested which is based on new wall-crossing relations between PT and rank 0

DT invariants [22]. Combined with the MNOP formula, they allow to express D4-D2-D0 BPS

indices in terms of GV invariants so that, if the latter are known up to sufficiently high genus,

all polar terms (and not only) can be computed.

If the divisor Dp is reducible, i.e. pa =
∑r

i=1 p
a
i with positive pai and r > 1, the modular

properties of hp(τ) are more involved. It was shown in [14, 15] that the generating functions

are mock modular forms of depth r − 1 with a specific modular anomaly. A convenient way

to characterize the anomaly is to consider a modular completion that is a non-holomorphic

function ĥp(τ, τ̄) that transforms as a usual modular form and differs from hp(τ) only by terms

suppressed in the limit Im τ → ∞. An exact expression for the completion is given below in

section 2.2 (see (2.8)) in a simplified form found recently in [23]. An important feature of this

formula is that ĥp(τ, τ̄) is determined by the generating functions hpi(τ) of the constituents.

Although for mock modular forms the polar terms alone are not sufficient anymore to fix

the function uniquely, the missing information can be recovered from the modular anomaly.

Namely, one can follow the two-step strategy. First, one finds any mock modular form h
(an)
p (τ)

having the given modular anomaly. Obviously, the generating function hp can differ from h
(an)
p

at most by a modular form h
(0)
p , i.e.

hp = h(an)
p + h(0)

p . (1.2)

Given this representation, at the second step, the modular ambiguity h
(0)
p can be fixed in the

usual way by computing its polar terms given by the difference of the polar terms of hp and

h
(an)
p .

1In fact, the generating functions are vector valued so that their components hp,µ(τ) are labeled by residue

class µa taking values in the discriminant group Λ⋆/Λ where Λ = H4(Y,Z). For simplicity of exposition, we

drop the vector index in the Introduction.
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For one-parameter CYs with the triple intersection number equal to a power of a prime

number and D4-brane charge r = 2,2 the first step (solution of the modular anomaly) has

been realized in [20]. Then for two CYs known as decantic X10 and octic X8, the second step

(computing the polar terms) has been done in [24], which resulted in explicit mock modular

generating functions h2 for this pair of threefolds.

The goal of this paper is, still restricting to the one-parameter case b2 = 1, to find a

solution of the modular anomaly, i.e. the functions h
(an)
r , for higher charges. Thus, we reduce

the problem of finding the generating functions hr to just the problem of computing their polar

terms. This last problem is left for future research.

The immediate question which arises when one solves the modular anomaly for hr is how

this can be done given that the anomaly depends on the generating functions of lower charges

that remain unknown because their polar terms are not fixed yet? To address this issue, we

disentangle the anomalous parts of all generating functions from their modular ambiguities

fixed by the polar terms. Namely, we express each hr as a polynomial in h
(0)
ri with ri ≤ r (see

(3.2)) and show that the coefficients g(r), where r = (r1, . . . , rn) such that
∑n

i=1 ri = r, are

themselves mock modular forms of depth n − 1 satisfying an appropriate anomaly equation

(3.3). Thus, the problem of solving the modular anomaly for hr is reformulated as the problem

of solving the modular anomaly equations for the holomorphic functions g(r)(τ) parametrized

by n charges ri. We call these functions anomalous coefficients.

It turns out that it is relatively easy to give a solution for two infinite families of the

anomalous coefficients. First, in the n = 2 case with arbitrary r1 and r2, the anomaly is

characterized by a simple theta series depending on a single combination of all parameters

which we denote by κ12. A partial solution for such g(r1,r2) (when κ12 is a power of a prime

number) has already been given in [20]. But, in fact, a solution for generic κ12 is also known and

provided by mock modular forms of optimal growth introduced in [25]. They are constructed by

applying certain Hecke-like operators to a set of “seed” mock modular functions G(d) defined

for each d that is a square-free positive integer with an even number of prime factors. In

particular, G(1) coincides with the generating series of Hurwitz class numbers, which is also

known to be the normalized generating function of SU(2) Vafa-Witten (VW) invariants on

P2 [26], consistently with the results of [20]. In fact, this is a particular case of the second

family of solutions. Namely, we show that the anomaly equations for g(r) with all ri = 1 form

a closed system which, for the intersection number of Y equal to one, coincides with a similar

system of anomaly equations for the normalized generating functions of SU(n) VW invariants

on P2, with n equal to the number of charges. Thus, these two sets of functions can be simply

identified. Since the generating functions of VW invariants on P2 are by now well-known for

any rank of the gauge group [27, 28] (see also [29, 30, 31, 4]), this identification provides a

solution for the subset of anomalous coefficients.

Unfortunately, neither of these solutions seems to have a simple generalization to other

cases. Therefore, we follow an alternative strategy which is meant to work for an arbitrary

set of charges and is based on the use of indefinite theta series. This however requires two

2For one-parameter CYs, the D4-brane charge p1 coincides with the degree of reducibility of the divisor Dp

and therefore will be denoted by r in the rest of this paper.
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preliminary steps. First, the system of anomaly equations should be extended to include a

refinement encoded by an elliptic parameter z. This allows to simplify both the equations and

their solution, but most importantly it provides a regularization of certain singularities which

would otherwise plague the theta series. Second, one should artificially extend the relevant

charge lattice (which is achieved by multiplication by an appropriate combination of Jacobi

theta series) to ensure that the resulting lattice possesses a set of null vectors necessary to

write down a general solution. Such solution is then given by a combination of indefinite theta

series and holomorphic modular functions ϕ(r)(τ, z) (see Theorem 5.1) which ensure that the

unrefined limit z → 0 is non-singular. In fact, it is the proper choice of these functions and

the explicit evaluation of the unrefined limit that are the most non-trivial elements of our

construction.

In this paper we perform the construction in detail and derive the final form of g(r) for the

cases of two and three charges, while in generic case we find the general form of the refined

solution, obtain the functions ϕ(r) ensuring the existence of the unrefined limit, but leave the

limit itself non-evaluated since it appears quite hard to do this analytically. Besides, we check

that the solutions based on the indefinite theta series are consistent with the ones obtained by

Hecke-like operators and from VW theory.

The organization of the paper is as follows. In the next section we recall properties of

the generating series of D4-D2-D0 BPS indices, including their behavior under modular trans-

formations. In section 3 we introduce the anomalous coefficients that disentangle the mock

modular parts of the generating series, which are fixed by the modular anomaly equations,

from their modular ambiguities fixed by computing the polar terms. In section 4 we establish

relations to the mock modular forms of optimal growth introduced in [25] and to the normalized

generating functions of VW invariants on P2. In section 5 we present our main construction of

the anomalous coefficients in terms of indefinite theta series. Finally, in section 6 we discuss

our results and their possible extensions. Several appendices contain some useful information

on various building blocks of the construction, details of our calculations and some explicit

q-series. For the reader’s convenience, the last appendix J includes an index of notations.

2. BPS indices and their modular anomaly

In this section we introduce our main objects of interest, the generating series of D4-D2-D0

BPS indices, and describe their main properties. We restrict ourselves from the very beginning

to the case of b2(Y) = 1. A more complete discussion of BPS indices can be found, e.g., in

[21].

2.1 D4-D2-D0 BPS indices and their generating series

In type IIA string theory compactified on a CY threefold Y, BPS indices depend on the

electromagnetic charge γ which labels elements in the even cohomology of Y and can be

represented by a vector (p0, r, q, q0) where different components correspond to D6, D4, D2 and

D0-charges, respectively. In this paper we are interested in D4-D2-D0 BPS states for which

p0 = 0, which are also known as rank 0 DT invariants.

– 5 –



In general, BPS indices also depend in a piece-wise linear way on the Kähler modulus due

to the wall-crossing phenomenon and thus they take different values in different chambers of

the moduli space. Here we take them to be evaluated in the large volume attractor chamber

[32] containing the point

za∞(γ) = lim
λ→+∞

(
− q

κr
+ iλr

)
, (2.1)

where κ is the intersection number of Y. In this chamber the BPS indices are invariant under

the so-called spectral flow transformation acting on the charge vector. It gives rise to the

following decomposition of the D2-brane charge

q = µ+
1

2
κr2 + κrϵ, (2.2)

where ϵ ∈ Z is the parameter shifted by the spectral flow, while µ ∈ Λ∗/Λ with Λ = κrZ is the

so-called residue class taking κr values and staying invariant. Thus, D4-D2-D0 BPS indices

depend only on r, µ and an invariant combination of D2 and D0-charges

q̂0 ≡ q0 −
q2

2κr
, (2.3)

and will be denoted by Ωr,µ(q̂0).

An important fact, known as the Bogomolov-Gieseker bound [33], is that Ωr,µ(q̂0) vanishes

unless the invariant charge q̂0 satisfies

q̂0 ≤ q̂max
0 =

1

24
(κr3 + c2r), (2.4)

where c2 is the second Chern class of Y. It allows to define the generating series

hr,µ(τ) =
∑

q̂0≤q̂max
0

Ω̄r,µ(q̂0) q
−q̂0 , (2.5)

where q = e2πiτ and the bar denotes rational BPS indices defined for any charge as Ω̄(γ) =∑
d|γ Ω(γ/d)/d

2. Only generating series of rational BPS indices are expected to possess nice

modular properties [34]. Although it does not lead to conceptual simplifications, sometimes it

is useful to use the symmetry3 hr,−µ = hr,µ where we extended the range of µ from [0, κr − 1]

by periodicity.

2.2 Modular symmetry

The most important feature of the generating series hr,µ(τ) is that they transform as depth

r − 1 vector valued (VV) mock modular forms under the standard SL(2,Z) transformations

τ 7→ aτ+b
cτ+d

. While a mathematical proof of this modular behavior is still absent, it was derived

using duality symmetries of string theory [12, 13, 14, 15] and obtained recently a striking

confirmation by verifying predictions of modularity against a direct calculation of DT invariants

[21, 24].

3Mathematically, this symmetry follows from dualization of the coherent sheaf induced by the D4-brane.
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More precisely, in the simplest case r = 1, h1,µ is expected to be a weakly holomorphic VV

modular form of weight −3/2 with the multiplier system closely related to the Weil represen-

tation attached to the lattice κrZ with quadratic form Q(x) = κrx2 and determined by the

following two matrices for T and S-transformations [35, Eq.(2.10)] (see also [16, 36, 37, 38, 13])

M (hr)
µν (T ) = e

πi
κr (µ+

1
2
κr2)

2
+

πi
12

c2r δµν ,

M (hr)
µν (S) =

(−1)χr

√
κr

e−
πi
4
−2πi µν

κr ,
(2.6)

where χr is the arithmetic genus of the divisor Dr given by

χr =
1

6
κr3 +

1

12
c2r ∈ Z. (2.7)

We wrote the multiplier system (2.6) for generic r because for r > 1 it also enters the mod-

ular transformation of hr,µ. However, in this case the transformation has a modular anomaly

so that the generating series is only mock modular [14, 15]. This means that hr,µ can be pro-

moted to a non-holomorphic modular completion ĥr,µ(τ, τ̄) constructed from iterated integrals

of some modular forms and transforming itself as a true modular form of the same weight −3/2

and multiplier system (2.6). The fact that hr,µ has depth r− 1 means that the τ̄ -derivative of

its completion, which is known as shadow of the mock modular form, is itself a completion of

a mock modular form of depth r − 2 (see [39] for the precise definition).

The explicit form of the completion has been found in [15] and then slightly simplified in

[23]. As a result, it reads as4

ĥr,µ(τ, τ̄) = hr,µ(τ) +
r∑

n=2

∑
∑n

i=1 ri=r

∑
µ

R(r)
µ,µ(τ, τ̄)

n∏
i=1

hri,µi
(τ), (2.8)

where we use the bold script to denote tuples of n variables like r = (r1, . . . , rn). Note that

the first term can be included into the second by setting R
(r)
µ,µ′ = δµ,µ′ . The other coefficients

R
(r)
µ,µ can be represented as non-holomorphic theta series defined on a n− 1-dimensional lattice

R(r)
µ,µ(τ, τ̄) =

∑
∑n

i=1
qi=µ+1

2κr2

qi∈κriZ+µi+
1
2κr2

i

Sym
{
(−1)

∑
i<j γijRn(γ̂; τ2)

}
eπiτQn(γ̂), (2.9)

where γ̂ is the n-tuple of reduced charge vectors γ̂i = (ri, qi) with qi decomposed as in (2.2)

with fixed residue classes µi. Besides, Sym denotes symmetrization (with weight 1/n!) with

respect to charges γ̂i, γij is the anti-symmetric Dirac product of charges

γij = rjqi − riqj, (2.10)

and Qn denotes the quadratic form, originating from the quadratic term in the definition (2.3)

of the invariant charge q̂0,

Qn(γ̂) =
1

κr

(
n∑

i=1

qi

)2

−
n∑

i=1

q2i
κri

. (2.11)

4We always assume that ri are positive integers and do not write explicitly this condition in the sum over

decompositions of D4-brane charge.
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Finally, the coefficients Rn determining the kernel of the theta series are constructed as suitable

combinations of derivatives of the so-called generalized error functions introduced in [40, 41].

We relegate the precise definitions of all these functions to appendix D.

The equation for the completion (2.8) specifies the modular anomaly of hr,µ. Equivalently,

one can talk about the holomorphic anomaly for ĥr,µ. One can check that this anomaly given

by ∂τ̄ ĥr,µ is manifestly modular since it can be expressed through the completions ĥri,µi
, see [15,

Eq.(5.35)]. The important feature of all these anomaly equations is that the r.h.s. is expressed

through the generating series for charges ri < r. Thus, (2.8) can be seen as a recursive system

of equations determining the anomalous parts of the generating functions.

2.3 Redefinition

Before we turn to the main goal of this paper, which is to solve the anomaly equations (2.8),

let us make a slight redefinition of the generating series hr,µ by shifting their vector index and

multiplying by a sign factor. This will allow us to avoid some annoying shifts and signs in

what follows. More precisely, we set

h̃r,µ(τ) = (−1)(r−1)µhr,µ̃(r)(τ), (2.12)

where

µ̃(r) = µ− κr(r − 1)

2
. (2.13)

This redefinition leads to two simplifications. First, the shift of µ replaces the quadratic

term in the spectral flow decomposition (2.2) by a linear one so that now it reads

q = µ+
1

2
κr + κrϵ. (2.14)

As a result, all such terms cancel in the condition on the sum over qi in (2.9) and, using the

decomposition (2.14), it can be rewritten as

κ
n∑

i=1

riϵi = ∆µ, ∆µ = µ−
n∑

i=1

µi. (2.15)

Second, the sign factor in (2.12) cancels the sign factor in (2.9). Indeed, substituting the

decomposition (2.14) into the Dirac product (2.10), one finds∑
i<j

γij =
∑
i<j

(
rj

(
κriϵi + µi +

κri
2

)
− ri

(
κrjϵj + µi +

κrj
2

))
=
∑
i<j

(
κrirj(ϵi + ϵj) + rjµi + riµj

)
mod 2

=
∑
i

(
κri(r − ri)ϵi + (r − ri)µi

)
mod 2

= (r − 1)
∑
i

(κriϵi + µi)−
∑
i

(ri − 1)µi mod 2

= (r − 1)µ−
∑
i

(ri − 1)µi mod 2,

(2.16)
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where at the last step we used (2.15).

Given the above observations, the anomaly equation (2.8) reformulated in terms of the

redefined generating series takes the following form

̂̃hr,µ(τ, τ̄) =
r∑

n=1

∑
∑n

i=1 ri=r

∑
µ

R̃(r)
µ,µ(τ, τ̄)

n∏
i=1

h̃ri,µi
(τ), (2.17)

where

R̃(r)
µ,µ(τ, τ̄) =

∑
∑n

i=1
qi=µ+κr/2

qi∈κriZ+µi+κri/2

Sym
{

Rn(γ̂; τ2)
}
eπiτQn(γ̂). (2.18)

The redefinition (2.12) also affects the multiplier system which is now given by (B.2).

3. Anomalous coefficients

We expect that for each D4-brane charge r, the anomaly equation fixes the generating function

h̃r,µ up to a modular ambiguity which in turn can be fixed by other means, e.g. by computing

first few terms in the Fourier expansion of h̃r,µ. In other words, we can represent

h̃r,µ = h̃(an)
r,µ + h̃(0)

r,µ, (3.1)

where h̃
(an)
r,µ is a depth r−1 mock modular form satisfying (2.17), while h̃

(0)
r,µ is pure modular. The

problem however is that the r.h.s. of (2.17) depends on the full generating functions h̃ri,µi
with

ri < r and hence on all h̃
(0)
ri,µi which remain unknown at this point. Therefore, h̃

(an)
r,µ must also

depend on them, and what we can do at best is to find h̃
(an)
r,µ up to these modular functions. To

achieve this goal, we first parametrize the dependence of h̃r,µ on h̃
(0)
ri,µi by holomorphic functions

g
(r)
µ,µ(τ) which we call anomalous coefficients, characterize them by anomaly equations similar

to (2.17), and then solve these equations. In this section we perform the first two steps and

leave the third one to the subsequent sections. The main result is captured by the following

Theorem 3.1. Let g
(r)
µ,µ′ = δµ,µ′ and h̃

(0)
r,µ be a set of holomorphic modular forms. Then

h̃r,µ(τ) =
r∑

n=1

∑
∑n

i=1 ri=r

∑
µ

g(r)µ,µ(τ)
n∏

i=1

h̃(0)
ri,µi

(τ), (3.2)

is a depth r− 1 modular form with completion of the form (2.17) provided g
(r)
µ,µ are depth n− 1

mock modular forms (where n is the number of charges ri) with completions satisfying

ĝ(r)µ,µ = Sym

{
n∑

m=1

∑
∑m

k=1 nk=n

∑
ν

R̃(s)
µ,ν

m∏
k=1

g(rk)νk,mk

}
, (3.3)
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…

Figure 1: A representation of contributions to the r.h.s. of (3.3) in terms of rooted trees of depth 2.

where5

jk =
k−1∑
l=1

nl, sk =

nk∑
i=1

rjk+i,
rk = (rjk+1, . . . , rjk+1

),

mk = (µjk+1, . . . , µjk+1
).

(3.4)

Proof. To prove the theorem, we must show that (3.2) and (3.3) give rise to the same modular

completions ̂̃hr,µ. On one hand, this completion is obtained by substituting the ansatz (3.2)

into the r.h.s. of (2.17) which gives

̂̃hr,µ =
r∑

n=1

∑
∑n

k=1 sk=r

∑
µ

R̃(s)
µ,µ

n∏
k=1

(
sk∑

nk=1

∑
∑nk

l=1 rk,l=sk

∑
νk

g(rk)µk,νk

nk∏
l=1

h̃(0)
rk,l,νk,l

)
. (3.5)

On the other hand, it is obtained by completing each term in (3.2) and then using the equation

(3.3). This leads to the following expression

̂̃hr,µ =
r∑

n=1

∑
∑n

i=1 ri=r

∑
µ

ĝ(r)µ,µ

n∏
i=1

h̃(0)
ri,µi

=
r∑

n=1

∑
∑n

i=1 ri=r

∑
µ

n∑
m=1

∑
∑m

k=1 nk=n

∑
ν

R̃(s)
µ,ν

∏
k

g(rk)νk,mk

n∏
i=1

h̃(0)
ri,µi

,

(3.6)

where we omitted the sign of symmetrization from (3.3) because it is ensured by the sums over

decompositions r =
∑n

i=1 ri and residue classes µi. Clearly, the two equations coincide if one

can identify (rk,l, µk, νk,l) in (3.5) with (ri, νk, µi) in (3.6) and claim that

r∑
n=1

∑
∑n

k=1 sk=r

sk∑
nk=1

∑
∑nk

l=1 rk,l=sk

=
r∑

n=1

∑
∑n

i=1 ri=r

n∑
m=1

∑
∑m

k=1 nk=n

. (3.7)

Here on the l.h.s. the sum goes over double decompositions: first, decompose r into sk and

then each sk into rk,l, while on the r.h.s. one first sums over decompositions of r into ri and

5Note that while the sets r and µ have n elements, the sets s and ν have only m ≤ n elements. To

comprehend the structure of the equation (3.3), it might be useful to use the fact that the sum on its r.h.s. is

equivalent to the sum over rooted trees of depth 2 with leaves labelled by charges ri and other vertices labelled

by the sum of charges of their children. Using this labelling, we assign the function R̃
(s)
µ,ν to the root vertex

and the anomalous coefficients to the vertices of depth 1 with arguments determined by the charges of their

children. Then the contribution of a tree is given by the product of the weights of its vertices. See Fig. 1.
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then over various groupings of the indices i into sets preserving their ordering. It is obvious

that the two sums are identical and hence the two representations of the completion, (3.5) and

(3.6), coincide.

This theorem defines a family of holomorphic functions g
(r)
µ,µ(τ) restricted to have a modular

anomaly determined by (3.3). Their weight and multiplier system follow from that of h̃r,µ

(see (B.2)) and are given in (B.3). As usual, together with the anomaly these data fix the

anomalous coefficients up to a modular ambiguity. However, in contrast to the case of the

generating functions, there are no any restrictions on this ambiguity and therefore we can

choose any solution of (3.3). It is only important that, once a solution has been chosen for

small charges, it is this solution that is used in the r.h.s. of (3.3) to determine g
(r)
µ,µ for higher

charges. In the rest of the paper, our goal will be to find explicit solutions for these functions.

An important observation is that the parameter κ and charges ri enter the functions

κn−1R̃
(r)
µ,µ and the multiplier system (B.3) of the anomalous coefficients g

(r)
µ,µ always in the

form of the product κri. Indeed, this is true for the quadratic form (2.11), the bilinear form

(D.9) and the charges (2.14). On the other hand, the vectors vij (D.5) are linear in ri. Since

the generalized error functions (D.2) are independent of the overall scale of the matrix of

parameters, this implies that the functions (D.7) and hence En are homogeneous of degree

n − 1 in ri. Then (D.13) immediately leads to the same property for Rn, which in turn

confirms the claim for R̃
(r)
µ,µ. This implies that we can (although do not have to) choose a

solution for all g
(r)
µ,µ satisfying the following property

g(κ;r)µ,µ (τ) = κ1−n g(1;κr)µ,µ (τ), (3.8)

where n is the number of charges and we explicitly indicated the dependence on κ in the

upper index. Using this property would allow to reduce the problem of finding the anomalous

coefficients to the case of κ = 1. Note that for this feature to hold it was crucial to perform

the redefinition of section 2.3.

4. Partial solutions

In this section we provide a solution for two infinite families of anomalous coefficients.

4.1 Two charges and Hecke-like operators

Let us first consider the case of two arbitrary charges r1 and r2. In this case the formula for the

modular completion ĝ
(r1,r2)
µ,µ1,µ2 (3.3), representing the anomaly equation, takes the simple form

ĝ(r1,r2)µ,µ1,µ2
(τ, τ̄) = g(r1,r2)µ,µ1,µ2

(τ) + R̃(r1,r2)
µ,µ1,µ2

(τ, τ̄), (4.1)

and g
(r1,r2)
µ,µ1,µ2 is required to be a mock modular form of weight 3/2 with the multiplier system

(B.3) specialized to n = 2. The function R̃
(r1,r2)
µ,µ1,µ2 determining the completion is easily com-

putable, but for our purposes it is sufficient to consider its derivative with respect to τ̄ which
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specifies the shadow of g
(r1,r2)
µ,µ1,µ2 . It is given in (D.27) and suggests to look for a solution of the

form

g(r1,r2)µ,µ1,µ2
(τ) = r0δ

(κr0)
∆µ G(κ12)

µ12
(τ), (4.2)

where r0 = gcd(r1, r2), ∆µ was defined in (2.15), κ12 and µ12 are effective parameters introduced

in (D.24), µ12 runs over 2κ12 values, and δ
(n)
x is the mod-n Kronecker delta defined by

δ(n)x =

{
1 if x = 0 mod n,

0 otherwise.
(4.3)

In particular, the ansatz (4.2) is consistent with the property (3.8). If G
(κ)
µ is a VV mock

modular form of weight 3/2 with a modular completion satisfying

τ
3/2
2 ∂τ̄ Ĝ

(κ)
µ (τ, τ̄) =

√
κ

16πi
θ
(κ)
µ (τ̄), (4.4)

where θ
(κ)
µ (τ) is the theta series (C.7) at z = 0, then it is trivial to see that (4.2) solves the

anomaly equation (4.1). The only non-trivial fact to check is that it has the correct multiplier

system. But this follows directly from Proposition D.1 because the relation (4.4) ensures that

G
(κ)
µ has the multiplier system M

(κ)
µν (D.28) conjugate to that of θ

(κ)
µ .

As a result, we have reduced the problem of finding the anomalous coefficients for arbitrary

two charges to exactly the same problem that was studied in [20] for charges r1 = r2 = 1, in

which case κ12 = κ. It was found that for any κ equal to a power of a prime integer, G
(κ)
µ is

determined by the generating series Hµ (µ = 0, 1) of Hurwitz class numbers6 through the action

on it by a certain modification of the Hecke-like operator introduced in [45, 46]. However, it

turns out that a solution of this problem for generic κ has already been found in the seminal

paper [25]. More precisely, that paper looked for mock modular forms with shadow proportional

to θ
(κ)
µ and further restricted to have the slowest possible asymptotic growth of their Fourier

coefficients. Such functions have been called mock modular forms of optimal growth. In our

case we do not have to impose any restrictions on the asymptotic growth. But since any

solution of (4.4) is equally suitable, we can take the one provided by [25]. All other solutions

should differ just by a pure modular form.

In the rest of this subsection we present the formula for the mock modular forms of optimal

growth found in [25] adjusting (and correcting) some normalization factors.7 To this end, let

• ω(κ) be the number of distinct prime divisors of κ, i.e.

ω(κ) = #{p : p is prime and p|κ}; (4.5)

• µ(d) be the Möbious function given by

µ(d) =


+1 if d is a square-free with an even number of prime factors,

−1 if d is a square-free with an odd number of prime factors,

0 if d has a squared prime factor;

(4.6)

6An explicit formula for the generating series can be found in [42, Eq.(1.12)] and its mock modular properties

have been established in [43, 44].
7Strictly speaking, [25] worked in terms of mock Jacobi forms rather than mock modular forms. However,

the latter can be easily extracted from the former by means of the theta expansion (E.1).
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• T̂ (d)
r be a Hecke-like operator given, when acting on modular forms (not necessarily

holomorphic) of weight (w, w̄) and multiplier system M
(d)
µν , by

T̂ (d)
r =

∑
s2|r

gcd(s,d)=1

µ(s) sw+w̄−1/2 UsTr/s2 (4.7)

with

(Us[h
(κ)])µ(τ) = δ(s)µ h

(κ)
µ/s(τ), µ = 0, . . . , 2s2κ− 1, (4.8)

and

(Tr[h
(κ)])µ(τ) =

∑
a,d>0
ad=r

(√
r

d

)w+w̄+ 1
2

d−1∑
b=0

δ
(1)
µ/a e

πib
2κar

µ2

h
(κ)
µ/a

(
aτ + b

d

)
, µ = 0, . . . , 2rκ−1.

(4.9)

We relate these operators to the ones defined in [25] and acting on Jacobi forms in ap-

pendix E. One can also check that for r prime power, T̂ (1)
r coincides with the modification

of Tr introduced in [20].

In terms of these quantities, the mock modular forms of optimal growth are given by

G(κ)
µ = 2−ω(κ)

∑
d|κ

µ(d)=1

(
T̂ (d)
κ/d

[
G(d)

])
µ
, (4.10)

where G(d) are VV mock modular forms of weight 3/2 with multiplier system M
(d)
µν . Thus, for

each square-free integer with an even number of prime factors, such as 1, 6, 10, 14, 15, etc., one

needs to provide such a mock modular form. The first two of them turn out to be well-known

functions: for d = 1 it is (the doublet of) the generating series of Hurwitz class numbers,

G(1)
µ (τ) = Hµ(τ), (4.11)

and for d = 6 it has the following explicit expression

G(6)
µ (τ) =

χ12(µ)

12
h(6)(τ), (4.12)

where

χ12(µ) =


+1 if µ = ±1 mod 12,

−1 if µ = ±5 mod 12,

0 if gcd(µ, 12) > 0,

(4.13)

and

h(6)(τ) =
12F

(6)
2 (τ)− E2(τ)

η(τ)
(4.14)

is a mock modular form of weight 3/2 with shadow proportional to the Dedekind eta function

η(τ), which is defined in terms of the quasimodular Eisenstein series E2(τ) and the function

F
(6)
2 (τ) = −

∑
r>s>0

χ12(r
2 − s2) s qrs/6 . (4.15)

For many other functions G(d), [25] determined their first Fourier coefficients, however we are

not aware about any explicit expressions for their generating series.
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4.2 Unit charges and Vafa-Witten

Let us now consider the case of n charges ri all equal to 1. In addition, we also restrict ourselves

to CYs with the intersection number κ = 1. A crucial simplification in this case is that one

can drop all indices µi because they take only κri = 1 value. Therefore, the corresponding

anomalous coefficients can be denoted simply as gn,µ ≡ g
(1,...,1)
µ . Another feature of this set of

anomalous coefficients is that the anomaly equations for gn,µ form a closed system and do not

involve other anomalous coefficients. Moreover, it is easy to see that in this sector the anomaly

equation (3.3) becomes identical to (2.17) under the identification gn,µ ↔ h̃n,µ and thus takes

the form

ĝn,µ =
n∑

m=1

∑
∑m

k=1 nk=n

∑
µ

R̃(n)
µ,µ

m∏
k=1

gnk,µk
. (4.16)

The case n = 2 has already been analyzed in the previous subsection. It follows from the

results presented there, and in agreement with [20], that

g2,µ = Hµ, µ = 0, 1. (4.17)

The vector valued function Hµ appearing here is known not only as the generating series of

Hurwitz class numbers, but also as the (normalized) generating series of SU(2) Vafa-Witten

invariants on P2, namely [26]

hVW
2,µ = 3(hVW

1 )2Hµ, (4.18)

where hVW
n,µ denotes the generating series of SU(n) VW invariants and hVW

1 = η−3. Combining

the two relations, one obtains

g2,µ =
1

3
g2,µ, (4.19)

where we introduced the normalized generating series

gn,µ(τ) = η3n(τ)hVW
n,µ (τ). (4.20)

As we show below, the relation (4.19) is not an accident, but a particular case of a more general

relation between gn,µ and gn,µ.

Let us recall that the VW invariants count the Euler characteristic of moduli spaces of

instantons in a topological supersymmetric gauge theory on a complex surface S obtained from

the usual N = 4 super-Yang-Mills by a topological twist [26]. The partition function of the

theory reduces to the generating series of VW invariants and one could expect that it must

be a modular form as a consequence of S-duality of the N = 4 super-Yang-Mills. However, it

turns out that on surfaces with b+2 (S) = 1, which includes S = P2, there is a modular anomaly

[26, 47]. Its precise form can be established from the fact that the VW invariants on S coincide

with the D4-D2-D0 BPS indices on the non-compact CY given by the canonical bundle over

S [48, 49, 50], which in turn can be obtained from a compact CY given by an elliptic fibration

over S in the limit of large fiber. Since the modularity of the D4-D2-D0 BPS indices on such

compact CY is governed by a generalization of (2.8) or (2.17) to b2 > 1, the generating series

of VW invariants are subject to the same anomaly equation [35].
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Furthermore, since in the local limit where the elliptic fiber becomes large the only divisor

which remains finite is [S], the D4-brane charges belong to the one-dimensional lattice, and if

b2(S) = 1, as is the case for P2, the lattice of D2-brane charges is also one-dimensional. Thus,

for S = P2 one reduces to the “one-dimensional” case captured by the anomaly equation

(2.17) with κ = [H]2 = 1 where [H] is the hyperplane class of P2. However, the fact that the

anomaly equation arises as a limit of a compact CY with b2 > 1 does lead to two modifications:

the second term in the spectral flow decomposition (2.14) and the Dirac product of charges

(2.10) both get an additional factor of −3, which can be traced back to the value of the first

Chern class c1(P
2) = 3[H] [35, Ap.F].8 Thus, if one denotes the functions R̃

(n)
µ,µ with these two

modifications implemented by R̃
(n)
µ,µ, then the normalized generating series of VW invariants

satisfy

ĝn,µ =
n∑

m=1

∑
∑m

k=1 nk=n

∑
µ

R̃(n)
µ,µ

m∏
k=1

gnk,µk
. (4.21)

The first modification can actually be undone by a simple shift of the spectral flow pa-

rameter. On the other hand, the second one is equivalent to multiplying the vectors vij (D.5)

by −3. Under this rescaling of parameters, the functions (D.7) simply get an overall factor

(−3)n−1(−1)n−1 = 3n−1. Thus, one concludes that

R̃(n)
µ,µ = 3m−1R̃(n)

µ,µ, (4.22)

where m is the number of charges which the functions depend on. Substituting this into

(4.21) and comparing to (4.16), one finds that the two equations become identical provided

one identifies9

gn,µ = 31−ngn,µ(τ). (4.23)

This result is consistent with (4.19) and provides an explicit solution for the anomalous coef-

ficients with ri = κ = 1.

5. Solution via indefinite theta series

5.1 Motivation and strategy

In the previous section we have found solutions for two infinite families of anomalous coef-

ficients: with two arbitrary charges and with arbitrary number of charges, but all set to 1

together with the intersection number. It is natural to try extending these solutions to more

general cases. In particular, one could expect that a solution for the case with ri = 1 but κ

an arbitrary prime number should be described by the action of Hecke-like operators similar

to (4.7) on the normalized generating functions of SU(n) VW invariants on P2. However, we

8Strictly speaking, [35] analyzed generating functions of refined VW invariants (see §5.2) which count Betti

numbers of moduli spaces of instantons. However, the presented results are easily recovered in the unrefined

limit.
9The freedom to include in this relation a constant factor cn allowed by the equations is fixed by the

normalization conditions g1 = g1 = 1.
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have not been able to show this and all other attempts to extend the above constructions also

failed.10 Therefore, we change the strategy and suggest an approach which works in general.

It is based on the use of indefinite theta series and is similar to the solution of the same kind

of modular anomaly equation for the generating functions of VW invariants constructed in

[51, 28].

An indefinite theta series is defined as a sum over a lattice Λ endowed with a quadratic

form k2 of indefinite signature,11

ϑµ(τ) =
∑
k∈Λ+µ

Φ(k; τ2) e
−πiτk2

, (5.1)

where µ ∈ Λ∗/Λ labels its different components. The kernel Φ(k) can be a non-trivial function

of τ2 = Im τ and must ensure convergence of the sum. In fact, it is very natural to use such

theta series to represent solutions of our modular anomaly equations because for b2 > 1 the

functions analogous to R
(r)
µ,µ have precisely the form (5.1). This is also true for b2 = 1 (cf. (2.9)

or (2.18)), but in this case the relevant quadratic form coincides with −Qn (2.11) and has a

definite signature. But since it is positive definite, this case also calls for the use of indefinite

theta series.

The anomalous coefficients we are looking for, and hence the indefinite theta series rep-

resenting them, must be holomorphic in τ . The only way to make (5.1) holomorphic and

convergent simultaneously is to restrict the sum to the negative definite cone of the lattice,

which can be done by choosing the kernel Φ(k) to be an appropriate combination of sign func-

tions. An example of such kernel is provided by Theorem C.1 and is characterized by two sets

of vectors {vs,i}, s = 1, 2. As we will see below, one set is determined by the same vectors

ve (D.4) that define the functions R
(r)
µ,µ, while the second set must consist of null vectors, i.e.

satisfying v2
2,i = 0. This immediately implies that the lattice Λ cannot be the one that appears

in the definition of R
(r)
µ,µ (2.9) and will be denoted below by Λ(r), since the numbers of positive

and negative eigenvalues of the quadratic form must be both non-vanishing for null vectors to

exist.

This can be achieved by the so-called lattice extension, which is a standard trick in the

theory of mock modular forms [52]. The idea is that the original problem defined on a lattice Λ

is reformulated on a larger lattice Λext = Λ⊕ Λad that admits a solution in terms of indefinite

theta series and, because Λext is a direct sum, such solution is expected to be reducible to a

solution on Λ. However, if the discriminant group Dad = Λ∗
ad/Λad is non-trivial, the reduction

to the original lattice is possible only if the solution on the extended lattice satisfies certain

identities ensuring that components of the solution labelled by different elements of Dad reduce

10At technical level, there are two main complications appearing for n > 2. First, g
(r)
µ,µ do not reduce

to a vector-like object and keep a non-trivial tensor structure (cf. (4.2)). Second, the action of Hecke-like

operators on a product of functions is not factorized, so that applying them to the r.h.s. of (3.3), for terms

with 1 < m < n, one cannot proceed in an iterative way.
11Note the unusual minus sign in the exponential. The same minus sign appears also in (C.1). This convention

follows the conventions used in the previous works on this topic and can be traced back to the natural quadratic

form induced on D4 and D2-brane charges on a compact CY. In this convention, the usual convergent theta

series with a trivial kernel correspond to negative definite quadratic forms.
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to the same functions. For example, this is the case for the generating functions of VW

invariants where the invariants on P2 can be obtained from those on the Hirzebruch surface

F1 because the latter satisfy the so-called blow-up identities [53, 28]. However, for a general

solution on Λext this is not the case. Therefore, we should require triviality of Dad, which in

turn requires that, if Λad = Zdad , then the corresponding quadratic form is given by (minus)

the identity matrix.

In our case Λ = Λ(r) with quadratic form −Qn and Λad should be chosen so that to ensure

the existence of a null vector on Λ = Λext. One could think that it is sufficient to take Λad = Z

with the quadratic form −x2. But actually it is not because, for a theta series to converge,

the null vector appearing in its kernel (possibly after rescaling) should belong to the lattice.

Otherwise, the indefinite theta series would diverge due to accumulation of lattice points near

the null cone leading to an infinite number of terms of the same strength (see [54, §B.3] for an
illustrative example). Thus, typically, the dimension of Λad must be non-trivial. The simplest

possibility would be to take dad = v2 where v ∈ Λ is a vector with the minimal norm. This

would ensure that (v, 1⃗) ∈ Λext, where the vector 1⃗ has dad components all equal to 1, is a null

vector. However, this is not always the optimal choice and in our case it is actually inconsistent

with the iterative structure of the equations (3.3). Below in §5.3 we propose a lattice extension

satisfying all the requirements discussed above and adapted to our system of equations.

But this is not the end of the story. The problem is that even if the null vector belongs

to the lattice, this does not ensure the convergence yet. The additional divergence comes from

the sum over the sublattice Zv ⊂ Λ, where v ∈ Λ is the null vector. This is easy to see for

(5.1) with quadratic form of signature (1, n−) and the kernel Φ(k) = sgn(v ∗ k)− sgn(v′ ∗ k).
A way out is to consider Jacobi forms instead of the usual modular forms. They depend

on an additional elliptic parameter z transforming under SL(2,Z) as z 7→ z/(cτ + d). For

theta series, the elliptic transformation property of Jacobi forms fixes the dependence on z as

shown in (C.1) (with z = θz). In particular, it shifts the lattice vector k in the kernel and

introduces an exponential z-dependent factor. Together these two changes allow to avoid the

divergence due to the null vector, which manifests now as a pole at z = 0. Since eventually we

are interested in the limit z = 0, these poles should be cancelled by combining the indefinite

theta series with certain Jacobi-like modular forms (see §A for the definition of Jacobi and

Jacobi-like forms). The latter have the same modular transformations as Jacobi forms, but

they are not required to satisfy the elliptic property, which in our context is irrelevant since we

care only about the behavior near z = 0. Note that, apart from relaxing the elliptic property,

exactly the same strategy to combine indefinite theta series constructed from null vectors with

Jacobi forms cancelling poles has been used in [51] to produce the generating functions of VW

invariants on Hirzebruch and del Pezzo surfaces as solutions of a modular anomaly equation

similar to (4.21).

The extension to Jacobi forms is known as the so-called refinement which has a physical

interpretation as switching on an Ω-background [55, 56] and has been investigated in the

context of modularity of BPS indices in [35]. A quite unexpected result of that analysis is that

the refinement considerably simplifies the coefficients Rn determining the modular anomaly.

Thus, the necessity to introduce the refinement should be considered not as a shortcoming,
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but as a virtue which makes the system of anomaly equations more amenable to solution.

However, new complications arise when the refinement is combined with the lattice exten-

sion discussed above. It turns out that for a solution on Λext to be reducible to a solution on

Λ, it should have zero of order dad at z = 0, which is very difficult to achieve. Fortunately,

there is a trick that allows to avoid this problem: one should introduce multiple refinement

parameters combined in a vector z so that the indefinite theta series become multi-variable

(mock) Jacobi forms as (C.1). Then, as will be shown below, if one sets z = (zθ, z⃗) where

θ ∈ Λ and z⃗ has dad components and is such that (0, z⃗) is orthogonal to all null vectors, the

lattice Λad together with the associated refinement parameters z⃗ decouples and the reduction

to Λ crucially simplifies.

To summarize, we need to perform the following steps:

1. introduce refinement,

2. extend the charge lattice so that it possesses a set of null vectors and is consistent with

the anomaly equation,

3. associate with the extension a vector of additional refinement parameters satisfying cer-

tain orthogonality properties with the null vectors,

4. solve the refined system of anomaly equations on the extended lattice,

5. reduce the solution to the original lattice,

6. take the unrefined limit.

In the next subsection we perform the first step. Steps 2 and 3 are done in §5.3. The last 3

steps are realized in §5.4 in the case of two charges and in §5.5 in the case of three charges.

Finally, in §5.6 we consider the generic case for which we perform steps 4 and 5 explicitly,

whereas the last step is too cumbersome to be done analytically.

5.2 Refinement

As was mentioned in the previous subsection, a refinement has its physical origin in a non-

trivial Ω-background. It introduces a complex parameter y = e2πiz which can be thought of

as a fugacity conjugate to the angular momentum J3 in uncompactified dimensions. At the

same time, the BPS indices, which from the mathematical point of view (roughly) count the

Euler number of the moduli spaces of semi-stable coherent sheaves, are replaced by refined BPS

indices which are symmetric Laurent polynomials in y constructed from the Betti numbers of

these moduli spaces. These refined indices are known to satisfy similar and even simpler wall-

crossing relations as the usual ones [57, 58, 59]. But most importantly is that the refinement

preserves the modular properties of the generating series of BPS indices [35]. More precisely,

after refinement they become mock Jacobi forms for which the role of the elliptic argument

is played by the refinement parameter z and the formula for their modular completions takes
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exactly the same form as in (2.8), but with the coefficients given now by12

R(r)ref
µ,µ (τ, τ̄ , z) =

∑
∑n

i=1
qi=µ+κr/2

qi∈κriZ+µi+κri/2

Sym
{

Rref
n (γ̂; τ2, β) y

∑
i<j γij

}
eπiτQn(γ̂), (5.2)

where we set z = α − τβ with α, β ∈ R. The main difference here, besides the appearance

of a power of y, lies in the form of the coefficients Rref
n which we describe in appendix D.3.

They turn out to be much simpler than their unrefined version Rn.
13 In particular, while the

coefficients Rn involve a sum over two types of trees weighted by generalized error functions

and their derivatives, for Rref
n one needs only one type of trees and no derivatives.

It should be stressed that the status of the refined BPS indices for compact CY threefolds,

the case we are really interested in, is unclear. While in the non-compact case they are well-

defined due to a certain C× action carried by the moduli space of semi-stable objects, in

its absence it seems impossible to refine DT invariants in a deformation-invariant way (see

however [57]). This is not a problem for our construction because we do not use the refined

BPS indices or their generating functions, but only the coefficients (5.2) characterizing the

refined completions. In other words, we use the existence and properties of R
(r)ref
µ,µ as a mere

trick to produce solutions to the anomaly equations (3.3).

In particular, the main property which we need is that in the unrefined limit R
(r)ref
µ,µ develop

a zero of order n− 1 with a coefficient given by R̃
(r)
µ,µ:

R̃(r)
µ,µ(τ, τ̄) = lim

y−→1
(y − y−1)1−nR(r)ref

µ,µ (τ, τ̄ , z). (5.3)

Therefore, if we define refined anomalous coefficients as solutions of the following modular

anomaly equation

ĝ(r)refµ,µ = Sym

{
n∑

m=1

∑
∑m

k=1 nk=n

∑
ν

R(s)ref
µ,ν

m∏
k=1

g(rk)refνk,mk

}
, (5.4)

where ĝ
(r)ref
µ,µ is required to be a VV Jacobi-like form of weight 1

2
(n− 1), index14

mr = −κ

6

(
r3 −

n∑
i=1

r3i

)
, (5.5)

and the same multiplier system as g
(r)
µ,µ (see (B.4)), then a solution of (3.3) is obtained from

these refined anomalous coefficients as

g(r)µ,µ(τ) = lim
y−→1

(y − y−1)1−ng(r)refµ,µ (τ, z). (5.6)

12We give the coefficients after performing the same redefinition as in (2.12), so that the formula to compare

with is (2.18) rather than (2.9), but we omit the tilde on R
(r)ref
µ,µ to avoid cluttering.

13More precisely, while the formula (D.14) looks exactly as (D.13), these are the functions E
(ref)
n that are

much simpler than their unrefined analogues En ((D.6) and (D.7) versus (D.15)).
14The weight is obtained from the relation (5.6) by taking into account that the y-dependent factor in the

limit y → 1 is proportional to z1−n and thus increases the weight by n− 1. The index instead follows from the

index of the generating series of refined BPS indices which should be equal to −χr (2.7), as was established in

[35].
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This is easily checked by multiplying (5.4) by (y−y−1)1−n and taking the unrefined limit. As a

result, we have reformulated the problem of solving one anomaly equation in terms of solving

another equation and subsequent evaluation of the unrefined limit. Importantly, the relation

(5.6) implies that the unrefined limit exists only if the refined solution has a zero of order n−1

at z = 0. Although it might be non-trivial to ensure this property, for generic set of charges

this reformulation makes the problem more feasible.

Finally, we note that the refined anomalous coefficients can be chosen to satisfy a property

similar to (3.8), namely,

g(κ;r)refµ,µ (τ, z) = g(1;κr)refµ,µ (τ, z/κ). (5.7)

5.3 Lattice extension

The next step is to reformulate the anomaly equation (5.4) for the refined anomalous coefficients

in a way that involves an extended lattice possessing a set of null vectors. To this end, let us

introduce:

• integer valued function dr of the magnetic charge (and intersection number κ) such that

dr ≥ 2;

• dr-dimensional vectors t(r) such that their components are all non-vanishing integers and

sum to zero,
∑dr

α=1 t
(r)
α = 0.

Note that if dr could be equal to 1, it would be impossible to satisfy the last condition on t(r).

The main features of the construction below do not depend on a specific form of dr and t(r),

and we return to their choice, which is important for the concrete form of the solution, in the

end of the subsection.

Let us now consider the anomaly equation

̂̌g(r)refµ,µ (τ, z,z) = Sym

{
n∑

m=1

∑
∑m

k=1 nk=n

∑
ν

R(s)ref
µ,ν (τ, z)

m∏
k=1

ǧ(rk)refνk,mk
(τ, z, zk),

}
. (5.8)

where zk = (zjk+1, . . . , zjk+1
). Formally it looks the same as (5.4). However, there are two

differences. First, the new functions ǧ
(r)ref
µ,µ and their completions ̂̌g(r)refµ,µ depend on a vector of

additional refinement parameters z = (z1, . . . , zn). Second, we change the normalization for

the case n = 1 which now reads

ǧ
(r)ref
µ,µ′ (τ, z, z′) = δµ,µ′

dr∏
α=1

θ1(τ, t
(r)
α z′), (5.9)

where θ1(τ, z) is the standard Jacobi theta function (C.9). The additional factor in (5.9) leads

to a change in the modular properties of ǧ
(r)ref
µ,µ compared to g

(r)ref
µ,µ : they should be higher

depth multi-variable Jacobi-like forms of the weight, index (which is now a matrix since there

are several elliptic arguments) and multiplier system specified in (B.5), which can be easily

obtained by combining (B.4) with the modular properties of the Jacobi theta function given

in (C.10).
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The important property of the system of equations (5.8) is that any solution that is regular

at z = 0 gives rise to a solution of (5.4) with the required modular properties. The relation

between the two solutions is given by

g(r)refµ,µ (τ, z) =
1

(−2πη3(τ))dr

 n∏
i=1

D(dri )
1
2
(t(ri))2

(zi)

dri !
∏dri

α=1 t
(ri)
α

 ǧ(r)refµ,µ |z=0, (5.10)

where dr =
∑n

i=1 dri and the differential operators D(n)
m are defined in (A.5). Indeed, due

to Proposition A.2 and the fact that θ1(τ, z) and η3(τ) have identical multiplier systems, the

product of the differential operators in (5.10) acting on the completion ̂̌g(r)refµ,µ produces a Jacobi-

like form with weight, index and multiplier system as in (B.4). Then to see that g
(r)ref
µ,µ defined

by (5.10) satisfies the anomaly equation (5.4), it is sufficient to apply this product of the

differential operators to (5.8) and use the fact that each differential operator acts only on one

of the functions ǧ(rk)ref on the r.h.s. of this equation.15 Finally, the standard normalization for

the case n = 1 is reproduced due to the property

D(dr)
1
2
(t(r))2

dr!
∏dr

α=1 t
(r)
α

dr∏
α=1

θ1(τ, t
(r)
α z)|z=0 = (∂zθ1(τ, 0))

dr =
(
−2πη3(τ)

)dr
. (5.11)

The main advantage of the new system of equations (5.8) compared to (5.4) is that it

corresponds to a lattice extension of the latter. To see how it comes about, first note that the

lattice which one sums over in the definition of R
(r)ref
µ,µ (5.2) can be defined as (see appendix

F.1 for details)

Λ(r) =

{
k ∈ Zn :

n∑
i=1

riki = 0

}
(5.12)

and carries the bilinear form

x · y = κ
n∑

i=1

rixiyi. (5.13)

The new normalization (5.9) then effectively gives rise to an additional sum over the lattice Zdri

with quadratic form −diag(1, . . . , 1) associated to each magnetic charge ri. This is especially

easy to see for the term in (5.8) with m = n which contains the product of n functions like

(5.9). As a result, the overall effect is that the lattice Λ(r) is extended to

Λ(r) = Λ(r) ⊕ Zdr (5.14)

and the extended lattice carries the bilinear form

x ∗ y =
n∑

i=1

κrixiyi −
dri∑
α=1

xi,αyi,α

 , (5.15)

where x = {xi, xi,α} with i = 1, . . . , n and α = 1, . . . , dri .

15It was to ensure this factorization property that was the main reason for introducing the additional refine-

ment parameters zi for each magnetic charge.
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To discuss null vectors on Λ(r), one should first specify the function dr. To motivate its

choice, let us consider the case of two charges. It is easy to see that

Λ(r1,r2) = {(nr̂2,−nr̂1), n ∈ Z}, (5.16)

where r̂i = ri/ gcd(r1, r2), and hence is identical to Z with quadratic form κrr̂1r̂2x
2. Therefore,

the norm of the vector (1; a1, . . . , a1; a2, . . . , a2) ∈ Z⊕Zdr1 ⊕Zdr2 ≃ Λ(r1,r2) is equal to κ(r1r̂
2
2+

r2r̂
2
1) − dr1a

2
1 − dr2a

2
2. Thus, the most natural choice is to take dr = κr which ensures that

the above vector is null for a1 = ±r̂2 and a2 = ±r̂1. However, this choice fails to satisfy the

condition dr ≥ 2 for r = κ = 1. This introduces a complication that this particular case should

be treated differently. There are two natural ways to do this by setting

a) dr =

{
4r, κ = 1,

κr, κ > 1,
b) dr =

{
4, κ = r = 1,

κr, κr > 1.
(5.17)

The advantage of the second choice is that it preserves the property (5.7) and allows to work

with lattices of smaller dimensions. On the other hand, it is more involved at the computational

level. Therefore, in the following we proceed with the first choice (despite it spoils the property

(5.7)).16

For the vectors t(r) there are plenty of possible choices. The following two seem to be the

most “canonical”:

a) t(r)α =


1, α ≤ ⌈dr/2⌉,
−1, ⌈dr/2⌉ < α ≤ 2⌊dr/2⌋,
−2, α = dr if dr is odd,

b) t(r)α =

{
1, α < dr,

1− dr, α = dr.
(5.18)

In our calculations we will mostly use the first choice.

In the following we will use two sets of vectors belonging to the extended lattice Λ(r). Both

of them are extensions of the vectors vij ∈ Λ(r) defined as in (D.5)

(vij)k = δkirj − δkjri (5.19)

and are given by

(vij)k =(vij)k, (vij)k,α = 0,

(wij)k =2ϵ(vij)k, (wij)k,α = (vij)k,
(5.20)

where ϵ = δκ−1. Here the factor of 2
ϵ compensates the factor of 4 appearing in (5.17) for κ = 1

and ensures that w2
ij = 0. We will also extensively use their normalized versions

v̂ij = vij/rij, ŵij = wij/rij, (5.21)

16Another possibility would be to restrict to the case κ = 1 and use the property (5.7), or its unrefined

analogue (3.8), to obtain other cases. We prefer to proceed with generic κ because, as we will see, due to

the additional factor of 4 in the definition of dr, the case κ = 1 appears to be more complicated than κ > 1.

Besides, it leads to a larger extended lattice which decreases efficiency of numerical computations.
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where rij = gcd(ri, rj). Their scalar products with respect to the bilinear form (5.15) are found

to be

v2
ij = 2−ϵvij ∗wij = κrirj(ri + rj), vij ∗ vjk = 2−ϵvij ∗wjk = −κrirjrk,

vi+j,k ∗ vij = vi+j,k ∗wij = wij ∗wkl = 0, for ∀i, j, k, l,
vij ∗ vkl = 0, if {i, j} ∩ {k, l} = ∅,

(5.22)

where vi+j,k = vik + vjk is an extension of vi+j,k = vik + vjk. We will also often use the

notations

κi =
κrriri+1

r0ri,i+1

, κij =
κrirj
2r2ij

(ri + rj), κijk =
κrirjrk
rijrjk

, (5.23)

where r0 = gcd(r1, . . . , rn), encoding various scalar products of the normalized vectors. Finally,

it is useful to note the property rkvij + rivjk + rjvki = 0 which implies

rkvij + rivjk + rjvki =0,

rkwij + riwjk + rjwki =0.
(5.24)

Below we will see how the existence of the null vectors wij gives the possibility to construct

holomorphic theta series associated with the extended lattice and satisfying the anomaly equa-

tion (5.8).

5.3.1 Lattice factorization

Before we proceed with solving the extended anomaly equation (5.8), let us perform an im-

portant technical step which will be crucial for determining a solution that has a well-defined

unrefined limit. Namely, let us decompose the extended lattice Λ(r) into two orthogonal sub-

lattices which we denote by Λ(r)
|| and Λ(r)

⊥ . The former is taken to be the span of the vectors

v̂ij and ŵij introduced in (5.21), i.e. all their linear combinations with integer coefficients. It

is clear that it is a direct sum of two lattices

Λ(r)
|| = Λ(r) ⊕ Λ̃

(r)
, (5.25)

where Λ(r) is generated by v̂ij and is the same as (5.12), while Λ̃
(r)

is the span of ûij =

ŵij − 2ϵv̂ij and embedded into Zdr .17 The embedding is given by

(k1, . . . kn) 7→ (k
[dr1 ]
1 , . . . , k[drn ]

n ), (5.26)

where x[n] denotes the n-dimensional vector with all components equal to x, and the resulting

lattice is actually isomorphic to Λ(r) with quadratic form rescaled by −4ϵ. The lattice Λ(r)
⊥ is

taken to be generated by the vectors e0, ei,α, with i = 1, . . . , n and α = 1, . . . , dri − 1, given by

(e0)k =0, (e0)k,β = 1,

(ei,α)k =0, (ei,α)k,β = δik(δα+1,β − δαβ).
(5.27)

17Note that for our choice dr = 4ϵκr, one has dr = dr where r =
∑

i ri, which is not generally true for choice

b) in (5.17). This is one of several complications of the second choice.
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Using the bilinear form (5.15), it is easy to check that these vectors are indeed orthogonal to

v̂ij and ŵij. Moreover, each of the sets {ei,α}
dri
α=1 generates a lattice isomorphic to the AN−1

root lattice with N = dri , and all of them are mutually orthogonal as well as to the vector e0.

Therefore, we have in addition the following orthogonal decomposition

Λ(r)
⊥ = Z⊕Adr1−1 ⊕ · · · ⊕Adrn−1. (5.28)

In contrast, the full lattice Λ(r) is not a direct sum of Λ(r)
|| and Λ(r)

⊥ because some of its elements

require rational coefficients being decomposed in the basis of the two sublattices. In such

situation, to get the full lattice from the sublattices, one has to introduce the so called glue

vectors.

According to the general theory [60], if ⊕n
a=1Λ

(a) is a sublattice of Λ of the same dimension,

the corresponding glue vectors are given by the sum of representatives of the discriminant

groups D(a) = (Λ(a))∗/Λ(a) which at the same time belongs to the original lattice, i.e. gA =

⊕n
a=1g

(a)
A ∈ Λ where g

(a)
A ∈ D(a). The number of glue vectors is equal to

Ng =

∣∣∣∣∏n
a=1 detΛ(a)

detΛ

∣∣∣∣1/2 , (5.29)

where detΛ = |Λ∗/Λ| is the order of the discriminant group and is equal to the determinant of

the matrix of scalar products of the basis elements. The decomposition formula of the lattice

Λ then reads

Λ =

Ng−1⋃
A=0

[
n
⊕
a=1

(
Λ(a) + g

(a)
A

)]
. (5.30)

In our case it takes the form

Λ(r) =

Ng−1⋃
A=0

[(
Λ(r)
|| + g

||
A

)
⊕
(

Λ(r)
⊥ + g⊥

A

)]
. (5.31)

One finds the following lattice determinants

detΛ(r) =(−1)dr detΛ(r),

detΛ(r)
|| =(−4ϵ)n−1

(
detΛ(r)

)2
,

detΛ(r)
⊥ =(−1)dr+1dr

n∏
i=1

dri ,

(5.32)

where detΛ(r) is evaluated in (F.6). Substituting this into (5.29), one finds that the number

of glue vectors is given by

Ng =
r

r0

n∏
i=1

dri . (5.33)

There is a natural choice of glue vectors for the decomposition (5.31). Let us fix a n-tuple

ρ = (ρ1, . . . , ρn) such that
∑n

i=1 ρiri = r0. Then we represent glue vectors as a sum of several

terms

gA = a0g0 +
n∑

i=1

gi,ai , (5.34)
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where

(gi,a)k =0, (gi,a)k,α = δik

a∑
β=1

δαβ, g0 =
n∑

i=1

ρigi, gi ≡ gi,dri
. (5.35)

Thus, a glue vector is labelled by the set A = {a0, a1, . . . , an} and the indices take values in

the following ranges: a0 = 0, . . . , r/r0 − 1 and ai = 0, . . . , dri − 1. It is trivial to see that the

cardinality of the resulting set agrees with the required number (5.33).18

The main application of the lattice decomposition (5.30) is a factorization of theta series.

Let us consider a general indefinite theta series as in (C.1) with a kernel having a factorized

form Φ(x) =
∏n

a=1 Φa(x
(a)) where the upper index (a) on a vector denotes its projection to

Λ(a). Then the lattice factorization formula (5.30) implies that one can split the sum in the

definition of the theta series into n sums coupled by the additional sum over the glue vectors

so that one arrives at the following identity for theta series

ϑµ(τ, z;Λ,Φ,p) =
Ng−1∑
A=0

n∏
a=1

ϑ
µ(a)+g

(a)
A
(τ, z(a);Λ(a),Φa,p

(a)). (5.36)

In this paper we are interested in theta series associated with the extended lattice Λ(r) and

with other ingredients given by

µ =(µ̂; 0, . . . , 0), µ̂i =
µi

κri
− µ

κr
+

ρi∆µ

κr0
,

z =(θz;−t(r1)z1; . . . ;−t(rn)zn), θ =
∑
i<j

vij,

p = (0;−1, . . . ,−1) = −e0,

(5.37)

where ∆µ = µ−
∑n

i=1 µi as in (2.15). Note that one has the relations

θ2 = −2mr, θ · q =
∑
i<j

γij, (5.38)

where q =
(

q1
κr1

, . . . , qn
κrn

)
in terms of the physical charges. They ensure that the factor e2πiz∗k

in the theta series reproduces the y-dependent factor in (5.2) and gives rise to the index (5.5).

18The geometric origin of these glue vectors is as follows. First, let us combine Λ̃
(r)

with the one-dimensional

lattice generated by e0 using the glue vectors a0g0. It is easy to see that the result is the lattice Zn with the

same embedding into Zdr as in (5.26), i.e.

r/r0−1⋃
a0=0

⋃
ℓ∈Z

(
Λ̃

(r)
+ ℓe0 + a0g0

)
= Zn ⊂ Zdr .

Next, one combines the ith factor Z with Adri
−1 generated by ei,α using the glue vectors gi,ai , which gives

dri
−1⋃

ai=0

(
Adri

−1 +Z+ gi,ai

)
= Zdri .

Summing over i, one obtains Zdr which together with Λ(r) produces the full extended lattice Λ(r).
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Let us also mention here another useful relation. The argument of the kernel in the theta series

(C.1) is x =
√
2τ2(k + β) where k runs over the (shifted) lattice. Therefore, it is useful to

introduce xβ = x −
√
2τ2 β which in our case takes the form xβ =

√
2τ2(q; k1,1, . . . , kn,drn ).

19

Therefore, with respect to the biliniear form (5.15), one finds that

xβ ∗ vij =
√
2τ2γij. (5.39)

Let us now assume that a kernel Φ does not depend on the summation along Λ(r)
⊥ , i.e.

it satisfies Φ(x) = Φ(x||), where the indices || and ⊥ denote projections on Λ(r)
|| and Λ(r)

⊥ ,

respectively. This property is the main motivation to decompose the lattice into these two

orthogonal sublattices. Applying (5.36) to our case, one obtains the following factorization

property

ϑµ(τ, z;Λ
(r),Φ,p) =

∑
A

ϑ
(r)||
µ,A (τ, z)ϑ

(r)⊥
A (τ, z), (5.40)

where we introduced

ϑ
(r)||
µ,A (τ, z) =ϑ

g
||
A+µ

(
τ, z||;Λ

(r)
|| ,Φ, 0

)
,

ϑ
(r)⊥
A (τ, z) =ϑg⊥

A

(
τ, z⊥;Λ

(r)
⊥ , 1,−e0

) (5.41)

and took into account that z⊥ is independent of z, while z|| is independent of zi due to

wij ∗ z = 2ϵ(vij · θ)z. It is to achieve this property, we required that the components of t(ri)

sum to zero, which in turn was the reason to introduce the additional factors of 2 in (5.17)

and (5.20).

Furthermore, due to (5.28), the second theta series in (5.41) has itself a factorized form. To

write it explicitly, let us represent the summation variable as k⊥ = ℓ0e0 +
∑n

i=1

∑dri−1
α=1 ℓi,αei,α

with ℓ0 ∈ Z + ν0
dr

+ 1
2
and ℓi,α ∈ Z +

νi,α
dri

. The variables ν0 and νi,β determining the fractional

parts depend on the index A = {a0, a1, . . . , an} of glue vectors. The precise dependence can

be determined by expanding the glue vectors g⊥
A in the basis (5.27). Starting from (5.34), one

can then arrive at the following expressions (see (F.21))

ν0 = 4ϵκr0a0 +
n∑

i=1

ai, νi,α = αai. (5.42)

As a result, one obtains

ϑ
(r)⊥
A (τ, z) = ϑ

(dr)
ν0(A)

(τ)
n∏

i=1

Θ
(dri )
ai (τ, zi; t

(ri)), (5.43)

where

ϑ(d)
ν0
(τ) = ϑ(d,1)

ν0
(τ, 0) =

∑
ℓ0∈Z+ ν0

d
+ 1

2

(−1)dℓ0 q
d
2
ℓ20 , (5.44)

19Note that the components of q do not sum to zero. Therefore, to see it as an element of (Λ(r))∗, one should

use the identification (F.15) silently assumed here.
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Θ(N)
a (τ, z; t) =

N−1∏
α=1

∑
ℓα∈Z+αa

N

 q

N−1∑
α=1

(ℓ2α−ℓαℓα+1)
y

N−1∑
α=1

(tα+1−tα)ℓα
, (5.45)

ϑ
(d,p)
µ (τ, z) is the theta series (C.5), and in the last equation we used the convention ℓN = 0.

A nice feature of this representation is that zi appears only in the theta series defined by

the corresponding AN−1 lattice. This significantly simplifies recovering the refined anomalous

coefficients g
(r)ref
µ,µ (τ, z) by means of (5.10) because each differential operator acts only on one

theta function (see (5.69), (5.98) and (5.127) below).

Finally, let us note that n(n − 1)/2 vectors v̂ij (or v̂ij = vij/rij) form an overcomplete

basis of the n − 1 dimensional lattice Λ(r). On the other hand, if we restrict to the set

{v̂12, . . . , v̂n−1,n}, in general, it is not a basis and its span is only a sublattice in Λ(r). A

relation between the two lattices can be described using the same formalism as above based

on glue vectors. More precisely, one can show that

Λ(r) =

Nij−1⋃
bij=0

(
Span {v̂k,k+1}n−1

k=1 +
n∑

i,j=1
j−i>1

bijv̂ij

)
, (5.46)

where the number of self-glue vectors Nij is given in (F.7). The idea is that linear combinations

with integer coefficients of v̂i,i+1 allow to get only multiples of Ni,i+2v̂i,i+2 and one needs to add

Ni,i+2 glue vectors to get arbitrary multiples of v̂i,i+2. Similarly, all these vectors can be used

to get only multiples of Ni,i+3v̂i,i+3, etc. Proceeding by iterations, one recovers all vectors of

the lattice Λ(r). It is obvious that a formula similar to (5.46) holds for Λ̃
(r)

with v̂ij replaced

by ûij.

Although below we will present a general solution to the extended anomaly equation (5.8)

which will be the subject of the factorization developed in this subsection, it is instructive first

to consider the cases of two and three charges.

5.4 Two charges

5.4.1 General solution

Let us first analyze in detail the case of two charges. We will use the notations introduced in

§D.4.1: r0 = gcd(r1, r2), r̂i = ri/r0, r̂ = r/r0 and κ12, µ12 defined in (D.24).20 Specifying the

anomaly equation (5.8) to n = 2 and substituting the result (D.25) for R
(r1,r2)ref
µ,µ1,µ2 , one finds

̂̌g(r1,r2)refµ,µ1,µ2
= ǧ(r1,r2)refµ,µ1,µ2

+
2∏

i=1

 dri∏
α=1

θ1(τ, t
(dri )
α zi)

R(r1,r2)ref
µ,µ1,µ2

= ǧ(r1,r2)refµ,µ1,µ2
+

1

4
δ
(κr0)
∆µ

∑
σ=±1

∑
k∈Z+ µ12

2κ12

 2∏
i=1

dri∏
α=1

∑
ki,α∈Z+ 1

2

[E1

(
2
√
κ12τ2(σk + r0β)

)
20This definition of κ12 valid for n = 2 obviously agrees with the general one in (5.23).
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− sgn(σk)

]
(−1)p∗kq−

1
2
k2

e2πizσ∗k, (5.47)

where ∆µ is the difference of residue classes defined in (2.15) and we introduced dr + 1-

dimensional vectors k = (k; k1,1, . . . , k1,dr1 ; k2,1, . . . , k2,dr2 ), p = (0;−1, . . . ,−1) and zσ =

(σr0z;−t(r1)z1;−t(r2)z2), which are contracted using the bilinear form

k ∗ k′ = 2κ12kk
′ −

2∑
i=1

dri∑
α=1

ki,αk
′
i,α. (5.48)

This bilinear form is the image of (5.15) upon the isomorphism Λ(r1,r2) ≃ Z ⊕ Zdr1 ⊕ Zdr2

implied by (5.16). Under the same isomorphism, the vectors (5.21) become

v̂12 =
(
1; 0[dr1 ]; 0[dr2 ]

)
, ŵ12 =

(
2ϵ; r̂

[dr1 ]
2 ;−r̂

[dr2 ]
1

)
, (5.49)

where we used the same notation as in (5.26). Using v̂12, or v12 = r0v̂12, the argument of the

error function can be rewritten as 2
√
κ12τ2(k + σr0β) =

√
2τ2(k + βσ) ∗ v12/

√
v2
12 where we

have done the usual decomposition zσ = ασ − τβσ. As a result, the second term in (5.47), up

to a σ-dependent factor and a β-dependent shift in the argument of the sign function, acquires

the form of the theta series (C.1) associated with the lattice Λ(r1,r2), residue class µ = µ12

2κ12
v̂12

and kernel

Φ
(r1,r2)
R (x) = E1

(
x ∗ v12

||v12||

)
− sgn(xβ ∗ v12), (5.50)

where ||v|| =
√
v2 is the norm of a vector and xβ = x−

√
2τ2 βσ. More precisely, we get

̂̌g(r1,r2)refµ,µ1,µ2
= ǧ(r1,r2)refµ,µ1,µ2

+
1

4
δ
(κr0)
∆µ

∑
σ=±1

σ ϑµ(τ, zσ;Λ
(r1,r2),Φ

(r1,r2)
R ,p). (5.51)

The theta series is not modular because the kernel Φ
(r1,r2)
R (x) fails to satisfy the Vignéras

equation (C.2) due to the presence of the sign function and its weird argument. This is supposed

to be cured by the first term in (5.47), which therefore should also be taken in the form of a

theta series. However, since it must be holomorphic, its kernel must be a difference of two sign

functions, as required by convergence. The first of them can be taken exactly as the one in

(5.50) so that it cancels the sign function spoiling modularity in Φ
(r1,r2)
R . But then one remains

with the second sign function, say sgn(x ∗ v). It also spoils modularity unless the vector v is

null and, in particular, can be identified with w12! This is due to the property (D.3) of the

(generalized) error functions which is easy to see in the present example: the error function E1

that satisfies the Vinéras equation depends on the normalized vector (see (5.50)) and when its

norm goes to zero, the argument becomes large and E1 reduces to the sign function.

This reasoning implies that a general solution to (5.51) is given by

ǧ(r1,r2)refµ,µ1,µ2
= ϕ̌(r1,r2)

µ,µ1,µ2
+

1

4
δ
(κr0)
∆µ

∑
σ=±1

σ ϑµ(τ, zσ;Λ
(r1,r2),Φ(r1,r2),p), (5.52)

where

Φ(r1,r2)(x) = sgn(xβ ∗ v12)− sgn(x ∗w12) (5.53)
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and ϕ̌
(r1,r2)
µ,µ1,µ2(τ, z, z) is a holomorphic Jacobi-like form with the same modular properties aŝ̌g(r1,r2)refµ,µ1,µ2 . It represents an inherent ambiguity of solution of the anomaly equation and will

be fixed later by requiring the correct unrefined limit. The convergence of the theta series is

ensured by Theorem C.1 and the fact that v12 ∗ w12 > 0 (see (5.22)), while using (C.3) it is

straightforward to check that the weight, index and multiplier system agree with (B.5).

5.4.2 Holomorphic modular ambiguity

In contrast to the original problem (3.3), not every solution for ǧ
(r)ref
µ,µ suits our purposes. The

restriction to be imposed is that it must have a well-defined unrefined limit. More precisely,

ǧ
(r1,r2)ref
µ,µ1,µ2 must be regular at zi = 0 and have a first order zero at z = 0. It is this condition

that should be used to fix the holomorphic modular ambiguity ϕ̌
(r1,r2)
µ,µ1,µ2 . As we will see below,

the second term in (5.52) is finite at small zi, but has a pole at small z, so that ϕ̌
(r1,r2)
µ,µ1,µ2 does

have to be non-trivial. To extract the pole explicitly, we proceed in several steps.

Factorization and split

First, note that all ingredients of the theta series in (5.52) are as in (5.37) subject to the

isomorphism (5.16) and the kernel Φ(r1,r2) depends only on the projection x||. This allows to

apply the factorization property (5.40). To this end, note that the theta series ϑ
(r)||
µ,A (5.41)

is given by a sum over a two-dimensional lattice k|| = ℓv̂12 + ℓ̃û12 with ℓ ∈ Z + ν
2κ12

and

ℓ̃ ∈ Z + ν̃
2κ12

where the dependence of the variables ν and ν̃ on the index A = {a0, a1, a2} of

glue vectors follows from (F.23) and is given by

ν = µ12, ν̃ = κr0r̂1r̂2(ρ1 − ρ2)a0 + 4−ϵ(r̂2a1 − r̂1a2). (5.54)

Therefore, (5.52) can be written as

ǧ(r1,r2)refµ,µ1,µ2
= ϕ̌(r1,r2)

µ,µ1,µ2
+

1

4
δ
(κr0)
∆µ

∑
A

(∑
σ=±1

σ ϑ
(κ12)||
µ12,ν̃(A)

(τ, σr0z)

)
ϑ
(r)⊥
A (τ, z). (5.55)

where ϑ
(r)⊥
A is given by (5.43) and

ϑ
(κ)||
ν,ν̃ (τ, z) =

∑
ℓ∈Z+ ν

2κ

∑
ℓ̃∈Z+ ν̃

2κ

(
sgn(ℓ)− sgn(ℓ− 2ϵℓ̃+ β)

)
qκ(4

ϵℓ̃2−ℓ2)y2κℓ. (5.56)

Next, we split the theta series (5.56) into two parts, ϑ
(κ)||
ν,ν̃ =

◦
ϑ
(κ)
ν,ν̃ + ϑ̃

(κ)
ν,ν̃ , where in the first

term one sums only over (ℓ, ℓ̃) satisfying the condition ℓ = 2ϵℓ̃, which can also be written in

geometric terms as

k|| ∗w12 = 0, (5.57)

while in the second the sum goes over the rest of the lattice. Then in ϑ̃
(κ)
ν,ν̃ , for sufficiently small

z one can drop the shift by β in the second sign function and one obtains∑
σ=±1

σ ϑ̃
(κ)||
ν,ν̃ (τ, σr0z) =

∑
ℓ∈Z+ ν

2κ
ℓ̃∈Z+ ν̃

2κ

: ℓ ̸=2ϵℓ̃

(
sgn(ℓ)− sgn(ℓ− 2ϵℓ̃)

)
qκ(4

ϵℓ̃2−ℓ2)
(
y2r0κℓ − y−2r0κℓ

)
. (5.58)
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This theta series is not only convergent for all z, but also vanishes at z = 0. Thus, it has

a well-defined unrefined limit and it remains to analyze only the function
◦
ϑ
(κ)
ν,ν̃ which we call

“zero mode contribution”.

Pole evaluation

The zero mode contribution is characterized by the condition ℓ = 2ϵℓ̃. Importantly, it also

restricts the set of glue vectors by requiring ν− 2ϵν̃ ∈ 2κ12Z where ν and ν̃ are given in (5.54).

We denote the set of the glue vectors satisfying this condition by A(r)
0 (µ12) and find it explicitly

in appendix F.3.

Implementing the zero mode condition in (5.56), one finds∑
σ=±1

σ
◦
ϑ
(κ12)
ν,ν̃ (τ, σr0z) = −

∑
σ=±1

∑
ℓ̃∈Z+ ν̃

2κ12

(
sgn(β)− σ sgn(ℓ̃)

)
yσ2

1+ϵr0κ12ℓ̃. (5.59)

This is just a simple geometric progression. Assuming that β > 0, so that Im z < 0 and

|y| > 1, it evaluates to

−
∑
σ=±1

2
y
σ21+ϵr0κ12

(
ν̃

2κ12
−
⌈

ν̃
2κ12

⌉
+ 1

2
(1−σ)

)
1− y−21+ϵr0κ12

− σδ
(2κ12)
ν̃

 = −2
y2

1+ϵr0κ12λ12 + y−21+ϵr0κ12λ12

y2ϵr0κ12 − y−2ϵr0κ12
,

(5.60)

where we defined

λ12 =

⌈
ν̃

2κ12

⌉
− ν̃

2κ12

− 1

2
, (5.61)

which depends on the glue vector index A through (5.54).21 The same result actually holds for

β < 0 as well. Thus, the zero mode contribution to (5.55) is given by

− 1

2
δ
(κr0)
∆µ

∑
A∈A(r)

0

y2
1+ϵr0κ12λ12 + y−21+ϵr0κ12λ12

y2ϵr0κ12 − y−2ϵr0κ12
ϑ
(r)⊥
A (τ, z)

= −
δ
(κr0)
∆µ

22+ϵπir0κ12z

∑
A∈A(r)

0

(
1 +

2

3

(
1− 12λ2

12

)
(2ϵπr0κ12z)

2 +O(z4)

)
ϑ
(r)⊥
A (τ, z)

(5.62)

and confirms our claim that it has a pole at z = 0 which needs to be cancelled by a proper

choice of the Jacobi-like form ϕ̌
(r1,r2)
µ,µ1,µ2 .

Fixing the ambiguity

The result (5.62) for the singular contribution of the indefinite theta series suggests that the VV

Jacobi-like form representing the holomorphic modular ambiguity can be chosen in a similar

form:

ϕ̌(r1,r2)
µ,µ1,µ2

=
1

2
δ
(κr0)
∆µ ϕ(κ12)(τ, r0z)

∑
A∈A(r)

0

ϑ
(r)⊥
A (τ, z), (5.63)

21In fact, due to the zero mode condition, for ϵ = 0, i.e. κ > 1, ν̃ is uniquely fixed by the residue class

ν̃ = µ12, while for ϵ = 1 it can take two values ν̃ = µ12/2 and µ12/2 + κ12.
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where ϕ(κ12)(τ, z) is already a scalar valued Jacobi-like form whose modular properties can be

obtained from (B.5) and (5.63). Using that κ
6
(r3 − r31 − r32) = r20κ12, one finds that it should

have weight 1, index −κ12 and a trivial multiplier system. The last fact follows from the

observation that the leading coefficient in the small z expansion of a VV Jacobi-like form has

the same multiplier system as the form itself.

It is easy to find a function with the required modular properties cancelling the pole in

(5.62). The simplest solution is to take

ϕ(κ12)(τ, z) =
e

π2

3
κ12E2(τ)z2

21+ϵπiκ12z
, (5.64)

where E2(τ) is the quasimodular Eisenstein series whose modular anomaly (A.3) ensures the

right index for ϕ(κ12). Expanding this function at small z, one gets

ϕ(κ12)(τ, z) =
1

21+ϵπiκ12z
+

π

2ϵ6i
E2(τ)z +O(z3). (5.65)

Combining (5.55) with (5.63), we arrive at the following result

ǧ(r1,r2)refµ,µ1,µ2
(τ, z,z) =

1

2
δ
(κr0)
∆µ

∑
A

[
1

2

∑
σ=±1

σ ϑ
(κ12)||
µ12,ν̃(A)

(τ, σr0z) + δ
A∈A(r)

0
ϕ(κ12)(τ, r0z)

]
ϑ
(r)⊥
A (τ, z).

(5.66)

For what follows, it will be useful to undo the lattice factorization for the second term in (5.66)

and rewrite it as a theta series associated to the extended lattice. This can be done at the

price of having a kernel that does not combine dependence on τ2, k and z = α − τβ into a

single argument x =
√
2τ2(k+ β) as in (C.1). Namely, one finds

ϕ(κ12)(τ, r0z)
∑

A∈A(r)
0

ϑ
(r)⊥
A (τ, z) = ϑµ(τ, z;Λ

(r1,r2),Φ
(r1,r2)
δ ,p), (5.67)

where

Φ
(r1,r2)
δ = δk∗w12ϕ

(κ12)(τ, r0z)

21+ϵκ12∑
η=1

δk∗v̂12−ηy
−r0η. (5.68)

The presence of two Kronecker symbols in the kernel ensures that there is no summation along

Λ(r1,r2)
|| and implies that A ∈ A(r)

0 (µ12), while the sum over η allows for an arbitrary residue

class along v̂12 and takes into account the factor 2ϵ in the zero mode condition ℓ = 2ϵℓ̃.22

5.4.3 The unrefined limit

Let us now reduce the solution (5.66) on the extended lattice to the anomalous coefficient

g
(r1,r2)
µ,µ1,µ2(τ) we are really interested in. At the first step we obtain the refined anomalous co-

efficient g
(r1,r2)ref
µ,µ1,µ2 (τ, z) using the relation (5.10). As was already mentioned, the absence of

22In fact, as follows from (5.54), the residue class along v̂12 is not arbitrary but equal to µ12. This means

that the Kronecker symbol is non-vanishing only for η = µ12 and, if ϵ = 1, for η = µ12 + 2κ12. However, to

cover more general cases considered below, it is convenient to write the sum over all possible range of η.
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zi-dependence in ϑ|| and the factorized form (5.43) of ϑ⊥ makes the application of (5.10) al-

most trivial: one should simply apply each of the differential operators to the corresponding

AN−1 lattice theta series Θ
(dri )
ai (τ, zi). This gives

g(r1,r2)refµ,µ1,µ2
(τ, z) =

1

2
δ
(κr0)
∆µ

∑
A={a0,a1,a2}

[
1

2

∑
σ=±1

σ ϑ
(κ12)||
µ12,ν̃(A)

(τ, σr0z)

+ δ
A∈A(r)

0
ϕ(κ12)(τ, r0z)

]
ϑ
(dr)
ν0(A)

(τ)
2∏

i=1

DΘ
(dri )
ai (τ ; t(ri)),

(5.69)

where

DΘ(N)
a (τ ; t) =

D(N)

t2/2Θ
(N)
a (τ, z; t)

∣∣
zi=0

N !
(∏N

α=1 tα

)
(−2πη3(τ))N

. (5.70)

Finally, we take the unrefined limit z → 0 according to (5.6). To this end, we split ϑ||

into the zero mode and the non-zero mode parts. Their contributions are evaluated in (5.62)

and (5.58), respectively, where in the latter equation κ should be replaced by κ12. Using the

expansion (5.65), we then get

g(r1,r2)µ,µ1,µ2
(τ) =

r0κ12

2
δ
(κr0)
∆µ

∑
A={a0,a1,a2}

[
ϑ
(κ12)0
µ12,ν̃(A)

(τ)

+ δ
A∈A(r)

0

2ϵ

12

(
1− 12λ2

12 −
E2(τ)

21+2ϵκ12

)]
ϑ
(dr)
ν0(A)

(τ)
2∏

i=1

DΘ
(dri )
ai (τ ; t(ri)),

(5.71)

where λ12 is defined in (5.61) and

ϑ
(κ)0
ν,ν̃ (τ) =

∑
ℓ∈Z+ ν

2κ
ℓ̃∈Z+ ν̃

2κ

: ℓ̸=2ϵℓ̃

ℓ
(
sgn(ℓ)− sgn(ℓ− 2ϵℓ̃)

)
qκ(4

ϵℓ̃2−ℓ2). (5.72)

In appendix H.1 we verified for several values of r1, r2 and κ that the solution (5.71) is consistent

with the one constructed in section 4.1 using Hecke-like operators, which amounts to showing

that their difference is a VV modular form.

5.5 Three charges

5.5.1 General solution

Next, we analyze the case of three charges. The r.h.s. of the anomaly equation (5.8) now gets

three contributions

̂̌g(r)refµ,µ = ǧ(r)refµ,µ + 2Sym

{ dr3∏
α=1

θ1(τ, t
(dr3 )
α z3)

∑
ν

R(r1+r2,r3)ref
µ,ν,µ3

ǧ(r1,r2)refν,µ1,µ2

}

+
3∏

i=1

 dri∏
α=1

θ1(τ, t
(dri )
α zi)

R(r)ref
µ,µ .

(5.73)
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The second contribution is fixed by (D.25), (5.52), (5.63) and (5.67), while the third one can be

written explicitly using (D.29), (D.30) and (D.33). A crucial observation is that the quadratic

form (2.11) satisfies the property

Q2(γ̂1, γ̂2) +Q2(γ̂1 + γ̂2, γ̂3) = Q3(γ̂1, γ̂2, γ̂3). (5.74)

As a result, the second and third terms in (5.73) can be written as a theta series associated

with the extended lattice Λ(r) (5.14) defined by three charges ri, i = 1, 2, 3. More precisely,

one obtains ̂̌g(r)refµ,µ = ǧ(r)refµ,µ +
1

4
δ
(κr0)
∆µ Sym

{
ϑµ(τ, z;Λ

(r),Φ
(r)
R ,p)

}
, (5.75)

where the variables µ, z and p are defined in (5.37), while the kernel is given by

Φ
(r)
R (x) = ΦE

2 (v1,2+3,v1+2,3;x)− sgn(xβ ∗ v1,2+3) sgn(xβ ∗ v1+2,3)−
1

3
δ1,2+3δ1+2,3 (5.76)

− Φ
(r1+r2,r3)
R (x)

(
sgn(x ∗w12)− Φ

(r1,r2)
δ

)
− Φ

(r1,r2+r3)
R (x)

(
sgn(x ∗w23)− Φ

(r2,r3)
δ

)
.

Here we replaced the vectors vij and x appearing as arguments of ΦE
2 in (D.33) by their

extended versions, abbreviated δij = δxβ∗vij
and used xβ introduced above (5.39) as well as the

functions Φ
(ri,rj)
R (x) and Φ

(ri,ri)
δ , which are the same as (5.50) and (5.68), respectively, but with

indices 12 replaced by ij.23

The result (5.75) suggests to take

ǧ(r)refµ,µ = ϕ̌(r)
µ,µ +

1

4
δ
(κr0)
∆µ Sym

{
ϑµ(τ, z;Λ

(r),Φ(r),p)
}
, (5.77)

where

Φ(r)(x)=
(
sgn(xβ ∗ v1,2+3)− sgn(x ∗w12)

)(
sgn(xβ ∗ v1+2,3)− sgn(x ∗w23)

)
+

1

3
δ1,2+3δ1+2,3 (5.78)

+
(
sgn(xβ ∗ v1+2,3)− sgn(x ∗w1+2,3)

)
Φ

(r1,r2)
δ +

(
sgn(xβ ∗ v1,2+3)− sgn(x ∗w1,2+3)

)
Φ

(r2,r3)
δ

and ϕ̌
(r)
µ,µ(τ, z,z) is a holomorphic Jacobi-like form with the same modular properties as ̂̌g(r)refµ,µ

representing the ambiguity of solution. Indeed, the sum of the kernels (5.76) and (5.78) involves

only generalized error functions, sign functions of scalar products with null vectors and Φ
(ri,ri)
δ ,

so that the corresponding theta series transforms as a modular form without anomaly. It is

also easy to check that the first term in Φ(r) satisfies the conditions of Theorem C.1 which

ensures the convergence of the theta series. Finally, the weight, index and multiplier system

follow from (C.3) and agree with (B.5).

5.5.2 Holomorphic modular ambiguity

To fix a solution for ǧ
(r)ref
µ,µ , it remains to determine the holomorphic modular ambiguity ϕ̌

(r)
µ,µ

by requiring the existence of a well-defined unrefined limit. This is equivalent to the condition

that ǧ
(r)ref
µ,µ is regular at zi = 0 and has a second order zero at z = 0.

23In (5.68) one should also replace r0 by rij .
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To investigate the behavior of the theta series in (5.77) at small refinement parameters,

we first apply the factorization property (5.40), which is possible since the kernel (5.78) again

depends only on the projection x||. This immediately implies the absence of divergences at

small zi. Furthermore, as the theta series ϑ
(r)⊥
µ,A (5.43) and the glue vectors gA (5.34) are

symmetric under permutations of charges, we can write

ǧ(r)refµ,µ = ϕ̌(r)
µ,µ +

1

4
δ
(κr0)
∆µ

∑
A

Sym
{
ϑ
(r)||
µ,A (τ, z)

}
ϑ
(r)⊥
A (τ, z). (5.79)

Next, we split the theta series ϑ
(r)||
µ,A into several parts determined by the vanishing of

k ∗ wij. While in §5.4.2 there was just one null vector w12 leading to the split of the theta

series into two parts, now there are three different null vectors. Hence, we define zero mode

order of a contribution as the number of linearly independent vanishing scalar products k∗wij

and split ϑ
(r)||
µ,A into parts with different zero mode order. In our case this order can be 0, 1 or

2 because due to (5.24) the three null vectors are linearly dependent and the vanishing of two

scalar products implies the vanishing of the third. Note also that each Φδ factor contains one

of the vanishing conditions and thus adds 1 to the zero mode order.

In appendix G.1 we demonstrate that the symmetrization ensures that the contributions

of zero mode order equal to 0 and 1 both have a zero of second order at z = 0. Thus, they

have a well-defined unrefined limit and it remains to analyze only the zero modes of order 2.

To this end, we decompose the lattices Λ(r) and Λ̃
(r)

in Λ(r)
|| = Λ(r) ⊕ Λ̃

(r)
as in (5.46) using

v̂ij and ûij, respectively. In other words, we expand

k|| =
n−1∑
i=1

(ℓiv̂i,i+1 + ℓ̃iûi,i+1), (5.80)

where in our case n = 3. The coefficients satisfy ℓi ∈ Z+ νi
κi

and ℓ̃i ∈ Z+ ν̃i
κi

with κi defined in

(5.23). The variables νi and ν̃i determining the rational parts are fixed by µ and by the glue

vectors labelled by A = {a0, a1, a2, a3} and B = {b13, b̃13}. Their explicit expressions can be

obtained from (F.21), (F.22) and by evaluating scalar products of the vectors (F.20) with µ.
In terms of the variables r̂ = r/r0 and r̂i = ri/r0, this gives

ν1 = r̂µ1 − r̂1µ+ r̂r̂1ρ1∆µ+ κr̂
r1r3
r13

b13,

ν2 = r̂3µ− r̂µ3 − r̂r̂3ρ3∆µ+ κr̂
r1r3
r13

b13,

ν̃1 =κr̂
r1r3
r13

b̃13 − κr1(1− r̂ρ1)a0 + 4−ϵ ((r̂2 + r̂3)a1 − r̂1(a2 + a3)) ,

ν̃2 =κr̂
r1r3
r13

b̃13 + κr3(1− r̂ρ3)a0 + 4−ϵ (r̂3(a1 + a2)− (r̂1 + r̂2)a3) .

(5.81)

In terms of the coefficients ℓi, ℓ̃i, the second order zero mode condition k∗w12 = k∗w23 = 0

is equivalent to ℓ1 − 2ϵℓ̃1 = ℓ2 − 2ϵℓ̃2 = 0. Therefore, when one rewrites the expression for the

contribution of second order zero modes to Sym
{
ϑ
(r)||
µ,A

}
in terms of these coefficients, the sum

over ℓi’s disappears. Furthermore, k|| becomes null and one remains with

Sym

{∑
B

∆
(r)
0 (A,B)

◦
ϑ
(r)
ν̃1,ν̃2

(z)

}
, (5.82)
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where ∆
(r)
0 = δ

(κ1)
ν1−2ϵν̃1

δ
(κ2)
ν2−2ϵν̃2

is the Kronecker symbol imposing the second order zero mode

condition and

◦
ϑ
(r)
ν̃1,ν̃2

(z) =
∑

ℓ̃1∈Z+ ν̃1
κ1

∑
ℓ̃2∈Z+ ν̃2

κ2

[((
sgn(ℓ̃1)− sgn(β)

)(
sgn(ℓ̃2)− sgn(β)

)
+

1

3
δℓ̃1δℓ̃2

)
y2

1+ϵ(r12κ12ℓ̃1+r23κ23ℓ̃2)

+ϕ(κ12)(τ, r12z)

21+ϵκ12∑
η=1

δ2ϵ(2κ12ℓ̃1−κ123ℓ̃2)−η

∑
σ=±1

(
σ sgn(ℓ̃2)− sgn(β)

)
yσ2

ϵr0κ2ℓ̃2

]
. (5.83)

To get this expression, we applied the permutation 1 ↔ 3 to the last term in (5.78) before

substituting (5.80). The sum over ℓ̃i’s can be evaluated explicitly. First, we note that∑
ℓ̃1∈Z+ ν̃1

κ1

21+ϵκ12∑
η=1

δ2ϵ(2κ12ℓ̃1−κ123ℓ̃2)−η = δ
(1)
2κ12
κ1

ν1−κ123
κ2

ν2
= 1, (5.84)

where in the first equality we used that 2ϵν̃i = νi mod κi, as required by the second order zero

mode condition, while the last equality follows by substituting the explicit expressions for νi
(5.81). As a result, all sums in (5.83) become simple geometric progressions and for β > 0 one

finds24

◦
ϑ
(r)
ν̃1,ν̃2

(z) =
1

3
δ
(κ1)
ν̃1

δ
(κ2)
ν̃2

+

(
δ
(κ1)
ν̃1

− 2y−21+ϵr12κ12λ1

y2ϵr12κ12 − y−2ϵr12κ12

)(
δ
(κ2)
ν̃2

− 2y−21+ϵr23κ23λ2

y2ϵr23κ23 − y−2ϵr23κ23

)

−2ϕ12(τ, r12z)
y2

ϵr0κ2λ2 + y−2ϵr0κ2λ2

y2ϵ−1r0κ2 − y−2ϵ−1r0κ2
, (5.85)

where we defined

λi =

⌈
ν̃i
κi

⌉
− ν̃i

κi

− 1

2
. (5.86)

In fact, it turns out to be convenient to symmetrize this expression with respect to the

permutation 1 ↔ 3. This could be done before performing the above calculations, but it can

also be done directly for (5.85) because under this permutation the basis vectors in (5.80) are

mapped to each with a flip of sign, v̂12 ↔ −v̂23 and û12 ↔ −û23, while the glue vectors just flip

their sign. This implies ν̃1 ↔ −ν̃2 and λ1 ↔ −λ2− δ
(κ2)
ν̃2

, so that in the second term one should

flip the relative signs inside the brackets and the signs in the power of y in the numerators,

whereas in the last term in (5.85) one should just replace the indices 12 by 23 and 2 by 1. As

a result, if one expands at small z the symmetrized expression, one obtains

1

2

( ◦
ϑ
(r)
ν̃1,ν̃2

+ σ13

[ ◦
ϑ
(r)
ν̃1,ν̃2

])
= C(r)

−2 z
−2 + C (r)

0 (τ) + C (r)
2 (τ)z2 +O(z4), (5.87)

where we introduced functions of τ

C (r)
0 (τ) = C(r)

0 +
r12r23(r1 + r3)

4ϵ 6κrr1r2r3
E2(τ),

C (r)
2 (τ) = C(r)

2 +
π2r0
36

(
r23κ1(1− 12λ2

1) + r12κ2(1− 12λ2
2)
)
E2(τ)

+
π2r12r23
4ϵ 72rr1r3

(
r21(r1 + r2) + r23(r2 + r3)

)
E2

2(τ)

(5.88)

24Although (5.83) does depend on the sign of β, its symmetrized version (5.82) does not. So all expressions

written below starting from (5.87) will be valid for both signs.
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and constant coefficients

C(r)
−2 =

r2
41+ϵπ2rr12r23κ12κ23

,

C(r)
0 =

1

3
δ
(κ1)
ν̃1

δ
(κ2)
ν̃2

+
(
2λ1 + δ

(κ1)
ν̃1

)(
2λ2 + δ

(κ2)
ν̃2

)
+

1

6

(
r23r1(1− 12λ2

1)

r12(r2 + r3)
+

r12r3(1− 12λ2
2)

r23(r1 + r2)

)
,

C(r)
2 = 4ϵπ2

[
(κr2)

2

360

(
r23r

3
1(r

3 − (r1 + r2)
3)

r312r3(r2 + r3)
(7− 120λ2

1 + 240λ4
1) (5.89)

+
r12r

3
3(r

3 − (r2 + r3)
3)

r323r1(r1 + r2)
(7− 120λ2

2 + 240λ4
2)

)
− 1

9
r12r23κ12κ23(1− 12λ2

1)(1− 12λ2
2)

+
4

3

(
(r12κ12)

2λ1(1− 4λ2
1)
(
2λ2 + δ

(κ2)
ν̃2

)
+ (r23κ23)

2λ2(1− 4λ2
2)
(
2λ1 + δ

(κ1)
ν̃1

))]
.

The main conclusion of all this analysis is that the only contribution of the theta series

term in (5.79) that does not have a zero of second order at z = 0 and needs to be cancelled by

the holomorphic modular ambiguity originates from the second order zero modes and is given

by
1

4
δ
(κr0)
∆µ

∑
A

Sym

{∑
B

∆
(r)
0 (A,B)

(
C(r)
−2 z

−2 + C (r)
0 (τ)

)}
ϑ
(r)⊥
A (τ, z). (5.90)

Furthermore, it turns out that

Sym

{∑
B

∆
(r)
0 C(r)

0

}
= 0, (5.91)

while the sum over B in the first term can be evaluated using Corollary F.1. Thus, one remains

with

−1

4
δ
(κr0)
∆µ Sym {cr}

(
1

z2
− π2

3
mrE2(τ)

) ∑
A∈A(r)

0

ϑ
(r)⊥
A (τ, z), (5.92)

where A(r)
0 is the set characterized by the conditions (F.30) implementing the second order

zero mode condition on A indices, and

cr = − r0r2
r12r23

C(r)
−2 = − r0

4ϵπ2κ2rr1r3(r1 + r2)(r2 + r3)
. (5.93)

We have also taken into account that

r12r23(r1 + r3)

4ϵ 6κrr1r2r3
= −π2

3
mrC(r)

−2 , (5.94)

where

mr = −κ

6

(
r3 −

3∑
i=1

r3i

)
= −κ

2
(r1 + r2)(r1 + r3)(r2 + r3). (5.95)

We do not provide here a proof of the vanishing property (5.91) (which has been extensively

checked on a computer) because we will prove its generalization to arbitrary number of charges

in §5.6. As we will see, it turns out to be a direct consequence of modularity.
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The contribution (5.92) can be cancelled by the holomorphic modular ambiguity chosen

as

ϕ̌(r)
µ,µ =

1

4
δ
(κr0)
∆µ ϕ(r)(τ, z)

∑
A∈A(r)

0

ϑ
(r)⊥
A (τ, z), (5.96)

where

ϕ(r)(τ, z) =
Sym {cr}

z2
e−

π2

3
mrE2(τ)z2 . (5.97)

Indeed, ϕ(r) is a Jacobi-like form of weight 2 and index mr, so that the weight and index of

ϕ̌
(r)
µ,µ agree with (B.5) specialized to n = 3. The multiplier system must also agree because it

is the same as the one of the leading terms in the small z expansion of a theta series with the

right multiplier system. Finally, the first two non-trivial terms in the small z expansion of ϕ̌
(r)
µ,µ

cancel (5.92), which ensures that (5.79) has a zero of second order at z = 0.

5.5.3 The unrefined limit

To get the anomalous coefficient g
(r)
µ,µ from the solution (5.79) on the extended lattice, we again

proceed in two steps. First, we apply the relation (5.10) which gives the following refined

anomalous coefficient

g(r)refµ,µ (τ, z) =
1

4
δ
(κr0)
∆µ

∑
A

(
ϕ(r)(τ, z)δ

A∈A(r)
0

+ Sym
{
ϑ
(r)||
µ,A (τ, z)

})
ϑ
(dr)
ν0(A)

(τ)
3∏

i=1

DΘ
(dri )
ai (τ ; t(ri)),

(5.98)

where DΘ
(dr)
a was defined in (5.70).

To evaluate the remaining unrefined limit, we use the results of our analysis which showed

the existence of a zero of second order. Thus, we represent Sym
{
ϑ
(r)||
µ,A

}
as a sum of three

contributions corresponding to different orders of zero modes: the vanishing order with kernel

given in (G.6), the first order with kernel given by the sum of (G.10) and (G.13), and the

second order given by (5.82) and (5.85) or its expansion (5.87). The last contribution is to be

combined with the first term in (5.98). Applying the relation (5.6), one then finds

g(r)µ,µ(τ) =
1

4
δ
(κr0)
∆µ

∑
A

[
ϑ
(r)0
µ,A (τ) + ϑ

(r)1
µ,A (τ)

− Sym

{
1

16π2

∑
B

∆
(r)
0 Ĉ (r)

2 (τ)

}]
ϑ
(dr)
ν0(A)

(τ)
3∏

i=1

DΘ
(dri )
ai (τ ; t(ri)),

(5.99)

where the three terms in the square brackets correspond to the three contributions described

above. For the first two given by theta series we provide explicit expressions in appendix G.2,

while the function Ĉ (r)
2 determining the third term in (5.99) is obtained by combining the

O(z2)-terms in (5.87) and in the expansion of (5.97):

Ĉ (r)
2 (τ) = C (r)

2 (τ)− π4

18
C−2m

2
rE

2
2(τ) (5.100)

= C(r)
2 +

π2r0
36

(
r23κ1(1− 12λ2

1) + r12κ2(1− 12λ2
2)
)
E2(τ)−

π2r12r23
4ϵ 72r2

(r + r2)E
2
2(τ).
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The formula (5.99) represents an explicit expression for the anomalous coefficients with

arbitrary three charges. In appendix H.2 we verified that for κ and all ri equal to 1, it is

consistent with the solution proportional to the normalized generating function of SU(3) VW

invariants on P2 presented in section 4.2.

5.6 General case

5.6.1 General solution

Now we turn to the most general case and, as usual, we start by presenting a solution of the

anomaly equation (5.8). Of course, for any set of charges this solution involves a holomorphic

modular ambiguity parametrized by a Jacobi-like form ϕ
(r)
µ,µ. From the very beginning we will

take into account that it can be chosen in the factorized form (cf. (5.96))

ϕ̌(r)
µ,µ =

δ
(κr0)
∆µ

2n−1

∑
A

ϕ
(r)

g
||
A+µ

(τ, z)ϑ
(r)⊥
A (τ, z), (5.101)

where ϕ
(r)
ν (τ, z) is a VV Jacobi-like form labelled by ν ∈ D(r)

|| = (Λ(r)
|| )∗/Λ(r)

|| , and characterized

by weight n − 1, index mr (5.5), and the multiplier system given by the Weil representation

(C.3) associated with the lattice Λ(r)
|| . As we did before for n = 2, formally one can rewrite

(5.101) as a theta series over the full extended lattice Λ(r)

ϕ̌(r)
µ,µ =

δ
(κr0)
∆µ

2n−1
ϑµ(τ, z;Λ

(r),Φ
(r)
δ ,p), (5.102)

where µ, z and p are as in (5.37), and the kernel is given by

Φ
(r)
δ (x, τ, z) = q

1
2
k2
|| y−θ·k

∑
ν∈D(r)

||

δk||−νϕ
(r)
ν (τ, z), (5.103)

where k|| is the projection of k = x/
√
2τ2 − β on Λ(r)

|| and k is the component of k along Λ(r).

It is chosen to ensure that

ϑν(τ, z||;Λ
(r)
|| ,Φ

(r)
δ , 0) = ϕ(r)

ν (τ, z). (5.104)

Although the restriction to (5.101) may not describe the most general solution of the

anomaly equation, which is not our goal anyway, it allows us to represent a solution in terms

of a theta series on the extended lattice. To this end, let us define

Φ(r)(x; {F (s)}) =
n∑

m=2

∑
∑m

k=1 nk=n

F (s)(x(0))
m∏
k=1

Φ
(rk)
δ (x(k), τ, z), (5.105)

where s are rk are the notations from (3.4), the upper indices (0) and (k) denote projections to

Λ(s) and Λ(rk), respectively, and for a single charge we set Φ
(r)
δ = 1. Then we have the following
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Theorem 5.1. A solution of the anomaly equation (5.8) and its modular completion can be

expressed as

ǧ(r)refµ,µ = ϕ̌(r)
µ,µ +

δ
(κr0)
∆µ

2n−1
Sym

{
ϑµ(τ, z;Λ

(r),Φ(r)({F (s)}),p)
}
,

̂̌g(r)refµ,µ = ϕ̌(r)
µ,µ +

δ
(κr0)
∆µ

2n−1
Sym

{
ϑµ(τ, z;Λ

(r),Φ(r)({F̂ (s)}),p)
}
,

(5.106)

where the functions F (r) and F̂ (r) are given by

F (r)(x) =
∑

J⊆Zn−1

e|J |δJ
∏

ℓ∈Zn−1\J

(
sgn(xβ ∗ vℓ)− sgn(x ∗wℓ,ℓ+1)

)
,

F̂ (r)(x) =
∑

J⊆Zn−1

ΦE
|J | ({vl}l∈J ;x)

∏
ℓ∈Zn−1\J

(
−sgn(x ∗wℓ,ℓ+1)

)
.

(5.107)

Here xβ = x−
√
2τ2 β, Zn = {1, . . . , n},

em =

{
0 if m is odd,

1
m+1

if m is even,
δJ =

∏
ℓ∈J

δxβ⋆vℓ
, and vℓ =

ℓ∑
i=1

n∑
j=ℓ+1

vij. (5.108)

Although the functions (5.107) might seem to be complicated, their structure is easy to

understand. First, if all scalar products xβ ∗ vℓ are non-vanishing, then the function F (r)(x)

simplifies to

F (r)(x) =
n−1∏
ℓ=1

(
sgn(xβ ∗ vℓ)− sgn(x ∗wℓ,ℓ+1)

)
, (5.109)

which is the standard kernel ensuring convergence of indefinite theta series with quadratic form

having n − 1 positive eigenvalues (see Theorem C.1). If however some of the scalar products

vanish, it is not sufficient to set the corresponding sign functions to zero. Instead, one gets

additional contributions manifestly visible in (D.12) (for n = 3 this the term 1
3
δ1,2+3δ1+2,3 in

(5.78)). In the presence of refinement only the linear tree is relevant (see (D.17)) and one can

apply a simple recipe that sgn(0)m → em [35]. This gives rise to the expression in (5.107). It

is useful to note that, using (5.39), the notation (G.1) and the function (D.12), it can also be

rewritten as

F (r)(x) =
∑

J⊆Zn−1

STlin({γ̂ l}l∈J )
∏

ℓ∈Zn−1\J

(
−sgn(ω

(β)
ℓ,ℓ+1)

)
. (5.110)

Now it should become obvious where the second function F̂ (r)(x) comes from: it is obtained

from F (r)(x) by applying the recipe to construct modular completions of indefinite theta

series explained in §D.1 which amounts to replacing each product of sign functions25 by the

(boosted) generalized error function with parameters determined by the vectors entering the

sign functions. If some of the vectors are null, in addition one applies the property (D.3).

25Since the large τ2 limit of the generalized error function is precisely the function ST and not the simple

product of signs [23], it is actually this function that should be replaced by ΦE
n−1.
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The proof of Theorem 5.1 is completely analogous to the proof of Theorem 1 in [51]. The

similarity between these theorems become particularly obvious if one applies the factorization

property (5.40). It allows to rewrite the solution given in the theorem as

ǧ(r)refµ,µ =
δ
(κr0)
∆µ

2n−1

∑
A

(
ϕ
(r)

g
||
A+µ

(τ, z) + Sym
{
ϑ
(r)||
µ,A (τ, z)

})
ϑ
(r)⊥
A (τ, z), (5.111)

where ϑ
(r)⊥
A has the universal form (5.43). The key point is that ϑ

(r)||
µ,A can be significantly

simplified due to the property (5.104) of the kernels Φ
(r)
δ . However, to be able to use this

property, one should somehow obtain theta series with a kernel given by only one Φ
(r)
δ . This

can be achieved by factorizing the lattice Λ(r)
|| according to the factorized form of the kernel

Φ(r) in (5.105), which in turn will induce the corresponding factorization of theta series. Since

Λ(r)
|| = Λ(r)⊕ Λ̃

(r)
, this amounts to using (F.9) for both factors, which leads to a generalization

of (F.19) where the theta series are associated to the product of two lattices. As a consequence,

the indices labelling them are doubled and can be represented as (µ,µ; µ̃, µ̃). This set of indices

can be thought of as a label of the elements of the discriminant group ν ∈ D(r)
|| which itself

can be seen as a pair of vectors (µ̂, ˆ̃µ). A relation between (µ,µ) and µ̂ is given in (5.37), and

to get its tilded version it is enough to replace κ by 4ϵκ. In particular, using (F.21), one finds

that the element g
||
A + µ ∈ D(r)

|| corresponds to (µ,µ; µ̃, µ̃) with

µ̃ = 4ϵκr0a0 +
n∑

i=1

ai, µ̃i = ai. (5.112)

As a result, one arrives at the following expression

ϑ
(r)||
µ,A (τ, z) =

n∑
m=2

∑
∑m

k=1 nk=n

∑
ν,ν̃

ϑµ,ν;µ̃,ν̃(τ, z
(0)
|| ;Λ(s)

|| ,F (s), 0)
m∏
k=1

ϕ
(rk)
νk,mk;ν̃k,m̃k

(τ, z). (5.113)

It is a simple generalization of [51, Eq.(3.11)] which is twofold: the doubling of indices discussed

above and arbitrary set of charges instead of n charges all equal to 1. Furthermore, the kernels

(5.107) are exactly the same as the ones given in Eqs. (3.13) and (3.14) of that paper. Given

this similarity, we refrain from repeating the proof.

5.6.2 Holomorphic modular ambiguity

As usual, it remains to fix the holomorphic modular ambiguities which are now encoded in the

VV Jacobi-like forms ϕ
(r)
ν entering the construction via (5.111) and (5.113). To this end, as in

§5.5.2, we split the theta series ϑ
(r)||
µ,A into contributions with different zero mode order equal

to the number of linearly independent vanishing scalar products k ∗wij. On the basis of our

results for n = 3 (and some checks done at n = 4 which are too cumbersome to be presented

here) we make the following

Conjecture 5.1. Let us fix an integer n0, and assume that for all sets of charges r with

the number of charges n < n0, the functions ϕ
(r)
ν (τ, z) are Jacobi-like forms that ensure the

existence of the unrefined limit for all ǧ
(r)ref
µ,µ so that they behave as O(zn−1) at small z. Then

for n = n0, the contributions to Sym
{
ϑ
(r)||
µ,A (τ, z)

}
of any zero mode order different from the

maximal one, given by n− 1, behave as O(zn−1).
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For the contributions of vanishing zero mode order this conjecture is equivalent to Conjec-

ture 1 in [51], which has been extensively tested numerically, and there is a simple argument

why it is expected to hold for other zero mode orders as well. Note that due to Proposition A.1,

the expansion coefficients at small z of the function e
mr
3

π2E2(τ)z2 ĝ
(r)ref
µ,µ , where mr is the index

(5.5) of the refined anomalous coefficient, transform as modular forms without any anomaly.

On the other hand, due to the induction hypothesis, all terms in the refined anomaly equation

(5.4), except the one with m = 1, behave as O(zn−1). Thus, the only term that can spoil this

behavior is g
(r)ref
µ,µ . Combining the two conclusions, one obtains that if

Ln−2

[
e

mr
3

π2E2(τ)z2 g(r)refµ,µ

]
(5.114)

is the part of the Laurent series in z truncated at zn−2, then all its coefficients must be modular

forms. Furthermore, from the representation (5.111) of our solution, it is clear that the same

is true for the coefficients of

Ln−2

[
e

mr
3

π2E2(τ)z2 Sym
{
ϑ
(r)||
µ,A (τ, z)

}]
. (5.115)

But all contributions to Sym
{
ϑ
(r)||
µ,A (τ, z)

}
of any zero mode order different from the maximal

one involve holomorphic indefinite theta series. They are (higher depth) mock modular forms

whose anomalies cannot be cancelled by quasimodular forms. Therefore, they cannot generate

pure modular forms and should vanish. For the zero modes of maximal order the situation

is different because, as we will see below, their contribution does not involve indefinite theta

series. Of course, this argument is far form being a proof and we hope to return to this issue

in a future work.

The above conjecture reduces the problem to evaluating the zero mode contribution of

maximal order. To get it, let us first analyze the zero mode contribution of maximal order to

ϑν(τ, z||;Λ
(r)
|| ,F (r), 0) which we will denote by I(r)

ν . The zero mode condition implies that n−1

scalar products k∗wij are vanishing, but since among vectors wij there are only n− 1 linearly

independent, actually all such scalar products are vanishing. Under this condition, k2
|| = 0 so

that I(r)
ν does not depend on τ and is a function of z only. To find it explicitly, we perform

the lattice decomposition (5.46) for the two factors in Λ(r)
|| = Λ(r) ⊕ Λ̃

(r)
and substitute the

expansion (5.80) with ℓi ∈ Z+ νi
κi

and ℓ̃i ∈ Z+ ν̃i
κi

where νi and ν̃i are determined by the residue

class ν. As a result, we end up with the following expression (cf. (5.82))

I(r)
ν (z) =

∑
B

∆
(r)
0 (A,B)

◦
ϑ
(r)
ν̃(A,B)(z), (5.116)

where is the Kronecker symbol imposing the maximal order zero mode condition and

◦
ϑ
(r)
ν̃ (z) =

 n∏
i=1

∑
ℓ̃i∈Z+

ν̃i
κi


 ∑

J⊆Zn−1

e|J |
∏
i∈J

δℓ̃i

∏
i∈Zn−1\J

(
sgn(ℓ̃i)− 1

) y
21+ϵ

m−1∑
i=1

ri,i+1κi,i+1ℓ̃i
.

(5.117)
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Here for simplicity we restricted to β > 0 (as usual, the final result after symmetrization will

be valid for both signs of β). The remaining sums produce geometric progressions resulting in

◦
ϑ
(r)
ν̃ (z) =

∑
J⊆Zn−1

e|J |
∏
i∈J

δ
(κi)
ν̃i

∏
i∈Zn−1\J

(
δ
(κi)
ν̃i

− 2y−21+ϵri,i+1κi,i+1λi

y2ϵri,i+1κi,i+1 − y−2ϵri,i+1κi,i+1

)
, (5.118)

where we used the notation λi from (5.86).

Let us now concentrate on the leading singular contribution in the small z limit which will

allow us to fix the most singular term in the holomorphic modular ambiguity. From (5.118),

one finds that
◦
ϑ
(r)
ν̃ (z) =

(−21+ϵπiz)1−n∏n−1
i=1 ri,i+1κi,i+1

+O(z2−n) . (5.119)

Importantly, the leading term does not depend on the glue vector indices B. Therefore, due to

Corollary F.1, the leading term in (5.116) is given by

I(r)
ν (z) =

(−2ϵπiκz)1−n r0∏n
i=1 ri

∏n−1
i=1 (ri + ri+1)

δ
A∈A(r)

0
+O(z2−n) , (5.120)

whereA(r)
0 is the set from Proposition F.1 implementing the maximal order zero mode condition

on A indices. Next, we assume that the leading term of the Jacobi-like form ϕ
(r)
ν (τ, z) also

depends on the residue class ν only through the zero mode condition. Namely, representing

ν = (µ̂, ˆ̃µ) and defining ∆µ̂ = µ̂− 2ϵ ˆ̃µ (cf. §F.4) we take

ϕ(r)
ν (τ, z) =

Sym {cr}
zn−1

n∏
i=1

δ
(1)
∆µ̂i

+O(z2−n) . (5.121)

For ν = g
||
A + µ, the product of Kronecker symbols is nothing but δ

A∈A(r)
0
. Substituting (5.120)

and (5.121) into (5.113), one obtains

ϑ
(r)||
µ,A (τ, z) =

δ
A∈A(r)

0

zn−1

n∑
m=2

∑
∑m

k=1 nk=n

∑
ν

gcd(s1, . . . , sm)
∏m

k=1 crk
(−2ϵπiκ)n−1

∏m
k=1 sk

∏m−1
k=1 (sk + sk+1)

+O(z2−n) .

(5.122)

Since the summand does not depend on ν, the sum over these indices produces just a numerical

factor equal to the number of their independent values. In appendix F.1 we showed that these

indices can be identified with the glue vectors of the lattice decomposition (F.9) and therefore

the factor is given by (F.13). Finally, the consistency requires that the resulting singular

contribution should be exactly cancelled by adding the leading singular term (5.121) of the

holomorphic modular ambiguity with ν = g
||
A+µ as in (5.111). Thus, the coefficients cr should

be solutions of the following system of equations
n∑

m=1

∑
∑m

k=1 nk=n

(
− 1

2ϵπiκ

)m−1 ∏m
k=1 crk∏m

k=1 gcd(rk)
∏m−1

k=1 (sk + sk+1)
= 0. (5.123)

We claim that this system is solved by

cr =
r0

(2ϵπiκ)n−1r

n−1∏
k=1

(
k∑

i=1

ri

n∑
j=n−k+1

rj

)−1

, (5.124)
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which agrees with (5.65) and (5.93). Although we were not able to find an analytic proof, we

have checked on a computer that this formula does solve the equations for arbitrary charges

up to n = 8, which leaves no doubt that this is the right solution.

Having found the leading term in the expansion of ϕ
(r)
ν , we can now provide the full

function. It is given by the following

Theorem 5.2. Provided Conjecture 5.1 holds, the holomorphic modular ambiguity given by

(5.101) with

ϕ(r)
ν (τ, z) =

Sym {cr}
zn−1

e−
π2

3
mrE2(τ)z2

n∏
i=1

δ
(1)
∆µ̂i

(5.125)

ensures the existence of the unrefined limit.

Proof. The proof will follow the logic of the argument used to justify Conjecture 5.1. Namely,

let us consider the function

e
mr
3

π2E2(τ)z2
(
ϕ
(r)

g
||
A+µ

(τ, z) + Sym
{
ϑ
(r)||
µ,A (τ, z)

})
(5.126)

= δ
A∈A(r)

0
Sym

{ n∑
m=1

1

zn−m

∑
∑m

k=1 nk=n

e
π2

3

(
mr−

m∑
k=1

mrk

)
E2(τ)z2

m∏
k=1

crk
∑
ν,ν̃

I(s)
µ,ν;µ̃,ν̃(z)

}
+O(zn−1),

where to get the second line, we used Conjecture 5.1, the representation (5.113) and the

proposed form of ϕ
(r)
ν . To prove the theorem, one needs to show that the first term is also

O(zn−1). Let us assume that this is not the case and there are terms ∼ zk with k < n − 1.

Here k must be large than 1 − n because we have already shown the cancellation of the

leading singularity ∼ z1−n for cr given by (5.124). Then the same chain of reasoning as above

(5.115) allows to conclude that the coefficient of the zk-term must be a modular form of weight

n− 1 + k > 0. However, as follows from (5.126), the only dependence of τ of these coefficients

is through the polynomial dependence on the quasimodular form E2(τ). But no polynomial of

E2(τ) can produce a modular form of positive weight. Hence all of them must vanish, which

proves the statement of the theorem.

5.6.3 The unrefined limit

The two theorems 5.1 and 5.2 provide a solution for the functions ǧ
(r)ref
µ,µ satisfying the anomaly

equation (5.8) and having a well-defined unrefined limit. It remains just to reduce it to the

original anomalous coefficients g
(r)
µ,µ. The first step, the reduction to the refined anomalous

coefficients g
(r)ref
µ,µ , is trivial and done by applying the relation (5.10) to the expression (5.111).

This affects only the AN−1 lattice theta series and results in

g(r)refµ,µ (τ, z) =
1

4
δ
(κr0)
∆µ

∑
A

(
ϕ
(r)

g
||
A+µ

(τ, z) + Sym
{
ϑ
(r)||
µ,A (τ, z)

})
ϑ
(dr)
ν0(A)

(τ)
n∏

i=1

DΘ
(dri )
ai (τ ; t(ri)).

(5.127)

The last step is to evaluate the unrefined limit z → 0. Unfortunately, we cannot accomplish

it analytically in full generality because this would require rewriting Sym
{
ϑ
(r)||
µ,A (τ, z)

}
in a form
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compute 
polar terms

refinement lattice extension

(5.10)

Figure 2: Construction of the refined anomalous coefficients through the refinement and lattice

extension and their relation to the generating functions of BPS indices.

which makes manifest the existence of zero of order n−1 at small z for all contributions except

the zero modes of maximal order and, in particular, would automatically provide a proof of

Conjecture 5.1. However, since evaluating a limit of a function should certainly be simpler

than solving non-trivial anomaly equations, we see this problem as just a technical obstacle

and hope to return to it elsewhere.

6. Conclusions

In this paper we solved the modular anomaly equation for the generating functions hr,µ(τ) of

D4-D2-D0 BPS indices, the same as rank 0 DT invariants of Calabi-Yau threefolds, restricting

to the case of threefolds with one Kähler modulus. Since for a fixed D4-brane charge r, the

anomaly equation fixes the generating function only up to a modular form h
(0)
r,µ and involves all

generating functions hri,µi
with ri < r, the solution is expressed as a polynomial in h

(0)
ri,µi , which

at this stage remain unknown functions. The coefficients of this polynomial, called anomalous

coefficients g
(r)
µ,µ(τ), satisfy their own anomaly equation (Theorem 3.1), and it is solving this

equation that takes the main part of our work.

In two particular cases (arbitrary two charges r = (r1, r2) or arbitrary number of charges

but all, together with the intersection number κ, equal to 1), it is immediate to write a solution

for g
(r)
µ,µ(τ) given by the mock modular forms of optimal growth from [25] and the normalized

generating functions of SU(n) VW invariants on P2, respectively. The generic case is treated

using indefinite theta series. In fact, this requires introducing auxiliary functions, g
(r)ref
µ,µ (τ, z)

and ǧ
(r)ref
µ,µ (τ, z,z), depending on additional variables and satisfying a proper set of anomaly

equations. The former is a refined version of the anomalous coefficients and the latter is

obtained from the former by a lattice extension. As a result, we have solved the anomaly

equation for ǧ
(r)ref
µ,µ (Theorems 5.1 and 5.2), reduced it g

(r)ref
µ,µ (see (5.127)), and evaluated its

unrefined limit z → 0 producing g
(r)
µ,µ in the cases of two and three charges. Unfortunately, the

last step turns out to be too complicated to be done analytically in generic case. The realized

strategy is schematically presented in Fig. 2.

In fact, the existence of the unrefined limit of our solution for generic charges remains

conjectural since it relies on Conjecture 5.1. Although we gave a strong argument why we

expect it to be true, it leaves a gap in our construction. It would certainly be desirable to fill

this gap and to find a way to rigorously prove the conjecture. This might also suggest a way
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to explicitly evaluate the unrefined limit in generic case, the other missing step for having a

complete result.

For a few cases of small charges and small intersection number, we presented first terms in

q-series of the anomalous coefficients in appendix I. Besides, in appendix H, we have shown that

our solution in terms of indefinite theta series is consistent with the other solutions mentioned

above, provided by mock modular forms of optimal growth and generating functions of VW

invariants. To this end, we constructed a combination of the solutions that is required to be a

Jacobi form and then explicitly evaluated it confirming that the requirement is indeed satisfied.

This calculation opens an interesting possibility. The point is that the mock modular forms

of optimal growth introduced in [25] are constructed in terms of certain seed functions G(d)

(see (4.10)), but only for the first two of them, G(1) and G(6), one knows analytic expressions.

Our results can be used to obtain such analytic expressions for other seed functions.

It is useful to note that our construction resembles a lot the solution of a similar modular

anomaly equation for the generating functions of refined VW invariants in [51]. But there

is an important difference that here we could fix the holomorphic modular ambiguity for the

anomalous coefficients in terms of a Jacobi-like form, whereas in the VW case a similar function

had to be a Jacobi form. It is this possibility to use Jacobi-like forms that is responsible for a

very simple form of the solution (5.125) for the ambiguity.

Our solution for the anomalous coefficients reduces the problem of finding the generating

functions hr,µ to the problem of finding just a finite number of Fourier coefficients. For exam-

ple, it would be sufficient to compute their polar terms, which allows us to fix the modular

ambiguities h
(0)
r,µ and thereby the whole generating functions. Moreover, for r > 1, typically,

the polar terms must satisfy non-trivial constraints to produce a mock modular form [38, 61].

Therefore, such computation would provide an extremely strong test of mock modularity, which

at the physical level appears as a consequence of S-duality, whereas at the mathematical level

remains completely mysterious.

The problem however is that the existing techniques are likely insufficient to do this. For

example, the naive extension of the approach based on wall-crossing, as outlined in [24, §3.3],
would require knowledge of GV invariants up to genus 232 to compute all polar terms of h3,µ

for CY X10, which is given by the degree 10 hypersurface in weighted projective space P5,2,1,1,1

(one of the two CYs for which h2,µ has been explicitly found). This seems unrealistic in the

current state of affairs. Therefore, one needs to look for alternative methods to compute polar

terms which would not be limited to extremely small charges.

Finally, although we restricted in this paper to the one-modulus case, our construction

seems to be easily generalizable to CYs with multiple moduli. In this case CYs can also have

additional structures, such as elliptic or K3 fibrations, and it would be interesting to study an

interplay between these structures and the mock modularity of rank 0 DT invariants exploited

here.

– 45 –



Acknowledgements

The authors are grateful to Abhiram Kidambi for valuable discussions. SA thanks the Galileo

Galilei Institute for Theoretical Physics for the hospitality and the INFN for partial support

during the completion of this work. Besides, SA would like to thank the Isaac Newton Institute

for Mathematical Sciences, Cambridge, for support and hospitality during the programme

“Twistor theory”, supported by EPSRC grant no EP/R014604/1, where work on this paper

was undertaken.

A. Jacobi and Jacobi-like forms

A.1 Jacobi forms

Jacobi forms have been introduced and studied in detail by Eichler and Zagier in [62]. Here we

provide a definition which generalizes the original one in several aspects: it allows the function

to have multiple elliptic arguments, to be non-holomorphic, to be vector valued and to possess

a non-trivial multiplier system. All these generalizations are well-known and play an important

role in numerous physical problems.

Let φµ(τ, z) be a finite set of (in general, non-holomorphic) functions, labelled by µ, on

H × Cn, and x · y =
∑n

i,j=1 Qijxiyj denotes a bilinear form on Cn. Then φµ(τ, z) is a vector

valued (multi-variable) Jacobi form of weight (w, w̄) and (matrix valued) index mQij if it

satisfies the following transformation properties

φµ(τ, z + aτ + b) = e−2πim(a2τ+2a·z) φµ(τ, z), a, b ∈ Zn, (A.1a)

φµ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)w(cτ̄ + d)w̄ e

2πimcz2

cτ+d

∑
ν

Mµν(ρ)φν(τ, z), (A.1b)

where ρ =
(

a b

c d

)
∈ SL(2,Z) and Mµν(ρ) is a multiplier system.

Setting the elliptic variables z = 0, (A.1) reduces to the definition of a vector valued

modular form. Note that since Mµν(ρ) must furnish a representation of the group SL(2,Z)

generated by two transformations, T =
(

1 1

0 1

)
and S =

(
0 −1

1 0

)
, to define the multiplier system,

it is enough to specify it for ρ = T and S. Thus, to characterize the modular behavior of a

Jacobi form, it is sufficient to provide its modular weight (w, w̄), index m and two matrices

Mµν(T ) and Mµν(S).

A.2 Jacobi-like forms

Jacobi-like forms have been first introduced in [63, 64] and further studied in the mathematical

literature (see, e.g., [65, 66, 67]). In the simplest case they are defined as formal power series in

X, with coefficients in functions on H, satisfying the following transformation property under

SL(2,Z)

Φ

(
aτ + b

cτ + d
,

X

(cτ + d)2

)
= e

cX
cτ+d Φ(τ,X). (A.2)

– 46 –



Given a Jacobi-like form, let us consider the function X−wΦ(τ,X). Then it is easy to

see that under the identification X = 2πimz2, one gets a function φ(τ, z) which satisfies the

modular transformation property (A.1b) of a Jacobi form of weight w and index m. However,

the elliptic property (A.1a) is in general missing. This justifies the name “Jacobi-like”.

In the applications relevant to our work, it is more convenient to work directly with func-

tions of z that have a definite weight and index and to allow for all the generalizations (multiple

variables, non-holomorphicity, vector valuedness) that we allowed for Jacobi forms. Therefore,

for the purposes of this paper, we will call Jacobi-like form any function φµ(τ, z) that satisfies

(A.1b).26

Next, we are interested in modular properties of the expansion coefficients of a Jacobi-

like form around a point where one of the (would be) elliptic variables, say z1, vanishes. For

simplicity, we restrict ourselves to the case n = 1 of only one elliptic variable and set Q11 = 1,

but the propositions below are trivially generalized to n > 1 provided the quadratic form is

factorized, i.e. Q1i = 0 for i > 1.

In fact, it is well-known that the coefficients of the expansion in X ∼ z2 of a Jacobi-like

form are in one-to-one correspondence with modular forms which can be constructed as linear

combinations of the τ -derivatives of the coefficients [63, 64]. In particular, the coefficient of

the leading term, say, zn0 in the expansion is a modular form of weight w + n0.

It is also known that Jacobi-like forms are closely related to quasimodular forms [67], the

simplest example of which is the Eisenstein series E2(τ) = 1 − 24
∑∞

n=1 σ1(n)e
2πinτ satisfying

the transformation property

E2

(
aτ + b

cτ + d

)
= (cτ + d)2

(
E2(τ) +

6

πi

c

cτ + d

)
. (A.3)

In particular, one can note that the anomalous term in this transformation has the same form

as the logarithm of the exponential factor in the transformation of a Jacobi-like form. This

immediately implies the following

Proposition A.1. Let φµ(τ, z) be a Jacobi-like form of modular weight w and index m. Then

φ̃µ(τ, z) = e
m
3
π2E2(τ)z2φµ(τ, z) (A.4)

is a Jacobi-like form of the same weight and vanishing index, and the coefficients of its Laurent

expansion φ̃µ(τ, z) =
∑∞

n=n0
hn(τ)z

n are modular forms of weight w + n.

This simple observation can be used to prove

Proposition A.2. Let φµ(τ, z) be a Jacobi-like form of modular weight w and index m, and

having a smooth limit at z → 0. We define the following differential operator

D(n)
m =

⌊n/2⌋∑
k=0

cn,kE
k
2 (τ) ∂

n−2k
z , cn,k =

n!
(
2m
3
π2
)k

(2k)!!(n− 2k)!
. (A.5)

26The original definition of Jacobi-like forms implies that they have an expansion in even powers of z.

However, once one allows for a non-trivial multiplier system, there is no much sense keeping this condition. In

practice, the functions appearing in the main text are functions of τ , z and z = (z1, . . . , zn) which behave as

Jacobi-like forms with respect to z with an expansion in even powers, up to an overall shift in the power, and

as usual Jacobi forms with respect to z.
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Then

ϕ(n)
µ (τ) ≡ D(n)

m φµ(τ, z)|z=0, (A.6)

is a vector valued modular form of weight w + n.

Proof. If ϕµ is smooth at small z, the same is true for the function φ̃µ (A.4) and hence its

expansion coefficients are given by the derivatives with respect to z evaluated at z = 0. Ac-

cording to Proposition A.1, such derivatives ∂n
z φ̃µ(τ, 0) transform as modular forms of weight

w + n. On the other hand, we have

∂n
z φ̃µ(τ, 0) =

⌊n/2⌋∑
k=0

n!

(2k)!(n− 2k)!

(
e−

x2

2
d2k

d2kx
e

x2

2

)∣∣∣∣
x=0

(
2m

3
π2E2(τ)

)k

∂n−2k
z φµ(τ, 0). (A.7)

Taking into account that
(
e−

x2

2
d2k

d2kx
e

x2

2

)∣∣∣
x=0

= (2k − 1)!!, we conclude that

∂n
z φ̃µ(τ, 0) = D(n)

m φµ(τ, z)|z=0, (A.8)

which proves the statement of the proposition.

B. Summary of modular properties

In this appendix we collect the modular weights, indices and multiplier systems of the main

modular functions appearing in the paper.

Generating functions of BPS indices:

w(hr) = −3/2,

M (hr)
µν (T ) = e

πi
κr (µ+

1
2
κr2)

2
+ πi

12
c2r δµν ,

M (hr)
µν (S) =

(−1)χr

√
κr

e−
πi
4
−2πi µν

κr ,

(B.1)

where χr is defined in (2.7).

Redefined generating functions:

w(h̃r) = −3/2,

M (h̃r)
µν (T ) = e

πi
κr

(1−κr)µ2+πi
4 (κ+

c2
3 )r δµν ,

M (h̃r)
µν (S) =

e
πi
4
((2κ+c2)r−1)

√
κr

e−2πiµν
κr .

(B.2)

Anomalous coefficients:

w
(
g(r)
)
= 3(n− 1)/2,

M (g(r))
µ,µ,ν,ν(T ) = e

πi(µ−
∑

i µi)+πi

(
µ2

κr
−
∑

i

µ2i
κri

)
δµνδµν ,

M (g(r))
µ,µ,ν,ν(S) =

e
πi
4
(n−1)√

κn+1r
∏

i ri
e
−2πi

(
µν
κr

−
∑

i
µiνi
κri

)
.

(B.3)
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Refined anomalous coefficients:

w
(
g(r)ref

)
= (n− 1)/2,

m
(
g(r)ref

)
= −κ

6

(
r3 −

n∑
i=1

r3i

)
,

M (g(r)ref)
µ,µ,ν,ν (T ) = e

πi(µ−
∑

i µi)+πi

(
µ2

κr
−
∑

i

µ2i
κri

)
δµνδµν ,

M (g(r)ref)
µ,µ,ν,ν (S) =

e
πi
4
(n−1)√

κn+1r
∏

i ri
e
−2πi

(
µν
κr

−
∑

i
µiνi
κri

)
.

(B.4)

Extended refined anomalous coefficients:

w
(
ǧ(r)ref

)
=(n− 1 + dr)/2,

m
(
ǧ(r)ref

)
=

1

2
diag

(
−κ

3

(
r3 −

n∑
i=1

r3i

)
, (t(r1))2, . . . , (t(rn))2

)
,

M (ǧ(r)ref)
µ,µ,ν,ν (T ) = e

πi(µ−
∑

i µi)+πi

(
µ2

κr
−
∑

i

µ2i
κri

)
+πi

4
dr
δµνδµν ,

M (ǧ(r)ref)
µ,µ,ν,ν (S) =

e
πi
4
(n−1−3dr)√

κn+1r
∏

i ri
e
−2πi

(
µν
κr

−
∑

i
µiνi
κri

)
,

(B.5)

where (t(r))2 =
∑dr

α=1(t
(r)
α )2 and dr =

∑n
i=1 dri .

C. Theta series

In this appendix we define some useful theta series and describe their modular properties.

C.1 Generalized theta series and modularity condition

Let us define

ϑµ(τ, z;Λ,Φ,p) =
∑

k∈Λ+µ+ 1
2
p

(−1)p∗kΦ
(√

2τ2 (k+ β)
)
q−

1
2
k2

e2πiz∗k, (C.1)

where q = e2πiτ , Λ is a d-dimensional lattice equipped with a bilinear form x ∗ y such that the

associated quadratic form has signature (n, d − n) and is integer valued, p is a characteristic

vector satisfying k ∗ (k + p) = 0 mod 2 for ∀k ∈ Λ, µ ∈ Λ⋆/Λ, and z = α − τβ ∈ Cd with

α, β ∈ Rd. (We follow the convention to denote d-dimensional quantities by blackboard letters.)

The Vignéras theorem [68] asserts that if the kernel Φ(x) satisfies suitable decay properties as

well as the following differential equation[
∂2
x + 2π(x ∗ ∂x − λ)

]
Φ(x) = 0, (C.2)
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where λ is an integer parameter, then the theta series is a vector valued (multi-variable) Jacobi

form27 with the following modular properties:

w(ϑ) =

(
1

2
(d+ λ),−1

2
λ

)
, m(ϑ) = −1

2
∗,

M (ϑ)
µν (T ) = e−πi(µ+ 1

2
p)

2

δµν, M (ϑ)
µν (S) =

e(2n−d)πi
4√

|Λ∗/Λ|
e

πi
2
p2

e2πiµ∗ν,

(C.3)

where by ∗ in the formula for the index we mean the matrix representing the bilinear form.

The multiplier system here forms the Weil representation of the modular group defined by the

lattice Λ. A particularly interesting case is when the multi-variable Jacobi form is reduced to

the usual Jacobi form by choosing z = θz where θ ∈ Λ. Then the index is a scalar and is given

by

m(ϑ) = −1

2
θ2. (C.4)

C.2 Unary theta series

Let us specialize (C.1) to the case where d = 1, n = 0 and Λ = mZ so that the bilinear form

is x ∗ y = −xy/m. We also take p = −mp where p is odd for odd m and arbitrary integer

otherwise, z = −mz and Φ = 1 (hence λ = 0). Then the theta series reduces to

ϑ(m,p)
µ (τ, z) =

∑
k∈Z+ µ

m
+ p

2

(−1)mpk qmk2/2 ymk, (C.5)

where we introduced y = e2πiz. Its modular properties follow from (C.3) and are given by

w(ϑ(m,p)) = 1/2, m(ϑ(m,p)) = m/2,

M (m,p)
µν (T ) = e

πi
m

(
µ+

mp
2

)2

δµν , M (m,p)
µν (S) =

e−
πi
2
mp2

√
im

e−2πi µν
m .

(C.6)

For even m = 2κ, we can choose p = 0. Then (C.5) gives

θ(κ)µ (τ, z) ≡ ϑ(2κ,0)
µ (τ, z) =

∑
k∈2κZ+µ

q
k2

4κ y2κk. (C.7)

If z = 0, we will simply drop the last argument and write θ
(κ)
µ (τ). The multiplier system (C.6)

reduces to

M (θ(κ))
µν (T ) = e

πi
2κ

µ2

δµν , M (θ(κ))
µν (S) =

1√
2iκ

e−
πi
κ

µν . (C.8)

On the other hand, specifying m = p = 1 in (C.5), we reproduce the standard Jacobi theta

function

θ1(τ, z) = ϑ
(1,1)
0 (τ, z) =

∑
k∈Z+ 1

2

qk
2/2(−y)k (C.9)

27More precisely, the elliptic transformation (A.1a) can generate an additional sign factor (−1)p∗(a+b).
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whose modular properties are

w(θ1) = 1/2, m(θ1) = 1/2,

M (θ1)(T ) = eπi/4, M (θ1)(S) = e−3πi/4.
(C.10)

It has the following expansion around z = 0

θ1(τ, z) = −2πη(τ)3z − 4π2iη′(τ)η(τ)2z3 +O(z5). (C.11)

C.3 Convergence of indefinite theta series

Let us now consider theta series with a quadratic form of indefinite signature. In this case the

kernel Φ(x) cannot be trivial anymore since otherwise the theta series would be divergent. On

the other hand, a non-trivial kernel would spoil holomorphicity in τ unless Φ(x) is a piece-wise

constant function.28 Thus, the only way to get a convergent and holomorphic theta series is to

take Φ(x) to be a combination of sign functions. The following theorem from [51] (generalizing

results of [41, 54, 69]) provides the simplest choice of such kernel

Theorem C.1. Let the signature of the quadratic form be (n, d− n) and

Φ(x) =
n∏

i=1

(
sgn(v1,i ∗ x)− sgn(v2,i ∗ x)

)
. (C.12)

Then the theta series (C.1) is convergent provided:

1. for all i ∈ Zn = {1, . . . , n}, v2
1,i,v

2
2,i ≥ 0;

2. for any subset I ⊆ Zn and any set of si ∈ {1, 2}, i ∈ I,

∆I({si}) ≡ det
i,j∈I

(vsi,i ∗ vsj ,j) ≥ 0; (C.13)

3. for all ℓ ∈ Zn and any set of si ∈ {1, 2}, i ∈ Zn \ {ℓ},

v1,ℓ⊥{si} ∗ v2,ℓ⊥{si} > 0, (C.14)

where ⊥{si} denotes the projection on the subspace orthogonal to the span of {vsi,i}i∈Zn\{ℓ};

4. if v2
s,i = 0, then ∃αs,i ∈ R such that αs,ivs,i ∈ Λ.

Note that the last condition requiring that the (rescaled) null vectors, i.e. satisfying

v2
s,i = 0, that appear in the definition of the kernel belong to the lattice is important. If such

a null vector is present, it is also important to keep the elliptic variable z generic because the

theta series has poles at the points where ∃k ∈ Λ + µ + 1
2
p such that vs,i ∗ (k + β) = 0. In

particular, theta series involving null vectors are typically divergent in the limit z→ 0.

28It is possible also to multiply it by a homogeneous polynomial in x since the non-holomorphic dependence

can then be canceled by multiplying by a power of τ2.
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D. Functions determining completions

D.1 Generalized error functions

In section C.3, we provided a class of functions Φ(x) that define convergent and holomorphic

indefinite theta series. However, in contrast to the usual theta series with negative29 definite

quadratic form, they are not modular. This can be seen, for example, from the fact that the

discontinuities of the signs spoil the Vignéras equation (C.3). Nevertheless, there is a simple

recipe to construct their modular completions [52, 40, 41].

This is achieved with help of the generalized error functions introduced in [40, 41] (see also

[70]). They are defined by

En(M; u) =

∫
Rn

du′ e−π
∑n

i=1(ui−u′
i)

2
n∏

i=1

sgn(Mtru′)i , (D.1)

where u = (u1, . . . , un) is n-dimensional vector and M is n × n matrix of parameters. To

get kernels of indefinite theta series, we need however functions depending on a d-dimensional

vector rather than n-dimensional one. To define such functions, let V be d × n matrix which

can be viewed as a collection of n vectors, V = (v1, . . . ,vn), and it is assumed that these

vectors span a positive definite subspace in Rd endowed with the quadratic form ∗, i.e. Vtr ∗ V
is positive definite. We also introduce a n × d matrix B whose rows define an orthonormal

basis for this subspace. Then we set

ΦE
n (V ;x) = En(B ∗ V ;B ∗ x). (D.2)

The detailed properties of these functions can be found in [41]. Most importantly, they do

not depend on B, solve the Vignéras equation (C.2) with λ = 0 and at large x reduce to∏n
i=1 sgn(vi ∗ x). Thus, to construct a completion of the theta series whose kernel is a combi-

nation of sign functions, it is sufficient to replace each product of n sign functions by ΦE
n with

matrix of parameters V given by the corresponding vectors vi.

Finally, if one of the vectors is null, it reduces the rank of the generalized error function.

Namely, for v2
ℓ = 0, one has

ΦE
n ({vi};x) = sgn(vℓ ∗ x) ΦE

n−1({vi}i∈Zn\{ℓ};x). (D.3)

In other words, for such vectors the completion is not required.

D.2 Coefficients Rn

The generalized error functions defined in the previous subsection play the role of building

blocks in the definition of the coefficients Rn(γ̂; τ2) appearing in (2.18). Here we provide their

expression found in [23].

29Usually, the convergent case corresponds to positive definite quadratic forms. In our conventions it is

negative due to the minus sign in the power of q in (C.1). See also footnote 11.
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The construction proceeds in two steps. At the first step, we introduce functions of τ2
parametrized by n reduced charges γ̂i = (ri, qi). To this end, let Tℓ

n be the set of unrooted

labelled trees with n vertices decorated by charges from the set γ̂ = (γ̂1, . . . , γ̂n). Given a tree

T ∈ Tℓ
n, we denote the set of its edges by ET , the set of vertices by VT , the source and target

vertex30 of an edge e by s(e) and t(e), respectively, and the two disconnected trees obtained

from T by removing the edge e by T s
e and T t

e . Furthermore, to each edge we assign the vector

ve =
∑
i∈VT s

e

∑
j∈VT t

e

vij, (D.4)

where vij are n-dimensional vectors with the following components

(vij)k = δkirj − δkjri. (D.5)

Using these notations, we define

En(γ̂; τ2) =
Φ E

n (
√
2τ2 q)

(
√
2τ2)n−1

, (D.6)

where q =
(

q1
κr1

, . . . , qn
κrn

)
,

Φ E
n (x) =

1

n!

∑
T ∈Tℓ

n

[ ∏
e∈ET

D(vs(e)t(e),y)

]
ΦE

n−1({ve};x)
∣∣∣
y=x

, (D.7)

and

D(v,y) = v ·
(
y +

1

2π
∂x

)
. (D.8)

The dot in (D.8) denotes the bilinear form

x · y = κ
n∑

i=1

rixiyi. (D.9)

In particular, this implies that vij · q = γij.

Importantly, each function En(γ̂; τ2) defined by (D.6) has a canonical decomposition

En(γ̂; τ2) = E (0)
n (γ̂) + E (+)

n (γ̂; τ2), (D.10)

where the first term E (0)
n does not depend on τ2, whereas the second term E (+)

n is exponentially

suppressed as τ2 → ∞ keeping the charges γ̂i fixed. In [23] it was shown that

E (0)
n (γ̂) =

1

n!

∑
T ∈Tℓ

n

ST (γ̂)
∏
e∈ET

γs(e)t(e), (D.11)

where

ST (γ̂) =
∑

J⊆ET

eTJ
∏
e∈J

δΓe

∏
e∈ET \J

sgn(Γe), Γe =
∑
i∈VT s

e

∑
j∈VT t

e

γij, (D.12)

30The orientation of edges on a given tree can be chosen arbitrarily, the final result does not depend on this

choice.
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Here TJ denotes the tree obtained from T by contracting the edges e ∈ ET \J and eT are

some rational numbers depending only on topology of T . In particular, they vanish for trees

with even number of vertices, e• = 1, e•–•–• = 1/3, and an iterative formula for generic tree can

be found in [23]. If all Γe are non-vanishing, ST reduces to the product of their signs. This

shows that the functions En have a meaning of kernels providing completions for holomorphic

theta series constructed from signs of Dirac products of charges.

At the second step, we introduce another type of trees, the so-called Schröder trees. They

are defined as rooted planar trees such that all vertices v ∈ VT (the set of vertices of T excluding

the leaves) have kv ≥ 2 children. The set of such trees with n leaves will be denoted by TS
n.

Besides, we take nT to be the number of elements in VT and v0 to denote the root vertex.

The vertices of T are labelled by charges so that the leaves carry charges γ̂i, whereas the

charges assigned to other vertices are given recursively by the sum of charges of their children,

γ̂v ∈
∑

v′∈Ch(v) γ̂v′ . Then, given a Schröder tree T , we set Ev ≡ Ekv({γ̂v′}) (and similarly for

E (0)
v ,E (+)

v ) where v′ ∈ Ch(v) runs over the kv children of the vertex v. In terms of these

notations, the coefficients Rn are given by

Rn(γ̂; τ2) =
1

2n−1

∑
T∈TS

n

(−1)nT−1E (+)
v0

∏
v∈VT \{v0}

E (0)
v . (D.13)

D.3 Coefficients Rref
n

The refined version of the coefficients Rn has been introduced in [35]. It is given by the same

sum over Schröder trees as in (D.13),

Rref
n (γ̂; τ2, β) =

1

2n−1

∑
T∈TS

n

(−1)nT−1E (+)ref
v0

∏
v∈VT \{v0}

E (0)ref
v , (D.14)

but now with the weights assigned to vertices determined by new functions E (ref)
n (γ̂; τ2, β).

Although they depend on an additional parameter β, they are actually much simpler than their

unrefined analogues En because in their definition there is no any sum over trees. Namely, they

are given by

E (ref)
n (γ̂; τ2, β) = ΦE

n−1

(
{vℓ};

√
2τ2 (q + βθ)

)
, (D.15)

where

vℓ =
ℓ∑

i=1

n∑
j=ℓ+1

vij, θ =
∑
i<j

vij. (D.16)

As in the unrefined case, E (+)ref
n = E (ref)

n − E (0)ref
n , while E (0)ref

n is the large τ2 limit of E (ref)
n .

However, before taking the limit, one should first set β = 0, i.e.

E (0)ref
n (γ̂) ≡ lim

τ2→∞
E (ref)
n ({γ̌i}; τ2, 0) = STlin(γ̂), (D.17)

where Tlin = •—•– · · · –•—• is the simplest linear tree. The last relation follows from the

observation that the vectors vℓ can be seen as the vectors (D.4) assigned to edges of Tlin. Note

that for the linear tree eTlin = δ
(2)
n−1/n where n is the number of vertices.
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D.4 Explicit expressions

Let us now compute explicitly the functions R
(r)ref
µ,µ (5.2) for n = 2 and 3.

D.4.1 Two charges

In this case we have

R(r1,r2)ref
µ,µ1,µ2

(τ, τ̄ , z) =
1

2

∑
q1+q2=µ+κr

2

(
Rref

2 (γ̌1, γ̌2) y
γ12 + Rref

2 (γ̌2, γ̌1) y
−γ12

)
q

1
2
Q2(γ̌1,γ̌2), (D.18)

where, using the restriction on q1 + q2, one easily finds from (2.11) that

Q2(γ̂1, γ̂2) = − γ2
12

κrr1r2
, (D.19)

while the function Rref
2 follows from the definitions in §D.3 to be

Rref
2 (γ̌1, γ̌2) =

1

2
E (+)
2 (γ̌1, γ̌2) =

1

2

[
E1

(√
2τ2 (γ12 + κrr1r2β)√

κrr1r2

)
− sgn(γ12)

]
. (D.20)

Note also that the function E1 coincides with the usual error function: E1(u) = Erf(
√
π u).

Next, let us rewrite the sum over electric charges in (D.18) as an unconstrained sum.

Upon substituting the spectral flow decomposition (2.14), the condition on the sum of charges

becomes

r1ϵ1 + r2ϵ2 = ∆µ/κ. (D.21)

Let us define r0 = gcd(r1, r2), r̂i = ri/r0 and r̂ = r/r0. Then the condition (D.21) is solvable for

ϵi ∈ Z only if ∆µ = 0 mod κr0. If this is the case, let ρi be integers such that r̂1ρ1+ r̂2ρ2 = 1.

Then a general solution to (D.21) is given by

ϵ1 =
∆µ

κr0
ρ1 + r̂2ℓ, ϵ2 =

∆µ

κr0
ρ2 − r̂1ℓ, ℓ ∈ Z. (D.22)

Using this solution in the formula for the Dirac product (2.10) after plugging there the spectral

flow decomposition, one finds that

γ12 = r0(2κ12ℓ+ µ12), (D.23)

where we introduced

κ12 =
1

2
κrr̂1r̂2,

µ12 = r̂2µ1 − r̂1µ2 + r̂1r̂2(ρ1 − ρ2)∆µ

= r̂µ1 − r̂1µ+ r̂r̂1ρ1∆µ.

(D.24)

Thus, we arrive at the following result

R(r1,r2)ref
µ,µ1,µ2

=
1

4
δ
(κr0)
∆µ

∑
σ=±1

∑
k∈Z+σµ12

2κ12

[
E1

(
2
√
κ12τ2 (k + r0β)

)
− sgn(k)

]
q−κ12k2 y2r0κ12k. (D.25)
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The corresponding holomorphic anomaly is found to be31

∂τ̄R
(r1,r2)ref
µ,µ1,µ2

=
i

4

√
κ12

τ2
δ
(κr0)
∆µ

∑
σ=±1

∑
k∈Z+σµ12

2κ12

(k − r0β) (qq̄)
κ12(k+r0β)2q−κ12k2 y2r0κ12k. (D.26)

The unrefined function R̃
(r1,r2)
µ,µ1,µ2 can be computed either from (2.18) and equations in §D.2,

or by taking the unrefined limit of (D.25) and using (5.3). In this paper we will not use the

resulting function, which has a form similar to (D.25) but with a little bit more complicated

summand. Instead, we give here its holomorphic anomaly, which turns out to be simpler than

its refined counterpart (D.26) and is proportional to the complex conjugate of the theta series

θ
(κ)
µ (τ) introduced in (C.7) and evaluated at z = 0:

∂τ̄ R̃
(r1,r2)
µ,µ1,µ2

(τ, τ̄) =
r0
√
κ12

16πiτ
3/2
2

δ
(κr0)
∆µ θ

(κ12)
µ12 (τ). (D.27)

Note that ∂τ̄ R̃
(r1,r2)
µ,µ1,µ2 must be a modular form of weight (3/2, 2) with the same multiplier

system as g
(r1,r2)
µ,µ1,µ2 given in (B.3). Therefore, the result (D.27) immediately implies

Proposition D.1. If G
(κ)
µ (µ = 0, . . . , 2κ− 1) transforms with the multiplier system

M (κ)
µν (T ) = e−

πi
2κ

µ2

δµν , M (κ)
µν (S) =

e
πi
4

√
2κ

e
πi
κ

µν , (D.28)

which is the complex conjugate of the multiplier system (C.8) of θ
(κ)
µ , then δ

(κr0)
∆µ G

(κ12)
µ12 trans-

forms with the multiplier system (B.3) specified for n = 2.

D.4.2 Three charges

In this case we have

R(r)ref
µ,µ (τ, τ̄ , z) =

∑
∑3

i=1 qi=µ+κr/2

Sym
{

Rref
3 (γ̂; τ2, β) y

γ1+2,3+γ12
}
eπiτQ3(γ̂), (D.29)

where the quadratic form can be written as

Q3(γ̂) = −r1γ
2
23 + r2γ

2
13 + r3γ

2
12

κrr1r2r3
, (D.30)

while the coefficient Rref
3 follows from (D.14) and is given by the sum of three Schröder trees

resulting to

Rref
3 (γ̂; τ2, β) =

1

4

[
E (+)ref
3 (γ̂)− E (+)ref

2 (γ̂1+2, γ̂3)E (0)ref
2 (γ̂1, γ̂2)

− E (+)ref
2 (γ̂1, γ̂2+3)E (0)ref

2 (γ̂2, γ̂3)
]
.

(D.31)

31To obtain the holomorphic anomaly, one takes the derivative with respect to τ̄ while keeping fixed τ , y and

ȳ (and not α, β).
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The function E (+)ref
2 was computed in (D.20) which implies that E (0)ref

2 (γ̂1, γ̂2) = sgn(γ12).

Finally, E (+)ref
3 is found to be

E (+)ref
3 (γ̂) = ΦE

2 (v1,2+3,v1+2,3;x)− sgn(γ1,2+3) sgn(γ1+2,3)−
1

3
δγ1,2+3δγ1+2,3 , (D.32)

where x =
√
2τ2 (q + βθ) and ΦE

2 (x) can be expressed through the generalized error function

E2. Substituting these results into (D.31), one obtains

Rref
3 (γ̂; τ2, β) =

1

4

[
ΦE

2 (v1,2+3,v1+2,3;x)− sgn(γ1,2+3) sgn(γ1+2,3)−
1

3
δγ1,2+3δγ1+2,3

−
(
E1

(√
2τ2 (γ1+2,3 + κrr1+2r3β)√

κrr1+2r3

)
− sgn(γ1+2,3)

)
sgn(γ12) (D.33)

−
(
E1

(√
2τ2 (γ1,2+3 + κrr1r2+3β)√

κrr1r2+3

)
− sgn(γ1,2+3)

)
sgn(γ23)

]
.

where ri+j = ri + rj.

E. Hecke-like operators

In this appendix we define two operators acting on Jacobi forms and then derive their induced

action on modular forms appearing as coefficients in the theta expansion, which for a (mock)

Jacobi form of index m reads [62]

φ(τ, z) =
2m−1∑
µ=0

h(m)
µ (τ)θ(m)

µ (τ, z), (E.1)

where θ
(m)
µ is the index m theta function (C.7). Although this will not be needed in this paper,

we will not assume that φ is holomorphic in τ , but will omit the complex conjugate argument.

The first Hecke-like operator is defined by a simple rescaling of the elliptic argument [25,

Eq.(4.36)]:

(Us[φ])(τ, z) = φ(τ, sz). (E.2)

The action on the modular forms follows from the following property of the theta functions

θ(m)
µ

(
aτ + b

d
, az

)
=

d−1∑
ν=0

e
πib
2md

(µ+2mν)2 θ
(adm)
a(µ+2mν)(τ, z) (E.3)

valid for a, d ∈ N and b ∈ Z. In particular, choosing a = d = s and b = 0, one obtains

θ(m)
µ (τ, sz) =

s−1∑
ν=0

θ
(ms2)
s(µ+2mν)(τ, z). (E.4)

This result immediately implies that the action of Us on h
(m)
µ is given by (4.8).
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The second operator is defined by [46, Def. 3.1]32

(Tr[φ])(τ, z) =
∑
a,d>0
ad=r

(√
r

d

)w+w̄ d−1∑
b=0

φ

(
aτ + b

d
, az

)
, (E.5)

where (w, w̄) is the weight of the Jacobi form. To compare with [25], let us restrict to holo-

morphic Jacobi forms of weight w and perform a Fourier expansion of φ(τ, z) in both variables

φ(τ, z) =
∑
n,m

c(n,m) qnym, q = e2πiτ , y = e2πiz. (E.6)

Then, using the identity

d−1

d−1∑
b=0

e2πisn/d = δ
(1)
n/d, (E.7)

one finds

(Tr[φ])(τ, z) = r1−w/2
∑
a|r

aw−1
∑
n,m

δ
(1)
an/r c(n,m) qa

2n/ryam

= r1−w/2
∑
a|r

aw−1
∑
n,m

c
(rn
a

,m
)
qanyam.

(E.8)

As a result, we arrive at the following action on the Fourier coefficients

Tr : c(n,m) 7→ r1−w/2
∑

d|(n,m,r)

dw−1 c
(nr
d2

,
m

d

)
, (E.9)

which coincides up to the factor r1−w/2 (see footnote 32) with [25, Eq.(4.37)]. The action of

(E.5) on the VV modular forms h
(m)
µ follows from Definition 3.8 and Theorem 3.9 of [46] and

coincides with the one given in (4.9).33

F. Lattices, glue vectors and zero modes

In this appendix we present various results about our main lattice Λ(r), about the glue vectors

appearing in decompositions of Λ(r) and the extended lattice Λ(r), and an analysis of the set of

zero modes. Throughout the appendix we will use the following convenient notations: r̂ = r/r0,

r̂i = ri/r0 and ri1...im = gcd(ri1 , . . . , rim). If the indices are consecutive, i.e. ik = i1 + k− 1 and

im = j, we will use a shorthand notation ri::j instead of ri1...im . Note that r1::n = r0.

32We multiplied the operator defined in [25, 46] by the factor r1−
1
2 (w+w̄) in order to make it commuting

with the simple operations changing the weight such as ∂τ or multiplication by τ2, but leaving it intact for

w + w̄ = 2. This does not affect the property

TrTs = Trs, for gcd(r, s) = 1

and little bit simplifies the property (cf. [46, Lemma 3.7])

Tpl = TpTpl−1 − pUpTpl−2 , for l ≥ 2 and p prime.

33Note that w in (4.9) is equal to w − 1/2 in terms of the weight appearing in (E.5). Hence the additional

normalization factor discussed in footnote 32 now reads r
3
4−

1
2 (w+w̄).
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F.1 Lattice Λ(r)

The lattice Λ(r) is defined as

Λ(r) =

{
k ∈ Zn :

n∑
i=1

riki = 0

}
(F.1)

and carries the bilinear form

x · y = κ
n∑

i=1

rixiyi. (F.2)

To describe its dual lattice, let us fix a n-tuple ρ = (ρ1, . . . , ρn) such that
∑n

i=1 ρiri = r0 and

introduce

µ̂
(r)
i (µ, λ) =

µi

κri
−
∑n

i=1 µi

κr
+
(
ρi −

r0
r

)
λ. (F.3)

Note that it satisfies
∑n

i=1 riµ̂
(r)
i = 0. Then the dual lattice is the following subset of

Span (Λ(r))

(Λ(r))⋆ =

{
k ∈ Zn + µ̂(r)(µ, λ) :

N∑
i=1

riki = 0, µi ∈ Zκri , λ ∈ Zr̂

}
. (F.4)

Since the overall shift µi → µi + r̂i for all i leaves µ̂
(r) invariant, the discriminant group is

D(r) = Zr̂ ⊗
∏n

i=1Zκri

Zκr0

(F.5)

and hence its order, which coincides with the determinant of the bilinear form (F.2), is given

by

|D(r)| = detΛ(r) =
κn−1r

r20

n∏
i=1

ri. (F.6)

In the special case κ = r1 = · · · = rn = 1, the lattice coincides with the standard An−1 root

lattice whose discriminant group is Zn.

There are two decompositions of Λ(r) which play an important role in our story. One

is the decomposition (5.46) on the sublattice generated by the vectors v̂i,i+1 = vi,i+1/ri,i+1,

i = 1, . . . , n − 1. In this case the glue vectors are given by linear combinations of other

normalized vectors v̂ij with j − i > 1. The number of values taken by the coefficients of v̂ij

that generate independent glue vectors is given by

Nij ≡
ri+1::j−1ri::j
ri::j−1ri+1::j

. (F.7)

The total number of glue vectors is

n−2∏
i=1

n∏
j=i+2

Nij =
r0
∏n−1

j=2 ri∏n−1
i=1 ri,i+1

, (F.8)

which agrees with the formula (5.29).
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The other important decomposition corresponds to a split of the set of charges into m

subsets induced by a decomposition n =
∑m

k=1 nk. This gives rise to the following lattice

factorization

Λ(r) =

Ng−1⋃
C=0

[(
Λ(s) + g

(0)
C

)
⊕
(

m
⊕
k=1

(
Λ(rk) + g

(k)
C

))]
, (F.9)

where we used notations from (3.4). To write the glue vectors, we introduce s0 = gcd(s1, . . . , sm),

ŝk = sk/ gcd(rk) and

ρ(0) =(ρ
(0)[n1]
1 , . . . , ρ(0)[nm]

m ),
m∑
k=1

skρ
(0)
k = s0,

ρ(k) =(0[jk], ρ
(k)
1 , . . . , ρ(k)nk

, 0[n−jk+1]),

nk∑
i=1

rjk+iρ
(k)
i = gcd(rk).

(F.10)

Then the glue vectors are given by

gC =
m∑
k=1

ckρ
(k) − 1

s0

(
m∑
ℓ=1

gcd(rk) cℓ

)
ρ(0). (F.11)

and are labelled by the following set of indices

C =

{
(c1, . . . , cm) : ck ∈ Zŝk ,

m∑
k=1

gcd(rk) ck ∈ s0Z

}
. (F.12)

Thus, the indices are not free, but should satisfy a constraint. Taking this into account, the

total number of glue vectors equals

Ng =
r0
s0

m∏
k=1

ŝk. (F.13)

It is useful to note that since g
(k)
C ∈ D(rk) and g

(0)
C ∈ D(s), they should be particular cases of

the vector defined in (F.3). And indeed, it is easy to check that

g
(k)
C = µ̂(rk)(0, ck), g

(0)
C = µ̂(s)

(
ν,−

∑m
k=1 νk
κs0

)
, where νk = κ gcd(rk) ck. (F.14)

Let us now establish links to the sum over charges appearing in all anomaly equations of

this paper. First, we note that the vector µ̂ defined in (5.37) coincides with µ̂(r)
(
µ, ∆µ

κr0

)
from

(F.3) where the integer valuedness of the second argument is the usual condition imposed by

δ
(κr0)
∆µ (see, e.g., Theorem 5.1) and following from the condition

∑n
i=1 qi = µ + κr/2 in the

sum over D2-brane charges (see, e.g., (5.2)). This makes obvious the fact that (µ,µ), subject

to the above condition and the identification (µ,µ) ≃ (µ + r̂,µ + r̂), labels elements of the

discriminant group D(r). To see that the whole sum over D2-brane charges corresponds to the

sum over Λ(r), it is sufficient to identify

qi = κri

(
ki +

µ

κr
+

1

2

)
= κri

(
ϵi +

ρi∆µ

κr0

)
+ µi +

1

2
κri, (F.15)
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where ki = ϵi + µ̂
(r)
i

(
µ, ∆µ

κr0

)
, with ϵi ∈ Z, is the component of the vector k belonging to the

dual lattice (F.4). Due to the constraint on ∆µ, the expression in the round brackets in the

first term is an integer, so that qi ∈ κriZ+ µi + κri/2, as required. It also easy to check that

the identification (F.15) maps the quadratic form −Qn(γ̂) (2.11) to the one in (F.2).

Finally, we observe that the sum over ν in the anomaly equation for the anomalous coeffi-

cients or their refined version (see, e.g., (5.4)) is nothing but the sum over the glue vectors of the

lattice factorization (F.9). To see this explicitly, let us introduce another m-tuple (ρ̂1, . . . , ρ̂m)

such that
∑m

k=1 gcd(rk) ρ̂k = r0. It allows to take ρ =
∑m

k=1 ρ̂kρ
(k). Then it is straightforward

to verify that, identifying ck =
νk−

∑nk
i=1 µjk+i

κ gcd(rk)
− ρ̂k∆µ

κr0
, one gets the relation

µ̂+ gC = µ̂(s)
(
ν,

µ−
∑m

k=1 νk
κs0

)
+

m∑
k=1

µ̂(rk)
(
µ,

νk−
∑nk

i=1 µjk+i

κ gcd(rk)

)
, (F.16)

where the two vectors on the r.h.s. belong to D(s) and D(rk), respectively. This demonstrates

that the lattice factorization (F.9) gives rise to factors labelled by (µ,ν) and (νk,mk), as

expected. The ranges of summations over νk also agree, while the conditions restricting the

values of νk originating from (F.12) and the above identification, namely

µ−
m∑
k=1

νk ∈ κs0Z, νk −
nk∑
i=1

µjk+i ∈ κ gcd(rk)Z, (F.17)

in equations like (5.4) arise from the conditions on the sum over charges defining each of the

factors.

Let us apply what we have just shown to theta series. To this end, let

Φ(x) = Φ0(x
(0))

m∏
k=1

Φk(x
(k)), (F.18)

where the upper indices (0) and (k) on a vector denote its projections to Λ(s) and Λ(rk), re-

spectively. We also assume that theta series associated to lattices Λ(r) and labelled by (µ,µ)

implicitly contain the factor δ
(κr0)
∆µ . Then our result implies that

ϑµ,µ(τ,θz;Λ
(r),Φ, 0) =

(
m∏
k=1

κsk−1∑
νk=0

)
ϑµ,ν(τ,θ

(0)z;Λ(s),Φ0, 0)
m∏
k=1

ϑνk,mk
(τ,θ(k)z;Λ(rk),Φk, 0).

(F.19)

F.2 Basis expansion of glue vectors

Here we obtain an expansion of the glue vectors appearing in the lattice decompositions (5.31)

and (5.46) in the basis eλ = (e0, ei,α, v̂i,i+1, ûi,i+1). To this end, we note that the dual basis,

i.e. such that eλ ∗ e∗λ′ = δλλ′ , is given by

e∗0 = − 1

dr
e0, e∗i,α = gi,α − α

dri
gi,

v̂∗
i,i+1 =

1

r0κi

i∑
k=1

n∑
l=i+1

rklv̂kl, û∗
i,i+1 = − 1

4ϵr0κi

i∑
k=1

n∑
l=i+1

rklûkl,

(F.20)
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where we used the notation κi introduced in (5.23). Then evaluating the scalar products of

the vectors appearing in (5.34) with the dual basis, one finds the following expansions

g0 =
n−1∑
l=1

κr0
κl

(
l∑

j=1

n∑
k=l+1

r̂j r̂k(ρj − ρk)

)
ûl,l+1 +

1

r̂
e0,

gi,a =4−ϵa

[
n−1∑
l=i

1

κl

(
n∑

k=l+1

r̂k

)
ûl,l+1 −

i−1∑
l=1

1

κl

(
l∑

k=1

r̂k

)
ûl,l+1

]
+

a

dr
e0

− 1

dri

[
a∑

α=1

(dri − a)α ei,α +

dri−1∑
α=a+1

(dri − α) a ei,α

]
,

(F.21)

while for v̂ij and ûij, one gets

v̂ij =
rirj
rij

j−1∑
l=i

κr̂

κl

v̂l, l+1, ûij =
rirj
rij

j−1∑
l=i

κr̂

κl

ûl,l+1. (F.22)

F.3 Zero modes for two charges

In the case n = 2, (F.21) takes the form

g0 =
1

r̂
((ρ1 − ρ2)û12 + e0) , (F.23)

gi,a =
a

dr

(
(−1)i−1

r̂i
û12 + e0

)
− 1

dri

 a∑
α=1

(dri − a)α ei,α +

dri−1∑
α=a+1

(dri − α) a ei,α

 .

which leads to the dependence of the indices of theta series, ν and ν̃, on the glue vectors given

in (5.54).

Let us find a manifest description of the set of glue vectors ensuring the existence of zero

modes which is defined as

A(r)
0 (µ12) = {A : 2ϵν̃(A)− µ12 ∈ 2κ12Z}. (F.24)

Taking into account (5.54), explicitly the zero mode condition reads

2ϵκr0r̂1r̂2(ρ1 − ρ2)a0 + 2−ϵ (r̂2a1 − r̂1a2)− µ12 ∈ 2κ12Z. (F.25)

In the following, to treat the case ϵ = 0, we will have to distinguish two cases whether r̂ is even

or not. Therefore, we define ϵ′ = ϵδ
(2)
r̂ and ϵ′i = ϵδ

(2)
r̂i
. We then take ai ∈ [0, dri − 1] such that

ai = (−1)i−12ϵ+ϵ′κr0r̂1r̂2

{
µ12

2ϵ′κr0r̂1r̂2

}
ρ3−i + ℓr̂i + ϵ′i(1− ϵ′) 21+ϵ′κr0r̂1r̂2ε mod dri , (F.26)

where {x} denotes the fractional part of x, ℓ = 0, . . . , 4ϵκr0 − 1 and ε = 0, 2ϵ − 1. Note that

the last term is non-vanishing only for κ = 1, odd r̂ and even r̂i. We also observe that the

ℓ-dependent term cancels in (F.25) and the transformation ai → ai + dri induces a shift of

2−ϵ(r̂2a1 − r̂1a2) by ±2ϵκr0r̂1r̂2. Therefore, ai specified in (F.26) satisfy

2−ϵ(r̂2a1 − r̂1a2) = µ12 + 2ϵ
′
κr0r̂1r̂2m, m ∈ Z. (F.27)
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Substituting this into (F.25), one reduces the condition to

2ϵ−ϵ′(ρ1 − ρ2)a0 − 2−ϵ′ r̂n = m, n ∈ Z. (F.28)

Note that 2−ϵ′ r̂ is integer and, due to the possibility to rewrite the condition on ρi as (ρ1 −
ρ2)r̂1+ρ2r̂ = 1, one has gcd(ρ1−ρ2, r̂) = 1, which also implies that gcd(2ϵ−ϵ′(ρ1−ρ2), 2

−ϵ′ r̂) = 1.

Thus, if we restrict a0 to belong to the interval [0, r̂−1], for ϵ′ = 0 and givenm, there is a unique

pair (a0, n) satisfying (F.28), while for ϵ′ = 1 there are two such pairs (a0+
1
2
r̂ε, n+(ρ1−ρ2)ε),

ε = {0, 2ϵ−1}. Thus, the equations (F.26) and (F.28) encode 23ϵκr0 solutions to the condition

(F.25) parametrized by (ℓ, ε) and provide an explicit description of the set A(r)
0 (µ12).

F.4 Zero modes of maximal order

For n charges, the maximal order of zero modes is n − 1 and their set is determined by the

conditions wij ∗ k = 0 for all i, j and k ∈ Λ(r) + µ. In practice we work with the lattice

decompositions (5.31) and (5.46). Therefore, k can be replaced by k|| ∈ Λ(r)
|| + g

||
A + µ which is

expanded as in (5.80) with coefficients whose fractional parts are determined by the glue vectors

of the two decompositions, labelled by A = {a0, a1, . . . , an} and B = {bij, b̃ij}, respectively.
What we are interested in is the set of glue vectors for which the space of solutions to the

above conditions is non-empty.

To describe the resulting set, let us define ∆µ̂ = µ̂−2ϵ ˆ̃µ where µ̂ is the vector from (5.37),

while ˆ̃µ is the same vector with κ multiplied by 4ϵ and µ, µi replaced by µ̃, µ̃i computed in

(5.112). This latter vector can be seen as the projection of gA on Λ̃
(r)
. Using these definitions,

one finds that the components of ∆µ̂ have the following explicit expressions

∆µ̂i =
µi − 2−ϵai

κri
−

µ− 2−ϵ
∑n

j=1 aj

κr
+

2ϵr0a0
r

+

(
∆µ

κr0
− 2ϵa0

)
ρi. (F.29)

Then we summarize the main facts about the desired set in the following

Proposition F.1. The set of glue vectors of zero modes of maximal order can be characterized

by two sets of conditions:

1. the first specifies a set A(r)
0 of A indices and is independent of B:

∆µ̂i(A) ∈ Z, i = 1, . . . n; (F.30)

2. the second restricts B indices:

bij − 2ϵb̃ij = −cij(A) mod Nij, i < j − 1, (F.31)

where Nij is given in (F.7) and cij(A) are the coefficients in the expansion

∆µ̂(A) =
∑
i<j

cij(A) v̂ij, (F.32)

which is unique provided A ∈ A(r)
0 and cij(A) are required to be integers ranging from 0

to Nij − 1.
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Proof. Let k|| = λ + g
||
A + µ where λ = (λ, λ̃) ∈ Λ(r)

|| . Given the form of the null vectors wij

(5.20), the maximal order zero mode condition can be written as

vij · (λ− 2ϵλ̃+ µ̂− 2ϵ ˆ̃µ) = 0 for all i, j, (F.33)

where we used the bilinear form (5.13) and took into account that the bilinear form on Λ̃
(r)

differs by the factor −4ϵ. It is clear that the condition (F.33) is equivalent to

λ− 2ϵλ̃ = −∆µ̂, (F.34)

which in turn implies that ∆µ̂ ∈ Λ(r). Since the components (F.29) automatically satisfy the

condition
∑n

i=1 ri∆µ̂i = 0, the only remaining condition is that they must be integer. This is

precisely the condition (F.30) which provides the definition of the set A(r)
0 .

Next, each vector in (F.34) has a unique decomposition according to the lattice decom-

position in (5.46). In particular, λ = λ′ +
∑n

i,j=1
j−i>1

bijv̂ij and λ̃ = λ̃
′
+
∑n

i,j=1
j−i>1

b̃ijv̂ij where

λ′, λ̃
′ ∈ Span {v̂k,k+1}n−1

k=1 , while ∆µ̂ can be written as in (F.32) where cij with j − i > 1 play

the role of the glue vector indices. Then the second set of conditions (F.31) claimed by the

proposition is a direct consequence of (F.34).

Remark F.1. In fact, due to
∑n

i=1 ri∆µ̂i = 0, a stronger form of the condition (F.30) holds:

∆µ̂i ∈ gcd({r̂j}j ̸=i)Z. In particular, this should be taken into account to reproduce the condition

(F.25) in the n = 2 case.

Corollary F.1. Each pair (bij, b̃ij) contributes Nij solutions so that their total number is given

by (F.8) and is A-independent. As a result, if ∆
(r)
0 (A,B) is the Kronecker symbol implementing

the maximal zero mode condition, then

∑
B

∆
(r)
0 (A,B) =

r0
∏n−1

j=2 ri∏n−1
i=1 ri,i+1

δ
A∈A(r)

0
. (F.35)

Although Proposition F.1 gives a formula (F.31) for the B indices corresponding to the

zero modes, it does not tell us how to compute the coefficients cij encoding the solution. Let

us explain a simple recipe how this can be done. We start with the first component of the

expansion (F.32) multiplied by the factor r1n
r2::n

so that, according to Remark F.1, the result is

still an integer. It is found to be

r1n
r2::n

∆µ̂1 =
n∑

j=2

r1nrj
r1jr2::n

c1j =
rn
r2::n

c1n mod N1n, (F.36)

where we used the fact that all
r1nrj
r1jr2::n

with 2 ≤ j ≤ n− 1 are divisible by N1n, as follows from

its expression in (F.7). Furthermore, it is easy to see that gcd
(

rn
r2::n

, N1n

)
= 1. This implies

that there exist a1n, b1n ∈ Z such that a1n
rn
r2::n

+ b1nN1n = 1, i.e.

a1n
r1n
r2::n

∆µ̂1 = c1n mod N1n. (F.37)
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Then one subtracts the already found part of the expansion (F.32) from ∆µ̂ and repeats the

procedure, first by lowering the second index and then by raising the first index. Thus, to

determine cij, one chooses aij, bij ∈ Z such that aij
rj

ri+1::j
+ bijNij = 1 and uses the fact that

aij
rij

ri+1::j

(
∆µ̂i −

i−1∑
k=1

n∑
l=k+1

ckl (v̂kl)i −
n∑

l=j+1

cil (v̂kl)i

)

= aij

j∑
l=i+1

rijrl
rilri+1::j

cil = aij

(
rj

ri+1::j

cij mod Nij

)
= cij mod Nij.

(F.38)

G. Computations for three charges

G.1 Contributions with zero mode order equal 0 and 1

For three charges, the kernel of the theta series ϑ
(r)||
µ,A defined in (5.41) is given in (5.78) in

terms of γij. The scalar products xβ ∗ vij appearing in the kernel are given by the relation

(5.39). Similarly, we define for i < j

ωij =
1√
2τ2

wij ∗ xβ = wij ∗ k ,

ω
(β)
ij =

1√
2τ2

wij ∗ x = wij ∗ (k+ β)

= ωij +

{
2ϵκ(ri + rj)rirjβ, (ij) = (12), (23),

2ϵκ(r + r2)r1r3β, (ij) = (13).

(G.1)

For i > j, ωij and ω
(β)
ij are defined by applying the permutation i ↔ j to (G.1). More generally,

permutations leave k invariant and permute the indices of all vectors like vij and wij. Note

that the component of z along Λ(r) is proportional to θ (see (5.37)) defined in terms of the

vectors vij and therefore it is affected by the permutations so as β. This explains why ωij are

anti-symmetric, whereas this is not true for ω
(β)
ij as follows from the last line in (G.1). We also

have ωi+j,k = ωik + ωjk and similarly for ω
(β)
1+2,3 and ω

(β)
1,2+3. Using these properties, one can

write

Sym
{
ϑ
(r)||
µ,A (τ, z)

}
=

∑
k||∈Λ(r)

|| +g
||
A+µ

q−
1
2
k2
|| Sym

{
yγ1,2+3+γ23

[
1

3
δγ1,2+3δγ1+2,3

+
(
sgn(γ1,2+3)− sgn(ω

(β)
12 )
)(

sgn(γ1+2,3)− sgn(ω
(β)
23 )
)]

+ δω12ϕ
(κ12)(τ, r12z)

[
yγ1+2,3

(
sgn(γ1+2,3)− sgn(ω

(β)
1+2,3)

)
+ y−γ1+2,3

(
sgn(γ3,1+2)− sgn(ω

(β)
3,1+2)

)] 21+ϵκ12∑
η=1

δ γ12
r12

−η

}
,

(G.2)

where we applied the permutation 1 ↔ 3 to the last term in (5.78).
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Let us extract the contribution of vanishing zero mode order. It is given by the first two

lines in (G.2) where all ωij are non-vanishing. Under this condition, for small β one can replace

sgn(ω
(β)
ij ) by sgn(ωij) so that this term becomes

Sym

{
yγ1,2+3+γ23

[
1

3
δγ1,2+3δγ1+2,3 +

(
sgn(γ1,2+3)− sgn(ω12)

)(
sgn(γ1+2,3)− sgn(ω23)

)]}
.

(G.3)

We expand the product and apply the sign identity

sgn(x1) sgn(x2) = 1− δx1δx2 − sgn(x1 − x2) (sgn(x1)− sgn(x2)) (G.4)

to 1
3
of the terms with two γ’s and two ω’s. This results in

Sym

{
yγ1,2+3+γ23

[
2

3
sgn(γ1,2+3) sgn(γ1+2,3)−

1

3
sgn(γ1+3,2)

(
sgn(γ1,2+3)− sgn(γ1+2,3)

)
+
2

3
sgn(ω12) sgn(ω23) +

1

3
sgn(ω13)

(
sgn(ω12) + sgn(ω23)

)
(G.5)

− sgn(γ1,2+3) sgn(ω23)− sgn(ω12) sgn(γ1+2,3)

]}
,

where we used γ1,2+3 − γ1+2,3 = γ1+3,2 and r3ω12 + r1ω23 = r2ω13 following from (5.24). Then

we use the symmetrization to bring the products of sign functions in each line to a single

expression. This gives

Sym

{(
1

3
sgn(γ1,2+3) sgn(γ1+2,3) +

1

3
sgn(ω12) sgn(ω23)−

1

2
sgn(γ1,2+3) sgn(ω23)

)
×
(
yγ1,2+3 − y−γ1,2+3

)(
yγ23 − y−γ23

)}
.

(G.6)

This result makes it manifest that the contribution of vanishing zero mode order has a zero of

second order at z = 0.

Next, we consider zero mode contributions of order 1. They are characterized by vanishing

of only one of ωij’s. This will be indicated by insertion of the corresponding Kronecker symbol

δωij
, but we will omit the factors 1−δωjk

ensuring that other variables are non-vanishing. Thus,

the relevant contribution to (G.2) reads

Sym

{
yγ1,2+3+γ23

[
1

3
δγ1,2+3δγ1+2,3 (δω12 + δω23 + δω13)

+
(
sgn(γ1,2+3)− sgn(β)

)(
sgn(γ1+2,3)− sgn(ω23)

)
δω12

+
(
sgn(γ1,2+3)− sgn(ω12)

)(
sgn(γ1+2,3)− sgn(β)

)
δω23

+
(
sgn(γ1,2+3) + sgn(ω23)

)(
sgn(γ1+2,3)− sgn(ω23)

)
δω13

]
+ δω12

(
yγ1+2,3 − y−γ1+2,3

)(
sgn(γ1+2,3)− sgn(ω1+2,3)

)
ϕ(κ12)

21+ϵκ12∑
η=1

δ γ12
r12

−η

}
,

(G.7)
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where in the forth line we used that sgn(ω12) = − sgn(ω23) provided ω13 = 0. Then we use

the symmetrization to transform all δωij
to δω12 , and add and subtract a term proportional to

sgn(γ12), which is recombined with the terms coming from the second and third lines of (G.7).

Taking also into account that sgn(ω23) = sgn(ω1+2,3) provided ω12 = 0, we end up with the

following result

Sym

{
δω12

[
1

3

(
yγ1,2+3+γ23 + y−γ1,2+3−γ23 + yγ1,2+3−γ23

)
δγ1,2+3δγ1+2,3

+
(
yγ1,2+3+γ23 + y−γ1,2+3−γ23

) (
sgn(γ1+2,3)− sgn(ω23)

)(
sgn(γ1,2+3)− sgn(γ12)

)
+yγ1,2+3−γ23

(
sgn(γ1,2+3)− sgn(ω23)

)(
sgn(γ1+3,2) + sgn(ω23)

)
(G.8)

+
(
sgn(γ1+2,3)− sgn(ω1+2,3)

)((
yγ1+2,3 − y−γ1+2,3

)
ϕ(κ12)

21+ϵκ12∑
η=1

δ γ12
r12

−η

+yγ1+2,3+γ12
(
sgn(γ12)− sgn(β)

)
+ y−γ1+2,3−γ12

(
sgn(γ12) + sgn(β)

))]}
.

Expanding the product in the third line and applying the identity (G.4) to the product of two

sgn(γi+j,k), one finds that it is equal to

Sym
{
δω12 y

γ1,2+3−γ23
[(

sgn(γ1+2,3)− sgn(ω23)
)(

sgn(γ1+3,2)− sgn(γ1,2+3)
)
− δγ1,2+3δγ1+3,2

]}
.

(G.9)

The last term cancels the first line in (G.8) (to see this, one should use the vanishing condition

imposed by the Kronecker symbols and the symmetrization 1 ↔ 2), while the first term can

be combined with the second line in that equation and, after the same symmetrization and the

replacement of sgn(ω23) by sgn(ω1+2,3), gives

Sym

{
δω12

(
yγ1,2+3 − y−γ1,2+3

)(
yγ23 − y−γ23

)
×
(
sgn(γ1+2,3)− sgn(ω1+2,3)

)(
sgn(γ1,2+3)− sgn(γ12)

)}
.

(G.10)

Thus, this contribution also has a zero of second order at z = 0.

It remains to compute the contribution of the last two lines in (G.8), which after sym-

metrization takes the form

Sym

{
δω12

(
yγ1+2,3 − y−γ1+2,3

)(
sgn(γ1+2,3)− sgn(ω1+2,3)

)
×

(
ϕ(κ12)

21+ϵκ12∑
η=1

δ γ12
r12

−η + yγ12
(
sgn(γ12)− sgn(β)

))}
.

(G.11)

We observe that it factorizes into two parts: the second line depends only on γ12, while the

first line together with the factor q−
1
2
k2
|| can be shown to depend on γ12 only mod 21+ϵr12κ12.

Indeed, it is easy to verify that, provided ω12 = 0, the transformation k|| 7→ k|| + ŵ12 affects
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neither k2
||, nor the quantities appearing in the first line: ω12, ω1+2,3, γ1+2,3. On the other hand,

it maps γ12 → γ12 + 21+ϵr12κ12, which proves the claim. This means that, substituted into the

theta series, the contribution (G.11) is equivalent to

Sym

{
δω12

(
yγ1+2,3 − y−γ1+2,3

)(
sgn(γ1+2,3)− sgn(ω1+2,3)

)

×
21+ϵκ12∑
η=1

δ γ12
r12

−η

ϕ(κ12) +
∑
ℓ̃∈Z

(
sgn(η + 21+ϵκ12ℓ̃)− sgn(β)

)
yr12(η+21+ϵκ12ℓ̃)

}. (G.12)

The sum over ℓ̃ is identical to the one in (5.59) (where the sum over σ is equivalent to the

symmetrization with respect to 1 ↔ 2 in (G.12)). Thus, we can borrow the result (5.60), which

gives

Sym

{
δω12

(
yγ1+2,3 − y−γ1+2,3

)(
sgn(γ1+2,3)− sgn(ω1+2,3)

)
×

21+ϵκ12∑
η=1

δ γ12
r12

−η

(
ϕ(κ12) − y2

1+ϵr12κ12λ12 + y−21+ϵr12κ12λ12

y2ϵr12κ12 − y−2ϵr12κ12

)}
,

(G.13)

where λ12 is given by (5.61) with ν̃ replaced by 2−ϵη. Since ϕ(κ12) was chosen precisely to

cancel the pole coming from the geometric progression, the last bracket behaves as O(z) and

the contribution (G.13) has a zero of second order at z = 0. As a result, the same conclusion

applies to the total zero mode contribution of order 1 to the summand in (G.2), given by the

sum of (G.10) and (G.13).

G.2 The unrefined limit

We define the theta series appearing in (5.99) as

ϑ
(r)k
µ,A (τ) = lim

z→0

[
Sym

{
ϑ
(r)||
µ,A (τ, z)

}]
k

(y − y−1)2
, (G.14)

where [ · ]k denotes the contribution of zero mode order equal k. In particular, the kernel of

the contribution of vanishing order is given by (G.6), and the one of order 1 is given by the

sum of (G.10) and (G.13).

First, we represent the theta series (G.14) as a sum over the lattice Λ(r)
|| with the kernel

expressed through γij and ωij as in (G.2). One easily finds

ϑ
(r)0
µ,A (τ) =

∑
k||∈Λ(r)

|| +g
||
A+µ

∆
(r)

0 Sym

{
γ23γ1,2+3

(
1

3
sgn(γ1,2+3) sgn(γ1+2,3) +

1

3
sgn(ω12) sgn(ω23)

−1

2
sgn(γ1,2+3) sgn(ω23)

)}
q−

1
2
k2
|| , (G.15)

ϑ
(r)1
µ,A (τ) =

∑
k||∈Λ(r)

|| +g
||
A+µ

Sym

{
δω12(1− δω23)γ1,2+3

(
sgn(γ1+2,3)− sgn(ω1+2,3)

)
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×
[
γ23

(
sgn(γ1,2+3)− sgn(γ12)

)
+

2ϵr12
12

(
1− 12λ2

12 −
E2(τ)

21+2ϵκ12

) 21+ϵκ12∑
η=1

δ γ12
r12

−η

]}
q−

1
2
k2
|| ,

where the factor ∆
(r)

0 = (1 − δω12)(1 − δω23)(1 − δω13) implements the condition of vanishing

zero mode order. Note that in the first theta series the symmetrization over charges must

be implemented before performing the sum. The reason is that in the process of getting the

kernel that makes manifest the existence of a second order zero and allows to compute the

unrefined limit, the conditions of convergence ceased to be satisfied. This happened due to

the use of various permutations which spoiled the original structure of the kernel satisfying

Theorem C.1. Of course, one can do them backwards to recover the manifest convergence. We

omit the details of manipulations, which are similar to the ones in the previous subsection,

and present just the final result

ϑ
(r)0
µ,A (τ) =

1

6

∑
k||∈Λ(r)

|| +g
||
A+µ

∆
(r)

0 (1+σ13)

[
γ23γ1,2+3

(
sgn(γ1,2+3)−sgn(ω13)

)(
sgn(γ2,1+3)−sgn(ω23)

)]
q−

1
2
k2
|| ,

(G.16)

where σij denotes the permutation i ↔ j. Note that although the symmetry of this expression

under all permutations of charges is not manifest, it is actually symmetric being obtained from

a symmetrized expression. For the second theta series in (G.15) the issue of convergence is

absent since it is ensured by the kernel so that the symmetrization can be put outside the sum.

For computer evaluation it might be useful also to rewrite the above expressions as a sum

over an unconstrained lattice. To this end, we can substitute the expansion (5.80) of the lattice

vector and rewrite the sum over the lattice Λ(r)
|| as a sum over the coefficients ℓi and ℓ̃i at the

price of introducing new glue vectors B = {b13, b̃13}. This leads to more explicit, although

more cumbersome expressions:

ϑ
(r)0
µ,A (τ) =

r0
6
(1 + σ13)

∑
B

∑
ℓi∈Z+

νi
κi

∑
ℓ̃i∈Z+

ν̃i
κi

∆
(r)

0

[
r23κ1ℓ1(2κ23ℓ2 − κ123ℓ1)

(
sgn(ℓ1)− sgn

(
∆ℓ1
r12

+ ∆ℓ2
r23

))
×
(
sgn
(

r3
r23

ℓ2 − r1
r12

ℓ1

)
− sgn

(
r2+r3
r23

∆ℓ2 − r1
r12

∆ℓ1

))]
qκ12(4ϵℓ̃21−ℓ21)+κ23(4ϵℓ̃22−ℓ22)−κ123(4ϵℓ̃1ℓ̃2−ℓ1ℓ2),

ϑ
(r)1
µ,A (τ) = r0 Sym

{
κ1

∑
B

∑
ℓi∈Z+

νi
κi

∑
ℓ̃i∈Z+

ν̃i
κi

δ r1+r2
r12

∆ℓ1− r3
r23

∆ℓ2
(1− δ∆ℓ1) ℓ1

(
sgn(ℓ2)− sgn(∆ℓ2)

)
(G.17)

×
[
r23(2κ23ℓ2 − κ123ℓ1)

(
sgn(ℓ1)− sgn

(
r1+r2
r12

ℓ1 − r3
r23

ℓ2

))
+
2ϵr12
12

(
1− 12λ2

12 −
E2(τ)

21+2ϵκ12

)21+ϵκ12∑
η=1

δ2κ12ℓ1−κ123ℓ2−η

]
q

r0r2κ2
2(r1+r2)

(4ϵℓ̃22−ℓ22)

}
,

where ∆ℓi = ℓi − 2ϵℓ̃i. The variables νi and ν̃i determining the rational parts are given

in (5.81), and the factor implementing the condition of vanishing zero mode order reads as

∆
(r)

0 =
(
1− δ r1+r2

r12
∆ℓ1− r3

r23
∆ℓ2

)(
1− δ r2+r3

r23
∆ℓ2− r1

r12
∆ℓ1

)(
1− δ∆ℓ1

r12
+

∆ℓ2
r23

)
.
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H. Consistency of different solutions

H.1 Two charges

The solution (5.71) obtained using indefinite theta series can be compared with the one con-

structed in section 4.1 using Hecke-like operators. The consistency requires that their difference

is a VV modular form. To verify whether this is the case, let us write the function (5.71) as in

(4.2)

g(r1,r2)µ,µ1,µ2
= r0δ

(κr0)
∆µ Ǧ(κ;r1,r2)

µ12
(H.1)

and define

φ(κ)
r1,r2

(τ, z) =

2κ12−1∑
µ=0

(
Ǧ(κ;r1,r2)

µ (τ)−G(κ12)
µ (τ)

)
θ(κ12)
µ (τ, z), (H.2)

where G(κ) is given by (4.10) and θ
(κ)
µ (τ, z) is the theta series (C.7). The modularity condition

is equivalent to the requirement that φ
(κ)
r1,r2 is a Jacobi form of weight 2, index κ12 and trivial

multiplier system. Using Mathematica, for the choice a) in (5.18) of the vectors t(r), we have

found the following results for several low values of charges and κ:

φ
(1)
1,1(τ, z) =

7

5971968

E4(τ)E6(τ)

∆(τ)

(
E4(τ)φ0,1 + E6(τ)φ−2,1

)
− 11

3456
E4(τ)φ−2,1, (H.3a)

φ
(2)
1,1(τ, z) = −E4(τ)

2304
φ−2,1φ0,1, (H.3b)

φ
(3)
1,1(τ, z) =

1

9216

(
E4(τ)φ−2,1φ

2
0,1 + 2E6(τ)φ

2
−2,1φ0,1 + E2

4(τ)φ
3
−2,1

)
, (H.3c)

φ
(4)
1,1(τ, z) = φ

(2)
2,2(τ, z) =

1

497664

(
−5E4(τ)φ−2,1φ

3
0,1 + 14E6(τ)φ

2
−2,1φ

2
0,1

+7E2
4(τ)φ

3
−2,1φ0,1 + 2E4(τ)E6(τ)φ

4
−2,1

)
, (H.3d)

φ
(5)
1,1(τ, z) =

1

19906560

(
29E4(τ)φ−2,1φ

4
0,1 + 130E6(τ)φ

2
−2,1φ

3
0,1 + 195E2

4(τ)φ
3
−2,1φ

2
0,1

+116E4(τ)E6(τ)φ
4
−2,1φ0,1 +

(
112E2

6(τ)− 90E3
4(τ)

)
φ5
−2,1

)
, (H.3e)

φ
(6)
1,1(τ, z) =

1

597196800

(
−125E4(τ)φ−2,1φ

5
0,1 + 300E6(τ)φ

2
−2,1φ

4
0,1 −

3

2
E2

4(τ)φ
3
−2,1φ

3
0,1

+149E4(τ)E6(τ)φ
4
−2,1φ

2
0,1 −

(
2529

8
E3

4(τ)− 264E2
6(τ)

)
φ5
−2,1φ0,1

+
63

2
E2

4(τ)E6(τ)φ
5
−2,1

)
, (H.3f)

φ
(2)
1,2(τ, z) = − 1

71663616

(
19E4(τ)φ−2,1φ

5
0,1 + 30E6(τ)φ

2
−2,1φ

4
0,1 + 74E2

4(τ)φ
3
−2,1φ

3
0,1

+148E4(τ)E6(τ)φ
4
−2,1φ

2
0,1 + 99E3

4(τ)φ
5
−2,1φ0,1 + 14E2

4(τ)E6(τ)φ
5
−2,1

)
, (H.3g)

while for the choice b) in (5.18), we have

φ
(6)
1,1(τ, z) =

1

1194393600

(
−1250E4(τ)φ−2,1φ

5
0,1 + 12600E6(τ)φ

2
−2,1φ

4
0,1 − 19487E2

4(τ)φ
3
−2,1φ

3
0,1

+259558E4(τ)E6(τ)φ
4
−2,1φ

2
0,1 −

(
23409

4
E3

4(τ) + 851952E2
6(τ)

)
φ5
−2,1φ0,1
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+9457E2
4(τ)E6(τ)φ

5
−2,1

)
. (H.4)

Here we used the standard Jacobi forms defined in [25]

∆(τ) = η24(τ) =
E3

4(τ)− E2
6(τ)

1728
,

φ−2,1 (τ, z) =
θ21(τ, z)

η6(τ)
,

φ0,1 (τ, z) = 4

(
θ2(τ, z)

2

θ2(τ)2
+

θ3(τ, z)
2

θ3(τ)2
+

θ4(τ, z)
2

θ4(τ)2

)
,

(H.5)

and θ2, θ3, θ4 are the Jacobi theta functions. All functions in (H.3) and (H.4) have the right

weight and index, so that the two solutions are indeed mutually consistent.

H.2 Three unit charges

Here we compare the solution (5.99) for three charges specified to the case ri = κ = 1 with

the one given by the normalized generating function of SU(3) VW invariants on P2 (4.23). An

explicit expression for this generating function can be found, e.g., in [71, §A]. For convenience
of the reader we copy it here. Let T3(τ) = Θ

(3)
0 (τ, 0) be the theta series associated with the A2

lattice and

S1,µ(k; q) =
(−1 + E2(τ))(k − µ+ 1)

2(1− q3k−µ)
+

9(k − µ)2 + 33(k − µ) + 31− E2(τ)

2(1− q3k−µ)2

− 15(k − µ) + 34

(1− q3k−µ)3
+

19

(1− q3k−µ)4
,

S2(A,B; q) =
4qB

(1− qA)(1− qB)3
+

4qA

(1− qA)3(1− qB)
+

4

(1− qA)(1− qB)2

− 2(A+B + 1)qB

(1− qA)(1− qB)2
− 2(A+B + 1)qA

(1− qA)2(1− qB)
+

(A+B − 2)2 − 8

2(1− qA)(1− qB)
.

(H.6)

Then the normalized generating function has the following components

g3,0 =
1

T3(τ)

[
13

240
+

1

24
E2 (τ) +

1

72
E2 (τ)

2 +
1

720
E4 (τ)−

9

2

∑
k∈Z

k2q3k
2

+
1

6

∑
k1,k2∈Z

(k1 + 2k2)
2qk

2
1+k22+k1k2 +

∑
k∈Z
k ̸=0

S1,0(k; q)q
3k2

+
∑

k1,k2∈Z
2k1+k2 ̸=0, k2 ̸=k1

S2(2k1 + k2, k2 − k1; q)q
k21+k22+k1k2+2k1+k2

]
,

g3,±1 =
1

T3(τ)

[∑
k∈Z

S1,1(k; q)q
3k2− 1

3 +
∑

k1,k2∈Z
2k1+k2 ̸=1, k2 ̸=k1

S2(2k1 + k2 − 1, k2 − k1; q)q
k21+k22+k1k2− 1

3

]
.

(H.7)

In contrast to the case of two charges, the difference of two solutions for three charges

should not be modular. Instead, taking the difference of two anomaly equations, one finds that

δĝ(1,1,1)µ = δg(1,1,1)µ + 2
∑
ν

R̃(1,2)
µ,ν δg(1,1)ν , (H.8)

– 71 –



where δg
(··· )
µ denotes the difference of two solutions. The non-holomorphic function R̃

(1,2)
µ,ν has

a modular anomaly opposite to the one of the anomalous coefficient g
(1,2)
µ,ν . This implies that

the function

φ
(1)
1,1,1(τ, z; t) =

2∑
µ=0

(
δg(1,1,1)µ (τ)− 2

1∑
ν=0

g(1,2)µ,ν (τ)δg(1,1)ν (τ)

)
Θ(3)

µ (τ, z; t), (H.9)

where Θ
(3)
µ is the theta series for the A2 lattice defined in (5.45), must be a Jacobi form of

weight 4, index t2/2 and trivial multiplier system, for any vector t. In our case δg
(1,1,1)
µ is the

difference between (5.99) and 1
9
g3,µ, δg

(1,1)
µ is the difference of (5.71) and 1

3
g2,µ = Hµ, and g

(1,2)
µ,ν

is the solution (5.71) specialized to (r1, r2) = (1, 2) and κ = 1. Using Mathematica, for the

choice a) in (5.18) of the vectors t(r) and for t equal to any of the three vectors: (1,−1, 0),

(0, 1,−1) or (1, 0,−1), we have found that

φ
(1)
1,1,1(τ, z; t) =

1

156031757844480∆(τ)2

[(
34638E4(τ)

6E6(τ)− 82938E4(τ)
3E6(τ)

3 (H.10)

+21840E6(τ)
5
)
φ−2,1 +

(
22559E4(τ)

7 − 99247E4(τ)
4E6(τ)

2 + 40428E4(τ)E6(τ)
4
)
φ0,1

]
,

which is indeed a Jacobi form of the right weight and index. We have checked that the same

conclusion holds also for t = (1, 1,−2) and t = (2, 0,−2). These checks confirm the consistency

of the two solutions.

I. Expansion of anomalous coefficients for small charges

In this appendix we provide explicit q-series of the anomalous coefficients for a few sets of

small charges. For two charges, the result is presented in terms of the VV function r0Ǧ
(κ; r1,r2)
µ12

introduced in (H.1) since it efficiently encodes independent components of the anomalous

coefficients. The index µ12 is related to the indices of g
(r1,r2)
µ,µ1,µ2 via (D.24) and takes 2κ12 values.

Howveer, the symmetry µ12 → −µ12 reduces the number of independent components to κ12+1.

For three charges, we present directly the non-vanishing components of g
(κ; r1,r2,r3)
µ,µ1,µ2,µ3 where we

added κ to the set of charges to distinguish different cases.

Ǧ
(1;1,1)
0 =q−1

(
7

497664
− 7573

82944
q− 11993

3456
q2 − 6147187

15552
q3 − 417892013

20736
q4 − 2669990303

4608
q5

−3236466331
288

q6 − 141840373163
864

q7 − 106915932005927
55296

q8 + · · ·
)
,

Ǧ
(1;1,1)
1 =q−1/4

(
247

62208
+ 2441

2592
q− 685847

6912
q2 − 60354863

7776
q3 − 1794183169

6912
q4 − 4761308023

864
q5

−890009700749
10368

q6 − 688179765559
648

q7 − 25273195362785
2304

q8 + · · ·
)
,

(I.1)

Ǧ
(1;2,1)
0 = q−1

(
23

248832
− 588457

2903040
q− 4374197

181440
q2 − 1405439843

435456
q3 − 45080954077

241920
q4 − 18356399752001

2903040
q5

−326985343617523
2177280

q6 − 1998756778032397
725760

q7 − 13340225185984769
322560

q8 + · · ·
)
,

Ǧ
(1;2,1)
1 = q−13/12

(
7

559872
+ 254521

19595520
q + 21208469

19595520
q2 − 2141274337

3265920
q3 − 436455080941

9797760
q4 − 8043883306813

6531840
q5

−70596332554177
3919104

q6 − 289466108764979
2799360

q7 + 307669392722141
181440

q8 + · · ·
)
, (I.2)

Ǧ
(1;2,1)
2 = q−4/3

(
5

4478976
+ 12343

2612736
q + 20174263

39191040
q2 − 22053267949

78382080
q3 − 578517733229

39191040
q4 − 678670136857

2449440
q5
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−223277357377
1632960

q6 + 754932817919599
6531840

q7 + 2198602487769755
653184

q8 + · · ·
)
,

Ǧ
(1;2,1)
3 = q−3/4

(
221

725760
+ 12463

72576
q− 37963483

2177280
q2 − 863218933

362880
q3 − 3226760741

20160
q4 − 6663319581967

1088640
q5

−38738609259101
241920

q6 − 115345074567433
36288

q7 − 110739444675550361
2177280

q8 + · · ·
)
,

2 Ǧ
(1;2,2)
0 =q−2

(
5

60466176
+ 761731

9876142080
q− 5964113

20995200
q2 − 2481864301319

74071065600
q3 − 2872361748037

411505920
q4

− 2209512975931771
2743372800

q5 − 41509779007262023
617258880

q6 − 49227475374711403543
12345177600

q7

−19464785233233206843
114307200

q8 + · · ·
)
,

2 Ǧ
(1;2,2)
1 =q−9/8

(
277841

8230118400
+ 1059416423

74071065600
q + 74795669047

24690355200
q2 − 1801948967597

1371686400
q3

− 16603156407869
55987200

q4 − 416033291771649169
12345177600

q5 − 2105420048303835229
914457600

q6

−313599714564738170867
2962842624

q7 − 88220836719674177597447
24690355200

q8 + · · ·
)
,

2 Ǧ
(1;2,2)
2 =q−1/2

(
39977803

14814213120
+ 3589837921

6172588800
q + 129752549

5443200
q2 − 22102735798051

1543147200
q3

− 114275375877392837
24690355200

q4 − 936409392998996809
2057529600

q5 − 4796069474036495173
188956800

q6

−1501044707018652100451
1543147200

q7 − 77342357414981744924971
2743372800

q8 + · · ·
)
,

(I.3)

Ǧ
(1;3,1)
0 = q−2

(
47

318504960
+ 4247129

45984153600
q− 68036588023

183936614400
q2 − 55422609269

696729600
q3 − 337075127071841

26276659200
q4

−5507214757771
4490640

q5 − 7981897203311365099
91968307200

q6 − 1110685079693008997
239500800

q7 − 17226825559762052679301
91968307200

q8 + · · ·
)
,

Ǧ
(1;3,1)
1 = q−25/24

(
3981871

55180984320
+ 2648895629

137952460800
q + 41222942111

13138329600
q2 − 285856288266173

91968307200
q3 − 2814997287076607

5109350400
q4

−1347624999852051079
25082265600

q5 − 935913250177725865183
275904921600

q6 − 20586251240400924448327
137952460800

q7

−270196785882281507783201
55180984320

q8 + · · ·
)
,

Ǧ
(1;3,1)
2 = q−7/6

(
2971

107775360
+ 5544628433

551809843200
q + 115442040149

13795246080
q2 + 23452076233427

68976230400
q3 − 61420667950261

638668800
q4

−5663089816965736121
275904921600

q5 − 9916439642198445779
5748019200

q6 − 2995144716151528141301
34488115200

q7

−37830819493668472285
12317184

q8 + · · ·
)
,

Ǧ
(1;3,1)
3 = q−11/8

(
19

2949120
+ 738683593

91968307200
q− 2206279697

2874009600
q2 − 31913899958429

91968307200
q3 − 1052975439005939

18393661440
q4

−870826166392452223
91968307200

q5 − 24710897250831165317
30656102400

q6 − 3872950410038690100437
91968307200

q7

−17796943645723753462087
11496038400

q8 + · · ·
)
, (I.4)

Ǧ
(1;3,1)
4 = q−2/3

(
398074393

220723937280
+ 7709928847

19707494400
q− 1124847101051

110361968640
q2 − 56937410997937

3284582400
q3 − 1198914724901166557

367873228800
q4

−3539458767899738927
12541132800

q5 − 8440035595252062897707
551809843200

q6 − 4516265260602369778967
7664025600

q7

−16911256238023424894329
973209600

q8 + · · ·
)
,

Ǧ
(1;3,1)
5 = q−25/24

(
1507663

55180984320
+ 8390729309

137952460800
q + 138045501791

13138329600
q2 − 108275799214493

91968307200
q3 − 6633302879487181

15328051200
q4

−1253534988377466919
25082265600

q5 − 914235335203953688063
275904921600

q6 − 20417088939750658199287
137952460800

q7

−269351350642042364835521
55180984320

q8 + · · ·
)
,

Ǧ
(1;3,1)
6 = q−3/2

(
11

159252480
+ 47213977

22992076800
q +

24794030699q1/2

22992076800
q2 − 107364499601

821145600
q3 − 3501922956080341

183936614400
q4

−100084012971526063
22992076800

q5 − 286767755453058307
656916480

q6 − 52241700229979368001
2090188800

q7

−2134111773571338037187
2189721600

q8 + · · ·
)
,
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Ǧ
(2;1,1)
0 = − 17

128
− 113

72
q− 4139

64
q2 − 4249

4
q3 − 3279635

288
q4 − 370057

4
q5 − 9852609

16
q6

− 63375745
18

q7 − 1142163379
64

q8 + · · · ,

Ǧ
(2;1,1)
1 =q−1/8

(
1

288
+ 47

32
q + 1369

32
q2 + 109447

144
q3 + 274299

32
q4 + 575603

8
q5 + 15679485

32
q6

+91227113
32

q7 + 234427805
16

q8 + · · ·
)
,

Ǧ
(2;1,1)
2 =q−1/2

(
1

2304
+ 5

16
q− 281

32
q2 − 9563

36
q3 − 913121

256
q4 − 531815

16
q5 − 70096291

288
q6

−5984707
4

q7 − 2056205767
256

q8 + · · ·
)
,

(I.5)

Ǧ
(2;2,1)
0 = − 6775

20736
− 7157

576
q− 361297

768
q2 − 46696309

5184
q3 − 600613969

5184
q4 − 329780519

288
q5

− 12090114491
1296

q6 − 169489988459
2592

q7 − 467398870843
1152

q8 + · · · ,

Ǧ
(2;2,1)
1 =q−1/24

(
65

5184
+ 6353

864
q + 1386517

5184
q2 + 27324275

5184
q3 + 87346705

1296
q4 + 3384145273

5184
q5

+26915024329
5184

q6 + 46072770397
1296

q7 + 559857514087
2592

q8 + · · ·
)
,

Ǧ
(2;2,1)
2 =q−1/6

(
7

2592
− 319

2304
q− 178241

5184
q2 − 793715

1728
q3 − 470705

2592
q4 + 5047214

81
q5

+2610260809
2592

q6 + 13190202073
1296

q7 + 718155005
9

q8 + · · ·
)
,

Ǧ
(2;2,1)
3 =q−3/8

(
11

5184
+ 8129

5184
q + 3797

144
q2 − 84545

5184
q3 − 44772229

5184
q4 − 98195357

576
q5

−10553330059
5184

q6 − 94932443735
5184

q7 − 78048945335
576

q8 + · · ·
)
,

Ǧ
(2;2,1)
4 =q−2/3

(
7

41472
+ 3869

10368
q− 77077

3456
q2 − 652597

1296
q3 − 2914033

648
q4 − 81599053

5184
q5

+2596870511
20736

q6 + 4497526727
1728

q7 + 180081086629
6912

q8 + · · ·
)
,

Ǧ
(2;2,1)
5 =q−1/24

(
281
5184

+ 5093
864

q + 1358437
5184

q2 + 27265307
5184

q3 + 87314575
1296

q4 + 3383929057
5184

q5

+26914617169
5184

q6 + 46072612447
1296

q7 + 559856986399
2592

q8 + · · ·
)
,

Ǧ
(2;2,1)
6 =q−1/2

(
55

20736
+ 649

576
q− 228775

5184
q2 − 2115335

1296
q3 − 65662657

2304
q4 − 1760666641

5184
q5

−16293026827
5184

q6 − 3481650799
144

q7 − 1113729358001
6912

q8 + · · ·
)
,

(I.6)

Ǧ
(3;1,1)
0 = −13

96
+ 71

48
q + 103

16
q2 + 139

8
q3 + 2243

48
q4 + 104q5 + 3693

16
q6 + 3667

8
q7 + 14403

16
q8 + · · · , (I.7)

Ǧ
(3;1,1)
1 = q−1/12

(
− 1

64
+ 27

32
q + 211

64
q2 + 139

16
q3 + 179

8
q4 + 1585

32
q5 + 6979

64
q6 + 6993

32
q7 + 27263

64
q8 + · · ·

)
,

Ǧ
(3;1,1)
2 = q2/3

(
− 1

32
− 13

16
q− 157

32
q2 − 233

16
q3 − 309

8
q4 − 677

8
q5 − 2925

16
q6 − 355q7 − 10867

16
q8 + · · ·

)
,

Ǧ
(3;1,1)
3 = q1/4

(
− 5

96
− 37

32
q− 611

96
q2 − 641

32
q3 − 869

16
q4 − 3991

32
q5 − 25955

96
q6 − 4341

8
q7 − 16719

16
q8 + · · ·

)
,

Ǧ
(4;1,1)
0 =− 25891

124416
− 45463

5184
q− 852205

1296
q2 − 32943085

1296
q3 − 13379780347

20736
q4 − 46060126277

3888
q5

− 12147774365
72

q6 − 158959400096
81

q7 − 66913439964953
3456

q8 + . . . ,

Ǧ
(4;1,1)
1 =q−1/16

(
− 37

7776
+ 743

144
q + 186041

432
q2 + 49307035

2592
q3 + 250278505

486
q4 + 25390442633

2592
q5

+1109071859713
7776

q6 + 2183125435445
1296

q7 + 21784639784605
1296

q8 + . . .
)
,

Ǧ
(4;1,1)
2 =q−1/4

(
247

62208
+ 2441

2592
q− 685847

6912
q2 − 60354863

7776
q3 − 1794183169

6912
q4 − 4761308023

864
q5

−890009700749
10368

q6 − 688179765559
648

q7 − 25273195362785
2304

q8 + . . .
)
,

Ǧ
(4;1,1)
3 =q−9/16

(
5

7776
+ 667

2592
q + 9853

7776
q2 + 4114013

2592
q3 + 208989733

2592
q4 + 16164572585

7776
q5

+31419487859
864

q6 + 78893525585
162

q7 + 41486136304309
7776

q8 + . . .
)
,

Ǧ
(4;1,1)
4 =q−1

(
7

248832
+ 793

31104
q + 2371

1296
q2 − 1033957

7776
q3 − 51449111

3456
q4 − 2662533095

5184
q5

−10331116165
972

q6 − 68953726973
432

q7 − 157973370319477
82944

q8 + . . .
)
,

(I.8)
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Ǧ
(6;1,1)
0 = − 465535

1769472
− 525963

25600
q− 4385292809

1638400
q2 − 43459913743

230400
q3 − 95409288460249

11059200
q4 − 716734134057

2560
q5

−19031436950174249
2764800

q6 − 46566304858176491
345600

q7 − 357424842056971557
163840

q8 + . . .

Ǧ
(6;1,1)
1 = q−1/24

(
− 128371

5529600
+ 40650107

3686400
q + 2207272423

1228800
q2 + 799482612769

5529600
q3 + 15579841901093

2211840
q4

+3410305584319
14400

q5 + 16460186000332049
2764800

q6 + 130847802327022001
1105920

q7 + 793328412584550589
409600

q8 + . . .
)

Ǧ
(6;1,1)
2 = q−1/6

(
1052509

176947200
+ 209941

138240
q− 5204324219

11059200
q2 − 2193309727

34560
q3 − 67263775905863

17694720
q4 − 49340829606167

345600
q5

−1416482503757447
368640

q6 − 6909229953035321
86400

q7 − 239502419541351089947
176947200

q8 + . . .
)

Ǧ
(6;1,1)
3 = q−3/8

(
3059

1228800
+ 1240819

2211840
q + 6103987

409600
q2 + 40005301093

2764800
q3 + 14584022769029

11059200
q4 + 12408048600401

204800
q5

+2031688897405031
1105920

q6 + 14301651369906251
345600

q7 + 30365831720828173
40960

q8 + . . .
)

(I.9)

Ǧ
(6;1,1)
4 = q−2/3

(
13157

29491200
+ 202109

1382400
q + 117034913

22118400
q2 − 13051427

10800
q3 − 51184196269

184320
q4 − 4080532598711

230400
q5

−28426573177934497
44236800

q6 − 748741181058329
46080

q7 − 13975691481395331721
44236800

q8 + . . .
)

Ǧ
(6;1,1)
5 = q−25/24

(
19

442368
+ 204533

11059200
q + 12303371

11059200
q2 − 176760667

2764800
q3 + 115535286821

3686400
q4 + 19874511607

5760
q5

+1786765849460017
11059200

q6 + 52850388569884871
11059200

q7 + 76411388946994309
737280

q8 + . . .
)

Ǧ
(6;1,1)
6 = q−4/2

(
11

7077888
+ 877

691200
q + 108537

409600
q2 + 1579361

172800
q3 − 42904604779

35389440
q4 − 10934623253

25600
q5

−315649065581971
11059200

q6 − 178841598736999
172800

q7 − 8452543304385033
327680

q8 + . . .
)
,

g
(1;1,1,1)
0 = q−1

(
− 307

53084160
+ 248189

10616832
q + 19861423

8847360
q2 + 53650187

737280
q3 + 1952990383

8847360
q4 − 1384556270653

17694720
q5

−5992150958009
1769472

q6 − 36863885478071
442368

q7 − 5287836198627985
3538944

q8 + · · ·
)
, (I.10)

g
(1;1,1,1)
1 = q−4/3

(
− 67

8599633920
+ 621023

4299816960
q + 145699391

1074954240
q2 − 9013190993

859963392
q3 − 4987262966201

4299816960
q4

−29007521629433
537477120

q5 − 779386701680657
537477120

q6 − 56215493359702901
2149908480

q7 − 49271213570980177
143327232

q8 + · · ·
)
,

g
(1;2,1,1)
0,0 = q−2

(
− 17

6449725440
− 767269

13544423424
q + 112089181661

1015831756800
q2 + 1043317980281

56435097600
q3 + 27231789142567

48372940800
q4

−9482261170891493
253957939200

q5 − 96727150075903997
20316635136

q6 − 35202935902746029581
126978969600

q7 − 1159782609474435130523
101583175680

q8 + . . .
)

g
(1;2,1,1)
0,1 = q−3/4

(
− 131899

9069926400
+ 9311573

220449600
q− 3649155569

21163161600
q2 − 1965367009399

661348800
q3 − 583179799365883

1984046400
q4

−1301972583520723
75582720

q5 − 7019402825382382613
9069926400

q6 − 56099092574472434849
1984046400

q7 − 308436599879131398913
362797056

q8 + . . .
)

g
(1;2,1,1)
1,0 = q−11/8

(
− 631

1074954240
+ 1410085567

1015831756800
q + 16470146659

28217548800
q2 − 19337664631871

338610585600
q3 − 8998136290013387

1015831756800
q4

−696106138300623817
1015831756800

q5 − 8514447105692797999
203166351360

q6 − 2131628379429727232249
1015831756800

q7 − 4631805605272789952699
56435097600

q8 + . . .
)

g
(1;2,1,1)
1,1 = q−9/8

(
352537

507915878400
+ 113751559

18811699200
q + 34152804511

24186470400
q2 − 17760737685259

42326323200
q3 − 2380349828670577

56435097600
q4

−62194762125935
2418647040

q5 − 67386472957097802719
507915878400

q6 − 982660446399115373719
169305292800

q7 − 11579230105257202681697
56435097600

q8 + . . .
)

g
(1;2,1,1)
2,0 = q−3/2

(
− 253

29023764480
+ 4062503

18811699200
q + 197690483

846526464
q2 − 1374141989333

31744742400
q3 − 153753168177467

37623398400
q4 (I.11)

−5101538961903499
24186470400

q5 − 846083267062775029
63489484800

q6 − 3977241004532831147
4534963200

q7 − 222532070896474737197
5290790400

q8 + . . .
)

g
(1;2,1,1)
2,1 = q−5/4

(
− 1

1866240
+ 24730109

10581580800
q + 2530558951

15872371200
q2 − 510086582701

3527193600
q3 − 160843599445

70543872
q4

+1902396378056567
31744742400

q5 − 5180315221699661
317447424

q6 − 7375174671318611383
3968092800

q7 − 3036698723644858704937
31744742400

q8 + . . .
)

g
(1;2,1,1)
3,0 = q−11/8

(
− 631

1074954240
+ 1410085567

1015831756800
q + 16470146659

28217548800
q2 − 19337664631871

338610585600
q3 − 8998136290013387

1015831756800
q4

−232035378553067779
338610585600

q5 − 2838149068202368037
67722117120

q6 − 710542834607711853043
338610585600

q7 − 41686249629140403636691
507915878400

q8 + . . .
)

g
(1;2,1,1)
3,1 = q−9/8

(
352537

507915878400
+ 113751559

18811699200
q + 34152804511

24186470400
q2 − 17760737685259

42326323200
q3 − 2380349828670577

56435097600
q4
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−230350970736869
89579520

q5 − 22462157789819916613
169305292800

q6 − 2947981349665353464437
507915878400

q7 − 104213053588139844142793
507915878400

q8 + . . .
)
,

g
(2;1,1,1)
0,0,0,0 = 62959

1658880
+ 226289

207360
q + 9809837

552960
q2 + 13343

69120
q3 − 2629441427

829440
q4

− 20201197
360

q5 − 85538444479
138240

q6 − 36356182001
6912

q7 − 2584999288199
69120

q8 + · · ·

g
(2;1,1,1)
0,1,1,0 =q−1/2

(
− 73

995328
+ 6793

829440
q + 1989169

829440
q2 + 24402883

497664
q3 + 759624757

1658880
q4

+662585173
829440

q5 − 17919291181
497664

q6 − 501969016519
829440

q7 − 3398716509241
552960

q8 + · · ·
)

g
(2;1,1,1)
1,1,0,0 =q−1/6

(
101

995328
+ 824453

4976640
q + 476039

207360
q2 + 54842903

829440
q3 + 2494364191

1658880
q4

+26617621331
1244160

q5 + 110997670277
497664

q6 + 1163782557059
622080

q7 + 33182101157969
2488320

q8 + · · ·
)

g
(2;1,1,1)
1,1,1,1 =q−2/3

(
− 23

9953280
+ 16607

1244160
q− 284833

995328
q2 − 4913885

124416
q3 − 1967897171

2488320
q4

−1152163793
124416

q5 − 378680060593
4976640

q6 − 97855125631
207360

q7 − 5549175976751
2488320

q8 + · · ·
)
.

(I.12)

J. Index of notations

In most of the paper we use boldface letters to denote vectors consisting of n or n − 1 com-

ponents, the blackboard script for the extended lattice as well as for generic d-dimensional

lattices and their vectors, the sans-serif script for glue vectors, and the mathfrak script for

vectors with nk components resulting from the decomposition n =
∑m

k=1 nk and for the vectors

t
(r)
α determining the dependence on the refinement parameters.

Symbol Description
Appears or
defined in

A = {a0, a1, . . . , an} glue vector indices for the lattice decomposition (5.31) (5.34)

A(r)
0 set of glue vectors of the lattice decomposition (5.31)

corresponding to the maximal order zero modes

(F.30)

β = − Im (z)/τ2 real variable parametrizing z (5.2)

β = − Im (z)/τ2 real vector parametrizing z (C.1)

b2 = b2(Y) second Betti number of Y p.2

B = {bij, b̃ij} self-glue vector indices induced by the basis (5.46) below (5.80)

c2 the second Chern class of Y (2.4)

cr coefficient of the leading pole of the modular ambiguity (5.124)

C = {ck} glue vector indices for the lattice decomposition (F.9) (F.12)

δ
(n)
x mod-n Kronecker delta symbol (4.3)

dr dimension of the lattice extension factor Zdr associated

to charge r

(5.17)

D(r),D
(r)
|| discriminant groups of the lattices Λ(r), Λ(r)

|| §F.1, §5.6.1
D(n)

m differential operator on Jacobi forms (A.5)

DΘ
(N)
a (τ ; t) modular derivative of the AN−1 lattice theta series (5.70)

∆
(r)
0 (A,B) Kronecker symbol ensuring the maximal order zero

mode condition

(5.116)

em weights of degenerate charge configurations (5.108)

e0, ei,α basis vectors of Λ(r)
⊥ (5.27)
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En(τ) Eisenstein series (A.3), §H
En(M; u) generalized error function on Rn (D.1)

En = E (0)
n + E (+)

n function encoding the modular completion (D.10)

ϕ̌
(r)
µ,µ(τ, z, z) modular ambiguity of anomalous coefficients (5.101)

ϕ
(r)
ν (τ, z) Jacobi-like form encoding the modular ambiguity (5.101)

ΦE
n ({vi};x) boosted error function (D.2)

Φ E
n (x) kernel corresponding to the function En (D.7)

Φ(r)(x; {F (s)}) kernel of the theta series representing ǧ
(r)ref
µ,µ (5.105)

Φ
(r)
δ (x, τ, z) kernel representing the modular ambiguity ϕ

(r)
ν (5.103)

F (r)(x) theta series kernel encoding Φ(r) (5.107)

γ = (p0, r, q, q0) charge vector of a generic D6-D4-D2-D0 bound state p.5

γ̂ = (r, q) reduced charge vector (2.9)

γ̂ = (γ̂1, . . . , γ̂n) vector of reduced charges (2.9)

γij Dirac-Schwinger-Zwanziger product (2.10)

g
(r)
µ,µ(τ) anomalous coefficient Thm 3.1

g
(r)ref
µ,µ (τ, z) refined anomalous coefficient (5.4)

ǧ
(r)ref
µ,µ (τ, z, z) auxiliary anomalous coefficient associated to the ex-

tended lattice

(5.8)

ĝ
(r)
µ,µ, ĝ

(r)ref
µ,µ , ̂̌g(r)refµ,µ modular completions for various versions of anomalous

coefficients

(3.3)

gn,µ(τ) normalized generating function of SU(n) VW invariants

on P2

(4.20)

gA glue vectors for the lattice decomposition (5.31) (5.34)

G
(κ)
µ , Ǧ

(κ;r1,r2)
µ vectorial versions of the anomalous coefficient for two

charges

(4.2), (H.1)

G(d)
µ (τ) seed functions for the mock modular forms of optimal

growth

(4.10)

hr,µ(τ) generating function of D4-D2-D0 BPS indices (rank 0

DT invariants)

(2.5)

ĥr,µ(τ) modular completion of hr,µ(τ) (2.8)

h̃r,µ(τ) redefined version of hr,µ(τ) (2.12)

h̃
(an)
r,µ (τ) anomalous part of h̃r,µ(τ) (3.1)

h̃
(0)
r,µ(τ) modular ambiguity in h̃r,µ(τ) (3.1)

I(r)
ν (z) maximal order zero mode contribution to ϑ

(r)||
µ,A (5.116)

jk labels appearing in anomaly equations (3.4)

κ intersection number of CY (2.1)

κi, κij, κijk κ rescaled by magnetic charges ri (5.23)

k summation variable for theta series (C.1)

Λ(r) lattice of D2-brane charges of constituents (5.12)

Λ̃
(r)

sublattice of Λ(r)
|| isomorphic to Λ(r) (5.25)

Λ(r) extended lattice (5.14)

Λ(r)
|| sublattice of Λ(r) containing null-vectors (5.25)
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Λ(r)
⊥ sublattice of Λ(r) orthogonal to Λ(r)

|| (5.28)

λi convenient combination of residue classes (5.86)

µ residue class of q modulo spectral flow (2.2)

µ12 effective residue class for two charges (D.24)

µ = (µ1, . . . , µn) vector of residue classes (2.8)

µ̂ = (µ̂1, . . . , µ̂n) vector of residue classes belonging to D(r) (5.37)

µ̂(r)
(
µ, λ

)
a different parametrization of µ̂ (F.3)

µ vector of residue classes of the extended lattice (5.37)

∆µ difference of residue classes (2.15)

mr index of g
(r)ref
µ,µ (5.5)

mk subset of residue classes appearing in anomaly equations (3.4)

ν0(A), νi,α(A) residue classes determined by glue vectors (5.42)

ν = (µ̂, ˆ̃µ) residue class of Λ(r)
|| below (5.101)

nk number of charges in the k-th subset (3.3)

Nij range of the glue vector index bij (F.7)

p characteristic vector of the extended lattice (5.37)

q = e2πiτ expansion parameter of generating series (2.5)

q D2-brane charge (2.2)

q̂0 invariant D0-brane charge (2.3)

q =
(

q1
κr1

, . . . , qn
κrn

)
vector of D2-brane charges (5.38)

Qn(γi) quadratic form in anomaly equations (2.11)

ρ = (ρ1, . . . , ρn) vector of Bezout integers for r above (5.34)

ρ(0),ρ(k) vector of Bezout integers for s and rk (F.10)

r total D4-brane charge p.5

r0 gcd of (r1, . . . , rn) below (5.23)

ri D4-brane charge of the i-th constituent (2.8)

r̂i = ri/r0 normalized D4-brane charge (5.16)

rij gcd of (ri, rj) (5.21)

r = (r1, . . . , rn) vector of D4-brane charges (2.8)

rk k-th subset of D4-brane charges appearing in anomaly

equations

(3.4)

R
(r)
µ,µ(τ, τ̄) coefficients of the anomaly equation (2.8) (2.9)

R̃
(r)
µ,µ(τ, τ̄) redefined coefficients of the anomaly equation (2.18)

R
(r)ref
µ,µ (τ, τ̄ , z) coefficients of the refined anomaly equation (5.2)

Rn(γ̂; τ2) contribution to R
(r)
µ,µ of a given charge decomposition (D.13)

Rref
n (γ̂; τ2, β) contribution to R

(r)ref
µ,µ of a given charge decomposition (D.14)

s = (s1, . . . , sm) vector of D4-brane charges of subsets of constituents (3.4)

ST (γ̂) large τ2 limit of the generalized error function

ΦE
n ({ve};x) defined by the tree T

(D.12)

Sym symmetrization with respect to charges (2.9)

t(ri) vector determining the dependance on zi (5.18)

θ1(τ, z) Jacobi theta series (C.9)
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θ
(κ)
µ (τ) unary theta series with even quadratic form (C.7)

ϑ
(d)
ν0 (τ) unary theta series appearing in (5.43) (5.44)

ϑµ(τ, z;Λ,Φ,p) indefinite theta series associated with the lattice Λ and

kernel Φ

(C.1)

◦
ϑ
(r)
ν̃(A,B)(z) contribution to I(r)

ν for a fixed glue vector of index B (5.118)

ϑ
(r)k
µ,A (τ) unrefined limit of the contribution of order k zero modes (G.14)

ϑ
(r)||
µ,A (τ, z) theta series associated with the lattice Λ(r)

|| (5.41)

ϑ
(r)⊥
A (τ, z) theta series associated with the lattice Λ(r)

⊥ (5.41)

Θ
(N)
a (τ, z; t) theta series associated with AN−1 root lattice (5.45)

θ vector of Λ(r) determining the index (5.37)

TS
n set of Schröder trees with n leaves p.54

ûij normalized vectors in Λ̃
(r)

below (5.25)

vij, ve, vℓ vectors in Λ(r) (5.19), §D
vij, vℓ vectors in Λ(r) extending vij, vℓ (5.20), (5.108)

v̂ij normalized vectors in Λ(r) (5.21)

ωij scalar product of the lattice vector with null vectors (G.1)

wij null vectors in Λ(r) (5.20)

ŵij normalized null vectors (5.21)

χr arithmetic genus of the divisor Dr (2.7)

x =
√
2τ2 (k+ β) d-dimensional vector, argument of kernels of theta series (C.1)

xβ =
√
2τ2 k shifted vector x above (5.39)

y = e2πiz exponential of the refinement parameter §5.2
z refinement parameter §5.2
z = (z1, . . . , zn) refinement parameters associated to the extended lattice (5.8)

z vector of all refinement parameters (5.37)

Zn set of integers from 1 to n (5.107)

· , ∗ bilinear forms on Λ(r) and Λ(r) (5.13), (5.15)
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