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ABSTRACT: Generating functions h,.(7) of D4-D2-D0 BPS indices, appearing in Calabi-Yau
compactifications of type ITA string theory and identical to rank 0 Donaldson-Thomas invari-
ants, are known to be higher depth mock modular forms satisfying a specific modular anomaly
equation, with depth determined by the D4-brane charge r. We develop a method to solve the
anomaly equation for arbitrary charges, in terms of indefinite theta series. This allows us to
find the generating functions up to modular forms that can be fixed by computing just a finite
number of Fourier coefficients of h,.
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1. Introduction

The indices counting BPS states in compactifications of type II strings on Calabi-Yau (CY)
threefolds ) play a prominent role both in physics and mathematics. On the physics side,
they represent degeneracies of BPS black holes and encode weights of instanton corrections to
the low energy effective action. On the mathematics side, they coincide with the generalized
Donaldson-Thomas (DT) invariants whose importance for understanding geometry of the CY
threefolds can hardly be overestimated.

For non-compact CYs, there are various techniques to compute these BPS indices, which
are based on localization, quivers, spectral networks and their generalizations, relations to
topological and gauge theories, etc., see e.g. [1, 2, 3, 4, 5, 6]. However, for compact threefolds
most of these techniques cannot be applied and the problem becomes much more complicated.

There are actually two classes of BPS indices which, at least in principle, can be sys-
tematically calculated. First, for D6-brane charge equal to £1, the BPS indices (at large
volume) coincide with the ordinary DT (respectively, PT (due to Padharipande-Thomas)) in-
variants. Their generating function is given by the famous MNOP formula [7, 8] in terms of
Gopakumar-Vafa (GV) invariants, which in turn can be found by computing the topological
string free energy, for example, by the direct integration method [9, 10, 11].

Second, for vanishing D6-brane charge, the BPS indices, known also as rank 0 DT invari-
ants, count D4-D2-D0 BPS states and can be organized in generating functions h,(7) where
p* (with a =1,...,b2(2)) is the D4-brane charge which geometrically corresponds to a divisor



D, = p®y, of Y where 7, is a basis of Hy(2),7Z).! These functions turn out to possess nice
modular properties [12, 13, 14, 15] which severely restrict h,(7) and, again at least in principle,
can be used to fix them up to a finite number of coefficients.

The precise modular properties of h,(7) strongly depend on properties of the divisor D,
If the divisor is irreducible, the generating function must be a weakly holomorphic modular
form of weight —1b, — 1 [12], i.e. it has the expansion

hy(r) = Y ed”,  q=e", (1.1)

nznmin

where n,i, < 0, and transforms in the usual way under the standard SL(2,7) transformations
acting on 7. The space of such modular forms is finite dimensional and its dimension is bounded
from above by the number of polar terms, i.e. terms with n < 0. This is why in this case
it is enough to compute only the polar terms in (1.1) to completely fix h,(7). This idea was
applied long ago to a few one-parameters CY threefolds in [16, 17, 18, 19] and revised recently
in [20, 21]. In particular, in [21] a systematic way to compute first terms in the expansion
(1.1) has been suggested which is based on new wall-crossing relations between PT and rank 0
DT invariants [22]. Combined with the MNOP formula, they allow to express D4-D2-D0 BPS
indices in terms of GV invariants so that, if the latter are known up to sufficiently high genus,
all polar terms (and not only) can be computed.

If the divisor D, is reducible, i.e. p* =3, p? with positive p¢ and r > 1, the modular
properties of h,(7) are more involved. It was shown in [14, 15] that the generating functions
are mock modular forms of depth r — 1 with a specific modular anomaly. A convenient way
to characterize the anomaly is to consider a modular completion that is a non-holomorphic
function /f;p(T, 7) that transforms as a usual modular form and differs from h,(7) only by terms
suppressed in the limit Im 7 — co. An exact expression for the completion is given below in
section 2.2 (see (2.8)) in a simplified form found recently in [23]. An important feature of this
formula is that /ﬁp(T, T) is determined by the generating functions h,,(7) of the constituents.

Although for mock modular forms the polar terms alone are not sufficient anymore to fix
the function uniquely, the missing information can be recovered from the modular anomaly.
Namely, one can follow the two-step strategy. First, one finds any mock modular form héan)(T)
having the given modular anomaly. Obviously, the generating function h, can differ from héan)
at most by a modular form h}(oo)’ ie.

hy = A& + b0, (1.2)

Given this representation, at the second step, the modular ambiguity h}(}o) can be fixed in the

usual way by computing its polar terms given by the difference of the polar terms of h, and
S

n fact, the generating functions are vector valued so that their components h,, ,(7) are labeled by residue
class p, taking values in the discriminant group A*/A where A = H4(2),Z). For simplicity of exposition, we
drop the vector index in the Introduction.



For one-parameter CYs with the triple intersection number equal to a power of a prime
number and D4-brane charge r = 2,2 the first step (solution of the modular anomaly) has
been realized in [20]. Then for two CYs known as decantic X and octic Xg, the second step
(computing the polar terms) has been done in [24], which resulted in explicit mock modular
generating functions hy for this pair of threefolds.

The goal of this paper is, still restricting to the one-parameter case by = 1, to find a
solution of the modular anomaly, i.e. the functions hﬁan), for higher charges. Thus, we reduce
the problem of finding the generating functions A, to just the problem of computing their polar
terms. This last problem is left for future research.

The immediate question which arises when one solves the modular anomaly for h, is how
this can be done given that the anomaly depends on the generating functions of lower charges
that remain unknown because their polar terms are not fixed yet? To address this issue, we
disentangle the anomalous parts of all generating functions from their modular ambiguities
fixed by the polar terms. Namely, we express each h, as a polynomial in hﬁ?) with r; <7 (see
(3.2)) and show that the coefficients ¢g{™), where r = (ry,...,r,) such that 31" r; = r, are
themselves mock modular forms of depth n — 1 satisfying an appropriate anomaly equation
(3.3). Thus, the problem of solving the modular anomaly for A, is reformulated as the problem
of solving the modular anomaly equations for the holomorphic functions ¢ (7) parametrized
by n charges r;. We call these functions anomalous coefficients.

It turns out that it is relatively easy to give a solution for two infinite families of the
anomalous coefficients. First, in the n = 2 case with arbitrary r; and ry, the anomaly is
characterized by a simple theta series depending on a single combination of all parameters
which we denote by 15. A partial solution for such g("*2) (when x5 is a power of a prime
number) has already been given in [20]. But, in fact, a solution for generic k15 is also known and
provided by mock modular forms of optimal growth introduced in [25]. They are constructed by
applying certain Hecke-like operators to a set of “seed” mock modular functions G® defined
for each d that is a square-free positive integer with an even number of prime factors. In
particular, GV coincides with the generating series of Hurwitz class numbers, which is also
known to be the normalized generating function of SU(2) Vafa-Witten (VW) invariants on
P? [26], consistently with the results of [20]. In fact, this is a particular case of the second
family of solutions. Namely, we show that the anomaly equations for ¢(") with all r; = 1 form
a closed system which, for the intersection number of %) equal to one, coincides with a similar
system of anomaly equations for the normalized generating functions of SU(n) VW invariants
on P2, with n equal to the number of charges. Thus, these two sets of functions can be simply
identified. Since the generating functions of VW invariants on P? are by now well-known for
any rank of the gauge group [27, 28] (see also [29, 30, 31, 4]), this identification provides a
solution for the subset of anomalous coefficients.

Unfortunately, neither of these solutions seems to have a simple generalization to other
cases. Therefore, we follow an alternative strategy which is meant to work for an arbitrary
set of charges and is based on the use of indefinite theta series. This however requires two

2For one-parameter CYs, the D4-brane charge p' coincides with the degree of reducibility of the divisor D,
and therefore will be denoted by r in the rest of this paper.



preliminary steps. First, the system of anomaly equations should be extended to include a
refinement encoded by an elliptic parameter z. This allows to simplify both the equations and
their solution, but most importantly it provides a regularization of certain singularities which
would otherwise plague the theta series. Second, one should artificially extend the relevant
charge lattice (which is achieved by multiplication by an appropriate combination of Jacobi
theta series) to ensure that the resulting lattice possesses a set of null vectors necessary to
write down a general solution. Such solution is then given by a combination of indefinite theta
series and holomorphic modular functions ¢(™ (7, z) (see Theorem 5.1) which ensure that the
unrefined limit z — 0 is non-singular. In fact, it is the proper choice of these functions and
the explicit evaluation of the unrefined limit that are the most non-trivial elements of our
construction.

In this paper we perform the construction in detail and derive the final form of ¢(") for the
cases of two and three charges, while in generic case we find the general form of the refined
solution, obtain the functions ¢(™ ensuring the existence of the unrefined limit, but leave the
limit itself non-evaluated since it appears quite hard to do this analytically. Besides, we check
that the solutions based on the indefinite theta series are consistent with the ones obtained by
Hecke-like operators and from VW theory.

The organization of the paper is as follows. In the next section we recall properties of
the generating series of D4-D2-D0 BPS indices, including their behavior under modular trans-
formations. In section 3 we introduce the anomalous coefficients that disentangle the mock
modular parts of the generating series, which are fixed by the modular anomaly equations,
from their modular ambiguities fixed by computing the polar terms. In section 4 we establish
relations to the mock modular forms of optimal growth introduced in [25] and to the normalized
generating functions of VW invariants on P2. In section 5 we present our main construction of
the anomalous coefficients in terms of indefinite theta series. Finally, in section 6 we discuss
our results and their possible extensions. Several appendices contain some useful information
on various building blocks of the construction, details of our calculations and some explicit
g-series. For the reader’s convenience, the last appendix J includes an index of notations.

2. BPS indices and their modular anomaly

In this section we introduce our main objects of interest, the generating series of D4-D2-D0
BPS indices, and describe their main properties. We restrict ourselves from the very beginning

to the case of b3(2)) = 1. A more complete discussion of BPS indices can be found, e.g., in
21].

2.1 D4-D2-DO0 BPS indices and their generating series

In type ITA string theory compactified on a CY threefold ¥), BPS indices depend on the
electromagnetic charge v which labels elements in the even cohomology of ) and can be
represented by a vector (p°, 7, q, qo) where different components correspond to D6, D4, D2 and
DO0-charges, respectively. In this paper we are interested in D4-D2-D0 BPS states for which
p° = 0, which are also known as rank 0 DT invariants.



In general, BPS indices also depend in a piece-wise linear way on the Kahler modulus due
to the wall-crossing phenomenon and thus they take different values in different chambers of
the moduli space. Here we take them to be evaluated in the large volume attractor chamber
[32] containing the point

28 (y) = AETOO (—% + i)\r) ; (2.1)
where « is the intersection number of ). In this chamber the BPS indices are invariant under
the so-called spectral flow transformation acting on the charge vector. It gives rise to the

following decomposition of the D2-brane charge
Lo
q=pu+ 3 kT + ke, (2.2)

where € € Z is the parameter shifted by the spectral flow, while € A*/A with A = krZ is the
so-called residue class taking kr values and staying invariant. Thus, D4-D2-D0 BPS indices
depend only on r, 1 and an invariant combination of D2 and DO-charges
2
. q
=0 — —— 2.3
4o = qo r (2.3)

and will be denoted by €2, (o).

An important fact, known as the Bogomolov-Gieseker bound [33], is that €2, ,(go) vanishes
unless the invariant charge gy satisfies

-~ ~max 1
do < 4™ = 7 (/17“3 + cor), (2.4)

where ¢, is the second Chern class of ). It allows to define the generating series

hr,M(T) = Z Qr,u(qo) qujo’ (25)

Go<qg*

2miT

where q = e and the bar denotes rational BPS indices defined for any charge as Q(y) =
> ap v/d)/ d?. Only generating series of rational BPS indices are expected to possess nice
modular properties [34]. Although it does not lead to conceptual simplifications, sometimes it
is useful to use the symmetry® h, _,, = h,., where we extended the range of u from [0, k1 — 1]

by periodicity.

2.2 Modular symmetry

The most important feature of the generating series h, ,(7) is that they transform as depth
r — 1 vector valued (VV) mock modular forms under the standard SL(2,Z) transformations

at+b
T = ct+d’
using duality symmetries of string theory [12, 13, 14, 15] and obtained recently a striking

While a mathematical proof of this modular behavior is still absent, it was derived

confirmation by verifying predictions of modularity against a direct calculation of DT invariants
21, 24].

3Mathematically, this symmetry follows from dualization of the coherent sheaf induced by the D4-brane.



More precisely, in the simplest case r = 1, hy , is expected to be a weakly holomorphic VV
modular form of weight —3/2 with the multiplier system closely related to the Weil represen-
tation attached to the lattice xkrZ with quadratic form Q(x) = kraz? and determined by the
following two matrices for T and S-transformations [35, Eq.(2.10)] (see also [16, 36, 37, 38, 13])

M/y;r)(T) —em"(’u-i_ KT ) -‘rﬁczr 5#”

r . 2.6
M(hr)(S) — (_1)X 67%1727&% ( )
m VET ’
where Y, is the arithmetic genus of the divisor D, given by
1 1
Xr —ém" +ECQT€Z (2.7)

We wrote the multiplier system (2.6) for generic  because for r > 1 it also enters the mod-
ular transformation of A, ,. However, in this case the transformation has a modular anomaly
so that the generating series is only mock modular [14, 15]. This means that h,, can be pro-
moted to a non-holomorphic modular completion /}ZW(T, 7) constructed from iterated integrals
of some modular forms and transforming itself as a true modular form of the same weight —3/2
and multiplier system (2.6). The fact that h,, has depth r — 1 means that the 7-derivative of
its completion, which is known as shadow of the mock modular form, is itself a completion of
a mock modular form of depth r — 2 (see [39] for the precise definition).

The explicit form of the completion has been found in [15] and then slightly simplified in
[23]. As a result, it reads as?

Ty (7, 7) ) + Z > D RO 7 th,m (1), (2.8)

n—= 221 | =T y22 =1
where we use the bold script to denote tuples of n variables like 7 = (ry,...,r,). Note that
the first term can be included into the second by setting RLTL, = d,,s. The other coefficients
R,(fL can be represented as non-holomorphic theta series defined on a n — 1-dimensional lattice

ROD = Y Sym{(-)Tew@,(qim) |0, 29)

Sy it har?
2

q; ERTZAp;+ % RTZ

where 4 is the n-tuple of reduced charge vectors 4; = (r;,q;) with ¢; decomposed as in (2.2)
with fixed residue classes ;. Besides, Sym denotes symmetrization (with weight 1/n!) with
respect to charges 4;, 7;; is the anti-symmetric Dirac product of charges

Yii = T4 — Tiqj, (2-10)

and @,, denotes the quadratic form, originating from the quadratic term in the definition (2.3)
of the invariant charge o,

(2.11)

R 1 n 2 n qZQ
7)25 <;%) _;fm'

4We always assume that r; are positive integers and do not write explicitly this condition in the sum over
decompositions of D4-brane charge.




Finally, the coefficients #,, determining the kernel of the theta series are constructed as suitable
combinations of derivatives of the so-called generalized error functions introduced in [40, 41].
We relegate the precise definitions of all these functions to appendix D.

The equation for the completion (2.8) specifies the modular anomaly of A, . Equivalently,
one can talk about the holomorphic anomaly for EW. One can check that this anomaly given
by 8;};7“7 ., 1s manifestly modular since it can be expressed through the completions /f;m s See [15,
Eq.(5.35)]. The important feature of all these anomaly equations is that the r.h.s. is expressed
through the generating series for charges r; < r. Thus, (2.8) can be seen as a recursive system
of equations determining the anomalous parts of the generating functions.

2.3 Redefinition

Before we turn to the main goal of this paper, which is to solve the anomaly equations (2.8),
let us make a slight redefinition of the generating series h,., by shifting their vector index and
multiplying by a sign factor. This will allow us to avoid some annoying shifts and signs in
what follows. More precisely, we set

Mo (7) = (=) hy i (7), (2.12)
where .
jir) = =D 213

This redefinition leads to two simplifications. First, the shift of u replaces the quadratic
term in the spectral flow decomposition (2.2) by a linear one so that now it reads

1
q=p+ghr+ere (2.14)

As a result, all such terms cancel in the condition on the sum over ¢; in (2.9) and, using the
decomposition (2.14), it can be rewritten as

/ﬁzn:riei = Ap, Ap=p— zn:,ui. (2.15)
i=1 i=1

Second, the sign factor in (2.12) cancels the sign factor in (2.9). Indeed, substituting the
decomposition (2.14) into the Dirac product (2.10), one finds

KT; KT
Z%-j = Z (rj (m’iei + i+ 5 ) - <m"jej + i + #))
i<j 1<j
= Z(m"irj(ei +€) + i+ n-,uj) mod 2
i<j

= Z(fﬂ"z‘(T - Ti)fz‘ + (7” - Ti)m) mod 2 (2.16)
=(r—1) Z (ki€ + i) — Z(TZ —1)p; mod 2

7 7

= (r=1p=> (ri—1pw mod?2,

i




where at the last step we used (2.15).

Given the above observations, the anomaly equation (2.8) reformulated in terms of the
redefined generating series takes the following form

Z Z ZRHH T th,m(ﬂ (2.17)

n=1%"  ri=r =1
where
RIL(m7)= > Sym {%n(’y; 7'2)} emmen(y), (2.18)
S @y=ptsT/2
q; ERT LAy K1y /2

The redefinition (2.12) also affects the multiplier system which is now given by (B.2).

3. Anomalous coefficients

We expect that for each D4-brane charge r, the anomaly equation fixes the generating function
h,., up to a modular ambiguity which in turn can be fixed by other means, e.g. by computing
first few terms in the Fourier expansion of h, ,. In other words, we can represent

hy hE’m SAY) (3.1)

T
where fzﬁaﬁl Visa depth r—1 mock modular form satisfying (2.17), while ;Lq(noﬁ is pure modular. The
problem however is that the r.h.s. of (2.17) depends on the full generating functions iLriM with
r; < r and hence on all hrl ; which remain unknown at this point. Therefore, fzfna,ﬂl ) must also
depend on them, and what we can do at best is to find iz%l ) up to these modular functions. To
achieve this goal, we first parametrize the dependence of BW on Mo)u by holomorphic functions
g,(fL( ) which we call anomalous coefficients, characterize them by anomaly equations similar

0 (2.17), and then solve these equations. In this section we perform the first two steps and

leave the third one to the subsequent sections. The main result is captured by the following

Theorem 3.1. Let 9;(::;)/ = Oy, and h be a set of holomorphic modular forms. Then

Z DIV A fn??m, (3.2)

anz 17"17’“

is a depth v — 1 modular form with completion of the form (2.17) provided g,(fL are depthn —1
mock modular forms (where n is the number of charges r;) with completions satisfying

2,
2

Q
=
T

)

m{ i > D R Hgiz’fznk}, (3.3)

m=1 Z;@nzl ng=n vV



71 () r3 'n—1 Tn
—

ni Nm

Figure 1: A representation of contributions to the r.h.s. of (3.3) in terms of rooted trees of depth 2.

where®

k—1 ng —

. T = (Tjk+17"'7rjk+1)7

Jk = E n, Sp = E Tjy+is (3.4)
=1 =1

mg = (Ujk-H» . ’Mjm)-

Proof. To prove the theorem, we must show that (3.2) and (3.3) give rise to the same modular

completions Er,u- On one hand, this completion is obtained by substituting the ansatz (3.2)
into the r.h.s. of (2.17) which gives

Y Y SRIIY Y Sl Ilie.) 6

=13 o sk=r M k=1 A\ =1 570 rpi=sp Vk =1

On the other hand, it is obtained by completing each term in (3.2) and then using the equation
(3.3). This leads to the following expression

n

- Y Y w110

n=13%""  ri=r K =1

> Y YY Y YR ngff,?nkH L

n=13%70"  ri=r p m=L370 np=n V

(3.6)

where we omitted the sign of symmetrization from (3.3) because it is ensured by the sums over
decompositions = ", r; and residue classes p;. Clearly, the two equations coincide if one
can identify (g, ik, vg) in (3.5) with (r;, vk, 1) in (3.6) and claim that

r Sk r n
)IEDIED D DD DD SED DD DI (3.7)
=3k sk=r =100k oy =gy, =L 0L mimr mEL 3L nye=n

Here on the Lh.s. the sum goes over double decompositions: first, decompose r into s and
then each sy into 71, while on the r.h.s. one first sums over decompositions of r into r; and

®Note that while the sets 7 and g have n elements, the sets s and v have only m < n elements. To
comprehend the structure of the equation (3.3), it might be useful to use the fact that the sum on its r.h.s. is
equivalent to the sum over rooted trees of depth 2 with leaves labelled by charges r; and other vertices labelled
by the sum of charges of their children. Using this labelling, we assign the function R( ), to the Toot vertex
and the anomalous coefficients to the vertices of depth 1 with arguments determined by the charges of their
children. Then the contribution of a tree is given by the product of the weights of its vertices. See Fig. 1.

— 10 —



then over various groupings of the indices ¢ into sets preserving their ordering. It is obvious
that the two sums are identical and hence the two representations of the completion, (3.5) and
(3.6), coincide. O

This theorem defines a family of holomorphic functions g,(fL(T) restricted to have a modular
anomaly determined by (3.3). Their weight and multiplier system follow from that of fzw
(see (B.2)) and are given in (B.3). As usual, together with the anomaly these data fix the
anomalous coefficients up to a modular ambiguity. However, in contrast to the case of the
generating functions, there are no any restrictions on this ambiguity and therefore we can
choose any solution of (3.3). It is only important that, once a solution has been chosen for
small charges, it is this solution that is used in the r.h.s. of (3.3) to determine gff}t for higher
charges. In the rest of the paper, our goal will be to find explicit solutions for these functions.

An important observation is that the parameter x and charges r; enter the functions
k" IRY), and the multiplier system (B.3) of the anomalous coefficients g7 always in the
form of the product kr;. Indeed, this is true for the quadratic form (2.11), the bilinear form
(D.9) and the charges (2.14). On the other hand, the vectors v;; (D.5) are linear in r;. Since
the generalized error functions (D.2) are independent of the overall scale of the matrix of
parameters, this implies that the functions (D.7) and hence &, are homogeneous of degree
n — 1 in ;. Then (D.13) immediately leads to the same property for %,, which in turn
confirms the claim for R;YL This implies that we can (although do not have to) choose a

solution for all g,(fL satisfying the following property

() (7Y = gl gQimm) (1), (3.8)

ngHl 2122

where n is the number of charges and we explicitly indicated the dependence on k in the
upper index. Using this property would allow to reduce the problem of finding the anomalous
coefficients to the case of Kk = 1. Note that for this feature to hold it was crucial to perform
the redefinition of section 2.3.

4. Partial solutions
In this section we provide a solution for two infinite families of anomalous coefficients.

4.1 Two charges and Hecke-like operators

Let us first consider the case of two arbitrary charges r; and r5. In this case the formula for the

modular completion E,(f,ﬂf ,2,22 (3.3), representing the anomaly equation, takes the simple form

gL (1, 7) = gl (7) + RO, (7, 7), (4.1)

and gf[,ﬂf% is required to be a mock modular form of weight 3/2 with the multiplier system

(B.3) specialized to n = 2. The function f{,‘}’;fig determining the completion is easily com-
putable, but for our purposes it is sufficient to consider its derivative with respect to 7 which

- 11 —



specifies the shadow of gffﬁﬂé It is given in (D.27) and suggests to look for a solution of the

form
[k () = rod Gl (7). (12)

g/”ﬂ“ly“? H12
where ro = ged(ry, o), Ap was defined in (2.15), k12 and 19 are effective parameters introduced
in (D.24), p12 runs over 2k15 values, and §g(cn) is the mod-n Kronecker delta defined by

(4.3)

T

5 1 if 2 =0 mod n,
~ | 0 otherwise.

In particular, the ansatz (4.2) is consistent with the property (3.8). If fo) is a VV mock
modular form of weight 3/2 with a modular completion satisfying

320,07, 7) = L A7), (4.9

where H,SK)(T) is the theta series (C.7) at z = 0, then it is trivial to see that (4.2) solves the
anomaly equation (4.1). The only non-trivial fact to check is that it has the correct multiplier
system. But this follows directly from Proposition D.1 because the relation (4.4) ensures that
GELH) has the multiplier system Ml(“'f) (D.28) conjugate to that of 9&“).

As a result, we have reduced the problem of finding the anomalous coefficients for arbitrary
two charges to exactly the same problem that was studied in [20] for charges 1 =1 = 1, in
which case k15 = k. It was found that for any x equal to a power of a prime integer, G,(f) is
determined by the generating series H,, (1 = 0, 1) of Hurwitz class numbers® through the action
on it by a certain modification of the Hecke-like operator introduced in [45, 46]. However, it
turns out that a solution of this problem for generic x has already been found in the seminal
paper [25]. More precisely, that paper looked for mock modular forms with shadow proportional
to 6,(f) and further restricted to have the slowest possible asymptotic growth of their Fourier
coefficients. Such functions have been called mock modular forms of optimal growth. In our
case we do not have to impose any restrictions on the asymptotic growth. But since any
solution of (4.4) is equally suitable, we can take the one provided by [25]. All other solutions
should differ just by a pure modular form.

In the rest of this subsection we present the formula for the mock modular forms of optimal
growth found in [25] adjusting (and correcting) some normalization factors.” To this end, let

e w(k) be the number of distinct prime divisors of &, i.e.
w(k) = #{p : pis prime and p|x}; (4.5)
e 1(d) be the Mébious function given by

+1 if d is a square-free with an even number of prime factors,
pu(d) =< —1 if d is a square-free with an odd number of prime factors, (4.6)
0 if d has a squared prime factor;

6 An explicit formula for the generating series can be found in [42, Eq.(1.12)] and its mock modular properties
have been established in [43, 44].

"Strictly speaking, [25] worked in terms of mock Jacobi forms rather than mock modular forms. However,
the latter can be easily extracted from the former by means of the theta expansion (E.1).
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° ﬁ(d) be a Hecke-like operator given, when acting on modular forms (not necessarily
holomorphic) of weight (w,w) and multiplier system Mfﬁl), by

T =Y wls)s R UT (4.7)
A
with
(URN)u(r) = 0 h (1), w=0,...,28% — 1, (4.8)
and
(ﬁ‘[h(ﬁ)]>ﬂ(7> = MZ>O (%F)wﬂw Sé(l) ezear 12 hu/a <GTJ b) , w=0,...,2re—1.
o (4.9)

We relate these operators to the ones defined in [25] and acting on Jacobi forms in ap-
pendix E. One can also check that for r prime power, 7;(1) coincides with the modification
of 7, introduced in [20].

In terms of these quantities, the mock modular forms of optimal growth are given by

Gl = g7 Z (70197) . (4.10)

o
u(d) 1

where G are VV mock modular forms of weight 3/2 with multiplier system M,S,(f). Thus, for

each square-free integer with an even number of prime factors, such as 1, 6, 10, 14, 15, etc., one

needs to provide such a mock modular form. The first two of them turn out to be well-known

functions: for d = 1 it is (the doublet of) the generating series of Hurwitz class numbers,

G\(7) = Hy,(7), (4.11)
and for d = 6 it has the following explicit expression
6 _ xi2(1) 6
Q,ﬂ)(T)—Th()(T% (4.12)
where
+1 ifp=+1 mod 12,
xe2(p) =< =1 ifp=+5 mod 12, (4.13)
0 if ged(u, 12) > 0,
and

h(6)(7) _ 12F2(6) (1) = Es(7)

(4.14)

is a mock modular form of weight 3/2 with shadow proportional to the Dedekind eta function
n(7), which is defined in terms of the quasimodular Eisenstein series Ey(7) and the function

F(r) = - Z X12(r? — §%) s q™/°. (4.15)

r>s>0

For many other functions G(9, [25] determined their first Fourier coefficients, however we are
not aware about any explicit expressions for their generating series.
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4.2 Unit charges and Vafa-Witten

Let us now consider the case of n charges r; all equal to 1. In addition, we also restrict ourselves
to CYs with the intersection number x = 1. A crucial simplification in this case is that one
can drop all indices u; because they take only xr; = 1 value. Therefore, the corresponding
anomalous coefficients can be denoted simply as g, , = g,(}"“’l). Another feature of this set of
anomalous coefficients is that the anomaly equations for g, , form a closed system and do not
involve other anomalous coefficients. Moreover, it is easy to see that in this sector the anomaly
equation (3.3) becomes identical to (2.17) under the identification g, , ¢+ h,, and thus takes

Ge=2 >, 2RI omm: (4.16)
k=1

m=1 ZZL:1 ng=n K

the form

The case n = 2 has already been analyzed in the previous subsection. It follows from the
results presented there, and in agreement with [20], that

Gop=H, — p=0,1. (4.17)

The vector valued function H, appearing here is known not only as the generating series of
Hurwitz class numbers, but also as the (normalized) generating series of SU(2) Vafa-Witten
invariants on P?, namely [26]

hyy =3(h")*H

13

(4.18)

hVW

L

where denotes the generating series of SU(n) VW invariants and hYW = n=3. Combining

the two relations, one obtains
1

Jou = 592,;“ (4.19)

where we introduced the normalized generating series

Gnu(T) = 07" (7) ) (7). (4.20)

As we show below, the relation (4.19) is not an accident, but a particular case of a more general
relation between g, , and g, ,.

Let us recall that the VW invariants count the Euler characteristic of moduli spaces of
instantons in a topological supersymmetric gauge theory on a complex surface S obtained from
the usual N = 4 super-Yang-Mills by a topological twist [26]. The partition function of the
theory reduces to the generating series of VW invariants and one could expect that it must
be a modular form as a consequence of S-duality of the N = 4 super-Yang-Mills. However, it
turns out that on surfaces with by (S) = 1, which includes S = P2, there is a modular anomaly
26, 47]. Its precise form can be established from the fact that the VW invariants on S coincide
with the D4-D2-D0 BPS indices on the non-compact CY given by the canonical bundle over
S [48, 49, 50], which in turn can be obtained from a compact CY given by an elliptic fibration
over S in the limit of large fiber. Since the modularity of the D4-D2-D0 BPS indices on such
compact CY is governed by a generalization of (2.8) or (2.17) to by > 1, the generating series
of VW invariants are subject to the same anomaly equation [35].
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Furthermore, since in the local limit where the elliptic fiber becomes large the only divisor
which remains finite is [S], the D4-brane charges belong to the one-dimensional lattice, and if
bo(S) = 1, as is the case for P2, the lattice of D2-brane charges is also one-dimensional. Thus,
for S = IP? one reduces to the “one-dimensional” case captured by the anomaly equation
(2.17) with k = [H]? = 1 where [H] is the hyperplane class of P?. However, the fact that the
anomaly equation arises as a limit of a compact CY with by > 1 does lead to two modifications:
the second term in the spectral flow decomposition (2.14) and the Dirac product of charges
(2.10) both get an additional factor of —3, which can be traced back to the value of the first
Chern class ¢;(P?) = 3[H] [35, Ap.F].® Thus, if one denotes the functions R,(ﬁ)b with these two
modifications implemented by i)zi,(ﬁ)‘, then the normalized generating series of VW invariants

G =2 > > R T nsm- (4.21)

m=1 Zzlzl ne=n y72 kJ:].

satisfy

The first modification can actually be undone by a simple shift of the spectral flow pa-
rameter. On the other hand, the second one is equivalent to multiplying the vectors v;; (D.5)
by —3. Under this rescaling of parameters, the functions (D.7) simply get an overall factor
(=3)""1(=1)""t = 3"~ Thus, one concludes that

R — gm-1RM) (4.22)

INY Lo

where m is the number of charges which the functions depend on. Substituting this into
(4.21) and comparing to (4.16), one finds that the two equations become identical provided
one identifies”

n.pu = 31_ngn,u(7—)' (423)

This result is consistent with (4.19) and provides an explicit solution for the anomalous coef-
ficients with r;, = k = 1.

5. Solution via indefinite theta series

5.1 Motivation and strategy

In the previous section we have found solutions for two infinite families of anomalous coef-
ficients: with two arbitrary charges and with arbitrary number of charges, but all set to 1
together with the intersection number. It is natural to try extending these solutions to more
general cases. In particular, one could expect that a solution for the case with r; = 1 but &
an arbitrary prime number should be described by the action of Hecke-like operators similar
to (4.7) on the normalized generating functions of SU(n) VW invariants on P2. However, we

8Strictly speaking, [35] analyzed generating functions of refined VW invariants (see §5.2) which count Betti
numbers of moduli spaces of instantons. However, the presented results are easily recovered in the unrefined
limit.

9The freedom to include in this relation a constant factor ¢™ allowed by the equations is fixed by the
normalization conditions g1 = g1 = 1.
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have not been able to show this and all other attempts to extend the above constructions also
failed.!® Therefore, we change the strategy and suggest an approach which works in general.
It is based on the use of indefinite theta series and is similar to the solution of the same kind

of modular anomaly equation for the generating functions of VW invariants constructed in
[51, 28].

An indefinite theta series is defined as a sum over a lattice endowed with a quadratic
form k? of indefinite signature,'*

I ()= ) B(kim)e ™, (5.1)

ke +

where € */ labels its different components. The kernel ®(k) can be a non-trivial function
of 79 = Im7 and must ensure convergence of the sum. In fact, it is very natural to use such
theta series to represent solutions of our modular anomaly equations because for by > 1 the
functions analogous to R,STL have precisely the form (5.1). This is also true for by = 1 (cf. (2.9)
or (2.18)), but in this case the relevant quadratic form coincides with —@Q,, (2.11) and has a
definite signature. But since it is positive definite, this case also calls for the use of indefinite
theta series.

The anomalous coefficients we are looking for, and hence the indefinite theta series rep-
resenting them, must be holomorphic in 7. The only way to make (5.1) holomorphic and
convergent simultaneously is to restrict the sum to the negative definite cone of the lattice,
which can be done by choosing the kernel ®(k) to be an appropriate combination of sign func-
tions. An example of such kernel is provided by Theorem C.1 and is characterized by two sets
of vectors {vs,;}, s = 1,2. As we will see below, one set is determined by the same vectors
v, (D.4) that define the functions REZL, while the second set must consist of null vectors, i.e.
satisfying vg’i = (. This immediately implies that the lattice cannot be the one that appears
in the definition of R,(fL (2.9) and will be denoted below by A™ | since the numbers of positive
and negative eigenvalues of the quadratic form must be both non-vanishing for null vectors to
exist.

This can be achieved by the so-called lattice extension, which is a standard trick in the
theory of mock modular forms [52]. The idea is that the original problem defined on a lattice A
is reformulated on a larger lattice Aoy = A @ A,q that admits a solution in terms of indefinite
theta series and, because Ay is a direct sum, such solution is expected to be reducible to a
solution on A. However, if the discriminant group D,q = A,/A.q is non-trivial, the reduction
to the original lattice is possible only if the solution on the extended lattice satisfies certain
identities ensuring that components of the solution labelled by different elements of D,4 reduce

10At technical level, there are two main complications appearing for n > 2. First, g,(fL do not reduce

to a vector-like object and keep a non-trivial tensor structure (cf. (4.2)). Second, the action of Hecke-like
operators on a product of functions is not factorized, so that applying them to the r.h.s. of (3.3), for terms
with 1 < m < n, one cannot proceed in an iterative way.

HNote the unusual minus sign in the exponential. The same minus sign appears also in (C.1). This convention
follows the conventions used in the previous works on this topic and can be traced back to the natural quadratic
form induced on D4 and D2-brane charges on a compact CY. In this convention, the usual convergent theta
series with a trivial kernel correspond to negative definite quadratic forms.
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to the same functions. For example, this is the case for the generating functions of VW
invariants where the invariants on P? can be obtained from those on the Hirzebruch surface
F1 because the latter satisfy the so-called blow-up identities [53, 28]. However, for a general
solution on Agy this is not the case. Therefore, we should require triviality of D,q, which in
turn requires that, if A,q = Z%4, then the corresponding quadratic form is given by (minus)
the identity matrix.

In our case A = A" with quadratic form —(@),, and A,q should be chosen so that to ensure
the existence of a null vector on = A.t. One could think that it is sufficient to take A,q = Z

with the quadratic form —z?

. But actually it is not because, for a theta series to converge,
the null vector appearing in its kernel (possibly after rescaling) should belong to the lattice.
Otherwise, the indefinite theta series would diverge due to accumulation of lattice points near
the null cone leading to an infinite number of terms of the same strength (see [54, §B.3] for an
illustrative example). Thus, typically, the dimension of A,q must be non-trivial. The simplest
possibility would be to take d,q = v? where v € A is a vector with the minimal norm. This
would ensure that (v, T) € Aeyi, where the vector 1 has d.q components all equal to 1, is a null
vector. However, this is not always the optimal choice and in our case it is actually inconsistent
with the iterative structure of the equations (3.3). Below in §5.3 we propose a lattice extension

satisfying all the requirements discussed above and adapted to our system of equations.

But this is not the end of the story. The problem is that even if the null vector belongs
to the lattice, this does not ensure the convergence yet. The additional divergence comes from
the sum over the sublattice Zv C , where v € is the null vector. This is easy to see for
(5.1) with quadratic form of signature (1,n_) and the kernel ®(k) = sgn(v * k) — sgn(v’ * k).
A way out is to consider Jacobi forms instead of the usual modular forms. They depend
on an additional elliptic parameter z transforming under SL(2,7) as z — z/(ct + d). For
theta series, the elliptic transformation property of Jacobi forms fixes the dependence on z as
shown in (C.1) (with z = z). In particular, it shifts the lattice vector k in the kernel and
introduces an exponential z-dependent factor. Together these two changes allow to avoid the
divergence due to the null vector, which manifests now as a pole at z = 0. Since eventually we
are interested in the limit z = 0, these poles should be cancelled by combining the indefinite
theta series with certain Jacobi-like modular forms (see §A for the definition of Jacobi and
Jacobi-like forms). The latter have the same modular transformations as Jacobi forms, but
they are not required to satisfy the elliptic property, which in our context is irrelevant since we
care only about the behavior near z = 0. Note that, apart from relaxing the elliptic property,
exactly the same strategy to combine indefinite theta series constructed from null vectors with
Jacobi forms cancelling poles has been used in [51] to produce the generating functions of VW
invariants on Hirzebruch and del Pezzo surfaces as solutions of a modular anomaly equation
similar to (4.21).

The extension to Jacobi forms is known as the so-called refinement which has a physical
interpretation as switching on an Q-background [55, 56] and has been investigated in the
context of modularity of BPS indices in [35]. A quite unexpected result of that analysis is that
the refinement considerably simplifies the coefficients #,, determining the modular anomaly.
Thus, the necessity to introduce the refinement should be considered not as a shortcoming,
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but as a virtue which makes the system of anomaly equations more amenable to solution.

However, new complications arise when the refinement is combined with the lattice exten-
sion discussed above. It turns out that for a solution on A to be reducible to a solution on
A, it should have zero of order d,q at z = 0, which is very difficult to achieve. Fortunately,
there is a trick that allows to avoid this problem: one should introduce multiple refinement
parameters combined in a vector z so that the indefinite theta series become multi-variable
(mock) Jacobi forms as (C.1). Then, as will be shown below, if one sets z = (20, Z) where
0 € A and Z has d,q components and is such that (0, 2) is orthogonal to all null vectors, the
lattice A,q together with the associated refinement parameters z decouples and the reduction
to A crucially simplifies.

To summarize, we need to perform the following steps:

1. introduce refinement,

2. extend the charge lattice so that it possesses a set of null vectors and is consistent with
the anomaly equation,

3. associate with the extension a vector of additional refinement parameters satisfying cer-
tain orthogonality properties with the null vectors,

4. solve the refined system of anomaly equations on the extended lattice,
5. reduce the solution to the original lattice,

6. take the unrefined limit.

In the next subsection we perform the first step. Steps 2 and 3 are done in §5.3. The last 3
steps are realized in §5.4 in the case of two charges and in §5.5 in the case of three charges.
Finally, in §5.6 we consider the generic case for which we perform steps 4 and 5 explicitly,
whereas the last step is too cumbersome to be done analytically.

5.2 Refinement

As was mentioned in the previous subsection, a refinement has its physical origin in a non-
trivial Q-background. It introduces a complex parameter y = e2™* which can be thought of
as a fugacity conjugate to the angular momentum J3 in uncompactified dimensions. At the
same time, the BPS indices, which from the mathematical point of view (roughly) count the
Euler number of the moduli spaces of semi-stable coherent sheaves, are replaced by refined BPS
indices which are symmetric Laurent polynomials in y constructed from the Betti numbers of
these moduli spaces. These refined indices are known to satisfy similar and even simpler wall-
crossing relations as the usual ones [57, 58, 59]. But most importantly is that the refinement
preserves the modular properties of the generating series of BPS indices [35]. More precisely,
after refinement they become mock Jacobi forms for which the role of the elliptic argument
is played by the refinement parameter z and the formula for their modular completions takes
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exactly the same form as in (2.8), but with the coefficients given now by!?

ROMr 7z = Y Sym{ @ (3im. B)y=ie s | e, (5.2)

Y qi=ptRr/2
q; ERT LAy 4Ky /2

where we set z = a — 73 with a, 8 € R. The main difference here, besides the appearance
of a power of y, lies in the form of the coefficients %" which we describe in appendix D.3.
They turn out to be much simpler than their unrefined version %,,."* In particular, while the
coefficients #,, involve a sum over two types of trees weighted by generalized error functions
and their derivatives, for "' one needs only one type of trees and no derivatives.

It should be stressed that the status of the refined BPS indices for compact CY threefolds,
the case we are really interested in, is unclear. While in the non-compact case they are well-
defined due to a certain C* action carried by the moduli space of semi-stable objects, in
its absence it seems impossible to refine DT invariants in a deformation-invariant way (see
however [57]). This is not a problem for our construction because we do not use the refined
BPS indices or their generating functions, but only the coefficients (5.2) characterizing the
refined completions. In other words, we use the existence and properties of R,(Z:zfef as a mere

trick to produce solutions to the anomaly equations (3.3).

In particular, the main property which we need is that in the unrefined limit R,(fzf of develop

a zero of order n — 1 with a coefficient given by f{,(fL

RO, (7,7) = i (y — y ) RN (7,7, 2). (5.3)

Therefore, if we define refined anomalous coefficients as solutions of the following modular
anomaly equation

e 8ym{ DS szfzrengﬁzsa::f}, 654
milz}’cn:lnk:n v k‘=1

where G is required to be a VV Jacobi-like form of weight +(n—1), index™

My = —g (7‘3 - irf), (5.5)

and the same multiplier system as gff}t (see (B.4)), then a solution of (3.3) is obtained from
these refined anomalous coefficients as

Guipe(7) = lim (y =y ™) g (7, 2). (5.6)

12We give the coefficients after performing the same redefinition as in (2.12), so that the formula to compare
with is (2.18) rather than (2.9), but we omit the tilde on Rfﬂfd to avoid cluttering.

13More precisely, while the formula (D.14) looks exactly as (D.13), these are the functions &Y that are
much simpler than their unrefined analogues &, ((D.6) and (D.7) versus (D.15)).

14The weight is obtained from the relation (5.6) by taking into account that the y-dependent factor in the
limit iy — 1 is proportional to z'~" and thus increases the weight by n — 1. The index instead follows from the
index of the generating series of refined BPS indices which should be equal to —x,. (2.7), as was established in

[35].
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This is easily checked by multiplying (5.4) by (y —y =)'~ and taking the unrefined limit. As a
result, we have reformulated the problem of solving one anomaly equation in terms of solving
another equation and subsequent evaluation of the unrefined limit. Importantly, the relation
(5.6) implies that the unrefined limit exists only if the refined solution has a zero of order n —1
at z = 0. Although it might be non-trivial to ensure this property, for generic set of charges

this reformulation makes the problem more feasible.

Finally, we note that the refined anomalous coefficients can be chosen to satisfy a property
similar to (3.8), namely,

s (r,2) = g (T, 2 ). (5.7)

5.3 Lattice extension

The next step is to reformulate the anomaly equation (5.4) for the refined anomalous coefficients
in a way that involves an extended lattice possessing a set of null vectors. To this end, let us
introduce:

e integer valued function d, of the magnetic charge (and intersection number k) such that
d, > 2;

e d,.-dimensional vectors (") such that their components are all non-vanishing integers and
sum to zero, Y% t) = 0.

Note that if d, could be equal to 1, it would be impossible to satisfy the last condition on ().
The main features of the construction below do not depend on a specific form of d, and ",
and we return to their choice, which is important for the concrete form of the solution, in the
end of the subsection.

Let us now consider the anomaly equation

m

g( el 2 2) = Sym{ Z Z ZRS)ref H GoRIe (7, 2, 30), } (5.8)

m= 1Zk_1nk n vV :

where 3. = (2j,41,..-,2j,,,). Formally it looks the same as (5. 4) However there are two
differences. First, the new functions g,(f,)fef and their completions gﬂ ,L depend on a vector of
additional refinement parameters z = (21,...,2,). Second, we change the normalization for

the case n = 1 which now reads

d,
3 2,2y = G [[01(7.402), (5.9)

where 0, (7, z) is the standard Jacobi theta function (C.9). The additional factor in (5.9) leads

Jref compared to g(r)ref: they should be higher

to a change in the modular properties of gu “
depth multi-variable Jacobi-like forms of the weight, index (which is now a matrix since there
are several elliptic arguments) and multiplier system specified in (B.5), which can be easily
obtained by combining (B.4) with the modular properties of the Jacobi theta function given

n (C.10).
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The important property of the system of equations (5.8) is that any solution that is regular
at z = 0 gives rise to a solution of (5.4) with the required modular properties. The relation
between the two solutions is given by

D(dri) - (Zz)

(r)ref _ 1 - v (t(ri (r)ref
G (7,2) = (_Qan(T))dr 11 .| Hdn () Jun' |==0, (5.10)
where d, = > | d,, and the differential operators D are defined in (A.5). Indeed, due
to Proposition A.2 and the fact that 6,(7,2) and n*(7) have identical multiplier systems, the
product of the differential operators in (5.10) acting on the completion Emf of produces a Jacobi-
like form with weight, index and multiplier system as in (B.4). Then to see that ¢'/r"" defined
by (5.10) satisfies the anomaly equation (5.4), it is sufficient to apply this product of the
differential operators to (5.8) and use the fact that each differential operator acts only on one

(vp)ref

of the functions § on the r.h.s. of this equation.'® Finally, the standard normalization for

the case n =1 is reproduced due to the property

D)
(t(r) 3 d,,.
—2 1|67 l.—o = (8.6:(7,0))" = (=2m*(7))"™". (5.11)
d, l]‘[ ta (}_[1

The main advantage of the new system of equations (5.8) compared to (5.4) is that it
corresponds to a lattice extension of the latter. To see how it comes about, first note that the
lattice which one sums over in the definition of R, T)ref (5.2) can be defined as (see appendix
F.1 for details)

AT = {k €Z" Y riki = o} (5.12)
i=1
and carries the bilinear form

T Y=~k Z T (5.13)
i—1

The new normalization (5.9) then effectively gives rise to an additional sum over the lattice Z:
with quadratic form —diag(1,...,1) associated to each magnetic charge r;. This is especially
easy to see for the term in (5.8) with m = n which contains the product of n functions like
(5.9). As a result, the overall effect is that the lattice A" is extended to

(1) — A g 7 (5.14)

and the extended lattice carries the bilinear form

dr,;
X y Z ,{/TZ lyl le ay'lOé ) (5-15)
where x = {2;,2;,} withi=1,... ,nand a=1,...,d,,.

15t was to ensure this factorization property that was the main reason for introducing the additional refine-
ment parameters z; for each magnetic charge.
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To discuss null vectors on (™), one should first specify the function d,. To motivate its
choice, let us consider the case of two charges. It is easy to see that

Alrir2) — {(nty, —nty), n € 7}, (5.16)

where 7; = r;/ ged(r1, r9), and hence is identical to Z with quadratic form sr# 7oz, Therefore,
the norm of the vector (1;ay,...,a1;as,...,a3) € ZOZ¥™ & 7> ~ (172) ig equal to x(r 72 +
rof?) — dy,a? — dy,a3. Thus, the most natural choice is to take d, = xr which ensures that
the above vector is null for a; = £+7, and as = £7,. However, this choice fails to satisfy the
condition d,, > 2 for r = k = 1. This introduces a complication that this particular case should

be treated differently. There are two natural ways to do this by setting

0) dT:{élr, k=1, b) dr:{4’ k=r=1, (5.17)

kr, Kk >1, Kkr,  kr > 1.

The advantage of the second choice is that it preserves the property (5.7) and allows to work
with lattices of smaller dimensions. On the other hand, it is more involved at the computational
level. Therefore, in the following we proceed with the first choice (despite it spoils the property
(5.7)).16

For the vectors t) there are plenty of possible choices. The following two seem to be the
most “canonical”:

L a<ld/2) o
D=1 W casaden, ne={t 25t ey
-2, «a=d, if d, is odd, r ,

In our calculations we will mostly use the first choice.

In the following we will use two sets of vectors belonging to the extended lattice (™). Both
of them are extensions of the vectors v;; € A" defined as in (D.5)

(Uij)k = 5ki7”j - 5kj7"i (5-19>
and are given by
(Wij)k = (t)ij)ka (Wz‘j)k,a =0, (5‘20)
(Wij)k =2°(Vij)k,  (Wij)ka = (Vij)k,

where € = §,,_;. Here the factor of 2° compensates the factor of 4 appearing in (5.17) for k = 1
and ensures that W?j = 0. We will also extensively use their normalized versions

Vij = Wij/riw Wi = Wz’j/ﬁj, (5.21)

16 Another possibility would be to restrict to the case x = 1 and use the property (5.7), or its unrefined
analogue (3.8), to obtain other cases. We prefer to proceed with generic k because, as we will see, due to
the additional factor of 4 in the definition of d,., the case x = 1 appears to be more complicated than x > 1.
Besides, it leads to a larger extended lattice which decreases efficiency of numerical computations.
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where r;; = ged(r;, ;). Their scalar products with respect to the bilinear form (5.15) are found
to be

2 _ o—e _ __ 9—€ _
Wij =2 Wij * Wij = /ﬁZTiT'j(T'i + Tj), Wij * ij =2 Wij * ij = —liriTjT’k,
Vigjk % Vij = Vipjp % Wi = Wy Wy =0, for Vi, j, k, [, (5.22)

Wz’j*wklzoa if {Zaj}ﬂ{kal}zq)a

where vy, = Vi + Vji is an extension of v,y = vy + v, We will also often use the

notations
KITiTi41 K17 KT
K = ————— Kij = —=2 (1 +1;) Kijk = J (5.23)
) J 972 i) J ;
ToTii+1 i TijTjk
where ro = ged(ry, ..., 7,), encoding various scalar products of the normalized vectors. Finally,

it is useful to note the property ryv;; + r;vj; + rjvi; = 0 which implies

T’kWZ’j -+ T'Z'ij -+ rjw;ﬁ- = O, (5 24)

rk;Wij + ’f‘iYij + erki =0.

Below we will see how the existence of the null vectors w;; gives the possibility to construct
holomorphic theta series associated with the extended lattice and satisfying the anomaly equa-
tion (5.8).

5.3.1 Lattice factorization

Before we proceed with solving the extended anomaly equation (5.8), let us perform an im-
portant technical step which will be crucial for determining a solution that has a well-defined
unrefined limit. Namely, let us decompose the extended lattice (") into two orthogonal sub-
lattices which we denote by |(|T ) and (f). The former is taken to be the span of the vectors
¥,;; and W;; introduced in (5.21), i.e. all their linear combinations with integer coefficients. It

is clear that it is a direct sum of two lattices

M= AW A", (5.25)

where A™ is generated by v,;; and is the same as (5.12), while A(T) is the span of 1;; =
Wi — 2°9;; and embedded into Z% .17 The embedding is given by

(kiy . k) = (R glamdy, (5.26)

where 2" denotes the n-dimensional vector with all components equal to z, and the resulting
lattice is actually isomorphic to AT with quadratic form rescaled by —4¢. The lattice (f) is

taken to be generated by the vectors ey, @4, withi=1,...,nand a =1,...,d,, — 1, given by

(€0)r =0, (€0)k,s = 1,

(5.27)
(€i0)r =0, (€i0)k,8 = 0ik(0a+1,8 — 0ap)-

"Note that for our choice d, = 4°kr, one has d, = d, where r = >, T, which is not generally true for choice
b) in (5.17). This is one of several complications of the second choice.

— 923 —



Using the bilinear form (5.15), it is easy to check that these vectors are indeed orthogonal to
v,;; and W;;. Moreover, each of the sets {@z‘,a}iL generates a lattice isomorphic to the Ay_;
root lattice with NV = d,,, and all of them are mutually orthogonal as well as to the vector ey.
Therefore, we have in addition the following orthogonal decomposition

N=ZoAy 1@ BA4, 1. (5.28)

|(|T ) and (f) because some of its elements

In contrast, the full lattice (™) is not a direct sum of
require rational coefficients being decomposed in the basis of the two sublattices. In such
situation, to get the full lattice from the sublattices, one has to introduce the so called glue

vectors.

According to the general theory [60], if ©7_; (@) is a sublattice of of the same dimension,
the corresponding glue vectors are given by the sum of representatives of the discriminant
groups D@ = ( (@)*/ (@) which at the same time belongs to the original lattice, i.e. g =

@Zzlg,(f) € where g,&a) € D@, The number of glue vectors is equal to

[T, det @ v
N, = ‘T , (5.29)
where det = | */ | is the order of the discriminant group and is equal to the determinant of
the matrix of scalar products of the basis elements. The decomposition formula of the lattice
then reads
Ny—1
i)
A=0
In our case it takes the form
Ny—1
D= U +eh)e( D+er)] (5.31)
A=0

One finds the following lattice determinants
det ™ =(=1)% det A,

det |(|'r’) (_4e)n—1<det A(T))27

(5.32)

det ) = (=14, [] dv..
=1

where det A™ is evaluated in (F.6). Substituting this into (5.29), one finds that the number
of glue vectors is given by

r n
N, =—[]d-. (5.33)
"o 35
There is a natural choice of glue vectors for the decomposition (5.31). Let us fix a n-tuple
p = (p1,-..,pn) such that >" | p;r; = r9. Then we represent glue vectors as a sum of several
terms .
BA = 2080+ ) Bia, (5.34)

=1
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where

(8ia)k =0, (8ia)ka = Ok Zéam 8o = Zpigi; 8i = 8id,, - (5.35)
8=1 i=1
Thus, a glue vector is labelled by the set A = {ag,a1,...,a,} and the indices take values in

the following ranges: ag = 0,...,7/ro — 1 and a; = 0,...,d,, — 1. It is trivial to see that the
cardinality of the resulting set agrees with the required number (5.33).8

The main application of the lattice decomposition (5.30) is a factorization of theta series.

Let us consider a general indefinite theta series as in (C.1) with a kernel having a factorized

form ®(x) = [['_, Pa(x@) where the upper index (@ on a vector denotes its projection to

(@), Then the lattice factorization formula (5.30) implies that one can split the sum in the

definition of the theta series into n sums coupled by the additional sum over the glue vectors
so that one arrives at the following identity for theta series

Ng—l n
V(1,7 ,®,p)= Z Hﬁ (a)+g§\a)(7,z(“); @ @, p@). (5.36)
A=0 a=1

In this paper we are interested in theta series associated with the extended lattice (") and
with other ingredients given by

Hi B pidp

:(ﬂ,O,,O), ,&l: —__i_—,
RT; RT RTq
p=(0;—1,...,—-1) = —ep, i<j

where Ap =y — > | p; as in (2.15). Note that one has the relations

0°=—2m,, 0-q=) v (5.38)
i<j
where q = (:—7}1 s :T—"n) in terms of the physical charges. They ensure that the factor e? 7k

in the theta series reproduces the y-dependent factor in (5.2) and gives rise to the index (5.5).

18The geometric origin of these glue vectors is as follows. First, let us combine A(T) with the one-dimensional
lattice generated by e( using the glue vectors apgp. It is easy to see that the result is the lattice Z™ with the
same embedding into Z4r as in (5.26), i.e.

r/ro—1
U U ([X(r) + leg + aogo) =7" C 7%,
ap=0 (€%

Next, one combines the ith factor Z with Ag4, _1 generated by e; o using the glue vectors g; »,, which gives

dy,—1

U (8, 1+ Z+gia,) = 2.
a; =0

Summing over 4, one obtains Z? which together with A™ produces the full extended lattice (™).
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Let us also mention here another useful relation. The argument of the kernel in the theta series
(C.1) is x = 27(k + ) where k runs over the (shifted) lattice. Therefore, it is useful to
introduce x = x — /27 which in our case takes the form x = 27 (q; ki1, ..., kna,, )"
Therefore, with respect to the biliniear form (5.15), one finds that

X *Vi = V 27’2’)/1‘]'. (539)

Let us now assume that a kernel ® does not depend on the summation along (I), ie
(

it satisfies ®(x) = ®(x), where the indices || and L denote projections on ‘(lr ) and v ),
respectively. This property is the main motivation to decompose the lattice into these two
orthogonal sublattices. Applying (5.36) to our case, one obtains the following factorization
property
9 (rz; @,0,p)=> 9"M(r,2) 90" (r, 2), (5.40)
A

where we introduced

79(7:%\“(7‘,2) :ﬁgﬂ—l- (T,ZH; ‘(r)7q>70>a

X (5.41)
1951) (1,2) :ﬁgi (7’, 7 (f), 1, —®0>

and took into account that z, is independent of z, while z) is independent of z; due to
w;; x 2z = 25(v;; - 0)2. It is to achieve this property, we required that the components of (")
sum to zero, which in turn was the reason to introduce the additional factors of 2 in (5.17)

and (5.20).

Furthermore, due to (5.28), the second theta series in (5.41) has itself a factorized form. To
write it explicitly, let us represent the summation variable as k| = fyeg+ Y., Zi;fl Ui 0®ia
with (g € Z + % + 5 and {;, € Z + %=, The variables vy and v; 5 determining the fractional
parts depend on the index A = {ay, alz, ...,a,} of glue vectors. The precise dependence can
be determined by expanding the glue vectors gx in the basis (5.27). Starting from (5.34), one

can then arrive at the following expressions (see (F.21))

vy = 4°kropag + z”: a;, Vi = QA;. (5.42)
i=1
As a result, one obtains
97 (7, 2) = 0% () [T 04 29, 5.3
i=1
where
W) = V0= Y ()" gE’, (5.44)
LEZ+2+5

9Note that the components of g do not sum to zero. Therefore, to see it as an element of (A(r))*, one should
use the identification (F.15) silently assumed here.
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N-1 N-1 N-1

2 (la—tala 2 (tat1—ta)la
@gN)(T,z;t): H Z qa:l( +1)ya:1 i , (5'45)

19,(Ld’p ) (1, z) is the theta series (C.5), and in the last equation we used the convention ¢y = 0.

A nice feature of this representation is that z; appears only in the theta series defined by
the corresponding Ay_; lattice. This significantly simplifies recovering the refined anomalous
coefficients g,(:,)fef(T, z) by means of (5.10) because each differential operator acts only on one

theta function (see (5.69), (5.98) and (5.127) below).

Finally, let us note that n(n — 1)/2 vectors ¥;; (or v,; = v;;/r;;) form an overcomplete
basis of the n — 1 dimensional lattice A™. On the other hand, if we restrict to the set
{V12,...,Vn_1.}, in general, it is not a basis and its span is only a sublattice in AT A
relation between the two lattices can be described using the same formalism as above based
on glue vectors. More precisely, one can show that

Ahj—*l n
A" = | (Span {Vkas Fizi + Y bz’ﬁz’j)a (5.46)

b;;=0 i,5=1

j—i>1
where the number of self-glue vectors N;; is given in (F.7). The idea is that linear combinations
with integer coefficients of v; ;11 allow to get only multiples of V; ;12¥; ;12 and one needs to add
N;.ito glue vectors to get arbitrary multiples of ¥; ;9. Similarly, all these vectors can be used
to get only multiples of N;; 3V, 43, etc. Proceeding by iterations, one recovers all vectors of

the lattice A™). It is obvious that a formula similar to (5.46) holds for A" with v;; replaced
Although below we will present a general solution to the extended anomaly equation (5.8)

which will be the subject of the factorization developed in this subsection, it is instructive first
to consider the cases of two and three charges.

5.4 Two charges
5.4.1 General solution

Let us first analyze in detail the case of two charges. We will use the notations introduced in
§D.4.1: ro = ged(ry, 1), 73 = ri/ro, ¥ = 1/ro and Kia, p12 defined in (D. 24).20 Specifying the

(r1,r2)ref

anomaly equation (5.8) to n = 2 and substituting the result (D.25) for R, 7, , one finds

2 dr,
(r1,r2)ref < (r1,ro)ref H H (dr;) (r1,r2)ref
Gpgiipe = Jppiipe T O1(7 ta" i) Ru,uwz
=1 a=1

2
AR DAD VD DI (|

o==+1 kEZ+ 112 H12 =1lo=lg,  eZ+
2K12 ’

[El (2y/F12m2(0k + 19/3))

20This definition of k15 valid for n = 2 obviously agrees with the general one in (5.23).

— 27 —



1

—sgn(ok) | (—1)PEq 3k 2mize sk (5.47)

where Ay is the difference of residue classes defined in (2.15) and we introduced d, + 1-

dimensional vectors k = (k;ki1,..., k14, ko1, koa. ), P = (0;—1,...,—1) and z, =
s sary , saroy
(orgz; —t) z; —t("2)2,), which are contracted using the bilinear form
2 dm-
kK = 2610kE = > Y kiakl, (5.48)
i=1 a=1

This bilinear form is the image of (5.15) upon the isomorphism (172 ~ 7 @ Z @ Zd
implied by (5.16). Under the same isomorphism, the vectors (5.21) become

1o = (1;0015010) gy, = (25 —pltely) (5.49)

where we used the same notation as in (5.26). Using %19, or w13 = r¥2, the argument of the
error function can be rewritten as 2,/kia7a(k + orof8) = 2m(k + ) * le/\/E where we
have done the usual decomposition z, = , — 7 ,. As a result, the second term in (5.47), up
to a o-dependent factor and a S-dependent shift in the argument of the sign function, acquires

the form of the theta series (C.1) associated with the lattice ("72) residue class = TAAT

and kernel
X * V192

||W12\|

o) (x) = B ( ) —sgn(x *via), (5.50)

where ||v|| = Vv? is the norm of a vector and x =x — /27, ,. More precisely, we get

2(r1,m2)re ~(r1,m2)re 1 KT 1T 1,
D vl DD DELN GRS ] (5.51)
o=+1

The theta series is not modular because the kernel @gl ’m)(x) fails to satisty the Vignéras
equation (C.2) due to the presence of the sign function and its weird argument. This is supposed
to be cured by the first term in (5.47), which therefore should also be taken in the form of a
theta series. However, since it must be holomorphic, its kernel must be a difference of two sign
functions, as required by convergence. The first of them can be taken exactly as the one in
(5.50) so that it cancels the sign function spoiling modularity in q)ng). But then one remains
with the second sign function, say sgn(x * v). It also spoils modularity unless the vector v is
null and, in particular, can be identified with wis! This is due to the property (D.3) of the
(generalized) error functions which is easy to see in the present example: the error function F;
that satisfies the Vinéras equation depends on the normalized vector (see (5.50)) and when its
norm goes to zero, the argument becomes large and F; reduces to the sign function.

This reasoning implies that a general solution to (5.51) is given by

~(r1,r2)re T(ry,r 1 KT 1,7 i,
T = O+ O D o (o @) (552)
o==+1
where
O (x) = sgn(x % vig) — sgn(x * wig) (5.53)
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and @47, (7, ) is a holomorphic Jacobi-like form with the same modular properties as
gl 1t represents an inherent ambiguity of solution of the anomaly equation and will
be fixed later by requiring the correct unrefined limit. The convergence of the theta series is
ensured by Theorem C.1 and the fact that wis * wis > 0 (see (5.22)), while using (C.3) it is

straightforward to check that the weight, index and multiplier system agree with (B.5).

5.4.2 Holomorphic modular ambiguity

Jre

In contrast to the original problem (3.3), not every solution for g, (el suits our purposes. The

restriction to be imposed is that it must have a well-defined unreﬁned limit. More precisely,

girra et must be regular at z = 0 and have a first order zero at z = 0. It is this condition

that should be used to fix the holomorphic modular ambiguity QBELTLIQ/L As we will see below,

the second term in (5.52) is finite at small z;, but has a pole at small z, so that gbﬁ[ﬁz does

have to be non-trivial. To extract the pole explicitly, we proceed in several steps.

Factorization and split

First, note that all ingredients of the theta series in (5.52) are as in (5.37) subject to the
isomorphism (5.16) and the kernel ®(""2) depends only on the projection x||. This allows to
apply the factorization property (5.40). To this end, note that the theta series 19(’:;” (5.41)

(e + ﬁ where the dependence of the variables v and 7 on the index A = {ag,a;,as} of
glue vectors follows from (F.23) and is given by

V = 12, vV = Iﬂ”o?ﬁl’lﬁg(pl — ,02)30 + 4_6(72231 — 72132). (554)

Therefore, (5.52) can be written as

r1,r2)re T(r1,r m” K r)L
Gt = B, + 105 (Z 7 ooty (7 W)> Wz (559)

A o=+1

where ﬁgu is given by (5.43) and
Vg (1,2) Z Z (sgn —sgn(l — 20 + ﬁ)) q“(4652_£2)y2”‘€. (5.56)

el 5 feZ+ 2 o

Next, we split the theta series (5.56) into two parts, 19 Il — 19('$ + 191(,'2, where in the first

term one sums only over (¢, E) satisfying the condition ¢ = 266 Wthh can also be written in
geometric terms as

while in the second the sum goes over the rest of the lattice. Then in 19 for sufficiently small
z one can drop the shift by 8 in the second sign function and one obtalns

S o ronz) = Y (sgn(e) —sgn(€—2€€)> R(4P—£2) (y%ﬁf—y—%%). (5.58)

o==+1 ZGZ+2K €¢26

Z€Z+2
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This theta series is not only convergent for all z, but also vanishes at z = 0. Thus, it has
a well-defined unrefined limit and it remains to analyze only the function 19,(/'2 which we call
“zero mode contribution”.

Pole evaluation

The zero mode contribution is characterized by the condition ¢ = 2¢/. Importantly, it also
restricts the set of glue vectors by requiring v — 20 € 2k157Z where v and 7 are given in (5.54).
We denote the set of the glue vectors satisfying this condition by .A(()T) (p112) and find it explicitly
in appendix F.3.

Implementing the zero mode condition in (5.56), one finds

Z 151/; (T,0702) Z Z (sgn —gsgn@)) ya21+er0f€122. (5.59)

o==+1 o==*1jcyi 7 _ 2N12

This is just a simple geometric progression. Assuming that 5 > 0, so that Tmz < 0 and
ly| > 1, it evaluates to

B Z ) yo’21+67‘01€12<ﬁ7"2512—‘+% (170’)) B 05(2H12) _ y21+€T0H12)‘12 + /y_21+er0,{12>\12
_ 2ok v o 2€roKk12 _ 9, —2¢T0kK ’
= 1 Y 0r12 Y= roR12 Y 0K12
(5.60)
where we defined B B .
v v
N — _ 2 5.61
12 ’VQKJH—‘ 2%12 2 ( )

which depends on the glue vector index A through (5.54).2! The same result actually holds for
[ < 0 as well. Thus, the zero mode contribution to (5.55) is given by

21 ergrigA12 + y—21+ roK12A12

(HTO y (T)L
6 Z 2 roK12 y—QET()IilQ 19A (7—7 Z)

AcAl"
" (5.62)
g 2 0\ e 5 ) ()L
= e 2 (145 (17 1248) @rronae) £ 0 9074
AcAy

and confirms our claim that it has a pole at z = 0 which needs to be cancelled by a proper

choice of the Jacobi-like form ¢4 ),

Fixing the ambiguity
The result (5.62) for the singular contribution of the indefinite theta series suggests that the VV

Jacobi-like form representing the holomorphic modular ambiguity can be chosen in a similar
form:

1 r
¢(r1 r2) 5 5&:0) ¢(H12)<T7 ) Z QQ(A )l(T, z), (5.63)

s 15 2
AcAlm

2In fact, due to the zero mode condition, for ¢ = 0, i.e. & > 1, ¥ is uniquely fixed by the residue class

U = u12, while for € = 1 it can take two values 7 = p12/2 and p12/2 + K12.
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where ¢("12)(1, 2) is already a scalar valued Jacobi-like form whose modular properties can be
obtained from (B.5) and (5.63). Using that £ (r® — r{ — r3) = rjri2, one finds that it should
have weight 1, index —kj12 and a trivial multiplier system. The last fact follows from the
observation that the leading coefficient in the small z expansion of a VV Jacobi-like form has
the same multiplier system as the form itself.

It is easy to find a function with the required modular properties cancelling the pole in
(5.62). The simplest solution is to take

2
6% K12 Fo (7)22

o2 (7, 2) = (5.64)

2teriK gz

where Fs(7) is the quasimodular Eisenstein series whose modular anomaly (A.3) ensures the
right index for ¢(*12). Expanding this function at small z, one gets

1 n T
21+E7Ti/£122 2¢61

¢ (7, 2) = Ey(1)z 4+ O(2°). (5.65)

Combining (5.55) with (5.63), we arrive at the following result

v (ry,r2)re 1 KT 1 K K r)L
g;(l,}jl,zu)g f(TJ 2 Z) = 5 5(A,LLO) Z 5 Z o ﬁilz?gl(‘A) (7—7 O-TOZ) + §AE.A8T> ¢( 12)(7-7 TOZ> 19(A) <T7 Z).
A o==+1

(5.66)
For what follows, it will be useful to undo the lattice factorization for the second term in (5.66)
and rewrite it as a theta series associated to the extended lattice. This can be done at the
price of having a kernel that does not combine dependence on 75, k and z = — 7 into a
single argument x = v/275(k + ) as in (C.1). Namely, one finds

6 (rmgz) Y O (r2) =0 (rm () @ p), (5.67)
Ac A"
where
21+5,€12
q)grhm):5k*w12¢(K12)(77T0Z) Z 511{*@12—77y_ron' (568)
n=1

The presence of two Kronecker symbols in the kernel ensures that there is no summation along
‘(‘”’m) and implies that A € A((]T) (p12), while the sum over 7 allows for an arbitrary residue

class along v15 and takes into account the factor 2¢ in the zero mode condition ¢ = 2¢0.22

5.4.3 The unrefined limit

Let us now reduce the solution (5.66) on the extended lattice to the anomalous coefficient

g}fﬂ%(r) we are really interested in. At the first step we obtain the refined anomalous co-

efficient ¢4 (7, 2) using the relation (5.10). As was already mentioned, the absence of

22In fact, as follows from (5.54), the residue class along %1 is not arbitrary but equal to j12. This means
that the Kronecker symbol is non-vanishing only for n = u15 and, if € = 1, for n = @19 + 2x12. However, to
cover more general cases considered below, it is convenient to write the sum over all possible range of 7.
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z-dependence in 9!l and the factorized form (5.43) of ¥+ makes the application of (5.10) al-
most trivial: one should simply apply each of the differential operators to the corresponding
Apn_; lattice theta series @gf"i)(r, z;). This gives

71,72)re 1 RT 1 K
9;8 P 222 f(T, z) = 5 5A“0) E [5 E Uﬁfuf,y(‘A) (1,0702)
A={ap,a1,a2} o=+1 (5 69)

K r d’l‘l
+ 6AeAé’") 12 (7, 1o 2 ]ﬁ(d HD@( '(r (ri),

where

DELOM (7,2 )| | (5.70)
N (Ha , )( 2mp (7)™

Finally, we take the unrefined limit z — 0 according to (5.6). To this end, we split ¥/

DO (1) =

into the zero mode and the non-zero mode parts. Their contributions are evaluated in (5.62)
and (5.58), respectively, where in the latter equation x should be replaced by k12. Using the
expansion (5.65), we then get

. ToR12 o(kr Kk12)0
i) =520 3

A= (o182 (5.71)
26 2 EQ(T) de
+5AEAST)E (1—12)\12—214_2—%12 HD@ )
where Ajs is defined in (5.61) and
Al CO I S <sgn(£) —sgn(f — 2%)) R P-C) (5.72)
46Z+2N E;&QCK
£€Z+T

In appendix H.1 we verified for several values of 71, 75 and x that the solution (5.71) is consistent
with the one constructed in section 4.1 using Hecke-like operators, which amounts to showing
that their difference is a VV modular form.

5.5 Three charges
5.5.1 General solution

Next, we analyze the case of three charges. The r.h.s. of the anomaly equation (5.8) now gets
three contributions

dry
2(r)re < (r)re (dr ri+re,rs)ref » (r1,r2)re
e s 2sem o e Szt

a=1

(5.73)

dr,

+ H H 0 (7, 64 2) | RO,
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The second contribution is fixed by (D.25), (5.52), (5.63) and (5.67), while the third one can be
written explicitly using (D.29), (D.30) and (D.33). A crucial observation is that the quadratic
form (2.11) satisfies the property

Q2(91,92) + Q2(%1 + Y2, ¥3) = Q3(F1, Y2, ¥3)- (5.74)

As a result, the second and third terms in (5.73) can be written as a theta series associated
with the extended lattice (™ (5.14) defined by three charges r;, i = 1,2,3. More precisely,

one obtains
P 20 sym {9 (rz @0 p)), (5.75)

where the variables |, z and p are deﬁned in (5.37), while the kernel is given by

- 1
(I)%)(X) = ®2E(W172+3,W1+273;X) — Sgn(x * W172+3) sgn(x * W1+273) - § 5172+351+273 (576)

— O (x) (g wiz) — O ) — T x) (sl wa) — @)

Here we replaced the vectors v;; and @ appearing as arguments of ®% in (D.33) by their
extended versions, abbreviated d;; = 0x +v,, and used x introduced above (5.39) as well as the
functions (ID(T“TJ (x) and ®\""" which are the same as (5.50) and (5.68), respectively, but with
indices 12 replaced by 5.2

The result (5.75) suggests to take

gt = ) + 6 Sym {9 (r,z D, 0", p)}, (5.77)

ez

where

1
o) (x) = (Sgn(x % V1 943) — sgn(x * \w12)>(sgn(x * Vii03) — sgn(x * ng)) + 3 012+3014+23 (5.78)

+ (sgn(x * V4o23) — SGN(X * W1+273)>be;1’r2) + (sgn(x * V1 943) — SGN(X * W172+3)>be2’r3)

and qgff (7,2, 2) is a holomorphic Jacobi-like form with the same modular properties as g(r)ref
representing the ambiguity of solution. Indeed, the sum of the kernels (5.76) and (5.78) involves
only generalized error functions, sign functions of scalar products with null vectors and (IJ((;”’”),
so that the corresponding theta series transforms as a modular form without anomaly. It is
also easy to check that the first term in ® satisfies the conditions of Theorem C.1 which
ensures the convergence of the theta series. Finally, the weight, index and multiplier system

follow from (C.3) and agree with (B.5).

5.5.2 Holomorphic modular ambiguity

To fix a solution for ¢k, it remains to determine the holomorphic modular ambiguity ¢'r,

by requiring the existence of a well-defined unrefined limit. This is equivalent to the condition
that g (rref s regular at z; = 0 and has a second order zero at z = 0.

Z3In (5.68) one should also replace ro by ;.
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To investigate the behavior of the theta series in (5.77) at small refinement parameters,
we first apply the factorization property (5.40), which is possible since the kernel (5.78) again
depends only on the projection x;. This immediately implies the absence of divergences at
small z;. Furthermore, as the theta series 19(7%l (5.43) and the glue vectors ga (5.34) are
symmetric under permutations of Charges, we can write

g,(f Jref QS f{T‘O Z Sym {19 || 7_ 5 }19 (579)

ez

Next, we split the theta series ﬁ(fill into several parts determined by the vanishing of
k * w;;. While in §5.4.2 there was just one null vector wjy leading to the split of the theta
series into two parts, now there are three different null vectors. Hence, we define zero mode
order of a contribution as the number of linearly independent vanishing scalar products k * w;;
and split 9" H into parts with different zero mode order. In our case this order can be 0, 1 or
2 because due to (5.24) the three null vectors are linearly dependent and the vanishing of two
scalar products implies the vanishing of the third. Note also that each ®s factor contains one
of the vanishing conditions and thus adds 1 to the zero mode order.

In appendix G.1 we demonstrate that the symmetrization ensures that the contributions
of zero mode order equal to 0 and 1 both have a zero of second order at z = 0. Thus, they
have a well-defined unrefined limit and it remains to analyze only the zero modes of order 2.
To this end, we decompose the lattices A and A" in ff) =AM @ A" as in (5.46) using
V;; and 5, respectively. In other words, we expand

n—1

Ky =Y (it + bigipa), (5.80)

i=1
where in our case n = 3. The coefficients satisfy (; € Z + = and l; e + = % with ; defined in
(5.23). The variables v; and 7; determining the rational parts are fixed by and by the glue
vectors labelled by A = {ag, a;,as2,a3} and B = {bys, blg}. Their explicit expressions can be
obtained from (F.21), (F.22) and by evaluating scalar products of the vectors (F.20) with
In terms of the variables 7 = r/ry and 7; = r;/rg, this gives

T
vy =Ty — P+ riprtAp + K7 % b3,
1

Vo =T3jL — T[i3 —TrspsAM+W—b13,

. "3 (5.81)
173 - . . N
V1 = KT T_ b13 — /i?“l(l — rp1)30 + 4=¢ ((7’2 -+ T’3)31 — 7“1(32 -+ 33)) ,
13
r . .
VQ = KT ;— b13 -+ /i?”g(l — T’pg)ao + 47¢ (rg(a1 + ag) — (7“1 + 7’2)33) .
13

In terms of the coefficients /;, ZZ-’ the second order zero mode condition kxwis = k*xwgz = 0
is equivalent to /1 — 26171 =Vly — 25172 = 0. Therefore, when one rewrites the expression for the
contribution of second order zero modes to Sym {19(7:;”} in terms of these coefficients, the sum
over {;’s disappears. Furthermore, k;; becomes null and one remains with

Sym { doaAy 900, (2) } (5.82)
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where A 61(,'1“)26,]1 518';2)261,2 is the Kronecker symbol imposing the second order zero mode

condition and

UAAOEIDDIEDY [((Sgn )~ sgn(8)) (sgn@z)—sgn(ﬁ))+%521%)yz““’"”“”‘“m”?"g’

0EZ+ A beZ+ 2

21teko -
FO(T,1122) D O mnnis —rrmsin)n D (a sgn(ly) — sgn(ﬁ)>y02%“2£2]. (5.83)
n=1 o==+1

To get this expression, we applied the permutation 1 <+ 3 to the last term in (5.78) before
substituting (5.80). The sum over ¢;’s can be evaluated explicitly. First, we note that

21+6K12

_ s _
Z Z 526 2;{12Z1 512352) - 52“12 vy — 123, - 17 (584)

)
@1€Z+ Vl n=1

where in the first equality we used that 27, = v; mod k;, as required by the second order zero
mode condition, while the last equality follows by substituting the explicit expressions for v;
(5.81). As a result, all sums in (5.83) become simple geometric progressions and for § > 0 one
finds?4

o 1 . . . 2 —2MFerak12)1 . 2 —21F€ros ka3 A0
A0 = S+ (20 - 22 o~

2¢ri19K —2¢r19K 2¢r93K —2€7r93K
Y 12 12_y 12K12 Y 2323_y 23K23

2¢ A —2¢ A
ToR2A2 Y ToR2A2

—2¢12(T, 7"122) s (585)

y2€_17”0l€2 _ y72€_17'01{2

where we defined ~ B
= [4 b (5.86)
Ki

In fact, it turns out to be convenient to symmetrize this expression with respect to the
permutation 1 <+ 3. This could be done before performing the above calculations, but it can
also be done directly for (5.85) because under this permutation the basis vectors in (5.80) are
mapped to each with a flip of sign, ¥15 <+ —¥a3 and 115 <> —1la3, while the glue vectors just flip
their sign. This implies 7y <> —p and \; <> —Ag — 6,9;2), so that in the second term one should
flip the relative signs inside the brackets and the signs in the power of y in the numerators,
whereas in the last term in (5.85) one should just replace the indices 12 by 23 and 2 by 1. As

a result, if one expands at small z the symmetrized expression, one obtains

1 /o a(r r) _— r r
5 (005, + o [05),,]) = €22 + €7 (1) + 67 ()22 + O(Y), (5.87)

where we introduced functions of 7

" () = 4 ri2r23(r1 + 73) (7).

0 4€ 6KrTIT9T3
(r) () , TTo p 2
G (1) =C + ¢ (7"23/11(1—12)\1)+r12/§2(1—12)\2))E2(7) (5.88)
7T27’127“23

T (r3r1 +72) + 73(rs + 7)) E3(7)

24 Although (5.83) does depend on the sign of 3, its symmetrized version (5.82) does not. So all expressions
written below starting from (5.87) will be valid for both signs.
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and constant coefficients

C(") _ T2

2 41+67T27”7”127“23H12/€23 ’

i . i} o1 1— 122 1— 122
e = o885 4 (20 +68) (2 +05) 4 rasrd 1) | raersl 2

3" 2 6 7“12(7‘2+7“3) 7"23(7”1 ‘l"f‘g)
2 3(,.3 3

) — gepz| (r2)” (T2smi(” = (1 7 — 1202 + 240\ 5.89

2 17360 r3or3(re + 13) ( 1t 1) (5.89)

a3 (r® — (ra +73)°)
371 (r1 + 79)

4 K2 K1
—Fg ((T12H12)2)\1(1 — 4)\%) (2)\2 + 5122 )> + (T23/€23)2>\2(1 — 4)\%) (2)\1 + (51(;1 )>>] .

1
(7 — 120)\% + 240)\%)) — 5 7‘127“23/{12/{23(1 — 12)\%)(1 — 12)\%)

The main conclusion of all this analysis is that the only contribution of the theta series
term in (5.79) that does not have a zero of second order at z = 0 and needs to be cancelled by
the holomorphic modular ambiguity originates from the second order zero modes and is given

by
—5’”’0 Z sym{ZA” (A,B) ( ")t L g (r ))}ﬁg’“HT,z). (5.90)

Furthermore, it turns out that

Sym {Z Ag”cg")} =0, (5.91)
B

while the sum over B in the first term can be evaluated using Corollary F.1. Thus, one remains
with

1 ore 1 2

AcAlm

where Aé” is the set characterized by the conditions (F.30) implementing the second order
zero mode condition on A indices, and

ToT2 ) To
Cp = — C'y =— ) 5.93
712723 2 4671'2/{27"7“17"3(7”1 + T‘Q)(TQ + 7”3) ( )
We have also taken into account that
2
r127r23(r1 + 73) _ T mTC(_TQ), (5.94)

4€ 6KTrr1TeTs3 3

where
my = —g (r3 — ;'rf’) = —g (ry + 7o) (ry +73)(r2 +13). (5.95)
We do not provide here a proof of the vanishing property (5.91) (which has been extensively

checked on a computer) because we will prove its generalization to arbitrary number of charges
in §5.6. As we will see, it turns out to be a direct consequence of modularity.
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The contribution (5.92) can be cancelled by the holomorphic modular ambiguity chosen
as

45;(1?;)1 = —5(m0) (1,2) Z 19 (5.96)
Ac A"
where
o (1, 2) = Symz—{c} ~ 5 e Ba(7)2*, (5.97)

Indeed, ¢™ is a Jacobi-like form of weight 2 and index m,., so that the weight and index of
ém agree with (B.5) specialized to n = 3. The multiplier system must also agree because it
is the same as the one of the leading terms in the small z expansion of a theta series with the
right multiplier system. Finally, the first two non-trivial terms in the small z expansion of gﬁfm
cancel (5.92), which ensures that (5.79) has a zero of second order at z = 0.

5.5.3 The unrefined limit

To get the anomalous coefficient gff}i from the solution (5.79) on the extended lattice, we again
proceed in two steps. First, we apply the relation (5.10) which gives the following refined
anomalous coefficient

7)re 1 KT r r de r
gL7ZL f(’]‘, Z) = Z 5(AMO) <¢( )(7'7 Z)5A€A<Or> —I— Sym {/&(72«”(7— Z ) b (A) HD@ 7— t( i )
A
(5.98)

where DO was defined in (5.70).

To evaluate the remaining unrefined limit, we use the results of our analysis which showed
the existence of a zero of second order. Thus, we represent Sym {19(7:;”} as a sum of three
contributions corresponding to different orders of zero modes: the vanishing order with kernel
given in (G.6), the first order with kernel given by the sum of (G.10) and (G.13), and the
second order given by (5.82) and (5.85) or its expansion (5.87). The last contribution is to be
combined with the first term in (5.98). Applying the relation (5.6), one then finds

r 1 RT0 r r
dhr) =050 S 00w + 07
A

3
1 r)cp(r r dr; Tq
s A0 o 0 [ el )
B i=1

where the three terms in the square brackets correspond to the three contributions described

(5.99)

above. For the first two given by theta series we provide explicit expressions in appendix G.2,
while the function %Q(T) determining the third term in (5.99) is obtained by combining the
O(z%)-terms in (5.87) and in the expansion of (5.97):

. 4
6" (r) = 67 <T> - ”— 5 Coam E3(7) (5.100)

2
T"T12723

(r)
=G 4¢ 72

(r +1r9)E3(T).

36 (nglil(l — 12)\%) + T12I<L2(1 — 12/\§>>E2(T) —
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The formula (5.99) represents an explicit expression for the anomalous coefficients with
arbitrary three charges. In appendix H.2 we verified that for x and all r; equal to 1, it is
consistent with the solution proportional to the normalized generating function of SU(3) VW
invariants on P? presented in section 4.2.

5.6 General case

5.6.1 General solution

Now we turn to the most general case and, as usual, we start by presenting a solution of the
anomaly equation (5.8). Of course, for any set of charges this solution involves a holomorphic
modular ambiguity parametrized by a Jacobi-like form (;S,YL From the very beginning we will
take into account that it can be chosen in the factorized form (cf. (5.96))

KTo

(kro)
S = 2?7,#1 Z¢( (1, 2) 9" (7, 2), (5.101)

where ¢" (1,2) is a VV Jacobi-like form labelled by € ]DI(\ = ( ) / e ) and characterized
by weight n — 1, index m,. (5.5), and the multiplier system glven by the Weil representation
(C.3) associated with the lattice

(5.101) as a theta series over the full extended lattice (™

|(‘r ). As we did before for n = 2, formally one can rewrite

G i
o=z 0 (s 7,97, p), (5.102)

where |, z and p are as in (5.37), and the kernel is given by

O (x,7,2) = 2Ny 0% N7 by 6, 2), (5.103)
en(™
I
where k) is the projection of k = x//2m, — on \(IT) and k is the component of k along A
It is chosen to ensure that
Y (T, 2); \(I ),CD( 7 0) = ¢"(r, 2). (5.104)
Although the restriction to (5.101) may not describe the most general solution of the

anomaly equation, which is not our goal anyway, it allows us to represent a solution in terms
of a theta series on the extended lattice. To this end, let us define

m

) (x: Z Yo O o (=P, 7, 2), (5.105)

m= 2Zk71 NnE=n k=1

where s are t;, are the notations from (3.4), the upper indices (* and *) denote projections to

(r)

() and (%) respectively, and for a single charge we set ® 5 = 1. Then we have the following
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Theorem 5.1. A solution of the anomaly equation (5.8) and its modular completion can be
expressed as

O
G Co R VI {19 (7,2 ('r)’q)('r)({y(s)})’]p)}’
ot pt T on—1 (5.106)
- O |
Gt =+ 5 sym {0 (om0, 0O FY),p)
where the functions F and T are given by
F)(x) = Z e|710g H (sgn(x * V) —sgn(x*w&gﬂ)),
jggpn—l leZ n—l\j (5 107)
FN(x)= Y of (vihersx) ] (—sen(xxwien)).
TCEn1 €% \J

Herex =x—+2n , Z,={1,...,n},

m+1

. . l n
o {01 Emisodd T and w=3 S v (.09

—— if m is even, e
e i=1 j=0+1

Although the functions (5.107) might seem to be complicated, their structure is easy to
understand. First, if all scalar products x # v, are non-vanishing, then the function .% (™ (x)

simplifies to
n—1

F)(x) = H (Sgn(x * Vy) — sgn(x * Wg7g+1)>, (5.109)
=1

which is the standard kernel ensuring convergence of indefinite theta series with quadratic form
having n — 1 positive eigenvalues (see Theorem C.1). If however some of the scalar products
vanish, it is not sufficient to set the corresponding sign functions to zero. Instead, one gets
additional contributions manifestly visible in (D.12) (for n = 3 this the term %517%351%73 in
(5.78)). In the presence of refinement only the linear tree is relevant (see (D.17)) and one can
apply a simple recipe that sgn(0)™ — e,, [35]. This gives rise to the expression in (5.107). It
is useful to note that, using (5.39), the notation (G.1) and the function (D.12), it can also be
rewritten as

F(x) = > Sp({Ahesr) [ (senw). (5.110)

JCZn—1 e \J

Now it should become obvious where the second function .7 (x) comes from: it is obtained
from .Z (™ (x) by applying the recipe to construct modular completions of indefinite theta
series explained in §D.1 which amounts to replacing each product of sign functions?® by the
(boosted) generalized error function with parameters determined by the vectors entering the
sign functions. If some of the vectors are null, in addition one applies the property (D.3).

25Since the large 7 limit of the generalized error function is precisely the function S7 and not the simple
product of signs [23], it is actually this function that should be replaced by ®Z .
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The proof of Theorem 5.1 is completely analogous to the proof of Theorem 1 in [51]. The
similarity between these theorems become particularly obvious if one applies the factorization
property (5.40). It allows to rewrite the solution given in the theorem as

5(m‘o)
< (r)ref __ “A (r) (™l (r)L
QELL 2nu1 ; <¢£A+ (1,2) + Sym{ﬁ A (T, z)}) U, (1, 2), (5.111)

where 195{” has the universal form (5.43). The key point is that 19(7:;” can be significantly

simplified due to the property (5.104) of the kernels CD((;T). However, to be able to use this
property, one should somehow obtain theta series with a kernel given by only one <I>((5r). This
can be achieved by factorizing the lattice ‘(‘r ) according to the factorized form of the kernel
@(T) in (5.105), Which in turn will induce the corresponding factorization of theta series. Since

H =AM @A this amounts to using (F.9) for both factors, which leads to a generalization
of (F.19) where the theta series are associated to the product of two lattices. As a consequence,
the indices labelling them are doubled and can be represented as (1, p; ft, ft). This set of indices
can be thought of as a label of the elements of the discriminant group € ID|(|T ) which itself
can be seen as a pair of vectors (i, ft). A relation between (1, ) and fu is given in (5.37), and
to get its tilded version it is enough to replace k by 4°k. In particular, using (F.21), one finds
that the element g” + € ]DH corresponds to (u, p; fi, 1) with

= 46/{7“030 + Z d;, [NI,Z = a;. (5112)

As a result, one arrives at the following expression

Z D D uwisl TZH ) S> H O hpsi i (T 2): (5.113)

m=2%""  ngp=n v,V

It is a simple generalization of [51, Eq.(3.11)] which is twofold: the doubling of indices discussed
above and arbitrary set of charges instead of n charges all equal to 1. Furthermore, the kernels
(5.107) are exactly the same as the ones given in Eqgs. (3.13) and (3.14) of that paper. Given
this similarity, we refrain from repeating the proof.

5.6.2 Holomorphic modular ambiguity

As usual, it remains to fix the holomorphic modular ambiguities which are now encoded in the
VV Jacobi-like forms ¢ entering the construction via (5.111) and (5.113). To this end, as in
§5.5.2, we split the theta series 19(7:;” into contributions with different zero mode order equal
to the number of linearly independent vanishing scalar products k * w;;. On the basis of our
results for n = 3 (and some checks done at n = 4 which are too cumbersome to be presented
here) we make the following

Conjecture 5.1. Let us fix an integer ng, and assume that for all sets of charges r with
the number of charges n < ng, the functions gb(r) (1,2) are Jacobi-like forms that ensure the
existence of the unrefined limit for all gJ,fef so that they behave as O(z"~1) at small z. Then
for n = ng, the contributions to Sym {19 A (T, z)} of any zero mode order different from the

mazimal one, given by n — 1, behave as O(z"1).
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For the contributions of vanishing zero mode order this conjecture is equivalent to Conjec-
ture 1 in [51], which has been extensively tested numerically, and there is a simple argument
why it is expected to hold for other zero mode orders as well. Note that due to Proposition A.1,

o B ()22 g;%)fef, where m,. is the index

the expansion coefficients at small z of the function e’
(5.5) of the refined anomalous coefficient, transform as modular forms without any anomaly.
On the other hand, due to the induction hypothesis, all terms in the refined anomaly equation
(5.4), except the one with m = 1, behave as O(z""!). Thus, the only term that can spoil this

behavior is g,g p - Combining the two conclusions, one obtains that if

Ly | T B0 (5.114)

(r)ref
;10
is the part of the Laurent series in z truncated at z"~2, then all its coefficients must be modular
forms. Furthermore, from the representation (5.111) of our solution, it is clear that the same
is true for the coefficients of

moe 2

Lo [eT” B2 Gy {19(1:;”(7', z)}] : (5.115)

But all contributions to Sym {19(7:,)\”(7‘, z)} of any zero mode order different from the maximal
one involve holomorphic indefinite theta series. They are (higher depth) mock modular forms
whose anomalies cannot be cancelled by quasimodular forms. Therefore, they cannot generate
pure modular forms and should vanish. For the zero modes of maximal order the situation
is different because, as we will see below, their contribution does not involve indefinite theta
series. Of course, this argument is far form being a proof and we hope to return to this issue
in a future work.

The above conjecture reduces the problem to evaluating the zero mode contribution of
maximal order. To get it, let us first analyze the zero mode contribution of maximal order to
V(1,2 |(‘T), 7™ 0) which we will denote by 7). The zero mode condition implies that n — 1
scalar products k * w;; are vanishing, but since among vectors w;; there are only n — 1 linearly

independent actually all such scalar products are vanishing. Under this condition, ]kﬁ =0 so

that Z™ does not depend on 7 and is a function of z only. To ﬁnd it eXp11c1t1y, we perform

the lattice decomposition (5.46) for the two factors in |(|T )= AW @ A" and substitute the

expansion (5.80) with ¢; € Z+ 2 and l; € Z,+ % where v; and 7; are determined by the residue
class . As a result, we end up Wlth the follovvlng expression (cf. (5.82))

ZAT) A, B) V(AB)( 2), (5.116)

where is the Kronecker symbol imposing the maximal order zero mode condition and

I (2) H > > eanllon 11 <Sgn(l7i)—1) ?JQHE > sl

=l ezt s TC %1 e i€Zu_1\T
(5.117)
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Here for simplicity we restricted to 8 > 0 (as usual, the final result after symmetrization will
be valid for both signs of ). The remaining sums produce geometric progressions resulting in

_oltep. .

W= 3 s 1 (o8- 2y~ A (5.118)
v \#)= €| i 7 y267'i,i+1"3i,i+1 _y—257’i,i+1f€i,i+1 ’ ’

JCZn_1 eJ 1€ 1\T

where we used the notation \; from (5.86).

Let us now concentrate on the leading singular contribution in the small z limit which will
allow us to fix the most singular term in the holomorphic modular ambiguity. From (5.118),
one finds that

oy _21+eﬂ.iz 1-n
09 = L5
Hizl Tii+1Ri 541
Importantly, the leading term does not depend on the glue vector indices B. Therefore, due to

+0(z*™). (5.119)

Corollary F.1, the leading term in (5.116) is given by
(—2¢mikz) "1y
[T i IT2 (i i)

where .AE)T) is the set from Proposition F.1 implementing the maximal order zero mode condition
on A indices. Next, we assume that the leading term of the Jacobi-like form gb(r)(r, z) also

" (2) = Opeatn + O(z*™), (5.120)

depends on the residue class only through the zero mode condition. Namely, representing
= (f1, r) and defining Afr = f1 — 21 (cf. §F.4) we take

¢ (7, 2) = Sy;nn—_{lc”} [T65), + 0. (5.121)
=1

For = gu + , the product of Kronecker symbols is nothing but

and (5.121) into (5.113), one obtains

(r) d(st, .y 8m) [Tre,
19(”‘&“(7. ’ZiAl Z Z Z ge 817 ) S )Hk 1 Gy +O(22_n).

; N 2671'1/%71 11_[]C 1Ska 1(3k+5k+1)

AeAL Substituting (5.120)

(5.122)
Since the summand does not depend on v, the sum over these indices produces just a numerical
factor equal to the number of their independent values. In appendix F.1 we showed that these
indices can be identified with the glue vectors of the lattice decomposition (F.9) and therefore
the factor is given by (F.13). Finally, the consistency requires that the resulting singular
contribution should be exactly cancelled by adding the leading singular term (5.121) of the
holomorphic modular ambiguity with = gu + asin (5.111). Thus, the coefficients ¢, should
be solutions of the following system of equations

n 1 m—1 m .
D (_ — ) _ L =0. (5.123)
2¢mik Hk:l gcd(

m=137y ng=n ) Hk:l (5 + Sk+1)

We claim that this system is solved by

n—1 n -1
o= 2%1/—@ (2emik)n—1r (Z Z Tj) ) (5.124)

=1 =1 j=n—k+1

o
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which agrees with (5.65) and (5.93). Although we were not able to find an analytic proof, we
have checked on a computer that this formula does solve the equations for arbitrary charges
up to n = 8, which leaves no doubt that this is the right solution.

Having found the leading term in the expansion of gb(r), we can now provide the full

function. It is given by the following

Theorem 5.2. Provided Conjecture 5.1 holds, the holomorphic modular ambiguity given by
(5.101) with

o0 () = A} o2 158, (5.125)

on— 1 i
i=1

ensures the existence of the unrefined limit.

Proof. The proof will follow the logic of the argument used to justify Conjecture 5.1. Namely,
let us consider the function

12 By (1)2 (r) (™
T Ba ()2 (ngL_i_ (1, 2) + Sym {0""3'(, z)}) (5.126)
° 1 % i My, E2 (S)
hepsm{S s $ FTEE S0} o
m= b1 Mk=N 1787

where to get the second line, we used Conjecture 5.1, the representation (5.113) and the
proposed form of gb(r). To prove the theorem, one needs to show that the first term is also
O(2"1). Let us assume that this is not the case and there are terms ~ 2% with k < n — 1.
Here k£ must be large than 1 — n because we have already shown the cancellation of the
leading singularity ~ z!=" for ¢, given by (5.124). Then the same chain of reasoning as above
(5.115) allows to conclude that the coefficient of the z*-term must be a modular form of weight
n— 14k > 0. However, as follows from (5.126), the only dependence of 7 of these coefficients
is through the polynomial dependence on the quasimodular form Ey(7). But no polynomial of
E5(7) can produce a modular form of positive weight. Hence all of them must vanish, which
proves the statement of the theorem. O

5.6.3 The unrefined limit

The two theorems 5.1 and 5.2 provide a solution for the functions g,&’jfef satisfying the anomaly

equation (5.8) and having a well-defined unrefined limit. It remains just to reduce it to the

original anomalous coefficients gff}i The first step, the reduction to the refined anomalous

coefficients g{" ", is trivial and done by applying the relation (5.10) to the expression (5.111).

This affects only the Ay_; lattice theta series and results in

r)re m"0 r r d?"z
o) = 0 3 (04, 79+ Som (05, 20)) 0 () [T DA 60
A
(5.127)

The last step is to evaluate the unrefined limit 2 — 0. Unfortunately, we cannot accomplish
it analytically in full generality because this would require rewriting Sym {19(7:%‘ (T, z)} in a form
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refinement lattice extension

~— ~—
girh(7) gl (7, ) giriret(r, 2, 2)
compute S~ 1
polar terms z—0 (5.10)
hy(T)

Figure 2: Construction of the refined anomalous coefficients through the refinement and lattice
extension and their relation to the generating functions of BPS indices.

which makes manifest the existence of zero of order n —1 at small z for all contributions except
the zero modes of maximal order and, in particular, would automatically provide a proof of
Conjecture 5.1. However, since evaluating a limit of a function should certainly be simpler
than solving non-trivial anomaly equations, we see this problem as just a technical obstacle
and hope to return to it elsewhere.

6. Conclusions

In this paper we solved the modular anomaly equation for the generating functions A, ,(7) of
D4-D2-D0 BPS indices, the same as rank 0 DT invariants of Calabi-Yau threefolds, restricting
to the case of threefolds with one Kahler modulus. Since for a fixed D4-brane charge r, the
anomaly equation fixes the generating function only up to a modular form hﬂ and involves all
generating functions h,, ,, with r; < r, the solution is expressed as a polynomial in hﬁ?}ui, which
at this stage remain unknown functions. The coefficients of this polynomial, called anomalous
coefficients g,(j:z,,(T), satisfy their own anomaly equation (Theorem 3.1), and it is solving this
equation that takes the main part of our work.

In two particular cases (arbitrary two charges » = (ry,ry) or arbitrary number of charges
but all, together with the intersection number s, equal to 1), it is immediate to write a solution
for g\").(7) given by the mock modular forms of optimal growth from [25] and the normalized
generating functions of SU(n) VW invariants on P?| respectively. The generic case is treated
using indefinite theta series. In fact, this requires introducing auxiliary functions, g\a®(r, z)
and g,(:‘)fef(ﬂ z,z), depending on additional variables and satisfying a proper set of anomaly
equations. The former is a refined version of the anomalous coefficients and the latter is
obtained from the former by a lattice extension. As a result, we have solved the anomaly

equation for gUr® (Theorems 5.1 and 5.2), reduced it g\ (see (5.127)), and evaluated its

unrefined limit z — 0 producing g,(:,)L in the cases of two and three charges. Unfortunately, the
last step turns out to be too complicated to be done analytically in generic case. The realized

strategy is schematically presented in Fig. 2.

In fact, the existence of the unrefined limit of our solution for generic charges remains
conjectural since it relies on Conjecture 5.1. Although we gave a strong argument why we
expect it to be true, it leaves a gap in our construction. It would certainly be desirable to fill
this gap and to find a way to rigorously prove the conjecture. This might also suggest a way
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to explicitly evaluate the unrefined limit in generic case, the other missing step for having a
complete result.

For a few cases of small charges and small intersection number, we presented first terms in
g-series of the anomalous coefficients in appendix . Besides, in appendix H, we have shown that
our solution in terms of indefinite theta series is consistent with the other solutions mentioned
above, provided by mock modular forms of optimal growth and generating functions of VW
invariants. To this end, we constructed a combination of the solutions that is required to be a
Jacobi form and then explicitly evaluated it confirming that the requirement is indeed satisfied.

This calculation opens an interesting possibility. The point is that the mock modular forms
of optimal growth introduced in [25] are constructed in terms of certain seed functions G@
(see (4.10)), but only for the first two of them, GV and G®, one knows analytic expressions.
Our results can be used to obtain such analytic expressions for other seed functions.

It is useful to note that our construction resembles a lot the solution of a similar modular
anomaly equation for the generating functions of refined VW invariants in [51]. But there
is an important difference that here we could fix the holomorphic modular ambiguity for the
anomalous coefficients in terms of a Jacobi-like form, whereas in the VW case a similar function
had to be a Jacobi form. It is this possibility to use Jacobi-like forms that is responsible for a
very simple form of the solution (5.125) for the ambiguity.

Our solution for the anomalous coefficients reduces the problem of finding the generating
functions A, , to the problem of finding just a finite number of Fourier coefficients. For exam-
ple, it would be sufficient to compute their polar terms, which allows us to fix the modular
ambiguities h,(ﬂo,l and thereby the whole generating functions. Moreover, for r > 1, typically,
the polar terms must satisfy non-trivial constraints to produce a mock modular form [38, 61].
Therefore, such computation would provide an extremely strong test of mock modularity, which
at the physical level appears as a consequence of S-duality, whereas at the mathematical level
remains completely mysterious.

The problem however is that the existing techniques are likely insufficient to do this. For
example, the naive extension of the approach based on wall-crossing, as outlined in [24, §3.3],
would require knowledge of GV invariants up to genus 232 to compute all polar terms of hs,
for CY X0, which is given by the degree 10 hypersurface in weighted projective space P%11:1
(one of the two CYs for which hy, has been explicitly found). This seems unrealistic in the
current state of affairs. Therefore, one needs to look for alternative methods to compute polar

terms which would not be limited to extremely small charges.

Finally, although we restricted in this paper to the one-modulus case, our construction
seems to be easily generalizable to CYs with multiple moduli. In this case CYs can also have
additional structures, such as elliptic or K3 fibrations, and it would be interesting to study an
interplay between these structures and the mock modularity of rank 0 DT invariants exploited
here.

— 45 —



Acknowledgements

The authors are grateful to Abhiram Kidambi for valuable discussions. SA thanks the Galileo
Galilei Institute for Theoretical Physics for the hospitality and the INFN for partial support
during the completion of this work. Besides, SA would like to thank the Isaac Newton Institute
for Mathematical Sciences, Cambridge, for support and hospitality during the programme
“Twistor theory”, supported by EPSRC grant no EP/R014604/1, where work on this paper
was undertaken.

A. Jacobi and Jacobi-like forms

A.1 Jacobi forms

Jacobi forms have been introduced and studied in detail by Eichler and Zagier in [62]. Here we
provide a definition which generalizes the original one in several aspects: it allows the function
to have multiple elliptic arguments, to be non-holomorphic, to be vector valued and to possess
a non-trivial multiplier system. All these generalizations are well-known and play an important
role in numerous physical problems.

Let ¢, (7, z) be a finite set of (in general, non-holomorphic) functions, labelled by x, on
HxC'andx-y=>

valued (multi-variable) Jacobi form of weight (w,w) and (matrix valued) index m@;; if it

i j=1 Qijziy; denotes a bilinear form on C". Then ¢, (7, z) is a vector

satisfies the following transformation properties

o (t,z+ar+b) = ¢~2mim(a?r+2a2) ou(T, %), a,be?Z", (A.1la)
_'_ b Timcz
(Zi—l—d’ CT?_ d) = (et +d)"(cT + d)" 62CT+d Z p) e (T, 2), (A.1b)

where p = (Z Z) € SL(2,7Z) and M,,(p) is a multiplier system.

Setting the elliptic variables z = 0, (A.1) reduces to the definition of a vector valued
modular form. Note that since M, (p) must furnish a representation of the group SL(2,7Z)
generated by two transformations, T' = < ) and S = (1 01> to define the multiplier system,
it is enough to specify it for p = T and S. Thus, to characterize the modular behavior of a

Jacobi form, it is sufficient to provide its modular weight (w,w), index m and two matrices
M, (T) and M,,(S).

A.2 Jacobi-like forms

Jacobi-like forms have been first introduced in [63, 64] and further studied in the mathematical
literature (see, e.g., [65, 66, 67]). In the simplest case they are defined as formal power series in
X, with coefficients in functions on H, satisfying the following transformation property under

SL(2,7) ) N
aTt + X
P = eger+d O(7, X). A2

(c¢+d’(c¢+d)2) err &(r, X) (A.2)
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Given a Jacobi-like form, let us consider the function X ~*®(7, X). Then it is easy to
see that under the identification X = 27imz?, one gets a function ¢(, z) which satisfies the
modular transformation property (A.1b) of a Jacobi form of weight w and index m. However,
the elliptic property (A.la) is in general missing. This justifies the name “Jacobi-like”.

In the applications relevant to our work, it is more convenient to work directly with func-
tions of z that have a definite weight and index and to allow for all the generalizations (multiple
variables, non-holomorphicity, vector valuedness) that we allowed for Jacobi forms. Therefore,
for the purposes of this paper, we will call Jacobi-like form any function ¢, (7, z) that satisfies
(A.1b).26

Next, we are interested in modular properties of the expansion coefficients of a Jacobi-
like form around a point where one of the (would be) elliptic variables, say z1, vanishes. For
simplicity, we restrict ourselves to the case n = 1 of only one elliptic variable and set Q)11 = 1,
but the propositions below are trivially generalized to n > 1 provided the quadratic form is
factorized, i.e. Q1; =0 for 7 > 1.

In fact, it is well-known that the coefficients of the expansion in X ~ 22 of a Jacobi-like
form are in one-to-one correspondence with modular forms which can be constructed as linear
combinations of the 7-derivatives of the coefficients [63, 64]. In particular, the coefficient of
the leading term, say, 2™ in the expansion is a modular form of weight w + ny.

It is also known that Jacobi-like forms are closely related to quasimodular forms [67], the
simplest example of which is the Eisenstein series Ey(7) = 1 — 24> 7 01(n)e*™ satisfying
the transformation property

B (a”b):(cr+d)2 (E2(7)+ 6 _c ) (A.3)

ct+d moer+d
In particular, one can note that the anomalous term in this transformation has the same form

as the logarithm of the exponential factor in the transformation of a Jacobi-like form. This
immediately implies the following

Proposition A.1. Let ¢, (7, 2) be a Jacobi-like form of modular weight w and index m. Then
Pu(r,2) = 3T B (1 2) (A.4)

s a Jacobi-like form of the same weight and vanishing index, and the coefficients of its Laurent

expansion ¢, (7,2) = Y2 hn(7)2" are modular forms of weight w + n.

This simple observation can be used to prove
Proposition A.2. Let ¢,(7,2) be a Jacobi-like form of modular weight w and index m, and
having a smooth limit at z — 0. We define the following differential operator

[n/2] n! (QTmﬂQ)k

() S(r) o2 =
Dm = Z Cn,kEQ (7—) az 5 Cnk = (Qk)ll(n — Zk)' .
k=0

(A.5)

26The original definition of Jacobi-like forms implies that they have an expansion in even powers of z.
However, once one allows for a non-trivial multiplier system, there is no much sense keeping this condition. In
practice, the functions appearing in the main text are functions of 7, z and z = (z1,..., z,) which behave as
Jacobi-like forms with respect to z with an expansion in even powers, up to an overall shift in the power, and
as usual Jacobi forms with respect to z.
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Then
¢ (1) = D ou(T, 2) =0, (A.6)

is a vector valued modular form of weight w + n.

Proof. If ¢, is smooth at small z, the same is true for the function ¢, (A.4) and hence its
expansion coefficients are given by the derivatives with respect to z evaluated at z = 0. Ac-
cording to Proposition A.1, such derivatives 07¢,(7,0) transform as modular forms of weight
w + n. On the other hand, we have

[n/2]
- n! 22 AR 2
AZCUEDY 2K (n — 2k)! <e ’ d2km€2)

k=0

L (B om0

Taking into account that (e’T% 67) = (2k — 1)!1, we conclude that

=0
82(15#<T7 0) = Da(ff)%(ﬂ Z)|Z=07 <A8)
which proves the statement of the proposition. O

B. Summary of modular properties

In this appendix we collect the modular weights, indices and multiplier systems of the main
modular functions appearing in the paper.

Generating functions of BPS indices:

w(hr) - _3/27
kst Lr2 2 I cor
M;SZT)(T) = enr (hanr?) Hy e Opws (B.1)

_1)X7‘ i N
MBI (g) = =) —T g
Qv ( ) /_KZT € 9

where x, is defined in (2.7).

Redefined generating functions:

w(iLT) = _3/27
) (T) — B+ (st 2)r

M (T) = ex (7 ) -
- I ((2k+c2)r—1) o

Mﬁﬁr) (S) = 64— 6’_2”1%_

/KT
Anomalous coefficients:

w(9) = 3(n — 1)/2
Wi(ﬂ—zi M)—Hri(%—zi :—z)

(r)
M;(L?u,v),v(T) =¢ Oy Opavs (B.3)
71;1(n71) . v Vi
MED) () = — S (),

VE T
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Refined anomalous coefficients:
w (g(r)ref) _ (n . 1)/2’

m (g ) = —g (7‘3 - T?>,
=1
2 %2 (B4)
M(g(r)ref)<T) —¢ i )

s VY

Il(n—1) .
r)re 4 o i pv _ HqiVg
Ve gy - ¢ o2,

e ) =

B.5
M(9<’">ref>(T) = em(“fzi “")”i(%i Ve )*m r ()

2 21l

O 0

iz

™ (n—1—3d,) , L
- G

_— 6
1 b
VETI T

where (t1)2 = % (¢0)2 and d, = =y, d

a=1

M(g(r)ref) (S) _

s VsV

C. Theta series

In this appendix we define some useful theta series and describe their modular properties.

C.1 Generalized theta series and modularity condition

Let us define

v (1,z; ,P,p) = Z 1)P*Ep \/%(lk + )) q_%kge%iz*k, (C.1)
ke + +3p
where q = €?™7, s a d-dimensional lattice equipped with a bilinear form x * y such that the

associated quadratic form has signature (n,d — n) and is integer valued, p is a characteristic
vector satisfying k* (k+p) =0 mod2forvVke , € */ ,andz= -1 € C?with

, € R4, (We follow the convention to denote d-dimensional quantities by blackboard letters.)
The Vignéras theorem [68] asserts that if the kernel ®(x) satisfies suitable decay properties as
well as the following differential equation

(02 4 27 (x * 05 — N)] @(x) = 0, (C.2)
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where A is an integer parameter, then the theta series is a vector valued (multi-variable) Jacobi
form?” with the following modular properties:

1 1 1
EIRY c@n-a)s (C.3)
M(ﬁ)<T) = 6_71’1( +§Ip) ) , M(’?)(S) - e%]p 627r1 * ,

|/
where by % in the formula for the index we mean the matrix representing the bilinear form.
The multiplier system here forms the Weil representation of the modular group defined by the
lattice . A particularly interesting case is when the multi-variable Jacobi form is reduced to
the usual Jacobi form by choosing z = z where € . Then the index is a scalar and is given
by
m(Y) = —= “. (C4)

C.2 Unary theta series

Let us specialize (C.1) to the case where d = 1, n =0 and = mZ so that the bilinear form
is x xy = —xy/m. We also take p = —mp where p is odd for odd m and arbitrary integer
otherwise, z = —mz and ® = 1 (hence A = 0). Then the theta series reduces to

I (1, 2) = Y (SRR (C.5)

k€Z+ £ 4L

m

where we introduced y = ¢*™. Its modular properties follow from (C.3) and are given by

w(®¥™P)) =1/2, m"P)) = m/2,
M) =) 5, a(s) - ?:z . o
For even m = 2k, we can choose p = 0. Then (C.5) gives
QL") (1,2) = 1922:4,0) (1,2) = Z q% Y2k, (C.7)

kE2KZA+p

If z =0, we will simply drop the last argument and write fo) (7). The multiplier system (C.6)

reduces to ]

MY C.8
V21K ‘ ( )

On the other hand, specifying m = p = 1 in (C.5), we reproduce the standard Jacobi theta

o2

MO(T) = e, MO(S) =

g Hvs g

function

0u(r,2) =05 (r2) = D oM (—y) (C.9)

keZ+1

2TMore precisely, the elliptic transformation (A.1a) can generate an additional sign factor (—1)P*(®+b),
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whose modular properties are

w(f) =1/2, m(6,) =1/2,
6) =1/ 0) =172 10
M(@l)(T) — €7r1/47 M(91)(S) —e 37r1/4.
It has the following expansion around z = 0
01(,2) = —2mn(7)*z — 4n%in (7)n(7)*2* + O(2°). (C.11)

C.3 Convergence of indefinite theta series

Let us now consider theta series with a quadratic form of indefinite signature. In this case the
kernel ®(x) cannot be trivial anymore since otherwise the theta series would be divergent. On
the other hand, a non-trivial kernel would spoil holomorphicity in 7 unless ®(x) is a piece-wise
constant function.?® Thus, the only way to get a convergent and holomorphic theta series is to
take ®(x) to be a combination of sign functions. The following theorem from [51] (generalizing
results of [41, 54, 69]) provides the simplest choice of such kernel

Theorem C.1. Let the signature of the quadratic form be (n,d —n) and

n

d(x) = H(sgn(wu % X) — sgn(wve,; * x)). (C.12)
i=1
Then the theta series (C.1) is convergent provided:
1. forallie 25, ={1,...,n}, v}, v3;, >0;

2. for any subset T C 2, and any set of s; € {1,2}, 1 € Z,

Az({s:}) = det (vs,; * wsj,j) > 0; (C.13)

ijeT
3. for all L € 2, and any set of s; € {1,2}, i€ 2, \ {¢},

V101 {s;} * Voul{s;} > 0, (C.14)
where | (4,1 denotes the projection on the subspace orthogonal to the span of {vs, ;}icz\(0);

4. if v2; =0, then 3o; € R such that a,,;v,; €

Note that the last condition requiring that the (rescaled) null vectors, i.e. satisfying
wii = 0, that appear in the definition of the kernel belong to the lattice is important. If such
a null vector is present, it is also important to keep the elliptic variable z generic because the
theta series has poles at the points where 3k € + 4+ 1 p such that v,;* (k+ ) =0. In
particular, theta series involving null vectors are typically divergent in the limit z — 0.

281t is possible also to multiply it by a homogeneous polynomial in x since the non-holomorphic dependence
can then be canceled by multiplying by a power of 5.
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D. Functions determining completions

D.1 Generalized error functions

In section C.3, we provided a class of functions ®(x) that define convergent and holomorphic
indefinite theta series. However, in contrast to the usual theta series with negative®” definite
quadratic form, they are not modular. This can be seen, for example, from the fact that the
discontinuities of the signs spoil the Vignéras equation (C.3). Nevertheless, there is a simple
recipe to construct their modular completions [52, 40, 41].

This is achieved with help of the generalized error functions introduced in [40, 41] (see also

[70]). They are defined by

E,(M;u) = / dut’ e Limr (wi—up)? H sgn(Mu'),; | (D.1)
n Z:1
where u = (uy,...,u,) is n-dimensional vector and M is n X n matrix of parameters. To

get kernels of indefinite theta series, we need however functions depending on a d-dimensional
vector rather than n-dimensional one. To define such functions, let V be d x n matrix which
can be viewed as a collection of n vectors, V = (vy,...,v,), and it is assumed that these
vectors span a positive definite subspace in R endowed with the quadratic form *, i.e. V%%V
is positive definite. We also introduce a n x d matrix B whose rows define an orthonormal
basis for this subspace. Then we set

OE(Vix) = E,(B*V;B* x). (D.2)

The detailed properties of these functions can be found in [41]. Most importantly, they do
not depend on B, solve the Vignéras equation (C.2) with A = 0 and at large x reduce to
[T, sgn(v; * x). Thus, to construct a completion of the theta series whose kernel is a combi-
nation of sign functions, it is sufficient to replace each product of n sign functions by ®% with
matrix of parameters V given by the corresponding vectors v;.

Finally, if one of the vectors is null, it reduces the rank of the generalized error function.
Namely, for vZ = 0, one has

@, ({wi};x) = sgn(ve *x) D, ({vihiez 0y %)- (D-3)

In other words, for such vectors the completion is not required.

D.2 Coefficients %,

The generalized error functions defined in the previous subsection play the role of building
blocks in the definition of the coefficients %, (%; 72) appearing in (2.18). Here we provide their
expression found in [23].

29Usually, the convergent case corresponds to positive definite quadratic forms. In our conventions it is
negative due to the minus sign in the power of q in (C.1). See also footnote 11.
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The construction proceeds in two steps. At the first step, we introduce functions of 7
parametrized by n reduced charges 4; = (75, ¢;). To this end, let T¢ be the set of unrooted
labelled trees with n vertices decorated by charges from the set 4 = (91,...,%,). Given a tree
T € T¢, we denote the set of its edges by E7, the set of vertices by Vi, the source and target
vertex® of an edge e by s(e) and t(e), respectively, and the two disconnected trees obtained
from T by removing the edge e by 7 and T!. Furthermore, to each edge we assign the vector

= Z Z ’Uija (D4)

i€Vrs jEVt
where v;; are n-dimensional vectors with the following components
('Uij)k = 5kirj — 5kjri- (D5)

Using these notations, we define

(5 m) = CIZ “(V212q)

Vamt
Whereq:(q—l,... q—"),

B =L ¥ [Hmse >] o ()| 07

y=x
'TE TZ ecET

D)o (34 -, os

The dot in (D.8) denotes the bilinear form
T-Y==x Z Ty (D.9)
i=1

In particular, this implies that v,; - g = ;5.
Importantly, each function &,(%;72) defined by (D.6) has a canonical decomposition

&A1) = EO(R) + ED (7 ), (D.10)

where the first term & does not depend on 75, whereas the second term AN exponentially
suppressed as 75 — 00 keeping the charges 4; fixed. In [23] it was shown that

") = Z St IT wsro: (D.11)

TGTZ ecET
where
= Z €T H(SFe H sgn(l’e), .= Z Z Yij (D.12)
JCET ecJ EEET\J i€V7—ée ]EVTet

30The orientation of edges on a given tree can be chosen arbitrarily, the final result does not depend on this
choice.
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Here 77 denotes the tree obtained from 7 by contracting the edges e € E7\J and ey are
some rational numbers depending only on topology of 7. In particular, they vanish for trees
with even number of vertices, e, = 1, €4ee = 1/3, and an iterative formula for generic tree can
be found in [23]. If all ', are non-vanishing, S reduces to the product of their signs. This
shows that the functions &), have a meaning of kernels providing completions for holomorphic
theta series constructed from signs of Dirac products of charges.

At the second step, we introduce another type of trees, the so-called Schroder trees. They
are defined as rooted planar trees such that all vertices v € Vi (the set of vertices of T excluding
the leaves) have k, > 2 children. The set of such trees with n leaves will be denoted by T%.
Besides, we take nt to be the number of elements in V; and vy to denote the root vertex.
The vertices of T" are labelled by charges so that the leaves carry charges #;, whereas the
charges assigned to other vertices are given recursively by the sum of charges of their children,
Yo € D yecnw) Y- Then, given a Schroder tree T', we set &, = &, ({fw}) (and similarly for

6"@(0),&(”) where v' € Ch(v) runs over the k, children of the vertex v. In terms of these

notations, the coefficients %,, are given by

. 1 o
Fn(V; T2) = o1 Z (—)rrtEly H & (D.13)

TET% UEVT\{vo}

D.3 Coefficients %!

The refined version of the coefficients %,, has been introduced in [35]. It is given by the same
sum over Schroder trees as in (D.13),

T J 1 nr— T T

B (37 B) = 3oy S0 (1L T g0 (D.14)
TETS veVr\{vo}

but now with the weights assigned to vertices determined by new functions & (4; 72, 5)-

Although they depend on an additional parameter 3, they are actually much simpler than their

unrefined analogues &, because in their definition there is no any sum over trees. Namely, they

are given by

EFN(Fi 7, 8) = 05, ({ve}; V212 (g + 86)) (D.15)

where ,
Vy = E Vi, 0= E Vij. (D16>
i=1 j=4+1 1<j

As in the unrefined case, &8 7™ = 6V — 7" while &' is the large 7 limit of &,

However, before taking the limit, one should first set 5 = 0, i.e.

EY) = lim &Y ({4} 72,0) = 7, (9), (D.17)
T2 —00
where T, = e—e—-..—e—e is the simplest linear tree. The last relation follows from the

observation that the vectors v, can be seen as the vectors (D.4) assigned to edges of Ty,. Note
that for the linear tree ey, = 52221 /n where n is the number of vertices.
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D.4 Explicit expressions

Let us now compute explicitly the functions R(r)ref (5.2) for n =2 and 3.

D.4.1 Two charges

In this case we have
1

(r1,r2)ref

4,01 12 (1,7,2) =

Z <%re (Y1, 92) ™12 + 25 (92, 71) 3/7“2) q2@0n32), (D.18)

q1tae=p+5

where, using the restriction on ¢; + ¢o, one easily finds from (2.11) that

2
A oA Y12

= — D.19

Q2(71,72) RIT1T ) ( )

while the function %%t follows from the definitions in §D.3 to be

ef e o 1 o 1 \/ 2T + Krrire 8
Ky f(%ﬁz) = ) 52(+)(71,72) = B lEl < 2 (?/12717“2 =2 )> - Sgﬂ(%z)] . (D'QO)

Note also that the function E; coincides with the usual error function: Ej(u) = Erf(y/7 u).

Next, let us rewrite the sum over electric charges in (D.18) as an unconstrained sum.
Upon substituting the spectral flow decomposition (2.14), the condition on the sum of charges
becomes

r1€1 + ro€a = Au/k. (D.21)

Let us define rq = ged(ry,79), 73 = 1;/10 and 7 = r/ro. Then the condition (D.21) is solvable for
€, € Z only if Ay =0 mod kry. If this is the case, let p; be integers such that 71p; +ropy = 1.
Then a general solution to (D.21) is given by

A A
€1 = _ﬂ P1 + fgé, €y = _,Up2 - f'lg, (e 7. (D22)
RTo RTo

Using this solution in the formula for the Dirac product (2.10) after plugging there the spectral
flow decomposition, one finds that

Y12 = 10(2k120 + p2), (D.23)

where we introduced

1
K12 :§/€TT1T2,

i = Topty — Tipiy + P172(p1 — p2) Ap (D-24)
:f,ul — fl,u + ’f‘flplA,u
Thus, we arrive at the following result

R;(Eff?u;ef = mo Z Z [E1 2v/k1a7s (k +1083)) — sgn(k )] q R gy romzk () 25)

= opr12
o=+1pgez4 28412 P
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The corresponding holomorphic anomaly is found to be®!

ORI = T[0T 30 D0 (ko) (qyne ekt sk (D)

o=+1 k€Z+ "7“12

The unrefined function R,Z:L’f 2;22 can be computed either from (2.18) and equations in §D.2,

or by taking the unrefined limit of (D.25) and using (5.3). In this paper we will not use the
resulting function, which has a form similar to (D.25) but with a little bit more complicated
summand. Instead, we give here its holomorphic anomaly, which turns out to be simpler than
its refined counterpart (D.26) and is proportional to the complex conjugate of the theta series
9,(f) (7) introduced in (C.7) and evaluated at z = 0:

r1,r2) — To oy M2 K12 m" K
s Ru i (T T) = . 3/2 0) ‘9/(11;2)(7')- (D.27)
16717,

Note that 0-R\"%), must be a modular form of weight (3/2,2) with the same multiplier
system as g,g P 2}22 given in (B.3). Therefore, the result (D.27) immediately implies

Proposition D.1. If fo) (n=0,...,25 — 1) transforms with the multiplier system

i
e 4

MW(S) = er M (D.28)

3

MU(T) = e 345

ns

which is the complex conjugate of the multiplier system (C.8) of 05, then (5 ! 'GE2) trans-
forms with the multiplier system (B.3) specified for n = 2.

D.4.2 Three charges

In this case we have
RLT;;)fEf(Tv 7 Z) _ Z Sym {gggef(,% T, ﬁ) y’y1+2,3+712} eﬂi‘ng("y)’ (D29)
Sy qi=ptrr /2

where the quadratic form can be written as

2 2 2
Q3(4) = _ T3+ 2013 T30 7 (D.30)
RTT1T9T3

while the coefficient Z5 follows from (D.14) and is given by the sum of three Schroder trees
resulting to

ref / 2~ 1 ref / o ref / ~ ~ ref /a4
B Fima ) = 7|6 A) — & G, 3) 67 (i Ae)

(D.31)
- 5)2(+)r (71, ’Yz+5) g( (727 ’Ys)

31To obtain the holomorphic anomaly, one takes the derivative with respect to 7 while keeping fixed 7, y and
7 (and not «, B).
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The function @“’Q(Jr)ref was computed in (D.20) which implies that 52(0)ref(%,%) = sgn(v12).

égg( +)ref

Finally, is found to be

1

ref / ~
ESN () = BF (01943, 01193, ) — sgn(Y1213) s20(Y1123) — 3 Oy 2450714055 (D.32)

where = /27, (q + 30) and ®F(x) can be expressed through the generalized error function
E,. Substituting these results into (D.31), one obtains

1

re 2 1
Ry f(’)’? T2, ) = 1 [q)g('vl,%-i%; V1+42,3; x) — Sgn(71,2+3) sgn(71+2’3) 3 571,%3571”,3

(E (v 21y (71+2,3 + krriorsf3)
— 1
A /K,T‘T’1+2T3
(E (\/ 279 (V1,243 + Krrirassf)
- 1
VETT1T243

) - sentaa) ) sml) - (0:33)

) - sennaco)) sgnms)] .

Where Ti—‘rj =T; + 7”]‘.

E. Hecke-like operators

In this appendix we define two operators acting on Jacobi forms and then derive their induced
action on modular forms appearing as coefficients in the theta expansion, which for a (mock)
Jacobi form of index m reads [62]

o(T,2) = i hl(jm)(T)el(Am)(T, ), (E.1)

where «9,(]”) is the index m theta function (C.7). Although this will not be needed in this paper,
we will not assume that ¢ is holomorphic in 7, but will omit the complex conjugate argument.

The first Hecke-like operator is defined by a simple rescaling of the elliptic argument [25,
Eq.(4.36)]:
(Usle))(T, 2) = (7, 52). (E.2)

The action on the modular forms follows from the following property of the theta functions

d—1
m) [ aT + b rib mu)2 p(adm)
QL )( y 7@,2) :Zezmd (u+2mv) 0 (72 2) (E.3)
v=0

valid for a,d € IN and b € Z. In particular, choosing a = d = s and b = 0, one obtains

»
[y

ms2
0 (7,52) =Y 0500, (7,2). (E.4)

I
=)

1%

This result immediately implies that the action of Us on h,(j”) is given by (4.8).
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The second operator is defined by [46, Def. 3.1]%2

T =3 (4) §:<m+bz>, (©5)

a,d>0 b=0
ad=r

where (w,w) is the weight of the Jacobi form. To compare with [25], let us restrict to holo-
morphic Jacobi forms of weight w and perform a Fourier expansion of ¢(7, z) in both variables

o(1,2) = Z c(n,m)q"y™, q=e"", gy =M (E.6)

Then, using the identity

U

-1

— Tisn 1
Aty et = 50, (E.7)

o
I
=)

one finds

—w w— a2n T, am
<mmwwﬂiﬂza12$QMWM/y

alr

- ) (E.8)
—w/ Z w— Z ( ) qanyam
alr
As a result, we arrive at the following action on the Fourier coefficients
S elmm) e S et (T ™) 9
T @ c(n,m) —r Z ‘\@ 7) (E.9)

d|(n,m,r)

which coincides up to the factor r'=%/2 (see footnote 32) with [25, Eq.(4.37)]. The action of
(E.5) on the VV modular forms h{ follows from Definition 3.8 and Theorem 3.9 of [46] and
coincides with the one given in (4.9).33

F. Lattices, glue vectors and zero modes

In this appendix we present various results about our main lattice A™, about the glue vectors
appearing in decompositions of A™ and the extended lattice (), and an analysis of the set of
zero modes. Throughout the appendix we will use the following convenient notations: # = r/r,
7 =r;/ro and 1y, ;= ged(ryy, ..., 1y, ). If the indices are consecutive, i.e. i, =i; + k — 1 and
m = J, we will use a shorthand notation r;.; instead of r;, ;.. Note that ry.,, = 9.

32We multiplied the operator defined in [25, 46] by the factor r1=3(w+®) i order to make it commuting
with the simple operations changing the weight such as 0, or multiplication by 7o, but leaving it intact for
w 4 w = 2. This does not affect the property

7;‘7; = 77"57 for ng(T,S) =1
and little bit simplifies the property (cf. [46, Lemma 3.7])

Ty =TpTp-1 —pUpTy-2, for [ > 2 and p prime.

33Note that w in (4.9) is equal to w — 1/2 in terms of the weight appearing in (E.5). Hence the additional
normalization factor discussed in footnote 32 now reads i~z (w+®),
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F.1 Lattice A™

The lattice A™ is defined as

A" = {k: €Z" Y riki = o} (F.1)
=1

and carries the bilinear form

T-Y==kK Z Ty (F.2)
i=1

To describe its dual lattice, let us fix a n-tuple p = (p1,...,p,) such that Y | pir; = ro and
introduce

~(7r i ?: Hi T
A, ) = KL Dt (b =) (F.3)

KT; KT

Note that it satisfies > . , riﬂl(-r) = 0. Then the dual lattice is the following subset of
Span (A™)

N
(AM)* = {k €2+ i (N D ik =0, pi € Ly, A E Z,;} . (F.4)

i=1
Since the overall shift p; — p; + 7; for all ¢ leaves ﬂ(r) invariant, the discriminant group is
n

) ZI{T‘
D" =7.% HlL (F.5)
Zm“o

and hence its order, which coincides with the determinant of the bilinear form (F.2), is given
by

n—1 n
|ID™| = det A™ = n 5 L Ti. (F.6)
O
In the special case kK = ry = --- = r, = 1, the lattice coincides with the standard A,_; root

lattice whose discriminant group is Z,.

There are two decompositions of A™ which play an important role in our story. One
is the decomposition (5.46) on the sublattice generated by the vectors 0,11 = Vii1/7iit1,
1 = 1,...,n — 1. In this case the glue vectors are given by linear combinations of other
normalized vectors v;; with j —4 > 1. The number of values taken by the coefficients of v;;
that generate independent glue vectors is given by

Tit1:5—1"4:5
N, = Al e (F.7)
Tij—1Ti41:5

The total number of glue vectors is

n—2 n n—-1 .
1T 11 ™= % (F.8)

i=1 j=it2 | J T

which agrees with the formula (5.29).
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The other important decomposition corresponds to a split of the set of charges into m
subsets induced by a decomposition n = >_;"  ng. This gives rise to the following lattice
factorization

Ny—1
AT — ( A® <0)> 2 ( () (k)) .

U { +e) e (& (A +8l))|. (F.9)

c=0
where we used notations from (3.4). To write the glue vectors, we introduce so = ged(sy, ..., $m),
S = sx/ ged(vy) and

p(O) = (ng)[n1]7 s 7)07(1(1])[nm]>7 Z Skp]E;O) = So,
k=1

(F.10)

N

i k n—j k
pt) = (0UH, o, p® olrand) N T pl = ged(x).

=1

Then the glue vectors are given by

m 1 m
— (k) _ — (0)
gc = ;ckp o <; ged(ty) cK> p\. (F.11)

and are labelled by the following set of indices

C= {(cl, cesCm) 1 Ck € Zg,, chd(tk)ck € SOZ}. (F.12)

k=1

Thus, the indices are not free, but should satisfy a constraint. Taking this into account, the
total number of glue vectors equals

T = "
N, = i I E2 (F.13)
k=1

It is useful to note that since g(ck) e D) and g(co) € D they should be particular cases of

the vector defined in (F.3). And indeed, it is easy to check that

g = a0, ¢p), g = pn® (v, ML %), where v = rged(ty) ¢ (F.14)

KS0

Let us now establish links to the sum over charges appearing in all anomaly equations of
this paper. First, we note that the vector fx defined in (5.37) coincides with ™ (,u, S—T’;) from
(F.3) where the integer valuedness of the second argument is the usual condition imposed by

(527;0) (see, e.g., Theorem 5.1) and following from the condition » " ¢ = pu + kr/2 in the
sum over D2-brane charges (see, e.g., (5.2)). This makes obvious the fact that (u, @), subject
to the above condition and the identification (u, ) ~ (u + 7, pu + 7), labels elements of the
discriminant group D). To see that the whole sum over D2-brane charges corresponds to the

sum over A™_ it is sufficient to identify

1 A
qi = KT (k?i+ﬁ+—)=/’€7"i(€i+p M>+M¢+—/<J7"i, (F.15)
Kkr 2 KTo
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where k; = €; + /lfr) (u, f—fg), with ¢; € Z, is the component of the vector k belonging to the
dual lattice (F.4). Due to the constraint on Ay, the expression in the round brackets in the
first term is an integer, so that ¢; € kr;Z + p; + Kr;/2, as required. It also easy to check that
the identification (F.15) maps the quadratic form —Q,(%) (2.11) to the one in (F.2).

Finally, we observe that the sum over v in the anomaly equation for the anomalous coeffi-
cients or their refined version (see, e.g., (5.4)) is nothing but the sum over the glue vectors of the
lattice factorization (F.9). To see this explicitly, let us introduce another m-tuple (p1,. .., Pm)
such that > | ged(ty) pr = 7. It allows to take p = > 7" | prp®). Then it is straightforward

i DI YIS N WY , one gets the relation
K ged(rg) KT0

to verify that, identifying c; =
it ge = ) (v, 2 ) 4 Z 1) (p, o), (F.16)

where the two vectors on the r.h.s. belong to D® and D), respectively. This demonstrates
that the lattice factorization (F.9) gives rise to factors labelled by (u,v) and (v, my), as
expected. The ranges of summations over v} also agree, while the conditions restricting the
values of v, originating from (F.12) and the above identification, namely

m ng
— Z Vv, € KSoZ., vV — Z'ujk“ € rged(vy) Z, (F.17)

i=1
in equations like (5.4) arise from the conditions on the sum over charges defining each of the

factors.

Let us apply what we have just shown to theta series. To this end, let
®(z) = Bo(x?) [ | Pu(x™), (F.18)
k=1

where the upper indices (¥ and ® on a vector denote its projections to A® and A<tk), re-
spectively. We also assume that theta series associated to lattices A and labelled by (1, )
implicitly contain the factor 58[”;0). Then our result implies that

m kSp—1 m
0,00 (7,02; A (H Z) (1,002 A D0, 0) T 0y (7, 0% 2 AT 04, 0).
k=1 vp=0 k=1
(F.19)

F.2 Basis expansion of glue vectors

Here we obtain an expansion of the glue vectors appearing in the lattice decompositions (5.31)
and (5.46) in the basis ey = (€9, ®; 0, Viit1, Wii+1). To this end, we note that the dual basis,
i.e. such that ey * e}, = v, is given by

1 o

* *
0 0 (e gz,a gl?
dT d,,
(F.20)
s sk
Viitl = g g ThIVk, U401 = p E E (ATLITR
rok; 4 ToK;
k=1 l=i+1 k=1 l=i+1
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where we used the notation x; introduced in (5.23). Then evaluating the scalar products of
the vectors appearing in (5.34) with the dual basis, one finds the following expansions

n

1
KTo R 1
g S (z S i )u+

l

=1 j=1 k=l+1
n—1 1 n i—1 1 l a
gi,a =47 ¢, [Z — ( Z fk) UAll,H-l - Z - <Z ’fk> Uilu_,_l + d—(B() (F21)
= " \k=r11 -1 M \= r
1 a d'r,i*
e [Z (dy, —a) e + Z (d,, —a)a @w] ,
Ti | a=1 a=a+1
while for ¥;; and 11,5, one gets
P KT rors A ki
o= 3N Mg o= —2 3 Sy F.22
Vij T ; i Vi, 41, Ty T 52_; /‘il Wy 41 ( )
F.3 Zero modes for two charges
In the case n = 2, (F.21) takes the form
1 N
g0 = = ((p1 = p2)iuiz + o), (F.23)
, dr,—1
a [(—=1)7' R
gi,a:d—T< ; Iu12+®0)—d—m ;(d aem—i—aza;rl )ae;

which leads to the dependence of the indices of theta series, v and 7, on the glue vectors given
n (5.54).

Let us find a manifest description of the set of glue vectors ensuring the existence of zero
modes which is defined as

AP (112) = {A + 2D(A) — sy € 26157} (F.24)
Taking into account (5.54), explicitly the zero mode condition reads
2€/€T0721722(p1 - ,02)30 +27°¢ (f’gal — flag) — M2 € 2K197.. (FZE))

In the following, to treat the case e = 0, we will have to distinguish two cases whether 7 is even
or not. Therefore, we define ¢’ = 6(5122) and €, = 6(57%2). We then take a; € [0,d,, — 1] such that

a; = (—1)i_125+€,mrof1f’2 {L} p3_i +0r; +€(1 —€) 21 Krofifee mod d,,, (F.26)
2¢ Kot Py

where {z} denotes the fractional part of z, £ = 0,...,4%ro — 1 and € = 0,2° — 1. Note that
the last term is non-vanishing only for x = 1, odd 7 and even 7;. We also observe that the
(-dependent term cancels in (F.25) and the transformation a; — a; + d,, induces a shift of
27¢(T9a; — Tay) by £2°kror72. Therefore, a; specified in (F.26) satisfy

2_€<7:231 — f’lag) = H12 + 25//<a7’0f1f2m, m € 7. (F27)
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Substituting this into (F.25), one reduces the condition to
2€_€l(p1 — p2)ag — 27 = m, n € 7. (F.28)

Note that 277 is integer and, due to the possibility to rewrite the condition on p; as (p; —
p2)F1+pof = 1, one has ged(py —pa, #) = 1, which also implies that ged(2¢7¢ (p1—p2),27¢7) = 1.
Thus, if we restrict ag to belong to the interval [0, 7—1], for € = 0 and given m, there is a unique
pair (ag, n) satisfying (F.28), while for ¢ = 1 there are two such pairs (ag+ 57, n+ (p1 — p2)e),
e = {0,2°—1}. Thus, the equations (F.26) and (F.28) encode 23“sry solutions to the condition
(F.25) parametrized by (¢,¢) and provide an explicit description of the set Aér)(ulg).

F.4 Zero modes of maximal order

For n charges, the maximal order of zero modes is n — 1 and their set is determined by the
conditions w;; * k = 0 for all 7,5 and k € (") + . In practice we work with the lattice
decompositions (5.31) and (5.46). Therefore, k can be replaced by k|| € |(|T us gkl + which is
expanded as in (5.80) with coefficients whose fractional parts are determined by the glue vectors
of the two decompositions, labelled by A = {ag,ai,...,a,} and B = {b;j, Bij}, respectively.
What we are interested in is the set of glue vectors for which the space of solutions to the

above conditions is non-empty.

To describe the resulting set, let us define Afe = fo — 2¢f1 where f1 is the vector from (5.37),
while £ is the same vector with x multiplied by 4¢ and p, u; replaced by fi, ji; computed in
(5.112). This latter vector can be seen as the projection of ga on A(r). Using these definitions,
one finds that the components of A have the following explicit expressions

i—27%; p—27) 0 qa 2 A
A/lz — /J’ a . :u Z] 1% + Todo + <_M o 2630> pz (F29)
RT; RT r KT

Then we summarize the main facts about the desired set in the following

Proposition F.1. The set of glue vectors of zero modes of maximal order can be characterized
by two sets of conditions:

1. the first specifies a set Aér) of A indices and is independent of B:

A(A)EZ,  i=1,...n; (F.30)

2. the second restricts B indices:
bij — QEBU = —Cij(A) mod Nij; 1< ] — 1, (Fgl)
where N;; is giwven in (F.7) and c;;(A) are the coefficients in the expansion

AR(A) =" cii(A) by, (F.32)

i<j

which is unique provided A € AE;“) and c¢;;(A) are required to be integers ranging from 0
to Nij — 1.
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Proof. Let k| = + g” + where = (A, 5\) € H . Given the form of the null vectors w;;
(5.20), the maximal order zero mode condition can be written as

Vi A =2A+fp—24) =0 foralli,j (F.33)

where we used the bilinear form (5.13) and took into account that the bilinear form on A"
differs by the factor —4¢. It is clear that the condition (F.33) is equivalent to

A—2A=—Af, (F.34)

which in turn implies that Aft € A™. Since the components (F.29) automatically satisfy the
condition Y " | r;Afi; = 0, the only remaining condition is that they must be integer. This is
precisely the condition (F.30) which provides the definition of the set A((f)

Next, each vector in (F.34) has a unique decomposition according to the lattice decom-
~ ~/ ~
position in (5.46). In particular, A = X' + Y %=1 b0 and A = X + 3 %=1 b;;0,; where
j—i>1 j—i>1
X, N e Span {®y, x11}7—1, while Afx can be written as in (F.32) where ¢;; with j —i > 1 play
the role of the glue vector indices. Then the second set of conditions (F.31) claimed by the
proposition is a direct consequence of (F.34). O

Remark F.1. In fact, due to > r;Af; =0, a stronger form of the condition (F.30) holds:
Af; € ged({7}}2)Z. In particular, this should be taken into account to reproduce the condition
(F.25) in the n =2 case.

Corollary F.1. Each pair (b;;, BU) contributes N;; solutions so that their total number is given
by (F.8) and is A-independent. As a result, if A(()T)(A, B) is the Kronecker symbol implementing
the mazimal zero mode condition, then

S apap) = Pl

- (F.35)
B Hizll Tz,z—l—l

Ac A"

Although Proposition F.1 gives a formula (F.31) for the B indices corresponding to the
zero modes, it does not tell us how to compute the coefficients ¢;; encoding the solution. Let
us explain a simple recipe how this can be done. We start with the first component of the

expansion (F.32) multiplied by the factor T”;ﬁ so that, according to Remark F.1, the result is
still an integer. It is found to be

TlnTj Tn
C

Tin ~
A,ul =
T'2:m

Cin mod Nln; (F36)

J
j=2 T1572:n T2

TinTj

where we used the fact that all with 2 < 7 <n —1 are divisible by Ny, as follows from

) = 1. This implies

T1572:
its expression in (F.7). Furthermore it is easy to see that gcd(

that there exist ai,, b1, € Z such that aq, - Ni, =1, ie.
'n N
QA1n A,LLl = Cip, mod Nln‘ (F37)
T'2::n
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Then one subtracts the already found part of the expansion (F.32) from Af and repeats the
procedure, first by lowering the second index and then by raising the first index. Thus, to
determine c¢;;, one chooses a;j;, b;; € Z such that a;; —— o~ + b;jN;; = 1 and uses the fact that

(Alh Z Z Cri (V)i Z Cil (@kl)z>
Tz—i—l :J

k=1 l=k+1 I=j+1 (F.38)

Tijrl

r;
i = (— ¢;; mod Nw) =¢; mod Nj.
1=ig1 7L Tit1::j

G. Computations for three charges

G.1 Contributions with zero mode order equal 0 and 1

For three charges, the kernel of the theta series ﬁ(fill defined in (5.41) is given in (5.78) in
terms of 7;;. The scalar products x * v;; appearing in the kernel are given by the relation
(5.39). Similarly, we define for i < j

wij:—Q_TZWVZ'j*X :Wij*]k,

1
Wiy = s wyrx = wy s (Kt ) (G.1)
J 27'2 ’

= W { QEK(ri + 7“]')7“1'7“]'5, (Z]) - (12)7 (23)7
" 2°6(r + ro)rirsB,  (ij) = (13).

For i > j, w;; and wl(f ) are defined by applying the permutation i <+ j to (G.1). More generally,
permutations leave k invariant and permute the indices of all vectors like v;; and w;;. Note
that the component of z along A™ is proportional to 8 (see (5.37)) defined in terms of the
vectors v;; and therefore it is affected by the permutations so as . This explains why w;; are

(8)

anti-symmetric, whereas this is not true for w;;” as follows from the last line in (G.1). We also

have w;i;r = wir + wji and similarly for wg’i)m and wiﬁ 2) 13- Using these properties, one can
write
S 19(")” _ *%]kﬁ S Y1,243+723 1 5 5
ym{ A (7-7 Z)} - Z q yms§vy g Y1,2+3Y7142,3

IkHE ‘(r)-i-gk‘—i—
+ (Sgn(71,2+3) - sgn(w@)) (Sgﬂ(71+2,3) - sgn(wé?))]

+ Gy, @2 (T, 7122) [?/WHQ’3 (Sgn(%+2 3) — sgn(wﬁé 3)>

21+€K/12
—Y1+2,3 _ )
ty (Sgn(vs 14+2) — sgn wg 1+2 )] Z nz_, },

777

where we applied the permutation 1 <+ 3 to the last term in (5.78).
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Let us extract the contribution of vanishing zero mode order. It is given by the first two
lines in (G.2) where all w;; are non-vanishing. Under this condition, for small § one can replace
sgn(wz(f )) by sgn(w;;) so that this term becomes

1
Sym {y71,2+3+723 {_ 571,24—35714-2,3 + (Sgn(71,2+3) - sgn(w12)> (Sgn(71+2,3) - Sgn(w23)>:| } .

3

(G.3)

We expand the product and apply the sign identity
sgn(zy)sgn(zrs) =1 — 6,,0,, —sgn(z1 — x2) (sgn(xy) — sgn(zq)) (G.4)

to % of the terms with two 4’s and two w’s. This results in
S Y1,243+723 2 1
ym Sy 3 sgn(v1.2+3) sgn(vi423) — 3 sgn(V1+43,2) <sgn(’yl72+3) - Sgn(71+2,3)>
2 1

—1—3 sgn(wi2) sgn(wss) + 3 sgn(wys) (sgn(wlg) + sgn(w23)> (G.5)

—sgn(71,243) sgn(wss) — sgn(wia) Sgn(%+2,3)} } :

where we used V1243 — V1423 = Y1432 and r3wia + rwag = Tow3 following from (5.24). Then
we use the symmetrization to bring the products of sign functions in each line to a single
expression. This gives

1 1 1
Sym { <§ Sgn(71,2+3) Sgn(%+2,3) + 3 Sgn(wlz) Sgn(w23) D) Sgn(71,2+3) SgH(W23)>

< (s = yman) (o =y }

This result makes it manifest that the contribution of vanishing zero mode order has a zero of

(G.6)

second order at z = 0.

Next, we consider zero mode contributions of order 1. They are characterized by vanishing
of only one of w;;’s. This will be indicated by insertion of the corresponding Kronecker symbol
Ow;;, but we will omit the factors 1—4,,, ensuring that other variables are non-vanishing. Thus,
the relevant contribution to (G.2) reads

1
Sym {y"/1,2+3+723 [g Oyr030yi4ns (Ouoyy + s + Ours)
+ (sen(m.243) = sgn(8) ) (sen(11423) — sgn(was) ) b
+ (Sgn(’71,2+3) - sgn(w12)> (Sgn(’71+2,3) - Sgn(ﬁ))(smg (G.7)

+ (Sgn(’h,2+3) + sgn(wgg)) (Sgn(71+2,3) - Sgn(w23)>5w13}
21+e

K12
+ g <?ﬂ“2’3 - ’yﬂl”""’) (Sgn(71+2,3) - Sgn(w1+2,3)) gl Y 533_7,},

n=1
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where in the forth line we used that sgn(wi2) = —sgn(wys) provided wyz = 0. Then we use
the symmetrization to transform all d,,, to d,,,, and add and subtract a term proportional to
sgn(~i2), which is recombined with the terms coming from the second and third lines of (G.7).
Taking also into account that sgn(wss) = sgn(wise3) provided wis = 0, we end up with the
following result

1
Sym {5w12 [g (y’h,2+3+’723 4 y*71,2+3*’723 + y71,2+3*“/23) 571’%3571“’3

+ (yrreeetie gy Tk (Sgn(%+2,3) - Sgn(w23)> <Sgn(%,2+3) - Sgn(m))

a2 <sgn(7172+3) — sgn(w23)> <sgn(71+3,2) + sgn(w23)> (G.8)
21+5’{12
+<Sgn(71+2,3) - Sgn(wl+273)> ((?JV““ - y_71+2’3>¢(”‘12) > Ons_,
n=1

Hyzete (Sgn(%z) - Sgn(ﬁ)) tHy e (Sgn(m) +sen(s )>>] }

Expanding the product in the third line and applying the identity (G.4) to the product of two
sgn(7;4;k), one finds that it is equal to

Sym {5w12 yrersTs [(Sgn(71+2,3> - sgn(w23)> (Sgn(71+3,2> - Sgn(’yl,2+3)) - 671,2+35’71+3,2] }
(G.9)
The last term cancels the first line in (G.8) (to see this, one should use the vanishing condition
imposed by the Kronecker symbols and the symmetrization 1 <+ 2), while the first term can
be combined with the second line in that equation and, after the same symmetrization and the
replacement of sgn(wss) by sgn(wi4o3), gives

Sym {5“,12 <y71’2+3 — y_7172+3> <y723 _ y—723>
(G.10)

X (Sgn(’YHz,:s) - Sgﬂ(wl+2,3)> (Sgn(71,2+3) - Sgn(’m)> }

Thus, this contribution also has a zero of second order at z = 0.

It remains to compute the contribution of the last two lines in (G.8), which after sym-
metrization takes the form

Syrn {(Swm <y71+2,3 _ y*71+2,3> (sgn(’yl+273) — sgn(ng,g))

21 €k1o
“ <¢(m> > Gma, +y (sgn(m) - Sgn(5)>> }

n=1

(G.11)

We observe that it factorizes into two parts: the second line depends only on 15, while the
132

first line together with the factor g 2Kl can be shown to depend on 15 only  mod 2 ¢r oK.

Indeed, it is easy to verify that, provided wis = 0, the transformation kj — k| + w1y affects
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neither ]kﬁ, nor the quantities appearing in the first line: w2, w1423, Y1+2,3. On the other hand,
it maps 12 — Y12 + 21 7r19k12, which proves the claim. This means that, substituted into the
theta series, the contribution (G.11) is equivalent to

Sym {%2 (?ﬂ““ - y_%“’g) (Sgn(71+2,3) - Sgn(w1+2,3)>
(G.12)

21+5’{12

(k12) 1+e N r12(n+21 € k120)

3 b (00 3 (s + 2w — () }
n=1 lez

The sum over / is identical to the one in (5.59) (where the sum over ¢ is equivalent to the
1

symmetrization with respect to 1 <» 2 in (G.12)). Thus, we can borrow the result (5.60), which
gives

Sym {50.:12 <Z/71+2’3 - y_’h”’?’) (Sgn(’YHz,s) - Sgn(wl+2,3)>
(G.13)

21t€ks 214 € 5 k12 12 + —olteri koAl
X k) ¢("~12) _ Y Y
:1%777 y2€7“12l-€12 _ y—2€7‘12/€12 )
1

n=

where Aj5 is given by (5.61) with 7 replaced by 27¢. Since ¢(*12) was chosen precisely to
cancel the pole coming from the geometric progression, the last bracket behaves as O(z) and
the contribution (G.13) has a zero of second order at z = 0. As a result, the same conclusion
applies to the total zero mode contribution of order 1 to the summand in (G.2), given by the
sum of (G.10) and (G.13).

G.2 The unrefined limit

We define the theta series appearing in (5.99) as

[Sym {0757, 2)}],

Mk _1;
VA (T) = ll_rf(l) PEEE : (G.14)
where [ - | denotes the contribution of zero mode order equal k. In particular, the kernel of

the contribution of vanishing order is given by (G.6), and the one of order 1 is given by the
sum of (G.10) and (G.13).

First, we represent the theta series (G.14) as a sum over the lattice \(\T ) with the kernel
expressed through v;; and w;; as in (G.2). One easily finds

19(730(7') = Z Zér) Sym {’72371,2+3 <% sgn(y1,2+3) sgN(V142,3) + % sgn(wi2) sgn(was)
i€ |7 +ad+
1 _l]k2
D) sgn(71,243) sgn(w23)> } q >, (G.15)
N = Y Sym {%(1 — G243 (sE0(122) — sEn(wr:20) )
e el
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€

21+e K12
2°7r19 _1p2
X {723 <Sgﬂ(71,2+3) - Sgn(712)> 0 <1 — 12X, — 21+2%12> g 533 ] }q =,

where the factor Zér) = (1 — 645) (1 = duys ) (1 — dyy,) implements the condition of vanishing
zero mode order. Note that in the first theta series the symmetrization over charges must
be implemented before performing the sum. The reason is that in the process of getting the
kernel that makes manifest the existence of a second order zero and allows to compute the
unrefined limit, the conditions of convergence ceased to be satisfied. This happened due to
the use of various permutations which spoiled the original structure of the kernel satisfying
Theorem C.1. Of course, one can do them backwards to recover the manifest convergence. We
omit the details of manipulations, which are similar to the ones in the previous subsection,
and present just the final result

ﬁ(r,lo(T) == Z Z(T)(1+013) [72371,2+3 <Sgn(%,2+3)—sgn(wl3)) (Sgﬂ(72,1+3)—8g11(w23))} q_%kﬁa
ke (M +el+

(G.16)

where o;; denotes the permutation ¢ <+ j. Note that although the symmetry of this expression

under all permutations of charges is not manifest, it is actually symmetric being obtained from

a symmetrized expression. For the second theta series in (G.15) the issue of convergence is

absent since it is ensured by the kernel so that the symmetrization can be put outside the sum.

For computer evaluation it might be useful also to rewrite the above expressions as a sum

over an unconstrained lattice. To this end, we can substitute the expansion (5.80) of the lattice

vector and rewrite the sum over the lattice ‘(r ) as a sum over the coefficients ¢; and EZ- at the

price of introducing new glue vectors B = {by3, 513}. This leads to more explicit, although
more cumbersome expressions:

79@0( ) = 1+ 043 Z Z Z A [7"23/@161(2/{2352 — K12301) (Sgn(fl) - sgn(fil + fff))

B ¢ eZ+— l,eZ+ ”%

X |sgn( = ly — L /) —sgn T2+T3 Aly — T AL "””12(462%—ff)Jrf'iz>3(4el7§—35)—f'€123(46!71l72—5152)7
723 T12

T12

vV T,)l(T) = 19 Sym {/@1 Z Z Z 6r1+r2 b2 Al (1 —=da0,) 0 (sgn(fg) - sgn(A€2)> (G.17)

B tiez+:t i, €2+ o

X |:’I"23(2I{23€2 — I{123€1) <Sgn(€1) — sgn(””Q E :233 €2>>

217510
267’12 rOToR (gef2_ g2
+ 12 (1 - 12)\ 214»26/.{12) Z 52/@12@1 —k123la— 77:| q2(r1+r2) ( 2 2) ’

where Al; = (; — 26@. The variables v; and 7; determining the rational parts are given
n (5.81), and the factor implementing the condition of vanishing zero mode order reads as

~ ()
AO 1 - 5r1+r2 Ay — r3 Ay 1 - 5r2+r3 A€27T—1 ALy 1 —_ 5%_"_% .
12 723 12 T12 723
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H. Consistency of different solutions

H.1 Two charges

The solution (5.71) obtained using indefinite theta series can be compared with the one con-
structed in section 4.1 using Hecke-like operators. The consistency requires that their difference
is a VV modular form. To verify whether this is the case, let us write the function (5.71) as in
(4.2)

T o KT ) KiT1,T
G, = rod g Gl (H.1)
and define
2Kk12—1
Anin) = L (Gsmra () = G (7)) B2 (7, 2), (H.2)

where G is given by (4.10) and HM (7', z) is the theta series (C.7). The modularity condition
is equivalent to the requirement that gog'f,)rz is a Jacobi form of weight 2, index k15 and trivial
multiplier system. Using Mathematica, for the choice a) in (5.18) of the vectors £, we have
found the following results for several low values of charges and x:

7T Ey(7)Es(T) 11
Ey(T
905?2<7'7 z) = - 2;%4) $-2,10,1; (H.3b)
1
P (12) = o (Balr) poaaeh s + 2B6(7) 021000 + B3(T) 0 ), (H.30)
9034% ) = @g;< ) 197664 <—5E4(7') @—2,1%03,1 + 14E6(7'> 8032,1908,1
FTES(r) 90,001 + 2Ba(7) Eo(7) s ) (.3d)
1
9055,)}@'7 ) = 19906560 (29E4(7') €072,190g,1 + 130L5(7) @32,1908,1 + 195EZ<7'> 90?12,1@%,1
F116E(7) Es(7) 9" 51001 + (112E§(T) - 90E§(T)) o3 2,1), (H.3¢)
1 3
P\ (T, 2) = 597196300 <—125E4(T) P 21901 + 300E5(7) 95 1001 — 3 E(7) 925,100,

2529
FUSENET) st — (T B~ 204580 ) 0

63
= 5 B (1) Es(T) 905—2,1>a (H.3f)
1
71663616 (19E4(T) <P_2,1308,1 +30E6(7) 9032,1903,1 + T4E3(7) 90?12,1@81
F148 B (1) Es(7) 9101021 + 99E3(7) %5 1001 + 14E2(7) Eo(T) ¢° 2,1), (H.3¢)

while for the choice b) in (5.18), we have

2
oA(r,2) = —

(6)

801,1(7'7 z) = —1250E,(T) 90—2,1908 , + 12600 E6(7) 902—2,1903,1 - 19487Ei(7') ‘P?iz,ﬁpg,l

23409
4

1194393600 <

+259558 F4(T) Eg () o 271%71 — ( E3(r) + 851952E§(7)) 0> 2101
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FOASTE (1) Eg(7) <p5_2,1> . (H.4)
Here we used the standard Jacobi forms defined in [25]
_ Ei(7) - E§(7)

A(r) = n*!(7) Tora—
o1 (1,2) = 0;72?;) (H.5)

‘92(7—7 Z)Q 63(7—7 2)2 64(7-7 2)2
=4
s (2) =4 (05 + 5 +
and 6, 05, 0, are the Jacobi theta functions. All functions in (H.3) and (H.4) have the right
weight and index, so that the two solutions are indeed mutually consistent.

H.2 Three unit charges

Here we compare the solution (5.99) for three charges specified to the case r; = K = 1 with
the one given by the normalized generating function of SU(3) VW invariants on P? (4.23). An
explicit expression for this generating function can be found, e.g., in [71, §A]. For convenience
of the reader we copy it here. Let T5(7) = @(()3) (7,0) be the theta series associated with the A,
lattice and

(=1 + Ey(7))(k —pu+1) N 9(k — p)? 4+ 33(k — p) + 31 — Ey(1)

St u(k;q) =
1,u( aQ) 2<1 - q3k—#) 2(1 _ q3k—p)2
15(k —p) + 34 19
(1 — k)3 1 — Bk—m)d’
S ) (16)
S2(A, Biq) = - +
S e e ER e s R (R [,
2(A+ B+1)¢” 24+ B+ 1)  (A+B-2)2-38
(1—gM)(1—=ad")? (1-a?(1-q”) 2(1-q*)(1—q")
Then the normalized generating function has the following components
1 13 1 1 9 1 9 9 3k2
=—|—=+ = —F —F - = k
Bo=T a0 T ) B 4 g Fa(r) =5 %
1
o D (ko 2k) TR Y T8 (K q)g™
k1,ko€Z keZ
k#0
(H.7)

k1,ko€Z
2k +ko#0, ko#ky

1
ST Sk ) T+ Y Sa(2hy + ky — 1 ks — kys @)tk

g3.+1 =
’ Ts(T
3< ) k‘EZ kl,kQEZ
2k +ko#L, ko#ky

In contrast to the case of two charges, the difference of two solutions for three charges
should not be modular. Instead, taking the difference of two anomaly equations, one finds that

5%1,1,1) _ 5glg1,1,1) + QZRI(},,VQ)@I(/LU? (H.8)
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where (59,([') denotes the difference of two solutions. The non-holomorphic function R,(},,Q ) has
a modular anomaly opposite to the one of the anomalous coefficient g,(},f). This implies that

the function

2 1
() =3 <5g£3’1’1><7> - 2Zgﬁ;2>(7)5951,1><7>> OW(r, 2; 1), (H.9)

u:[) v=0

where (9,(;’) is the theta series for the A, lattice defined in (5.45), must be a Jacobi form of
weight 4, index t2/2 and trivial multiplier system, for any vector t. In our case 5g,(}’1’1) is the
difference between (5.99) and $gs.,., 6g£1’1) is the difference of (5.71) and 1 g, = H,,, and g,(},,’?)
is the solution (5.71) specialized to (ry,75) = (1,2) and £ = 1. Using Mathematica, for the
choice a) in (5.18) of the vectors t™) and for t equal to any of the three vectors: (1,—1,0),
(0,1,—1) or (1,0, —1), we have found that

1
(1) . [( 6 _ 3 3
t) = 34638 E E 82038 F E H.10
Piia(m 2 156031757844480A(7)2 () E(7) TV B )

+21840E6(7)5><p_2,1 n (22559E4(T)7 99247 B, (1) B (7)? + 40428E4(7')E6(7')4> gpo,l} ,

which is indeed a Jacobi form of the right weight and index. We have checked that the same
conclusion holds also for t = (1,1, —2) and t = (2,0, —2). These checks confirm the consistency
of the two solutions.

I. Expansion of anomalous coefficients for small charges

In this appendix we provide explicit g-series of the anomalous coefficients for a few sets of
small charges. For two charges, the result is presented in terms of the VV function roéf{;;””)
introduced in (H.1) since it efficiently encodes independent components of the anomalous

coefficients. The index 15 is related to the indices of gff,ﬂf 322 via (D.24) and takes 2k1, values.

Howveer, the symmetry j110 — —p12 reduces the number of independent components to x5+ 1.
For three charges, we present directly the non-vanishing components of g\ where we

added k to the set of charges to distinguish different cases.

<(LLY) 1/ 7 7573 11993 .2 6147187 3 417892013 .4 _ 2669990303 5
Gy =q (497664 82024 4~ 356 4 15552 4 20736 4 1608 4
3236466331 6 141840373163 .7  106915932005927 8
288 U 864 q 55296 q + ) ’ (L1)
Gy 174 ( 247 | 2441 . 685847 (2 60354863 (3 1794183160 (4 4761308023 (5 :
1 = 62208 T 2592 6oz 4 7776 4 ooz 4 s6a 4
_ 890009700749 6 __ 688179765550 7 _ 25273195362785 (8 | )
10368 648 q 2304 q ,
a1 _ -1 ( 23 588457 . 4374197 2 1405439843 .3 _ 45080954077 -4 _ 18356399752001 5
0 = 248832 2903040 4 — 181440 9 135456 4 241920 4 2903040 4
_326985343617525 6 _ 1998756778032897 7 _ 13340225185984769 (8 | )
2177280 4 725760 q 322560 q ,
G21) _ —13/12 ( T | 254521 | 21208169 (2 2141274337 (3 430455080941 4 _ 5043883306813 5
1 q 550872 1 19595520 1 T 19595520 3265920 oror760 4 6531840 4
_ 70596332554177 6 280466108764979 7 , 307669392722141 8 |
3919102 4 9799360 4 T 181440 q + ) , (1.2)
<(1:2,1) _ —4/3 5 12343 20174263 .2 22053267949 3 _ 5785177332290 4 _ 678670136857 5
Gy =49 (4478976 + 2612736 4 1 39191010 4 78382080 4 39191040 4 2449440 4
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223277357377 .6 | 754932817919599 7 |, 2198602487769755 8
1632060 4 T Gosisi0 4 T 653184 q + )’
<(1:2,1) _ —3/4 [ 221 12463 37963483 .2 863218933 .3 3226760741 4 _ 6663319581967 5
Gy =dq (725760 + 73576 4~ 2177280 4 362880 4 20160 4 1083640 4
_ 38738609250101 (6 _ 115345074567433 7 _ 110739444675550361 (8 | )
241920 4 36288 q 2177280 q ,
o QU2.2) _ -2 ( 5, 761731 5064113 (2 2481864301319 (3 _ 2872361745037 4
0 = 60466176 ' 9876142080 4 — 20995200 74071065600 4 411505920 4
 2200512075931771 .5 _ 41509779007262023 6 _ 49227475374711403543 .7
2743372800 4 617258830 4 12345177600 q
 19464785233233206843 8 |
114307200 q + )=
<(1;22) _—9/8 ( 277841 1059416423 74795669047 2 1801948967597 3
2GY =q (8230118400 + 71071065600 4 T 22690355200 4 1371686400 4
 16603156407869 4 _ 416033291771649169 .5  2105420048303835229 6 (1.3)
55087200 4 12345177600 4 914457600 q :
__313599714564738170867 7 __ 88220836TLO6TALTTSOTAAT (8 | | )
2962842624 q 24690355200 q )
<(1;:22) __ —1/2 ( 39977803 3589837921 129752549 2 22102735798051 3
2Gy =q (14814213120 + Grr2sssso0 4 T “Haz200 4 1543147200 4
 114275375877392837 4 _ 936409392098996809 5  AT96069474036495173 6
24690355200 4 2057520600 4 188956800 q
_ 1501044707018652100451 (7 _ T7342857414981744924971 (8 | | )
1543147200 q 2743372800 q )
G _ —2( A7 | 4247129 . 68036588023 2 _ 55422609269 (3 _ 3707512707181 4
0 = 318504960 ' 45984153600 4 — 183936614400 4 696729600 d 26276659200 4
_ SS072ATSTITL (5 T981897203311365099 6 _ 1110685079693008997 (7 _ 17226825550762052679801 (8 | . )
1490640 4 91968307200 4 239500800 q 91968307200 q ’
A3 _ —25/24( 3081871 | 2648805620 . | 41222042111 (2 _ 285856288266173 3 _ 2814997287076607 4
1 q 55180084320 | 137952460800 4 T 13138320600 4 91968307200 4 5100350400 4
| 1347624999852051079 .5 _ 935913250177725865183 6  20586251240400924448327 7
25082265600 4 275904921600 q 137952460800 q
__ 270196785882281507783201 (8 | )
55180984320 q )
<(13,1) _ —7/6 (2971 5544628433 115442040149 2 |, 23452076233427 3 61420667950261 4
Gy =49 (107775360 + 551809843200 4 T 13795246080 4 T “6so7e230400 4 638668800 4
 5663089816965736121 .5  9916430642198445779 6 _ 2995144716151528141301 .7
275904921600 4 5748019200 q 34488115200 q
__ 37830819493668472285 (8 | )
12317184 q ’
GUB1 _ 1178 ( 19 | 738683503 2206279697 (2 _ 31913890058420 3 _ 1052975439005939 4
3 q 2949120 ' 91968307200 4 — 2874009600 4 91968307200 4 18393661440 4
| 870826166392452223 5 24710897250831165317 -6  3872950410038690100437 7
91968307200 4 30656102400 q 91968307200 q
 17796943645723753462087 8 | .
11496038400 A +0) (L.4)
aus1 _ —2/3( 808074303 | 7709928847 . 1124847101051 (2  56937410997937 (3 _ 1108014724901166557 4
4 220723937280 | 19707494400 4 ~ 110361963640 3284582400 4 367873228800 4
_ 3539458767899738927 5 _ 8440035595252062807707 6 _ 4516265260602369778967 7
12541132800 4 551809843200 q 7664025600 q
_16911256238023424894329 (8 | )
973209600 q ,
CBD) —25/24( 1507663 | 8390729309 (| 138045501791 2 _ 108275799214493 3 _ G633302879487181 4
5 q 55180984320 ' 137952460800 4 T 13138329600 91968307200 4 15328051200 4
| 1253534988377466919 5  914235335203953688063 6  20417088939750658199287 7
25082265600 4 275904921600 q 137952460800 q
_269351350642012364835521 (8 | )
55180984320 q ,
G _ -3/2 1 drasenr 24794030699Q'/2 o 107364499601 .3 _ 3501922956080341 4
6 q 159252480 1 22992076800 22992076800 821145600 4 183936614400 4
_ 100084012971526063 5  286767755453058307 6  52241700229979368001 .7
22092076300 4 656916430 q 2090188300 q
_ 2134111773571338037187 (8 | )
2189721600 q ;
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<(2;1,1) 17 113 4139 2 4249 3 3279635 .4 _ 370057 5 _ 9852609 6
Gy = ~ 128 Q-7 4 288 4 + 4 6 4

_ 63375745 7 1142163379 8 4 ...

18 q — q
S(211) _ 1/8 (1, 47 1369 109447 3 274299 o* 575603 5 15679485 6
Gy =q (288 +334+ 5 q’ + 1z 47T + q”+ q (L5)
1227113 7 23442 8 ’
49 73q—|—3 7805q_|____)
<(21,1) _ —1/2 281 9563 .3 _ 913121 .4 _ 531815 .5 _ 70096291 .6
Gy =q (2304 16q q 36 4 256 q' 6 4 288 U
5084707 7 2056205767 8
4 26 4 T )
<(2;2,1) _ 6775 _ TI5T 361207 2 46696309 .3 _ 600613969 .4 _ 329780519 5
Go = ~ 20736 576 4 768 4 5184 4 5184 4 288 U
12090114491 6 _ 169489988459 7 _ 467398870843 8
— 7 1296 9 — 2502 d 52 4 t+
(2:2,1) _—1/24 ( 65, 6353 1386517 27324275 3 |, 87346705 4 | 3384145273 5
Gy =q (5184 S61 41T “5isa q’ + sist 4 T 71296 4 T T d
26915024320 (6 | 46072770397 (7 | S5OSSTSLA0T 8
+ 51 + = 1396 + = 2502 +- )
(2,2,1) _ —1/6 319 178241 793715 .3 _ 470705 4 5047214 5
Gy = (2592 2304 4~ 5184 q’ 1728 4 9502 4 T q
2610260809 6 |, 13190202073 7 718155005 8
+ 0502 4 T30 4 T q+ )
%(2;2,1) _ —3/8 ( 11 8129 3797 2 84545 3 44772229 4 98195357 5
Gy = (5184 ssa AT T2 47— Hisg 9 5184 4 576 U (16)
10553330059 (6 _ 94932448735 (7 _ 78048945335 (8 ) :
5184 4 sisa 4 576
<(2;2,1) _ _—2/3 3869 77077 2 652597 .3 _ 2014033 .4 _ 81599053 .5
Gy =q (41472 + 70363 4 — 316 4 12096 4 6as 4 5184 4
2596870511 4497526727 7 , 180081086629 8
+ 50736 q°+ ms 4 T o124 T )
5(22,1) _ —1/24 ( 281 5093 1358437 27265307 .3 87314575 4 3383929057 5
Gy =q (5184+ 1 41T “5isa q’ + ssr 4T 7196 4 T TEms A
26914617169 6 46072612447 (7 - 559836086399 8
+ 5 + = 1206 + 9592 4 T )
%(2;2,1) _ —1/2 649 228775 2 2115335 3 _ 65662657 4 1760666641 5
Ge =q (20736 + 5769~ S5 d 1206 4 2304 4 5184 4
16293026827 .6 3481650799 .7 1113729358001 8
SR ST-7ER (e VR 6912 q+ )
~(3;1,1 103 139 2243 4 3693 3667 14403
G(() ):—— q+ q+ q+ q+1()4q+ q+ q+ q+ (L.7)
%(3;1,1) _ —1/12 1 211 139 .3 | 179 1585 .5 6979 6 6993 27263 8
G —q/( it Rat RO P a 8RO+ R+ P+ q+)
(311 . 2/3( 1 . 157 2 233 3 309 .4 677 5 2925 6 i 10867 8
Gy =" (- -pd-Hd-RHd-Fd - -5 - 35501 Q" +-),
(3L 174 5 37 611 641 869 4 3991 25955 6 4341 16719
€ =9 (96 324 q 32q 16 4 — 32q 96 4 — sq q® +- )
CWLL) _ 25891 _ 45463 852205 (2 _ 32943085 3 _ 13379780347 4 _ 46060126277 5
0 = " Toaat6  pisa 47 1296 9 1206 4 20736 4 3888 4
12147774365 .6 158959400096 .7 _ 66913439964953 8
72 q 81 q 3456 q +...
<(41,1) _ —1/16 37 | 743 186041 2 | 49307035 .3 , 250278505 .4 , 25390442633 5
Gy =q ( e T 1At a3 U T 4 T e 4 T T 50 d
1109071859713 .6 |, 2183125435445 7 , 21784639784605 8
+ 6 q + 1296 aq + 1296 q +)
G _ 174 ( 247 | 2441 . 685847 .2 _ 60354863 .3 _ 1794183169 .4 _ 4761308023 5
2 62208 T 2592 6oz 4 7776 4 6012 4 s6a 4 (18)
_ 890009700749 (6 _ 6SSI79T65559 (7 _ 25273195362785 8 | ) :
10368 d 648 q 2304 q +...
(41,1) _ —9/16 (_5 667 9853 4114013 208989733 4 |, 16164572585 5
G = (7776 2593 4 T 7776q + 5592 q’ + w2 4+ e d
31419487859 6 |, 78893525585 .7 , 41486136304309 8
s 4 T 62 4+ 7776 q +>
5(41,1) 1 793 2371 2 1033957 .3 _ 51449111 4 _ 2662533095 5
Gy = (248832 t 3 dt 1296q 7776 4 3456 4 5182 4
10331116165 6 _ 68953726973 .7 _ 157973370319477 8
o2 4 132 4 82944 q +.. )
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CAOL1) 465535 _ 525963  _ 4385202809 (2 _ 43459913743 (3 _ 9540028460249 4 _ TIGT34134057 5
0 1769472 25600 4 1633400 d 230400 4 11059200 4 2560 4
_ 19031436950174249 6 __ 46566304858176491 (7 _ 357424842056971557 (8 |
2764800 q 345600 q 163840 qQ+...
<(6:;1,1) _ —1/24 (128371 | 40650107 2207272423 2 | 799482612769 3 , 15579841901093 4
Gy =dq ( 5520600 T 3686400 4 T “T22ss00 4 T ~sso0600 9 T = 2o11sa0 4
3410305584319 5 , 16460186000332049 6 , 130847802327022001 .7 , 793328412584550589 8
+= 1m0 4t 2764800 q + 1105920 aq + 409600 q +)
GO 176 ( 1052509 | 209941 (5204324219 2 2193309727 3 _ 672637T75003863 4 _ 49340829606167 5
2 q 176947200 ' 138240 4 — 11059200 4 34560 4 17694720 4 345600 4
_ 1416482503757447 (6 _ 6909229953035321 (7 _ 239502410541351089947 (8 | )
368640 q 86400 q 176947200 q -+ ...
<(6:1,1) _—3/8 ( 3059 1240819 6103987 .2 , 40005301093 3 , 14584022769029 4 , 12408048600401 5
Gy =dq (1228800 + 2511820 47 09600 4 T “27easo0 4 T T tiose200 9 T+ 204800 4
2031688897405031 6 | 14301651369906251 .7 , 30365331720828173 .8
+ 105920 aQ + 345600 q + 40960 q +.. ) (1.9)
G611 _ —2/3 ( 13157 | 202100 | 117034913 (2 13051427 (3 _ 51184196269 (4 _ 4080532508711 (5
4 =dq 29491200 | 1382400 22118400 10800 4 184320 d 230400 4
_ 28426573177934497 6 _ TSTAI181058329 (7 _ 13975691481395331721 (8 | )
44236300 q 46080 q 44236800 qQ+...
S(6:1,1) _ —25/24 (19 204533 12303371 .2 176760667 .3 , 115535286821 4 , 19874511607 .5
G =dq (442368 + TTos0200 4 4"+ 3686000 4 T 60 4

11059200 4 2764300
1786765849460017 6 , 52850388569884871 7 | 76411388946994309 8
+ " 1iom0200 4 T 11059200 q + 737280 q +.. )
<(6:1,1) _  —4/2 ( 11 877 108537 .2 | 1579361 .3 42004604779 .4 10934623253 5
G =49 (7077888 + 591200 4 T 100600 4~ T T72800 9 35380440 25600 4
__ 315649065581971 6 __ 178841508736999 7 _ 8452543304385033 (8 | )
11059200 4 172800 q 327630 qa +---)

(1111 1 307 248189 19861423 .2 | 53650187 .3 , 1952990383 .4 _ 1384556270653 5
90 ( 53084160 1 10616832 4 T ssaraeo 4 T 73720 4 T “ssarseo 4 17694720 4
5992150958009 6  36863885478071 .7  5287836198627985 8
— 16042 4 442368 4 — 3538044 aq + )? (1.10)
(LL,1,1) _ —4/3 67 621023 145699391 .2 _ 9013190993 .3 _ 4987262966201 4
g1 =49 ( 8599633020 1 1299816060 4 T 1072954240 4 859963392 4 4299816960 4
_ 20007521620433 5 _ T79386701680657 6 _ 56215493359702001 (7 _ 49271213570980177 (8 | )
537477120 4 537477120 4 2149908480 4 143327232 4 )

(152,1,1) _ 2 (_ 17 767269 | 112089181661 (2 | 1043317980281 (3 | 2723178014567 4
90,0 6449725440 13544423424 4 T 1015831756800 4 56435097600 4 48372940800 4
_ 9482261170801493 5 96727150075008997 6 _ 35202035002746020581 (7 _ 1159782609474435130523 8 | )
253057939200 4 20316635136 4 126978969600 4 101583175680 qQ+...
(152,1,1) _ —3/4 (_ 131890 | 9311573 3640155560 (2 _ 1965367009399 (3 _ 583179799365883 4
90,1 q 9069926400 ' 220449600 4 — 21163161600 4 661348300 4 1984046400 4
_ 1301972583520728 5 _ 7019402825382882613 (6 _ 56009092574472434849 7 _ 308436599879131398913 (8 | )
75582720 4 9069926400 q 1984046400 q 362797056 qQ +...
(1;2,1,1) _ —11/8 (_ 631, 1410085567 . | 16470146659 .2 _ 1933766463187l 3 _ 8998136200013387 4
1,0 q 1074954240 | 1015831756800 4 T 28217548800 U 338610585600 4 1015831756800 4
_ 696106138300628817 5 _ 8514447105692797999 (6 _ 2131628379420727232249 7 _ 4631805605272780952699 (8 | )
1015831756800 4 203166351360 4 1015831756800 q 56435097600 q +...
(1;2,1,1) _  —9/8 ( 852537 | 118751550 | 34152804511 (2  17T760737685250 (3 _ 2380349838670577 4
91,1 =49 507915878400 ' 18811699200 4 T 24186470400 4 42326323200 4 56435097600 4
_ 62194762125035 (5 _ 67386472057007802719 6 _ 982660446399115373719 7 _ 11579230105257202681697 (8 | )
2418647040 4 507915878400 4 169305292800 q 56435097600 qQ+...
(1;2,1,1) _ —3/2 253 4062503 197690483 2 1374141989333 .3 _ 153753168177467 4
92,0 =49 ( 59023764450 | 18811699200 4 T 346526464 4 31744742400 4 37623398400 4 (1.11)
_ 5101538961908499 5 _ 846083267062775020 6 _ 3977241004532831147 (7 _ 222532070896474737197 (8 )
24186470400 4 63489484300 4 4534963200 q 5290790400 q +...
(1;2,1,1) _  —5/4 (_ 1 24730109 | 2530558951 2 510086582701 3 _ 160843509445 4
2, =49 1866240 ' 10581580800 4 T 15872371200 4 3527193600 4 70543872 d
| 1902396378056567 5 _ 5180315221699661 6 _ T375174671318611383 (7 _ 3036698723644858704957 (8 )
31744742400 4 317447424 4 3968092800 q 31744742400 q +...
(1;2,1,1) _  —11/8 (_ 631 | 1410085567 . 16470146659 (2 _ 19337664631871 (3 _ 8998136200013357 4
93,0 =9 1074954240 | 1015831756800 4 T 28217548800 4 338610585600 1015831756800 4
__ 232035378553007779 5 __ 2838149068202368037 (6 _ 710542834607711853043 (7 _ 41686249620140403636691 (8 | )
338610585600 4 67722117120 4 338610535600 q 507915878400 qQ+...
(1:2,1,1) _ —9/8 ( 852587 _ | 113751550 . | 34152804511 (2  17760737685250 3 _ 2380349828670577 4
93,1 507915878400 | 18811699200 4 T 24186470400 42326323200 4 56435007600 4
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_230350970736869

5 22462157789819916613
89579520 4

6 2047981349665353464437
169305292800 4

507915878400 q

507915878400

(2;1,1,1) 62959 226289 9809837 .2 13343 .3 2629441427 4
90,000~ = Tesssso 207360 4 T S52060 4 T Bo120 829440
_ 20201197 5 __ 85538444479 (6 _ 36356182001 (7 _ 2584999288109 (8 |
360 4 138240 d 6oz d 69120 d
(21,1,1) _ —1/2 73 6793 1989169 2 24402883 3 759624757 4
0,1,1,0 — ( 995328 T 529440 4 T 820200 4 T “Tdo7662 4 T Temssso 4
662585173 5 17919291181 .6 501969016519 .7 3398716509241 8
+ 520420 4 197664 4 s204a0 4 52060 4 T ) (1.12)
(21,1,1) _ —1/6( 101 | 824453 | 476039 (2 | 54842003 (3 | 2494364191 4 :
91,1,0,0 995328 | 4976640 4 T 207360 4 829440 4 1658380 d
26617621331 5 , 110997670277 .6 | 1163782557059 .7 | 33182101157969
t om0 4 T~ gomeer 4 T 6amoso 4 T aumss0 9 T )
(21,1,1) _ —2/3 23 16607 284833 .2 4913885 .3 _ 1967897171 4
g1 =4 ( 9953280 T 1244160 4 — 995328 4 124416 4 2488320 4
_ 1152163793 5 _ 378680060393 6 _ 97855125631 (7 _ 5549175076751 (8 | )
124416 1976640 4 207360 4 2488320 4 :

J. Index of notations

In most of the paper we use boldface letters to denote vectors consisting of n or n — 1 com-
ponents, the blackboard script for the extended lattice as well as for generic d-dimensional
lattices and their vectors, the sans-serif script for glue vectors, and the mathfrak script for
vectors with ny components resulting from the decomposition n = ;" | ny and for the vectors
tg ) determining the dependence on the refinement parameters.

7 104213053588139844142793 8
— q +...

Symbol Description Appears or

A ={ap,a1,...,a,} glue vector indices for the lattice decomposition (5.31)  (5.34)

A(()T) set of glue vectors of the lattice decomposition (5.31) (F.30)
corresponding to the maximal order zero modes

f=—Im(z)/m real variable parametrizing z (5.2)

=—Im(z)/m real vector parametrizing z (C.1)

by = 0y(Q) second Betti number of Q) p.2

B = {b;;, b} self-glue vector indices induced by the basis (5.46) below (5.80)

o the second Chern class of Q) (2.4)

Cr coefficient of the leading pole of the modular ambiguity (5.124)

= {cx} glue vector indices for the lattice decomposition (F.9)  (F.12)

5 mod-n Kronecker delta symbol (4.3)

d, dimension of the lattice extension factor Z% associated (5.17)
to charge r

D™, ID|(|T) discriminant groups of the lattices A™, |(‘r) §F.1, §5.6.1

DY differential operator on Jacobi forms (A.5)

DO (1) modular derivative of the Ax_; lattice theta series (5.70)

A(()r)(A, B) Kronecker symbol ensuring the maximal order zero (5.116)
mode condition

Em weights of degenerate charge configurations (5.108)

€0, € o basis vectors of (I) (5.27)
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0" (7, 2)

Oy ({vi};x)
7 (x)

O (x; {F)})
CID((;T) (x,7,2)
Z(r) (X)

v =(",7,¢ q)
¥ =(rq)

~(r) ~(r)ref (r)ref
g/(‘ﬂl)'h g/(j,,[)l. ?g/(jlrl)‘b

Gn,u(T)

ZA
G;(f) : Gl(f;rl ,72)

G (7)

Eisenstein series

generalized error function on R”

function encoding the modular completion

modular ambiguity of anomalous coefficients
Jacobi-like form encoding the modular ambiguity
boosted error function

kernel corresponding to the function &,

kernel of the theta series representing g/ a™"

kernel representing the modular ambiguity qb(r)

theta series kernel encoding ()

charge vector of a generic D6-D4-D2-D0 bound state
reduced charge vector

vector of reduced charges

Dirac-Schwinger-Zwanziger product

anomalous coefficient

refined anomalous coefficient

auxiliary anomalous coefficient associated to the ex-
tended lattice

modular completions for various versions of anomalous
coefficients

normalized generating function of SU(n) VW invariants
on IP?

glue vectors for the lattice decomposition (5.31)
vectorial versions of the anomalous coefficient for two
charges

seed functions for the mock modular forms of optimal
growth

generating function of D4-D2-D0 BPS indices (rank 0
DT invariants)

modular completion of k. ,(7)

redefined version of h,. ,(7)

anomalous part of A, ,(7)

modular ambiguity in h,.,(7)

maximal order zero mode contribution to 19(2”
labels appearing in anomaly equations
intersection number of CY

k rescaled by magnetic charges r;

summation variable for theta series

lattice of D2-brane charges of constituents

sublattice of |(|T )

isomorphic to AT
extended lattice

sublattice of (") containing null-vectors
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p(O), p(k)

'%n(ﬁ/aTQ)
%;ef(’sl;T%ﬂ)
$=(S1,-+-,5m)
St(%)

Sym
£(ri)

91 (7', Z)

sublattice of (") orthogonal to |(|r )

convenient combination of residue classes
residue class of ¢ modulo spectral flow
effective residue class for two charges

vector of residue classes

vector of residue classes belonging to D™

a different parametrization of

vector of residue classes of the extended lattice
difference of residue classes

index of g

subset of residue classes appearing in anomaly equations
residue classes determined by glue vectors
residue class of |(‘r )

number of charges in the k-th subset

range of the glue vector index b;;
characteristic vector of the extended lattice
expansion parameter of generating series
D2-brane charge

invariant DO-brane charge

vector of D2-brane charges

quadratic form in anomaly equations

vector of Bezout integers for r

vector of Bezout integers for s and t;

total D4-brane charge

ged of (rq,...,7my)

D4-brane charge of the i-th constituent
normalized D4-brane charge

ged of (r4,75)

vector of D4-brane charges

k-th subset of D4-brane charges appearing in anomaly
equations

coefficients of the anomaly equation (2.8)
redefined coefficients of the anomaly equation
coefficients of the refined anomaly equation
contribution to R,(fL of a given charge decomposition

contribution to Rmfef

of a given charge decomposition
vector of D4-brane charges of subsets of constituents

large 75 limit of the generalized error function

SL ({v,.}; x) defined by the tree T
symmetrization with respect to charges
vector determining the dependance on z;
Jacobi theta series
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(5.28)
(5.86)
(2.2)
(D.24)
(2.8)
(5.37)
(F.3)
(5.37)
(2.15)
(5.5)
(3.4)
(5.42)
below (5.101)



y = e27rzz
z
z=(21,...,2n)
V4
2
s *
References

unary theta series with even quadratic form

unary theta series appearing in (5.43)

indefinite theta series associated with the lattice and
kernel ®

contribution to Z\") for a fixed glue vector of index B

unrefined limit of the contribution of order & zero modes

theta series associated with the lattice ‘(‘r )

theta series associated with the lattice (f)
theta series associated with Ax_; root lattice
vector of A determining the index

set of Schroder trees with n leaves

normalized vectors in A(r)

vectors in A™

vectors in (") extending v;;, vy

normalized vectors in (")

scalar product of the lattice vector with null vectors
null vectors in ()

normalized null vectors

arithmetic genus of the divisor D,

d-dimensional vector, argument of kernels of theta series
shifted vector x

exponential of the refinement parameter

refinement parameter

refinement parameters associated to the extended lattice
vector of all refinement parameters

set of integers from 1 to n

bilinear forms on A™ and ™

above (5.39)
§5.2
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