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Abstract

In rapidly-evolving domains such as autonomous driv-
ing, the use of multiple sensors with different modalities is
crucial to ensure high operational precision and stability.
To correctly exploit the provided information by each sensor
in a single common frame, it is essential for these sensors to
be accurately calibrated. In this paper, we leverage the abil-
ity of Neural Radiance Fields (NeRF) to represent different
sensors modalities in a common volumetric representation
to achieve robust and accurate spatio-temporal sensor cali-
bration. By designing a partitioning approach based on the
visible part of the scene for each sensor, we formulate the
calibration problem using only the overlapping areas. This
strategy results in a more robust and accurate calibration
that is less prone to failure. We demonstrate that our ap-
proach works on outdoor urban scenes by validating it on
multiple established driving datasets. Results show that our
method is able to get better accuracy and robustness com-
pared to existing methods.

1. Introduction
Multi-sensor calibration plays a key role in autonomous
systems as it ensures accuracy, reliability, and robustness
in safety-critical tasks such as localization [6] and percep-
tion [22] in self-driving. In typical multi-sensor setups, the
sensors are attached to a common rigid body where the
spatial relationship between them can be obtained through
a rigid transformation matrix. It is therefore important to
identify the exact values of those matrices to correctly ex-
ploit and merge the data provided by the sensors. The pro-
cess of finding these spatial transformations is called ex-
trinsic calibration, which is a topic that has been and is still
being heavily studied thanks to the increasing popularity of
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Figure 1. Method overview. SOAC is a novel multimodal spatio-
temporal calibration method for cameras and LiDAR in the con-
text of autonomous driving. By alternating the training of multiple
implicit scenes (Sec. 3.2) and sensors co-registration from these
representations (Sec. 3.3), SOAC achieves precise self-supervised
calibration from raw data acquired in unconstrained urban envi-
ronments.

multi-sensor algorithms. In addition to spatial calibration,
without an external synchronization system, it is also nec-
essary to perform temporal calibration. Using temporally
miscalibrated sensors, performance on different tasks can
be severely hindered. Although certain approaches in the
literature address temporal misalignment [12, 30, 37], the
prevailing assumption among these methods is the presence
of properly synchronized sensors. Due to the importance of
sensor calibration, a multitude of calibration solutions ex-
ist in the literature, as highlighted in the review from Li et
al. [17] and summarized in Tab. 1. They can be classified
into two main categories: target-based and targetless meth-
ods.

Target-based calibration methods rely on one or more
elements of known dimensions and features purposefully
placed in the scene. The most classic target is a checker-
board [9, 49], but custom-made planar targets [11] or
boxes [31] have also been proposed. These methods usu-
ally offer precise and robust calibration compared to tar-
getless approaches. However, requiring hand-placed targets
prevents them from being deployed on a large scale and
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does not enable on-the-fly re-calibration if needed. Thus, a
more suitable method for mass-produced autonomous driv-
ing cars would be targetless.

Targetless methods do not require manually placed tar-
gets and thus can be used on sequences captured without
user intervention. This makes them more suitable for large-
scale deployment. These approaches usually rely on shared
information (i.e. overlap) between the different sensors,
which can be of different modalities. Wang et al. [40] and
Pandey et al. [29] propose a correspondence between the re-
flectivity of the LiDAR scans and the grayscale intensity of
the camera images. Other methods propose to find matches
of specific features, like edges [47] or semantic classes [16].

Following the development of deep learning, methods
relying on deep models were introduced to calibrate RGB
images and LiDAR scans. These methods have the ad-
vantage of being fast and precise, enabling reliable online
calibration. Deep learning techniques can leverage regres-
sion [13, 20, 34], flow [15], keypoints [45] or convolutional
features [7] to supervise or regularize the training. How-
ever, as they are supervised methods, they need an accu-
rately calibrated training dataset to be optimized and have
issues with cross-domain data due to overfitting to a specific
dataset or sensor layout.

Recently, with the arrival of Neural Radiance Fields
(NeRF) [24] for implicit representation of 3D scenes, some
works [12, 43, 50] propose to take advantage of the fully dif-
ferentiable structure of the model to achieve self-supervised
targetless calibration. Using a NeRF as the common frame
for the sensors, these methods are able to densely correlate
the captured observation from different sensors in an im-
plicit volumetric space. Yet, by simultaneously learning the
information from multiple sensors, the NeRF might overfit
regions of the scene only visible from a single sensor with-
out enforcing consistency on the overlapping regions. This
causes the calibration to easily get stuck in a local mini-
mum.

We take inspiration from the aforementioned works by
exploiting the fully differentiable properties of the implicit
scene representation to achieve spatial and temporal calibra-
tion. Different from existing methods [12, 43, 50], we pro-
pose to represent the scene by using multiple NeRFs akin
to their corresponding sensor and advocate to alternate the
optimization target between NeRF training and sensor cali-
bration (i.e. Fig. 1). Our method avoids overfitting the pose
optimization to partial regions of the scene, resulting in a
more robust and accurate calibration.

2. Related Work
With NeRF and the papers improving upon it [1, 26], the
main focus was on the quality of novel view synthesis in
addition to training and rendering speeds. However, since
these approaches often validate their claims on carefully
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Target-based Zhang et al. [49] X X ✓ X -
Geiger et al. [9] X X ✓ X -

Feature-based Pandey et al. [29] ✓ X ✓ X -
Park et al. [30] ✓ X ✓ ✓ -

Deep-learning RegNet [34] ✓ X ✓ X X
LCCNet [20] ✓ X ✓ X X

NeRF-based
INF [50] ✓ X ✓ X ✓
MOISST [12] ✓ ✓ ✓ ✓ ✓
SOAC (ours) ✓ ✓ ✓ ✓ ✓

Table 1. Comparison of calibration methods.

curated datasets, it is often assumed that the input poses
corresponding to the data are already available and are ac-
curate. However, in real-world situations, some or all the
captured frames might be unposed or suffer from inaccura-
cies, hence, significantly impacting the quality of the final
reconstruction result [19]. Therefore, several works later on
attempted to tackle this issue through different formulations
and adaptations of the overall optimization problem.

NeRF-based Image Registration. To register an image
with incorrect or no pose, iNeRF [46] proposes to use an
already trained NeRF. It finds the pose that minimizes the
photometric difference between the captured image and the
rendered result from the model. By focusing on regions of
interest, it is able to register unseen images with high pre-
cision. Using this idea as a basis, Loc-NeRF [21] combines
Monte Carlo localization method [5] with the use of a pre-
trained NeRF as a map, to build a real-time global local-
ization method. CROSSFIRE [25] takes advantage of the
NeRF model’s flexibility to learn not only the radiance and
density information of the map, but also a descriptor field.
During the localization process, by iteratively matching the
descriptors from the query image and the information given
by the NeRF model, this method is able to provide high-
precision localization. Nevertheless, all these methods re-
quire training a NeRF from precise camera poses first be-
fore being able to localize new query images.

NeRF-based Pose Optimization. The first method to
leverage the fully differentiable nature of NeRF to optimize
the input poses through backpropagation is NeRF-- [42]. It
proposes to optimize both the NeRF and the input poses
by representing them as embeddings and show higher novel
view synthesis quality when trained from noisy poses.
BARF [19] improves upon this idea by adding a coarse-
to-fine component to this method. It progressively liber-
ates the frequencies of the input positional encoding to pre-
vent the optimization from getting stuck in a local mini-
mum. SCNeRF [14] adds camera distortion estimation and



uses a different 6-vector rotation formulation in the op-
timization, while SPARF [38] achieves pose optimization
with sparse input views by relying on pixel matching and
depth consistency. While the aforementioned methods need
an initial estimate of the camera poses, some recent meth-
ods completely remove the need for prior poses. NoPe-
NeRF [2] uses an off-the-shelf monocular depth estimator
(i.e. DPT [32]) to regularize relative poses between succes-
sive images. GNeRF [23] relies on adversarial learning to
coarsely estimate the initial poses before refining them in
a second phase. IR-NeRF [48] improves upon GNeRF by
regularizing the implicit pose estimator with the unposed
real images, increasing its robustness. Although the NeRF-
based pose optimization methods achieve reasonable scene
reconstruction by recovering accurate camera poses, they
are not suited for autonomous driving data as they do not
handle multi-modal observations nor take into account the
rigidity constraint between multiple sensors mounted on a
vehicle.

NeRF-based Sensor Calibration. NeRF-based calibra-
tion methods [12, 43, 50] take advantage of the rigid con-
straint between the sensors and the differentiable nature
of NeRF to efficiently solve this challenging task. These
methods have the advantage of being targetless and self-
supervised, as they do not rely on an annotated training
dataset. The idea is to use the NeRF as a common scene
representation. Each sensor provides its observations (RGB
images, depth measurement, or point clouds), to both train
the NeRF to represent the scene and to optimize its own ex-
trinsic calibration parameters to fit the NeRF representation.
In INF [50], the goal is to find the extrinsic transformation
between a 360° camera and a LiDAR. First, the density net-
work of NeRF is trained using the LiDAR depth data. Then,
the whole scene’s radiance is trained using images, while
simultaneously calibrating the camera. This method is lim-
ited to the calibration of a single 360° camera and a LiDAR,
whereas autonomous driving systems rely on multiple cam-
eras with narrower fields of view. AsyncNeRF [43] cali-
brates a pair of camera and depth sensors. It takes into ac-
count the temporal miscalibration between the sensors, by
building a trajectory function. Nevertheless, the time offset
is provided as input and not determined through optimiza-
tion, which limits its utilization for spatio-temporal calibra-
tion. MOISST [12] proposes to accomplish temporal cali-
bration in addition to extrinsic calibration, and to do so with
any number of LiDARs and cameras, by training the NeRF
with all the data, while also optimizing the prior extrinsic
transformations and time offsets. By using a single NeRF
to fuse the information from all the sensors, we cannot pre-
vent degenerate cases where the estimation of the extrin-
sic parameters of one sensor diverges and causes the NeRF
to learn a wrong scene geometry without correlating multi-

sensor observations. Our method, SOAC, aims to achieve
better robustness and calibration performance by leverag-
ing the use of multiple NeRFs to counterbalance such limi-
tations.

3. Method
Our multi-sensor calibration problem is formulated as fol-
lows: given a vehicle trajectory and initial priors of sen-
sor poses mounted on the vehicle, we aim to recover the
exact spatio-temporal calibration of the sensors on the ve-
hicle. Our method is composed of two optimization steps
that are performed sequentially all along the training (cf.
Fig. 1). The first step consists of training multiple implicit
scene representations (NeRFs), one by camera, using only
the observations from the dedicated sensor. During the sec-
ond optimization step, we refine the extrinsic and temporal
parameters of each sensor using the trained NeRF of all the
other sensors in a round-robin manner. The motivation be-
hind this design is to prevent over-fitting, calibration diver-
gence, or implicit model convergence to a poor local min-
imum when all the observations are fused within the same
implicit representation, as in MOISST [12].

3.1. Notations and Background

Without loss of generality, we consider the trajectory of
camera r (our reference sensor) as the known trajectory
of the vehicle. We use the same notations introduced in
MOISST [12] to describe our method:
• S = {C,L}: the set of sensors composed of at least one

or more cameras C and, optionally, one or more LiDARs
L,

• {Fi}: the set of frames captured by the sensor i ∈ S,
• tni ∈ R+: the timestamp of frame ni ∈ Fi relative to the

sensor i ∈ S,
• δi ∈ R: the time offset between the reference camera and

the sensor i ∈ S (δr = 0),
• wT

i(t) ∈ R4×4: the pose of sensor i ∈ S at time t (the
time is relative to sensor i’s own clock) in the world ref-
erence frame,

• jT
i ∈ R4×4: the transformation matrix from sensor i to

sensor j.
Our goal is to find the optimal transformations ˆ

rT
i and

time offsets δ̂i of the different sensors with respect to the
reference camera. The poses of the reference camera r can
be obtained by relying on IMU, SLAM [27], or Structure-
from-Motion [35]. Similar to MOISST, we build a con-
tinuous trajectory of the reference sensor r, Tr, from the
discrete poses of r using linear interpolation for the pose
translation and spherical linear interpolation (SLERP [36])
for the rotation. This trajectory is expressed as a function of
time, that returns the pose of the reference camera r for any
given time t: wT

r(t) = Tr(t). Using the extrinsic trans-
formations and the time offsets between the other sensors
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Figure 2. SOAC training strategy. (a) Scene representation training (Sec. 3.2): The parameters Θ̂ of each NeRF are trained with the
images from their associated cameras and the LiDAR scans. The LiDAR calibration is also optimized through Tn(i+2) . (b) Extrinsic and
temporal optimization (Sec. 3.3): The real frame from the sensor is compared to the predicted frame on the other NeRFs to calculate the
losses. The calibration is then optimized with backpropagation through the poses Tn(i+1) and Tn(i+2) .

and the reference camera r, we can compute the absolute
pose of sensor i at specific timestamps with the following
equation:

wT
i(tni + δi) = Tr(tni + δi) rT

i. (1)

In order to simplify the equations, we designate the abso-
lute pose of sensor i computed from its extrinsic as Tni =

wT
i(tni + δi).

NeRF model. NeRF is a function of parameters Θ that
takes as input rays obtained from a sensor’s intrinsic param-
eters and pose, and generates for each ray color and density
information via volumetric rendering. This information can
be combined into a color image RI (T

ni | Θ) and a depth
scan RD (Tni | Θ) of frame ni for sensor i.

3.2. Scene Representation Training

For each camera sensor, a dedicated NeRF with parameters
Θi is trained using rays that are generated exclusively from
camera i. Each NeRF model with parameters Θi will only
learn the part of the scene that is observed by its respective
camera sensor i (cf. Fig. 2a). The color loss for training the
scene representation is:

LC =
∑
i∈C

∑
ni∈Fi

∥RI (T
ni | Θi)− Ini∥22 , (2)

with Ini the color image ni of camera i. The training objec-
tive is to estimate the optimal parameters Θ̂i for the NeRF
models such as:{

Θ̂i

}
i∈C

= argmin
{Θi}i∈C

(LC). (3)

3.3. Extrinsic and Temporal Optimization

During the calibration step, our objective is to optimize the
extrinsic transformation matrix rT

i and temporal parame-
ters δi by optimizing the poses of camera i using all the

NeRFs, except the NeRF of parameters Θi associated to the
current camera being calibrated (cf. Fig. 2b). Using this
optimization formulation, we enforce the images captured
by each camera to be coherent with the NeRF trained by the
other cameras. The camera calibration loss can be written
as:

LCam =
∑
j∈C

∑
i∈C
i ̸=j

∑
ni∈Fi

∥RI (T
ni | Θj)− Ini∥22 , (4)

and by considering Eq. 1, the optimization objective during
the spatio-temporal optimization step is:{

ˆ
rT

i, δ̂i

}
i∈C

= argmin
{rT

i,δi}i∈C

(LCam). (5)

3.4. LiDAR Calibration

As LiDARs only provide geometric information, we cannot
register an RGB image to a NeRF which was only trained
on LiDAR scans. This means that the registration step (cf.
Sec. 3.3) could not be accomplished on a LiDAR-trained
NeRF. Instead of dedicating a NeRF for each LiDAR, we
simultaneously train the camera NeRFs with all the Li-
DAR scans, and calibrate the LiDARs against all NeRFs
(cf. Fig. 2). Thus, we have for both the NeRF training step
and calibration step:

LD =
∑
j∈C

∑
i∈L

∑
ni∈Fi

|RD (Tni | Θj)−Dni |, (6)

with Dni the point cloud scan ni of LiDAR i. When adding
the LiDAR loss in the objective Eq. 3, it becomes:{

Θ̂i

}
i∈C

,
{

ˆ
rT

j , δ̂i

}
j∈L

= argmin
{Θi},{rT

j ,δj}
(LC +LD). (7)

and Eq. 5 becomes:{
ˆ

rT
i, δ̂i

}
i∈S

= argmin
{rT

i,δi}
(LCam + LD). (8)
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Figure 3. SOAC’s visibility grid (Sec. 3.5). (a) Grid filling: Rays
from camera Ci fill the visibility grid linked to Nerf Θi. (b) Ray
filtering: For cameras Cj,∀j ̸=i, rays are kept or filtered according
to visibility from (a).

3.5. Visibility Grid

In a multi-sensor setup, the NeRF representation exploits
the overlap between sensors w.r.t. the whole sequence rather
than a particular frame as for traditional targetless methods.
However, the portions of the scene observed from the dif-
ferent sensors might not entirely overlap. This can lead to
noisy reconstruction in the NeRF model if inference is per-
formed at the unobserved regions (cf. Fig. 4). To overcome
this problem, NeRF2NeRF [10] performs pairwise registra-
tion of two NeRF models produced from different view-
points by aligning the partially overlapping geometry of the
two models. In a similar sense, we aim to consider the over-
lapping geometry from our different NeRFs that have been
learned separately from each camera.
To achieve this, a boolean visibility grid for each NeRF
model is reconstructed by considering the rays belonging
to its akin sensor (see Fig. 3a) during the scene representa-
tion step (Sec. 3.2). During the calibration step (Sec. 3.3)
we exploit this visibility grid to only consider rays that over-
lap with trained regions on each NeRF used for registration
(cf. Fig. 3b). The grids are reinitialized every few epochs
to account for the new poses resulting from the calibration
refinements.

3.6. Optimization Details

Overall, the training process can be summarized as follows:
during each training step, a mini-batch of rays is first used
in the scene representation training step (Sec. 2a). Rays of
each camera train their specific NeRF and fill the respec-
tive visibility grids (Sec. 3.5). The LiDAR rays train all
the NeRFs and are used to optimize the LiDAR calibration
parameters after being filtered by the visibility grids. In a
subsequent step, the same mini-batch is passed to the extrin-
sic and temporal optimization. Rays are filtered through the
visibility grids before being fed to the NeRFs as explained
in Sec. 3.3. Calibration losses (Eq. 8) are computed and the
gradient is backpropagated to optimize the calibration pa-
rameters. Once this is done, we continue the training with
the next mini-batch.
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Figure 4. Visualization of the visibility grid (Sec. 3.5). Pre-
dictions done with the NeRF trained by front camera on a Pan-
daset [44] sequence.

NeRF delaying. In our system, all the sensors, except the
reference camera, have incorrect calibration. As such, the
NeRF trained with the reference camera is the most ade-
quate for calibration at the beginning. That is why we intro-
duce a delaying schedule for the other NeRFs based on the
overlap with the reference camera; more details about this
policy are provided in the supplementary materials.

Correction bounding. As we consider the extrinsic and
temporal calibration on a car, we can suppose that the trans-
lation error should not be off by more than the car’s size. We
can also consider that the sensors should not have a time off-
set too high, even without the help of an external synchro-
nizing system. Thus, by using an offset and scaled sigmoid
function on the output of the embeddings for the translation
and temporal correction, we can confine the learned correc-
tion, avoiding divergence and increasing the stability and
robustness of the calibration.

4. Experiments

4.1. Setup

Datasets. We perform experiments on three popular au-
tonomous driving datasets: KITTI-360 [18], nuScenes [3]
and Pandaset [44]. For KITTI-360, we use the two front
cameras, the two side cameras and the Velodyne LiDAR
for our experiments. For nuScenes and Pandaset, we use
the front camera, the two front diagonal cameras, and the
LiDAR. Undistorted LiDAR scans are considered for all
datasets. We assign the front-left camera of KITTI-360, and
the front cameras of nuScenes and Pandaset to be the refer-
ence sensor. More details on selected sequences and dataset
parameters are provided in the supplementary materials.
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Figure 5. Results for SOAC and MOISST [12] as box plots with
log scale on KITTI-360 [18] and Nuscenes [3] sequences. The red
lines show the initial error (best viewed in color).

Baseline. We select MOISST [12] as our baseline, as it
also aims to solve targetless, multi-modal, and spatiotem-
poral calibration. We refer to the supplementary for de-
tails about the re-implementation of the method. For the
LiDAR/Camera calibration task, we compare against LC-
CNet [20] by using the code and the pre-trained weights
from the official repository1, and with Pandey et al. [29] us-
ing the official implementation provided by authors2. For
SOAC, We replicate MOISST NeRF architecture and apply
the same supervision and regularization losses. We refer to
the supplementary for more implementation details.

4.2. Results

Spatial and temporal calibration. We run both SOAC
and MOISST on 4 KITTI-360 sequences and 3 nuScenes
sequences. For SOAC, KITTI-360 images are downscaled
by 4, while a downscale factor of 6 is applied for nuScenes.

1https://github.com/IIPCVLAB/LCCNet
2https://robots.engin.umich.edu/SoftwareData/InfoExtrinsicCalib

KITTI-360 [18] Pandaset [44]

Rotation (°) Translation (cm) Rotation (°) Translation (cm)

Pandey et al. [29] 11.8± 5.4 143± 109 15.4± 0.8 139± 17.5
LCCNet [20] 1.9± 0.1 95.8± 7.7 14.3± 3.4 370± 11.6
MOISST [12] 0.2± 0.1 10.0± 9.8 2.8± 2.3 56.4± 17.2
SOAC (ours) 0.3± 0.2 7.8± 3.5 1.3± 0.8 29.4± 13.6

Table 2. LiDAR/Camera calibration results.

For MOISST, we do not downscale the KITTI-360 images
and apply a downscale factor of 2 for nuScenes as we found
that the method performs better with high-resolution im-
ages. Each test is run with an initial noise of 50 cm transla-
tion error and 5° rotation error on each axis, as well as 100
ms of time offset. We use 10 different seeds to randomly
sign the error noises applied and compute the statistics over
these 10 runs. Following common practices [33, 37], we
show results on Fig. 5 by employing box plots3 As can be
seen, SOAC achieves better calibration results on KITTI-
360 with an overall error (average over median for each
sensor) of 0.21°, 5.24 cm and 3.95 ms for rotation, trans-
lation and time offset, respectively. In contrast, MOISST
obtains errors about 10 times higher (i.e. 2.24°, 56.34 cm
and 27.07 ms) for the same setup. Detailed quantitative re-
sults by sequence are given in the supplementary materials.

LiDAR/Camera calibration. For the task of Li-
DAR/Camera calibration, the same initial rotation and
translation error setup from previous experiments is ap-
plied, but without considering any temporal error. We
compare our method against LCCNet [20] and Pandey
et al. [29]. The provided weights for LCCNet were pre-
trained on the KITTI odometry dataset [8]. For KITTI-360,
We predict the calibration between the front-left camera
and the LiDAR. For Pandaset, we predict the calibration
between the front camera and the 360° LiDAR. Results
are shown in Tab. 2. The performance of LCCNet, is very
poor in comparison to SOAC, especially for the translation
(results per sequence are provided in the supplementary).
As LLCNet is a supervised method, we observe that it is
setup-specific, and a slight change in the LiDAR/Camera
configuration greatly reduces the performance. This was
also highlighted by Fu et al. [7] when using the front-right
camera for calibration on the KITTI odometry dataset. For
Pandey et al. [29], we were unable to obtain convincing
calibration results on the sequences. We argue that feature-
based targetless methods are not designed for “in-the-wild”
calibration, and sequences need to be acquired in a specific
manner to obtain proper results (i.e. indoor, structured
environment, dense LiDAR).

3The boxes show the first quartile Q1, median, third quartile Q3. The
whiskers use 1.5 IQR (Interquartile range) above and below the box and
stop at a value within the results.
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Figure 6. Results on nuScenes [3] with 5 cameras for SOAC and SOAC w/o NeRF delaying as box plots with log scale, the red lines show
the initial error (best viewed in color).
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Figure 7. Results on Pandaset [44] for SOAC, MOISST [12] and
SOAC w/o semantic filtering as box plots with log scale, the red
lines show the initial error (best viewed in color).

Calibration in dynamic environments. For the evalu-
ation in dynamic environments, we select 3 Pandaset se-
quences with the presence of dynamic elements (e.g. cars,
pedestrians). When calibrating on dynamic scenes, the
moving elements are not handled by the NeRF model.
Therefore, a simple and efficient way of removing these el-
ements is to filter the dynamic classes with semantic seg-
mentation. This results in losing some useful information
for calibration (i.e. parked vehicles). Nevertheless, if the
rest of the scene provides sufficient overlap, proper cali-
bration can be obtained. We apply an analogous setup to
KITTI-360 and nuScenes, except for the removal of tem-
poral calibration and the initial time offset (cf. Sec. 4.3 on
Time-space compensation). We downscale the image by a
factor of 4 for SOAC and 2 for MOISST. We use seman-
tic segmentation computed by Mask2Former [4] to remove
all classes that can be considered dynamic for both methods
and test SOAC with and w/out semantic filtering. Results
are shown in Fig. 7. It can be observed that by applying
semantic filtering, calibration performance on SOAC can
be greatly improved on the LiDAR with a median error of
0.41° and 7.79 cm on rotation and translation, respectively,
in comparison to results w/out filtering (2.36° / 79.17 cm).
It can be also seen that SOAC performs much better than
MOISST on the overall calibration of all the sensors with a
mean error an of 0.42° / 11.18 cm vs. 2.18° / 44.73 cm for
MOISST.

Complete camera rig calibration. To evaluate SOAC
performances with a nearly complete 360° camera rig, we

Figure 8. LiDAR ray length distribution of the sequences used in
our calibration experiments.
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Figure 9. Qualitative LiDAR/front camera calibration results on
KITTI-360 [18] dataset.

add two additional side cameras on the nuScenes sequences.
We run both with and without the NeRFs delaying schedul-
ing as explained in Sec. 3.6. In Fig. 6 we can see the impact
of not delaying the NeRFs, as the accuracy and stability of
the calibration plummet.

Qualitative results. We show the reprojection of the Li-
DAR on the images using the calibration obtained from dif-
ferent methods. On KITTI-360 (cf. Fig. 9) we can see
that LCCNet does not provide a satisfying result and that
SOAC is able to provide a visually comparable alignment
to the ground truth calibration. On nuScenes (cf. Fig. 10),
the calibration from SOAC provides a better alignment than
MOISST, assessing the quantitative results of Fig. 5. More
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Figure 10. Qualitative LiDAR/Camera reprojection results on nuScenes [3] dataset.

Errors Cam Front Cam Left Cam Right LiDAR

Translation (cm)
Extrinsic 47.9 67.8 70.4 50.9

Poses 3.5 2.6 26.2 19.1

Rotation (°)
Extrinsic 0.13 0.18 0.23 0.58

Poses 1.63 1.12 1.35 0.60

Time offset (ms) 39.18 58.16 40.74 39.38

Table 3. SOAC space-time compensation on a sequence from
KITTI-360 [18]. Mean absolute poses of sensors are correct
whereas the spatio-temporal calibration computed by the method
is erroneous.

qualitative results are given in the supplementary, along
with ablation studies on visibility grids (cf. Sec. 3.5) and
correction bounding (cf. Sec. 3.6).

4.3. Limitations

Time-space compensation. When simultaneously calibrat-
ing spatially and temporally, there are cases where the dis-
entanglement is impossible. In a sequence where the ve-
hicle is driving in a straight line at a constant speed, there
is an infinite number of solutions that can provide the cor-
rect poses. In Tab. 3, we show the calibration results on a
straight line with constant speed from KITTI-360. We can
see the pose error is fairly low, but the extrinsic and tempo-
ral calibration is incorrect. This means that there is a need
to select scenes with speed variation in order to reduce to
a single possible solution. As most Pandaset sequences are
in a straight line at a constant speed, we decided to not do
temporal calibration on them.
Scene structure. When the scenes are more open and/or
larger, the projected rays will have to travel a longer dis-
tance before reaching the scene’s structures. Considering
LiDAR to camera calibration, the rotation error has a lin-
early increasing impact according to the ray distance when
reprojected to the camera frame, while the translation er-
ror’s impact is independent of the ray distance. Thus, we

tend to lose precision on the translation as the ray gets
longer. When analyzing the LiDAR rays length distribution
of the datasets in Fig. 8, we observe that the LiDAR rays on
Pandaset are longer, meaning that the scenes are larger and
open, and the structures are farther than on KITTI-360 and
nuScenes. This explains most likely the decrease in calibra-
tion performances for the LiDAR extrinsic translation pa-
rameters on Pandaset (median error of 18.1 cm) compared
to KITTI-360 (median error of 8.2 cm) or nuScenes (median
error of 5.1 cm).
Training time. As we train one NeRF per camera, and
register all the other sensors on each NeRF, the training
time increases exponentially with the number of cameras.
For instance, on nuScenes one epoch takes approximately 1
minute 45 seconds for 3 cameras and 8 minutes for 5 cam-
eras using the same GPU. This reduces the scalability of our
method, but this phenomenon is mitigated by the fact that
we use much smaller images than MOISST to reach better
performance. We refer to the supplementary for more in-
depth details on the efficiency of our method wrt. image
size compared to MOISST.

5. Conclusion

In this paper, we presented SOAC, a targetless and self-
supervised method for spatial and temporal calibration.
This approach is able to simultaneously calibrate multiple
sensors of different modalities, by leveraging the use of
multiple camera-specific implicit scene representations, and
taking into account the overlap between the sensors. Our
approach is fully automatic by relying on gradient descent
for the optimization process, and surpasses similar methods
previously introduced. The reliance on a reference sensor
with known trajectory, and the need of near structures for a
precise calibration, are restrictions that could open to future
research to alleviate them.
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A. Technical Details
A.1. Datasets

KITTI-360 [18]: Sequences are selected and cropped by
considering vehicle speed variations to remove time-space
compensation issues as described in main article Sec. 4.3.
Once sequences are cropped, one out of two frames are kept
for all sensors to obtain a total of 40 frames per sequence.
This decision was made to match the same length as the
NVS benchmark sequences present on the dataset. The de-
tails from each sequence are summarized in Tab. 4.

Sequence KITTI-360 run Starting frame Ending frame

1 0009 980 1058
2 0009 2854 2932
3 0010 3390 3468
4 0002 4722 4800

Straight line 0009 220 298

Table 4. Selected frames for each KITTI-360 [18] sequence.

nuScenes [3]: Since nuScnes poses are provided only in
SE(2), they cannot be used directly for our method. In-
stead, we use KISS-ICP [39] to get a good estimate of the
LiDAR poses. Extrinsic calibration provided by the dataset
is then used to obtain the poses for all cameras. We se-
lect the sequences 916, 410 and 417 for our experiments, as
they are more suitable for the calibration (closer structures,
more speed variation). All LiDAR scans are used during
calibration as the LiDAR is sparser than the one in KITTI-
360, while one out of two images is subsampled to reduce
training time.

Pandaset [44]: Since extrinsic parameters are not pro-
vided by the dataset, they are estimated using the global
poses of all sensors at several frames by calculating the
transformation between the frames with the same times-
tamp from each sensor. Sequences 33, 40 and 53 are used
for our experiments as they have more close structures. We
apply the same subsampling strategy as for nuScenes.

A.2. Architecture and Losses

For our NeRF network architecture, we use the same model
as MOISST [12] which is inspired by the nerfacto
model of Nerfstudio4 open source project. It uses the com-
bination of two papers. The first one is the proposal network
from MipNeRF-360 [1] with two proposal networks for the
coarse density estimation and a final NeRF for the radiance
and the fine density, improving the geometry of the scene,
the rendering quality and reducing the training time. The
second one is the hash grid introduced by instant-NGP [26]
to replace the deterministic positional encoding, which also

4https://docs.nerf.studio/en/latest/nerfology/methods/nerfacto.html

accelerates the training. Following the nerfacto implemen-
tation, 128 points (instead of 256) per ray are sampled for
the first proposal model, 96 points for the second one, and
48 points for the final NeRF model, which outputs our re-
sults.

On top of LC , LCam and LD, two losses for geomet-
ric consistency, also used by MOISST, are added: a struc-
tural dissimilarity (DSSIM) loss LSSIM [41], and a depth
smoothness loss LDS from RegNeRF [28].

A.3. Hyperparameters

Hyperparameter Value

Number of epochs 20
Initial calibration lr 1e-3
Final calibration lr 1e-4
Visibility grid size 20
Batch size 100
Patch size [15, 15]
LC coef 1
LCam coef 1
LSSIM coef 0.1
LD coef 1
LDS coef 1e-4
Translation bounding 2 meters
Temporal bounding 500 ms

Table 5. SOAC hyperparameters used for the training.

Sensor KITTI-360 [18] nuScenes [3] Pandaset [44]

Diagonal cams - 1 3
Side cams 1 9 -
LiDAR 6 5 8

Table 6. SOAC hyperparameters used for the training.
In Tab. 6 are indicated the hyperparameters used for the

training of SOAC, and in Tab. ?? are the NeRF delay-
ing epochs depending on the dataset. Delaying the NeRF
proves advantageous in scenarios characterized by a mul-
titude of sensors, some of which exhibit minimal overlap
with the reference sensor throughout the sequence. This
approach facilitates the accurate propagation of calibration
information during training from sensors presenting signifi-
cant overlap with the reference sensor to those with lesser or
no overlap at all. Basically, larger overlaps and larger quan-
tities of data reduce the number of necessary delay epochs.
The number of epochs for training MOISST is reduced to
20, as improvement was not observed with more. The spa-
tial and temporal optimization learning rate is fine-tuned to
5e-4.

B. Additional ablations
Correction bounding. The addition of the sigmoid for
bounding the translation and temporal corrections allows
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Figure 11. Ablation results on KITTI-360 [18] sequence 4: for SOAC, SOAC w/o Sigmoid and SOAC w/o visibility grid as box plots with
log scale, the red lines show the initial error (Best viewed in color).

Dataset MOISST [12] SOAC

KITTI-360 [18] ∼ 2 h 30 min ∼ 1 h 30 min
Nuscenes [3] (3 cams) ∼ 2 h 30 min ∼ 1 h
Nuscenes [3] (5 cams) ∼ 4 h 30 min ∼ 2 h 30 min
Pandaset [44] ∼ 1 h 30 min ∼ 1 h 20 min

Table 7. Training time comparison on different sequences.

Downscale Calibration error(°/cm/ms) Training time (min)
factor SOAC MOISST [12] SOAC MOISST [12]

1 0.2/4.6/3.9 0.1/5.3/1.3 605 163
2 0.3/4.6/2.5 0.3/24.1/5.3 181 42
4 0.2/4.6/1.7 1.1/41.4/13.1 85 17
8 0.4/12.3/8.2 2.6/56.6/28.6 53 12

Table 8. Training time and calibration accuracy for varying down-
scale factor on KITTI-360 [18] sequence 1 seed 0

better stability and robustness as shown in Fig. 11 on which
a huge decrease in calibration accuracy can be noticed when
removing the sigmoid.

Visibility grid. Removing the visibility grids deteriorates
the performance of the LiDAR calibration rotation and
translation as shown in Fig. 11.

C. Training time
We report the mean training times with both SOAC and
MOISST for the sequences from each tested dataset in
Tab. 7. For all the experiments, we used a GPU of similar
performance to an RTX 3090. The shown results are with
the downscaled images as described in the paper. SOAC is
able to provide better calibration than MOISST with shorter
training time, even if multiple NeRFs are used, as it can
use much smaller images. To measure the impact of the
image downscale factor in relation to each method’s train-
ing time, we train both methods at different downscale fac-
tors and report results on Tab. 8. As it can be observed,

MOISST accuracy is considerably harmed by using lower-
resolution images in comparison to SOAC. Furthermore,
SOAC achieves high accuracy even with large downscale
factors on the images (i.e. downscaling the image resolu-
tion by 4 shows no drop in accuracy for SOAC while being 8
times faster. In comparison, MOISST presents a severe drop
in performance when downscaling). This enables SOAC to
achieve more efficient training times given its ability to ex-
ploit lower-resolution images.

D. Quantitative results
Specific box plot results are provided for each sequence.
The results for KITTI-360 are in Fig. 12, the results for
Nuscenes in Fig. 14, and the results for Pandaset in Fig. 13.

On KITTI-360, MOISST seems to provide results on par
with SOAC on the Front-right camera and the LiDAR. How-
ever, on the side cameras, there is a significant difference in
the stability of the calibration. On Nuscenes and Pandaset,
SOAC is much more precise and stable than MOISST all
across the board.

E. Qualitative results
In Fig. 16 and Fig. 15 are shown LiDAR/Camera projec-
tion on nuScenes and Pandaset sequences. The calibration
optimized by SOAC provides substantially better alignment
than the one from MOISST.

Fig. 17 shows the predicted images and masks from each
NeRF trained with different cameras. The visibility masks
are coherent with the predicted RGB images, allowing cor-
rect filtering for SOAC.
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Figure 12. Results for KITTI-360 [18] per sequence for SOAC and MOISST [12] as box plots with log scale. The red lines show the initial
error (best viewed in color).
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Figure 13. Results for Pandaset [29] per sequence for SOAC and MOISST [12] as box plots with log scale. The red lines show the initial
error (best viewed in color).
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Figure 14. Results for nuScenes [3] per sequence for SOAC and MOISST [12] as box plots with log scale. The red lines show the initial
error (best viewed in color).
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Figure 15. Qualitative LiDAR/Camera reprojection results on Pandaset [44] dataset.
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Figure 16. More qualitative LiDAR/Camera reprojection results on nuScenes [3] dataset.
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Figure 17. Results using visibility grids on a Pandaset [44] sequence – Prediction from different NeRFs.
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