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Managing and Aggregating Group
Evidence under Quality and Quantity
Trade-offs

Zoi Terzopoulou1, Patricia Mirabile2, and Pien Spekreijse3

Abstract
Trade-offs between quality and quantity arise in an abundance of contexts concerning
group decision making. With the starting point being that group members provide
more accurate evidence when they are involved with fewer tasks, team managers
often encounter the following dilemma: Should they assign their group members
with many tasks (attempting to gather more evidence with lower quality), or with
fewer tasks (aiming at receiving less, but more high-quality evidence)? Secondly,
what is the optimal way to aggregate the collected evidence from a group, which
may be contrasting and varying in accuracy? Should more weight be given to the
more accurate group members, or to the larger number of those who provide the
same answer? This topic is already studied within the mathematical framework of
Terzopoulou and Endriss (2019). In this paper we complement it experimentally, by
investigating to what extent people’s decision-making patterns are in accordance with
the optimal ones proposed by the normative model. Our findings suggest that people
understand the task at hand and generally opt for optimal choices, especially in
conflict-free cases. Still, a tendency towards overvaluing the importance of additional
evidence, despite their accuracy, is observed; this translates into choosing options
that align with the majority rule in aggregation problems.
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1 Introduction
Consider a large journal where the lead editor is in charge of assigning incoming articles
to reviewers. A non-straightforward decision problem—which lies at the heart of this
paper—has to be resolved by the editor. On the one hand, assigning plenty of the available
reviewers to incoming articles and collecting all of their judgments will provide more
information to her about the articles’ validity and suitability for publication; on the other
hand, asking reviewers to evaluate several articles at the same time will arguably result
in less precise judgments on their side, due to multitasking efforts, split-attention effects,
and restricted time spent on each single article. A question thus arises: What kind of
article assignment increases the chances of an appropriate evaluation to be made by
the reviewers and of a good decision to be taken by the editor based on the collected
information? Answering this question requires confronting a conflict between the quality
and the quantity of the evidence that must be first gathered and then aggregated.

Analogous trade-offs of quality and quantity appear in numerous social contexts that
involve decision making by groups, including the assignment of cases to judges in courts
and patients to doctors in hospitals. Given a limited budget, designers of crowd-sourcing
experiments also have to choose between consulting fewer, expensive experts, or more,
cheaper non-experts. More broadly, in universities, private institutions, and companies,
team leaders encounter the option to create either larger working groups with multiple
employees that interact on a number of simultaneous tasks, or smaller groups with
individuals that are responsible for separate tasks.

Moreover, after assigning tasks to the members of a group, team leaders regularly
collect the obtained evidence and need to aggregate it in order to make the best possible
collective decision. A trade-off between quality and quantity of the available information
is brought to the surface again: In light of contrasting evidence, should priority be granted
to the judgments reported by the most accurate group members, or to those held by a
larger number of them?

A pool of articles suggests that multitasking, time-pressure, and hasty reasoning have
negative effects on performance (Payne et al. 1988; Edland and Svenson 1993; Ariely
and Zakay 2001; Wilhelm and Schulze 2002; Adler and Benbunan-Fich 2012). However,
little has been said about the way in which team leaders take this fact into account in their
managerial decisions. Notably, behavioural evidence concerning decisions made by real
people is generally overlooked within the academic literature on group decision making.

A mathematical framework that answers how trade-offs of quality and quantity can be
optimally resolved has been previously developed by Terzopoulou and Endriss (2019).
Here, we are interested in testing experimentally the extent to which the decisions
made by real people correspond to the optimal ones proposed by the normative model.
Knowing whether people make good decisions when faced with such trade-offs is of
high importance for applications: Managers in positions of power rarely have access to
all relevant information that is needed in order to be faithful to the mathematics (for
example, about the accuracy of their group members); rather, they rely on intuitions and
heuristics. Our work investigates how often these intuitions give rise to correct choices
in extreme cases of full information. Learning that people are good in resolving these
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trade-offs can create a safety net for more complicated instances that directly rely on
human judgment; on the other hand, understanding on where possible errors in resolving
the trade-offs concentrate can help set up appropriate training to forge improvement.

The topic of this paper is relevant for the field of social choice (Arrow et al. 2002)—
including the more recent one of computational social choice (Brandt et al. 2016)—
that is concerned with the formal analysis of methods that groups (should) use to make
decisions as a whole. Epistemic social choice specifically investigates the optimal way to
aggregate the judgments of different group members in order to discover a ground truth,
that is, an objective answer to a complex question (such as the treatment to a rare illness).
The epistemic approach to social choice was instigated by the famous Condorcet Jury
Theorem (de Condorcet 1785), intuitively stating that if we want to learn the answer to a
single yes/no question with high probability, it is better to ask as many group members
as possible, given that they are more accurate than random guessers. Yet, in his original
work, Condorcet did not consider the problems arising when more than one question
have to be tackled in parallel. Since then, social choice researchers have explored various
related topics, such as discovering a correct ranking for a number of alternatives in a
scenario of preference aggregation (Caragiannis and Micha 2017), or learning the correct
answer to logically interdependent propositions in judgement aggregation (Hartmann
et al. 2010).

The mathematical, philosophical, and computational tools of social choice have been
developing mostly independently of empirical and psychological evidence; this can be
contrasted with related subdomains of economics that are concerned with individual—
as opposed to group—decision making. For instance, in behavioural economics and
psychological decision theory it is widely accepted that biases and framing effects
cause human decision-makers to make sub-optimal decisions (Tversky and Kahneman
1985; Kahneman 2003). Few exceptions exist—some social choice researchers have
been interested in examining the descriptive power of established normative models; for
example, people’s insincere behaviour in voting (Bassi 2015), the actual behaviour of
the participants in doodle polls (Zou et al. 2015), and the way in which people strategise
when a popular aggregation method (the plurality rule) is used in iterative settings (Meir
et al. 2020) have already been subject to investigation. In this paper we support this line
of work, testing a normative model of social choice in practice.

Our setting also connects to the information-acquisition literature at large, where
optimal decisions must be made given uncertain information and limited resources to
access that information. For example, consider the following problem taking place in a
single round (Azevedo et al. 2020): The manager of a firm has a set of ideas and a number
of employees available to test them. The quality of each idea is uncertain, drawn from a
prior distribution. To learn about the value of an idea, the manager can run an experiment
on a subset of her employees that will produce a noisy signal of the quality of the idea.
The question is how to assign the total budget of available employees to each idea and
then select which ideas to implement. Although similar in flavour, our setting is different
in that the desired information is interconnected; our manager’s decision will depend
on two given criteria that must be evaluated in equal terms, and then an aggregation
task will take place. There is little work on problems where a specific structure of the
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information trade-off is posited. Pertinent research domains are also those on value of
information and optimal-learning, dealing with the general problem of sequential choice
amongst several actions, where at each stage a decision-maker may stop and take a
definite action or continue sampling for more information. There are costs attached to
taking inappropriate action and to sampling, and the expected cost against the expected
amount of information to be obtained must be balanced (Arrow et al. 1949; Moscarini
and Smith 2001). Touching this topic, bandit problems are the most basic examples of
sequential decision problems with an exploration–exploitation trade-off, i.e., the balance
between staying with the option that gave highest payoffs in the past and exploring new
options that might give higher payoffs in the future (Thompson 1933)—see Bubeck et al.
(2012) for an overview of this stream of literature, which has been developing rapidly,
especially in computer science. Our work departs from those problems by focusing on
decisions that take place in a single round rather than sequentially, and assuming that the
precision of the information signal may change depending on how the manager decides
to assign tasks.

For the remainder, let us abstract away from the numerous parameters that play a
role in scenarios where quality is in conflict with quantity, and employ a toy example
to focus on the aspects that are more pertinent in our investigation. This toy example
will be also used in our experiment, to familiarise the participants with our setting and
our questions. It goes as follows: The manager of a pie factory needs to decide whether
the produced pies satisfy the necessary standards for them to be acceptable for sale.
Specifically, the factory imposes two relevant evaluation criteria for each pie: it has
to look good enough (that is, the visual criterion), and its price has to be calculated
correctly (that is, the numerical criterion). The manager assigns different tasks to the
factory workers, by asking them to check the visual and the numerical criteria for a
number of pies—after the workers have expressed their judgments on their assigned
tasks, the manager makes the final decision about whether each pie can be for sale, by
aggregating the information she received. There are two clear phases in this process:
the first is about task assignment, and the second is about aggregation. In both these
types of problems, our goal is to examine whether people’s actual decisions agree with
the decisions suggested by the relevant mathematical model. Within the context of our
experiment, we find evidence that people understand the problem presented to them and
generally opt for maximal accuracy. Briefly, as far as task assignment is concerned,
alignment between people’s choices and the normatively optimal ones is common. In
aggregation problems, an agreement between people’s choices and the recommendations
of the standard majority rule prevails. The latter observation brings out an additional
possible interpretation, which is partially observed in task assignment too: namely, that
people’s choices sometimes over-rely on the importance of lower accuracy judgments.

This paper is organised as follows. In Section 2 we briefly summarise the existing
formal model that tackles conflicts between quality and quantity from the perspective
of social choice theory (Terzopoulou and Endriss 2019); we recall its main results and
present the implied predictions regarding human behaviour. In Section 3 we demonstrate
our experiment that aims to test the aforementioned model, studying how far or not
people’s behaviour is from the theoretically predicted one, and we elaborate on our
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observations. In Section 4 we offer a general discussion and conclude.

2 Formal model and predictions
In this section we scrutinise the mathematical framework of Terzopoulou and Endriss
(2019), developed to study the trade-offs between quality and quantity when managing
and aggregating evidence from groups.

The formal model aims at answering epistemic questions: Consider a group of
individuals that need to collectively determine the answer to a binary question (e.g., “is
a pie ready to be sold?”) that directly depends on the evaluation of several independent
criteria (e.g., “does the pie look good enough?” and “is the price of the pie calculated
properly?”). A correct yes/no (or approve/reject) answer on the different criteria exists,
and each individual in the group can provide independent evidence about what that
answer may be, by expressing a judgment that has a certain probability of being correct.
But, most importantly, different individuals may be asked to assess different criteria.
A main assumption of the model is that the more criteria an individual tries to assess,
the less accurate her judgments are likely to be. How can the group then maximise the
probability of discovering the correct answer to the question they are facing?

The model’s contribution is twofold: It determines what the optimal rule to aggregate
the evidence provided by such a group of individuals is, and finds the optimal way to
manage those groups in terms of assigning the right amount of tasks to them.

2.1 Mathematical preliminaries
Let ϕ and ψ be two independent criteria associated with a correct yes/no answer. A
priori, each of the two answers is equally likely to be the correct one. Every individual i
in a group N = {1, . . . , n} with n > 2 holds a personal judgment Ji ⊆ {ϕ,ϕ, ψ, ψ}.
With ϕ ∈ Ji we mean that individual i judges ϕ as true, and with ϕ ∈ Ji that individual i
judges ϕ as false. We write JN ⊆ {ϕ,ϕ, ψ, ψ} for the judgment that captures the correct
evaluation on the two criteria.

An aggregation rule F is a function that maps every reported profile J = (J1, . . . , Jn)
of all individuals’ judgments to collective judgment F (J). Intuitively, an aggregation
rule is responsible to determine the final answer to our criteria, given the evidence
provided by the individuals in the group.

We define Nϕ
1 to be the set of individuals who report a judgment on one criterion, ϕ,

and say “yes” to it (analogously for “no”, we replace ϕ with ϕ). ByNϕ
2 we denote the set

of individuals who report a judgment on both criteria, ϕ and ψ, and say “yes” to ϕ (and
analogously for “no”). We also define nϕ1 = |Nϕ

1 | and nϕ2 = |Nϕ
2 | to be the respective

sizes of these sets.
We denote by p the probability that individual i’s judgment Ji is correct on a criterion

when i judges both criteria, and by q the relevant probability when i only judges a
single criterion (assuming that the probability of each individual’s judgment being correct
on a criterion ϕ is independent (i) of whether ϕ is true or false and (ii) of what i’s
judgment on criterion ψ is). We assume that the probabilities p and q are the same for
all individuals, but the individuals make their judgments independently of each other. We
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shall moreover suppose that all individuals make judgments that are more accurate than
a random guess, but not perfect, and that those judging a single criterion are strictly more
accurate than those judging both criteria, i.e., that 1/2 < p < q < 1. Then, P (J) denotes
the probability of the concrete profile J of judgments to be reported by the individuals.

The accuracy Pϕ(F ) of an aggregation rule F regarding the criterion ϕ is defined as:

Pϕ(F ) =
∑
J s.t.

F (J) and JN agree on ϕ

P (J)

Recall that one of the model’s aims is to find the correct answer on the criterion ϕ
with the highest probability of this answer being correct, by aggregating the evidence
provided by the individuals in the group— formally, this translates to finding the rule F
that maximises the probability Pϕ(F ).

Yet, in order for the individuals in the group to provide evidence regarding the two
criteria, the appropriate tasks need to be assigned to them. That is, we need to know
which individuals will assess which criterion. Different choices for assigning individuals
to criteria yield a correct collective answer with different probability. We are interested
in finding the optimal (viz., the most accurate) such assignment.

Let us denote by n1 6 bn2 c the number of individuals that will be asked to report
a judgment only on criterion ϕ. For symmetry reasons, we assume that the same
number of agents will be asked to report a judgment only on criterion ψ, and the
remaining n− 2n1 agents will be asked to report a judgment on both criteria. Then,
Pϕ,n1

(FOTT) is the probability of the aggregation rule FOTT producing a correct
answer on ϕ. This is the probability we aim at maximising, by finding the number
argmax06n16bn2 c

Pϕ,n1
(FOTT). In simple words, we must know how many individuals

will be assigned with a single task, and how many will be assigned with two tasks.

2.2 Results
For the proofs of the results stated in this section, the reader is referred to original paper
where they are presented (Terzopoulou and Endriss 2019). We only give the information
that is needed to evaluate our experimental observations.

It has been shown that the optimal truth-tracking (OTT) rule (i.e., the aggregation
rule F that maximises the probability Pϕ(F )) is a weighted-majority rule, assigning to
the individuals weights according to how many criteria they assessed—individuals that
assessed only one criterion, and are thus providing more accurate judgments, are assigned
more weight in the following manner:

FOTT(J) = argmax
J

∑
i∈N

wi · |J ∩ Ji|,

where wi = log q
1−q if i ∈ Nϕ

1 and wi = log p
1−p if i ∈ Nϕ

2 . Observe that the base of the
logarithm in the definition of wi is irrelevant.

Consider for example a group of three individuals with q = 0.80 and p = 0.60
providing the following judgments:
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ϕ ψ

individual 1: Yes −
individual 2: No Yes
individual 3: No Yes

The weight assigned to individual 1, who has a positive judgment on ϕ and judges only
that criterion, equals to log 0.80/0.20 = 0.60. On the other hand, the weight assigned
to individuals 2 and 3, who have a negative judgment on ϕ while they judge both
criteria, equals to log 0.60/0.40 = 0.17. Since 0.60 > 0.17 + 0.17 = 0.34, the OTT rule
produces a collective yes answer on ϕ. For ψ, the unanimous answer will also be yes.

The same work (Terzopoulou and Endriss 2019) also studied the optimal assignment
method to distribute tasks to the individuals in the group, for small groups of size 2,
3, and 4 (for large groups, the mathematical analysis becomes too complex for formal
results to be given, but numerical estimations can be provided). Of course, the optimal
assignment depends on the specific values p and q of the individual accuracy. Intuitively,
if q is much larger than p, then it will be better to assign single tasks to many individuals,
because you can expect very high-quality judgments; if q is close to p and you cannot
rely on quality, then it may be smarter to increase the quantity of the evidence you get by
asking more individuals to assess both tasks. Drawing the line between the quality side
and the quantity side is our desideratum.

For groups of only two individuals, it is always optimal to ask each one of them to
evaluate one of the two criteria (n1 = 1) rather than asking both individuals to evaluate
both criteria (n1 = 0). This shows that for tiny groups quality undeniably beats quantity.
This is not an obvious discovery, since it holds even for values of p that are extremely
close to q (i.e., within a group of individuals that are almost perfect multitaskers, it is
still optimal to not have them multitask). We will indeed see later on, in Figure 4, that
this is a case where people’s actual behaviour largely differs than what the optimal model
recommends. Intuitively, having two evaluations does not help because when they agree
to the correct answer it will be with probability p2 < q, and when they disagree they will
produce a tie that offers no information.

For groups of three individuals, we know that argmaxn1
Pϕ,n1

(FOTT) = 1 (that is,
the best choice is to assign one group member only with criterion ϕ, another group
member only with criterion ψ, and the third group member with both criteria) if and
only if q > p2(3− 2p). For example, if individuals who evaluate both criteria are correct
60% of the time, then you should ask two of them to focus on a single criterion each if
and only if their accuracy for doing so is at least 64.8%.

Finally, for groups of four individuals, we have that argmaxn1
Pϕ,n1

(FOTT) =

1 if q < p2

(1−p)2+p2 and argmaxn1
Pϕ,n1

(FOTT) = 2 otherwise. This means that we
should either ask two individuals to focus on a single criterion each and two to multitask
(if the group consists of good multitaskers), or to split the group in two teams, each
assigned with a different criterion (if their multitasking accuracy is low). Notably, we
should never ask all individuals to multitask.
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2.3 Predictions
Based on the formal model, we derive two types of empirical predictions: First, we
wish to check whether people make decisions that precisely agree with those that are
prescribed by the normative model. For example, we saw in Section 2.2 that individuals
in teams of two should never be asked to multitask—do people assign tasks in accordance
to that fact? Because of the model’s complexity, we do not expect this to hold in general,
but at least in the simpler cases when the trade-off between quantity and quality is
small. Second, we expect to confirm that people’s decisions are influenced by the “right”
parameters, that is, the parameters that the normative model suggests. For example, if the
performance rate of the multitaskers increases, then the probability that people choose to
make their team members multitask should increase as well.

Our empirical predictions concern the two core problems addressed by the theory,
(i) task assignment and (ii) aggregation, where the following hypotheses are relevant.

H1. People are always more likely to choose the normatively correct option.
H2. People are more likely to choose the normatively correct option as the probability

of that option being correct increases.

Besides H1 and H2, we also examine simple heuristics that people may adopt specifically
in the context of task assignment. In particular, we investigate whether they will tend to
prefer options that favour monotasking (H3), or options that favour multitasking (H4).

H3. People are more likely to choose the option that assigns the maximum number of
team members to single tasks.

H4. People are more likely to choose the option that makes the maximum number of
team members multitask.

In addition, we examine simple heuristics that people may adopt in the context of
aggregation. In particular, we investigate whether they will tend to prefer options options
that follow the opinion of the majority of team members (H5), or options that are in line
with the information provided by the most accurate team members (H6).

H5. People are more likely to choose the option that agrees with the majority of team
members.

H6. People are more likely to choose the option that agrees with the most accurate team
members.

3 Experiment
In our experiment, participants performed the duties of the fictional manager from the
pie factory toy example described in the Introduction. They were told to imagine the
following story: their (i.e., the managers’) ultimate responsibility is to approve or reject
pies on the basis of two different quality criteria (a visual and a numerical criterion,
which are described in more detail below), but without performing the pie quality checks
themselves. Instead, the manager’s role is to manage teams of workers who perform
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the pie quality check tasks and then to aggregate those workers’ judgments in order
to make an approve or reject decision (the participants were told nothing about the a
priori probabilities of a pie being acceptable or not, but there is no reason to believe
that they assigned some unequal prior to them). Every team of workers is supposed to
be responsible for one pie, and must collectively decide whether the pie satisfies each
one of the two quality criteria. Given a certain pie, every worker in the team must
perform at least one of the pie quality check tasks, i.e., must indicate whether the pie
meets the relevant quality criterion. Workers have a specified accuracy track record when
performing the two pie quality check tasks at the same time, that is when multitasking,
and when performing only one of these tasks, that is, when monotasking. To be in
agreement with the assumptions of the theoretical model, the accuracy of the evidence
when each group members multitask (p) or monotask (q) was shown to be the same, with
q always strictly larger than p.

Managing a team means deciding whether team members should be asked to only
complete one of the tasks (to monotask), or instead to complete both tasks (to multitask).
In other words, the manager is met with the alternative of having her fictional workers
complete more tasks, and therefore collecting more judgments from workers who are
less accurate, or having workers complete fewer tasks and therefore collecting fewer
judgments but from workers who are more accurate.

Participants in this experimental setting completed two separate phases of the evidence
management and aggregation process: the task assignment phase and the aggregation
phase. This allowed us to examine how the evidence management and the aggregation
decisions of the participants were impacted by the consideration of quality versus
quantity trade-offs. For each phase of the task assignment and aggregation process,
we sought to answer two questions. First, does the OTT model provide a better
qualitative description of people’s decisions when compared with alternative heuristics
(corresponding to H1 in Section 2.3)? Second, how well can people’s decisions be
modelled by the OTT model’s quantitative predictions regarding the optimal choice
(corresponding to H2 in Section 2.3)?

3.1 Method
The planned sample size, predictions, statistical models, and priors were preregistered
through the Open Science Platform. Materials, experimental scripts, analyses and data
are freely available at https://osf.io/cpqfz/. At the time when this experiment
was designed, the independent ethics committee of the University of Amsterdam was
informed, and oral approval was granted. No official statement was necessary due to the
non-sensitive nature of this work. The experiment was conducted on April 13, 2021, and
no access to information that could identify individual participants during or after data
collection was available.

Participants. We conducted a simulation-based power analysis to determine an
appropriate sample size for the models in our planned investigations. This is a two-
step procedure. First, we simulated data sets according to the data generation process
implied by the OTT model and assuming a weak correlation of 0.45 log odds (or 0.61
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in probability units) between the probability of a response being correct according to the
OTT model and the probability that a participant would choose that response. Second,
we confirmed that our statistical models were able to consistently detect the effects
of interest for a large number of simulated data sets. We found that a sample of 600
participants would be sufficient to reliably detect those effects in 100 percent of cases
and to allow for good convergence of the models. After accounting for an expected
drop out rate of 15 percent, we recruited 690 participants via the Prolific.co platform.
The data from 91 participants was lost due to experimenter error and 13 participants
were excluded for failing two attention checks or for providing duplicate response sets.
This left us with 586 participants (229 women, 314 men, 43 other; Mage = 23.0, SDage
= 8.6) who received a flat payment of 0.86£ as compensation for their participation.
This payment—considering that the average time for completing the experiment was
around 10 minutes—corresponds to around 5£ per hour, the minimum wage at the UK
the year that the experiment took place. Note that providing a flat payment is the standard
method in psychology (Croson 2005; Hertwig and Ortmann 2001), in contrast with
other disciplines such as experimental economics. Indeed, such experiments are very
common (it has been reported that that in a sample of 106 empirical studies published
in psychology journals, fewer than three percent provided performance-based incentives
(Hertwig and Ortmann 2003)) and present several advantages (Tversky and Kahneman
1989; Voslinsky and Azar 2021).

Procedure. The experiment was run fully online and consisted of three main parts: an
instructions part, a task assignment part and an aggregation part.

Instructions part. After providing informed consent, participants were introduced
to the experimental setting we have described above. To help make the setting more
concrete, participants were given the opportunity to try out the pie quality check
tasks themselves, both in a monotasking and in a multitasking capacity. Specifically,
participants completed six trials of the pie quality check tasks. To verify that the pie
satisfied the visual criterion, participants completed the visual check task, in which they
had to compare two images, one of a model pie and one of the pie to be checked, and
decide whether they were identical or not (we used lightly edited pie pictures from the
lokokitchen.com website for this task): See Figure 1(a) for an example. To verify
whether the pie satisfied the numerical criterion, participants completed the numerical
check task, in which they had to confirm that the result of an addition with large
decimal numbers was correct: see Figure 1(b) for an example. After completing those six
trials, participants were told that their (purported) accuracy had been 75 percent when
monotasking and 50 percent when multitasking. This served to underline that the tasks
were sufficiently challenging, that workers with similar accuracy whom the participants
would be asked to manage in the following parts of the experiments were competent,
and that multitasking realistically decreases someone’s accuracy (this type of deception,
frequent in experimental psychology, was not expected to—and indeed did not, in any
provable way—affect the subsequent responses of the participants). Participants were
informed that this step was purely meant to familiarise them with the setting, and that it
did not play a role for their decisions to follow.
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(a) The visual check task.

(b) The numerical check task.

Figure 1. Pie quality checks.

Task assignment part. Next, participants completed the task assignment part, which
consisted of one practice trial and ten task assignment trials. For an example of a task
assignment trial, see Figure 2. To be able to test the theoretical model, for each trial we
only provided a certain number of relevant choices. For example, with a team of size
three, there was the option to have 1 person multitasking and 2 people monotasking, as
well as the option to have all three multitasking. There was no option to have 2 people
multitasking and 1 monotasking because then one of the two criteria would receive a
higher amount of evidence than the other, which is not accounted for in theory.

In each trial, participants were presented with a new team of workers and were
informed of the workers’ accuracy when performing the pie quality check tasks both
in a monotasking (q) and a multitasking (p) capacity, with q > p, and with all workers
in a given team having the same monotasking and multitasking accuracies. Depending
on the team size, participants had either two or three task assignment configurations to
choose from in a forced-choice paradigm (see Table 1 for a visual representation of those
options). For teams of size two, participants could either choose to have both workers
monotask (Option 1), and therefore collect one high accuracy judgment for each pie
quality check, or to have both workers multitask (Option 2), and therefore collect two
lower accuracy judgments for each pie quality check. For teams of size three, participants
could either choose to have two workers monotask and one worker multitask (Option 1),
that is, to collect two judgments per pie quality check with half of those being high
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Figure 2. Task assignment trial for a team of size 3, with q = 0.80 and p = 0.70.

accuracy judgments, or to have all three workers multitask (Option 2), that is to collect
three lower accuracy judgments per pie quality check. Finally, for teams of size four,
participants had three options: have all workers monotask (Option 1) and collect two
high accuracy judgments for each pie quality check; have two workers monotask and two
workers multitask (Option 2), therefore collecting again two judgments per pie quality
check but with half of those judgments having lower accuracy; have all workers multitask
(Option 3) and collect four lower accuracy judgments for each pie quality check. Note
that choosing Option 1 meant collecting fewer overall judgments but maximizing the
number of high accuracy judgments, while Options 2 and 3 decreased the number of
high accuracy judgments while increasing the total number of collected judgments.

Team size, monotasking and multitasking accuracies for each trial are reported in
Table 1. The specific values for p and q were selected so that the different hypotheses
to be tested could be distinguishable (that is, the corresponding assignment methods
would give sufficient contrasting recommendations). In addition, we aimed at choosing
accuracy values that induce different optimal responses for groups of varying size. We
know from the theoretical results (last paragraph of Section 2.2) that if for given accuracy
the monotasking option is optimal for groups of size 4, then the monotasking option will
also be optimal for groups of size 3. Thus, we focused on accuracy values that propose
monotasking in groups of size 3 but not necessarily in groups of size 4; we selected
two scenarios that showcase markedly different accuracy values—both in terms of their
absolute figures and the relative discrepancies within each case: these are the trials 80/70
and 95/80. Additionally, trial 85/80 was considered for groups of size 3 to observe the
participants’ reaction compared to the 95/80 case (where only the value of q was altered).
Given the unique nature of groups of size 2, where monotasking always emerges as the
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Table 1. Team size, task accuracies and assignment configuration options per trial for the
task assignment phase.

Trial Team size q p Option 1 Option 2 Option 3

2-95/51 2 .95 .51 V & N VN & VN —
2-80/70 2 .80 .70 V & N VN & VN —
2-95/94 2 .95 .94 V & N VN & VN —
3-80/70 3 .80 .70 V, N & VN VN, VN & VN —
3-85/80 3 .85 .80 V, N & VN VN, VN & VN —
3-95/80 3 .95 .80 V, N & VN VN, VN & VN —
3-95/51 3 .95 .51 V, N & VN VN, VN & VN —
4-80/70 4 .80 .70 V, V, N & N V, N, VN & VN VN ×4
4-85/80 4 .85 .80 V, V, N & N V, N, VN & VN VN ×4
4-95/80 4 .95 .80 V, V, N & N V, N, VN & VN VN ×4

Note: q corresponds to the workers’ accuracy when monotasking and p to the workers’ accuracy when
multitasking. All team workers in a given team had the same monotasking and multitasking accuracies. In
the configuration options, V and N indicate that a worker would be assigned to monotask (on the visual or
numerical task, respectively) and VN indicates that a worker would be assigned to multitask.

optimal option, we incorporated only one of the aforementioned “conflicting” scenarios
for them—the 80/70 trial. We then introduced two extreme trials to probe the participants’
inclination towards monotasking under varying degrees of obviousness: the 95/51 trial,
where choosing monotasking is intuitive, and the 95/94 trial, where such a choice is
unintuitive. Moreover, the straightforward 95/51 trial was also included for groups of
size 3, serving as further attention test and validation that participants understand the
task at hand. Trials were presented to participants in one of four randomised orders.

Aggregation part. Participants next completed the aggregation part, which consisted
again of one practice trial and of ten judgment aggregation trials. For an example of an
aggregation trial, see Figure 3. Participants were shown judgments collected from teams
of workers of varying sizes and task accuracies who had performed the pie quality check
tasks in one of the task assignment configurations described in the task assignment part
above. Each trial corresponded to a different team of workers and participants were asked,
in a forced-choice paradigm, to either approve or reject each of the two pie quality checks
for the pie under consideration. Importantly, participants were not able to verify the pie
quality checks themselves but instead had to rely on the judgments provided by the team
workers to make their decisions. Note also that, although most of the teams shown in this
part had identical team sizes and accuracies to those used in the task assignment part, they
were not necessarily shown in the same task assignment configurations as those chosen
by participants in the task assignment part.

Team size, monotasking and multitasking accuracies, and collected judgments for each
trial are reported in Table 2. The specific values for p and q were selected so that the
different hypotheses to be tested could be distinguishable (that is, the corresponding
assignment methods would give sufficiently contrasting recommendations). We tested
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Figure 3. Aggregation trial for a team of size 4, with q = 0.80 and p = 0.70.

Table 2. Team size, task accuracies and collected judgments per trial and task for the
aggregation phase.

Visual task Numerical task

Trial q p Case Monot. Multit. Case Monot. Multit.

1 .80 — 80A A — 80A A —
2 .95 — 95A A — 95A R —
3 .80 .70 80A-70R A R 70A-80R R R
4 — .80 80AA-80R — AAR 80AA-80R – AAR
5 .80 .70 80A-70RR A RR 70AA-80R R AA
6 .85 .80 80AA-85R R AA 85A-80RR A RR
7 .95 — 95A-95R AR — 95RR RR —
8 .85 .70 85A-70RR A RR 70AA-85R R AA
9 .95 .80 80AA-95R R AA 95A-80RR A RR
10 .95 .75 75AA-95R R AA 75AA-95R R AA

Note: A and R indicate, respectively, an “Approve” and “Reject” judgment. In the analyses, we collapse trials
and tasks into cases, which correspond to unique decision contexts.

cases with the same accuracy combinations as in the task-assignment part that
participants had already seen (80/70, 85/80, and 95/80), building conflict in the
answers—for instance, a participant would have to choose whether to agree with a
positive judgment of 80% accuracy or two negative judgments of 70% accuracy. Then, we
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also included two more conflicting trials, with varying differences between the presented
accuracy: the 85/70 trial (which serves as a comparison point with the 95/80 trial by
including higher accuracies of the same distance) and the 75/95 trial (which includes
accuracies of larger distance than other trials). To avoid overloading participants with
challenging questions and promote familiarity with the task, the rest of the aggregation
part contained trials devoid of conflict for someone with basic understanding: two trials
with a single judgment (which the optimal rule copies), one trial with the same number
of supporters for diverging responses (in which the optimal rule chooses the response of
higher accuracy), one trial with responses of the same accuracy (in which the optimal
rule chooses the response with the most supporters), and one trial with a tie. Trials were
presented to participants in one of four randomised orders.

Final part. The experiment concluded with a short questionnaire in which participants
were asked to confirm they had completed the experiment without any distractions, and
participants were then provided with a debriefing sheet about our research goals.

3.2 Results
We are now ready to present our experimental results.

Analytic approach. To test our predictions regarding the descriptive adequacy and
the predictive ability of the OTT model, we fit Bayesian regression models with
the R package brms (Bürkner 2018) and the probabilistic programming language
Stan (Carpenter et al. 2017), which uses Markov Chain Monte Carlo algorithms. A
Bayesian analysis estimates model parameters as probability distributions, with the joint
probability distribution of the data, y, and a given parameter, θ, being computed via the
prior probability of θ and the probability p(y | θ):

p(y, θ) = p(y | θ)× p(θ)

This result is derived from Bayes’ Rule, which serves to calculate the posterior
probability, p(θ | y), as follows:

p(θ | y) ∝ p(y | θ)× p(θ) = p(y, θ)

This posterior probability distribution can be interpreted as indicating the relative
plausibility of possible values of the parameter θ, conditional on the prior probability
of that parameter, the probability distribution of the responses (or likelihood function),
and the data itself.

Because we sought to examine whether participants’ responses matched the responses
predicted by the OTT model or by one of the alternative heuristic rules or assignment
methods, we recoded participants’ responses into a series of binary dependent variables
which indicated whether a given response had been successfully predicted by each of the
competing models or heuristics. As a consequence, we chose to model the probability
of a participant’s response being successfully predicted by an assignment method or
decision rule as arising from a Bernoulli distribution, with our models estimating the
logit-transformed probability of an answer being successfully predicted. The logit-
transformation converts a probability p (which is, by definition, restricted to the 0 to
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1 range) into a log odds ratio by taking the logarithm of the ratio between p and 1− p.
A log odds ratio of 0 means that p and 1− p are independent, a positive log odds ratio
means that p is higher than 1− p, and a negative log odds ratio means that p is lower
than 1− p.

We also specified prior distributions over the possible effects each parameter could
have on the probability that a response would be successfully predicted. Specifying
these priors is recommended because it allows regularization of parameter estimates (see
eg., Bürkner 2018; McElreath 2020). For all models reported in this experiment, we
specified weakly informative priors that indicated extreme estimated effects as unlikely
while remaining agnostic to the direction of these effects. Finally, because we used a
repeated measures design where participants rated multiple items, we also included a
(hierarchical) mixed-effects structure to our models, which estimated how group-level
(or random) effects deviated from population-level (or main) effects while accounting
for possible correlations in responses provided by the same participant.

For all models reported in this paper, MCMC diagnostics indicated sufficient mixing
of the chains, sufficiently high bulk and tail effective sample size values and an R̂
convergence diagnostic of 1.00 for all parameters, which is within the recommended
value range (Vehtari et al. 2021).

Task assignment part. Recall Table 1 for the different trials of task assignment in
our experiment. The choices of the participants are displayed in Figure 4. In all trials
except 2-95/94, 4-80/70, and 4-85/80, participants were more likely to choose the option
predicted by the OTT assignment method, indicated by (?) on the figure; while in the
three cases that constitute an exception participants chose the OTT option less than 50
percent of the time, in trials 4-80/70 and 4-85/80 the OTT option was still selected
more often than each one of the alternative options. On the other hand, participants
were more likely to choose the option predicted by the monotasking assignment method
(i.e., Option 1) in just over half of the trials, and to choose the option predicted by the
multitasking assignment method (i.e., Option 3 for teams of size 4 and Option 2 for
smaller teams) only in two trials.

Note however that participant choices matched the multitasking option 30 to 40
percent of the time in trials 2-80/70, 3-80/70, 3-95/80, and 4-85/80, even if that was
not the optimal one. Also, 80 percent of participants made a non-optimal multitasking
decision in trial 2-95/94. These observations hint towards a possible tendency of people
to overestimate the importance of additional judgments in cases of conflict. Since this
tendency is not always present (see that 40 percent of participants did not choose
the optimal multitasking option in trial 3-85/80), future trials could help clarify its
persistence, especially on further borderline cases concerning for instance accuracies
80/75 or 75/70 that we have not yet examined.

To compare the three decision rules for the task assignment part, we first fit a
Bayesian multivariate mixed-effects logistic regression model, which estimated the
overall probability that responses would correspond to the correct option according to
each one of the assignment methods: the OTT, Monotasking, and Multitasking dependent
variables indicate whether a response follows each assignment method. This model also

16



Figure 4. Proportion of participants’ task assignment decisions for each trial. (?) indicates
the response(s) predicted by the OTT assignment method. The monotasking assignment
method predicts that option 1 will be chosen for all cases and the multitasking assignment
method predicts that option 2, or 3 when available, will be chosen for all cases.

included a mixed-effects hierarchical structure with participants as a grouping factor:

Model 1: {OTT, Monotasking, Multitasking} ∼ 1 +
(1|Participant)

According to model 1, the probability that responses would match the Multitasking
assignment method was below chance (b = −0.99, [-1.10:-0.89] 95 % CI), while the
probability that they would match the OTT and Monotasking assignment methods
was above chance (b = 0.60, [0.54:0.65] 95 % CI and b = 0.34, [0.25:0.44] 95 % CI
respectively). The difference in probability estimates between the OTT and the
Monotasking assignment method was meaningfully different from zero (bdiff = 0.25,
[0.14:0.37] 95 % CI). Probability estimates for the OTT assignment method were higher
than estimates for the Monotasking and Multitasking assignment methods (Figure 5).

For a more detailed comparison per trial, we next fit a second Bayesian multivariate
mixed-effects logistic regression model, which estimated for each trial the probability
that responses would correspond to the correct option according to each one of the
assignment methods (with the same dependent variables as in Model 1). This model also
included Trial as a categorical predictor as well as a mixed-effects hierarchical structure
with participants as a grouping factor:

Model 2: {OTT, Monotasking, Multitasking} ∼ 0 + Trial +
(1|Participant),
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Figure 5. Posterior probability distributions (with mean and 95 percent CI) of the probability
estimates that responses will match each one the three assignment methods in the task
assignment phase.

where the 0 + syntax indicates that no separate intercept was estimated for this model.
Results for Model 2 are displayed in Figure 6 and indicate that, in almost all trials, the
probability that a response would correspond to the correct response according to the
OTT assignment method was either higher than the probability that it would correspond
to the correct response according to the competing assignment methods, or was equally
as high in the trials where one of the competing assignment methods predicted the same
option as the OTT assignment method to be the correct one.

Finally, in order to investigate how well the OTT assignment method could predict
participants’ decisions, we fit a Bayesian mixed-effects logistic regression model with
regressed the probability that a response would follow the OTT assignment method on
the probability (in log odds units) of that response being the correct one according to
the OTT model. In addition, this model had a mixed-effects hierarchical structure with
participants as a grouping factor:

Model 3: OTT ∼ logit(OTT probability) + (1|Participant),

where the logit function is defined as logit(p) = log( p
1−p ) for p ∈ (0, 1). This model

found a positive relationship (b = 0.48, [0.40:0.56] 95 % CI) between the probability
that a response would be correct according to the OTT model and the probability that a
participant’s response would follow that assignment method, indicating that participants
became more likely to choose the correct option according to the OTT assignment
method as the probability that the given response would be correct according to the OTT
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Figure 6. Mean (with 95 percent CI) estimates per trial of the probability that participants’
responses correspond to each one of the decision rules in the task assignment phase.

model increased (see Figure 7). Notably, however, even when the OTT model estimated
a high 95 percent probability of a response being correct, the predicted probability that
participants would choose that option was only around 70 percent.

In future work, an extension of this experiment would be intriguing, including
additional trials with new combinations of accuracy values in order to shed more light
to the link between accuracy and identifiability of the OTT options. Such additional
trials could a priori affect the results presented in Figure 7: for example, by setting
q = 80% and p = 51% people may still largely opt for the OTT answer, although the
probability of that answer being correct is not perfect (which would produce points at
the upper left corner of Figure 7). A more systematic study of the relationship between
the probability of the OTT answer being correct and the probability that participants
choose this answer would include diverse trials where the difference of accuracies q − p
is fixed but the accuracy of the OTT answer varies, such as the trials 2-70/(51,55,60,65),
2-80/(60,65,70,75), and 2-90/(70,75,80,85). It is unclear what observations one could
expect in these trials since no comparative conclusions can be obtained from our current
experiment. Until follow-up work has been conducted, we must stress that Figure 7
should only be interpreted as an illustration of preliminary observations on this topic,
strongly connected to the selected trials we have performed.

Aggregation part. The responses of the participants concerning aggregation decisions
are presented in Figure 8 (recall the trials included in this part of our experiment, from
Table 2). There are some cases in which the three decision rules, and especially the
majority rule, are unable to discriminate between the approve and reject decision and
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Figure 7. Conditional effects plot (with 95 percent compatibility interval) for the relationship
between the probability of an option being correct estimated by the OTT model and the
probability that a participant’s response will match that option.

make an explicit recommendation. Focusing only on those cases where the decision
rules are discriminating, we can see that the OTT rule, indicated again by (?), matches
participants’ responses in three out of four trials, while the majority rule (indicated by~)
matches those responses in over four out of five trials, and the accuracy rule (indicated
by �) only matches them in half the cases.

Note that the simpler trials of the aggregation part indicate that participants understood
the task at hand: when there was no conflict (e.g., in trials such as 70Y-80N or 95N), the
optimal answer was chosen most often.

Analogously to the task assignment phase, we detect a discernible inclination among
participants to disproportionately value the contribution of supplementary judgments
of low accuracy. Consider, for example, the trial 85Y-70NN, where 70 percent of
the participants chose the negative answer that had two supporters, although the
optimal answer was the ‘yes’ proposed by the one high-accuracy judgment. Given
our limitation to only observe participant responses to trials without insight into the
cognitive mechanisms behind these responses, distinguishing between the following two
plausible interpretations is challenging. The first interpretation suggests that participants’
reasoning aligns with the OTT rule but applies excessively high weights to judgments of
lower accuracy. The second interpretation proposes that participants internally address
the aggregation task via a majority-based approach.

To test our original hypothesis, we compared the three decision rules for the
aggregation part by fitting a Bayesian multivariate mixed-effects logistic regression
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Figure 8. Proportion of participants’ aggregation decisions for each case. (?) indicates
response(s) predicted by the OTT rule, (�) those predicted by the accuracy rule and (~)
those predicted by the majority rule.

model, which estimated the overall probability that responses would correspond to the
correct option according to each one of the decision rules (the OTT, Accuracy and
Majority dependent variables indicate whether a response is correct or not according
to each rule). Note that Models 4 and 5 constituted a deviation from our preregistered
analyses, in which we had planned to compare the accuracy of the three decision rules by
their respective Areas Under the Curve. With this approach, we found that the OTT rule
(AUC = 0.76) and the Majority rule (AUC = 0.77) performed approximately equally
well, while the Accuracy rule performed worse (AUC = 0.66). We choose to report
Models 4 and 5 instead because they allow for a more direct comparison between the two
parts of the experiment. This model also included a mixed-effects hierarchical structure
with participants as a grouping factor:

Model 4: {OTT, Accuracy, Majority} ∼ 1 + (1|Participant)

Model 4 estimates indicated that the probability that responses would correspond to
a decision rule was above chance for all three rules: (b = 1.21, [1.15:1.26] 95 % CI
for the OTT rule, b = 0.75, [0.69:0.81] 95 % CI for the Accuracy rule, and b = 1.43,
[1.34:1.51] 95 % CI for the Majority rule), with the difference in probability between
the OTT and Majority rules estimates (bdiff = −0.22, [-0.32:-0.12] 95 % CI) indicating
that the responses corresponding to the OTT rule were meaningfully less likely than
responses corresponding to the Majority rule. As shown in Figure 9, probability estimates
for the OTT and Majority rules were higher than the estimates for the Accuracy rule. Note
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Figure 9. Posterior probability distributions (with mean and 95 percent CI) of the probability
estimates that responses will follow each decision rule in the aggregation phase.

however that one limitation of this model, and of Model 5 below, is that in the cases where
a decision rule did not make a discriminating recommendation between the Approve and
Reject decision, both choices were rated as correct under that rule. Because the Majority
rule did not make discriminating recommendations in three cases, versus only one case
for the OTT and Accuracy rules, this approach was somewhat biased in favour of the
Majority rule.

Model 5: {OTT, Accuracy, Majority} ∼ 0 + Case +
(1|Participant)

Model 5 found that, in almost all cases, the estimated probability that participant
responses would correspond to the Majority rule was either the highest or equally as high
in the cases where the competing rules made identical predictions for the correct response
(see Figure 10). The OTT rule did second best, with the probability that participant
responses would correspond to the responses it predicted being either the highest or
equally as high in more than half the cases and the Accuracy rule did the worst, with
its estimated probability of matching participant responses in less than half the cases.

We concluded our analysis by examining, again, how well the OTT rule could
predict participants’ responses. Instead of modelling separately ‘Approve’ and ‘Reject’
decisions, we computed the normalised probability (in log odds units) that the ‘Approve’
decision would be the correct one according to the OTT model and used it to predict,
in a Bayesian mixed-effects logistic regression model the probability that participants
would make the ‘Approve’ decision. In the cases where this normalised probability is
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Figure 10. Mean (with 95 percent CI) estimates per case of the probability that participants’
responses correspond to each one of the decision rules in the aggregation phase.

below 0.50, the OTT model predicts the ‘Reject’ decision to be correct instead and we
would expect participants to become more likely to choose the ‘Reject’ decision, and
therefore less likely to choose the ‘Approve’ decision. This model, which also included
a mixed-effects hierarchical structure, with participants as a grouping factor, was defined
as follows:

Model 6: OTT ∼ logit(OTT probability) + (1|Participant)

Model 6 revealed a steep positive relationship (b = 1.92, [1.49:2.27] 95 % CI) between
the probability estimated by the OTT model that the ‘Approve’ decision would be
correct and the probability that participants would choose that option. Notably, Figure 11
shows that the OTT probability of ‘Approve’ being correct tended to overestimate the
probability that participants would choose that option on the range from 0.00 to 0.50,
and to underestimate it on the range from 0.50 to 1.00. This indicates that when the
probability (according to the OTT model) that the ‘Approve’ decision would be correct
was below chance, participants were less likely to choose it than was predicted by the
OTT model; and when the probability (according to the OTT model) of the ‘Approve’
decision being correct was above chance, participants were more likely to choose it
than was predicted by the OTT model. If we recall that the probability of the ‘Approve’
decision being correct is the complement of the probability of the ‘Reject’ decision being
correct, we see that overall, participants made a given decision more often than what the
OTT model suggests.
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Figure 11. Conditional effects plot (with 95 percent compatibility interval) for the relationship
between the probability of an ‘Approve’ decision being correct according to the OTT rule and
the probability that a participant will choose the ‘Approve’ response.

In this aggregation part, further experimentation could shed more light to interesting
unexplored trials such as those with a single judgment of low accuracy (e.g., 55Y or
60YY): whether people’s reactions would vary in response to the currently utilised
single-judgment trials with high accuracy, and whether the graph of Figure 11 would
be affected, is an open question.

Individual differences Because we noted a curious pattern between the two phases of
the experiment, where participant answers seemed to more frequently match the OTT
suggestions in the task assignment part but to instead favour majority recommendations
in the aggregation part, we chose to further explore our results by examining individual
differences in responses. We conducted this exploratory analysis by extracting from
Models 1 and 4 the group-level estimated probabilities for all the decision rules for each
participant. These group-level effects take the form of group-level deviates, which the
statistical model assumes to be normally distributed around the population-level effect.
Because Bayesian inference works with samples from the posterior distribution of the
estimated parameters, we are able to directly compute the estimated probability of each
decision rule for each participant by adding, for each sample in the posterior distribution,
the estimated population-level probability of each decision with the corresponding
estimated group-level deviate. We classified participants as aligning with the responses
of a given rule when the mean probability that their answers would be correct according
to that rule was strictly higher than the mean probabilities that their answers would be
correct according to either of the two other rules.
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Figure 12. Counts of participants according to whether they were estimated, by Models 1
and 4, as favouring one of the three competing decision rules for the task assignment and
aggregation parts.

Figure 12 displays the results from this analysis. It indicates that, for the task
assignment part, the responses of a large number of participants were best described as
following the OTT rule. However, when considering which decision rule best described
participant responses in the aggregation part, the Majority rule was the clear winner,
even for participants who were classified in the task assignment phase as favouring a
Monotasking rule, which maximized the quality over the quantity of the judgments.

4 Discussion
We have investigated how people behave in contexts where evidence management and
aggregation decisions need to be made. If collecting a large quantity of evidence means
that the evidence quality is compromised, team leaders have to tackle an apparent trade-
off between the number of judgments they collect from their team members on the one
hand, and the accuracy of these judgments on the other hand. Work by Terzopoulou and
Endriss (2019), summarised in Section 2, has shown that in many cases the trade-off
cannot be resolved in an easy fashion—a complex mathematical analysis is required to
know exactly where the line should be drawn when choosing whether to favour quality
or quantity. In practice, it is not always sensible to expect people’s choices to perfectly
match the optimal ones; to counteract complexity, decision makers may employ shortcuts
or heuristics. Our main question thus arises: how good are people’s choices with respect
to the ideal choices proposed by the normative model?
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Throughout our experiment, it is evident that participants grasp the task’s objective:
they strive to enhance decision accuracy, meaning that they attempt to follow the OTT’s
recommendations. They clearly succeed when quantity and quality do not conflict or
when resolving such conflicts seems straightforward. This finding is encouraging, as
people frequently participate in related activities from diverse perspectives and roles.
The absence of strong biases suggests that people are able to make accurate decisions,
thereby improving collective performance. Furthermore, possessing a formal model that
accurately elucidates human behaviour is crucial, especially in times when the pursuit of
explainable AI that mimics human decision-making is of paramount importance.

When significant trade-offs between quantity and quality emerge, participant
responses vary. In the task assignment phase, many participants frequently made optimal
choices (beyond merely trivial scenarios), with the likelihood of selecting the normatively
correct option rising as this option becomes more apt to yield a correct recommendation.
In the aggregation phase, participants often favoured options endorsed by the majority
rule, even if the majority’s judgments lacked high accuracy. This brings to the surface
a plausible interpretation: that people tend to overvalue the addition of new judgments,
regardless of those judgments’ accuracy. During an aggregation process, such a tendency
may often lead to responses that are practically indistinguishable from the ones induced
by the majority rule. Moreover, observations from the task assignment phase offer further
support for this interpretation: while most people’s choices appeared to adhere to the OTT
options, a substantial portion still opted to increase the amount of judgments gathered.

Several factors could motivate people to prioritise additional judgments beyond an
optimal level, neglecting quality in light of quantity. One potential influence may be
the societal norm that equates majority opinion with the democratic ideal, especially in
consensus-seeking situations. This cultural predisposition may lead people to perceive a
higher number of endorsements for an answer as inherently beneficial, encouraging them
to default to this approach when no alternative decision-making strategy is apparent.

Lastly, it is critical to acknowledge that our experiment, like all studies in the social
sciences, is not without its flaws and offers insights that are context-bound and subject
to its limitations. Importantly, we should stress that the selection of questions posed to
participants likely played a principal role in the reported results. Furthermore, we can
only observe participant decisions and verify their alignment with the recommendations
of a given rule, but lack the means to directly examine the cognitive processes behind
these decisions. So, any assertions about whether participant choices are guided by
the specified rule, a different one, or something else, are only conjectures. In other
words, our study focuses on documenting the outcomes of decisions rather than the
underlying motivations or thought processes. This critical distinction paves the path for
future research into the cognitive mechanisms potentially influencing decision-making in
scenarios similar to the one investigated here. Our work is intended as an initial foray into
a broader research trajectory. Empirical testing would be valuable for many other formal
models within the literature of social choice, where the potential divergence between
normative assumptions and real people’s behaviour is often understudied.
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