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Advanced probabilistic µ-analysis techniques for AOCS validation

J-M. Biannic1, C. Roos1, S. Bennani2, F. Boquet2, V. Preda2 and B. Girouart2

Abstract— Monte-Carlo simulations play a key role in the
current AOCS V&V process, but it is generally time-consuming
and it may fail in detecting worst-case configurations, especially
in the presence of rare events. In such a case, µ-analysis offers
a nice alternative, although it cannot measure the probability
of occurrence of the identified worst-cases, which can invalidate
a control system on the basis of unlikely events. Probabilistic
µ-analysis was introduced in this context 20 years ago to bridge
the gap between the two techniques, but until recently no
practical tools were available. This paper summarizes recent
advances on this topic with a particular emphasis on practical
applications to space systems. More precisely, the proposed
technique is applied to evaluate AOCS controllers in the
context of a challenging high accuracy satellite pointing control
problem. The way the proposed tools can be integrated into the
traditional AOCS V&V process and used to tighten the V&V
analysis gap is also highlighted.

I. INTRODUCTION

Novel lightweight materials and deployable structures
allow to perform an increasingly wide variety of on-orbit
services, which results in stronger interactions between the
spacecraft flexible structures and fuel sloshing in the reser-
voirs. Efficient Attitude & Orbit Control Systems (AOCS)
must then be designed to ensure a high pointing accuracy.
This requires a robust control architecture, but also adequate
verification and validation (V&V) methods to assess the mis-
sion risk and check if performance is guaranteed regardless
of the uncertainties and disturbances affecting the system.

Monte-Carlo (MC) simulations [8], [10] are the preferred
validation means in the space industry. They are able to quan-
tify the probability of sufficiently frequent phenomena, but
only provide only soft bounds [24] and become very time-
consuming to detect rare (but critical) events. On another
side, deterministic and simulation-free alternatives exist and
have now reached a good level of maturity, as is the case for
µ-analysis [7], [19]. But unlike MC simulations, if worst-
case scenarios are no longer missed, their probability of
occurrence is also not measured, which can invalidate an
AOCS on the basis of very rare and therefore extremely
unlikely events [2], [12], [22].

Research to fill the gap between these two approaches
is still at a very early stage and only few practical tools
are available, although this issue was identified 20 years
ago by [9]. This is all the more surprising since the val-
idation process currently accounts for up to 80% of the
AOCS total development time, and is becoming longer as
the space missions become increasingly complex. In this
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context, this paper builds on the work of [22], [6], [2], [23]
on probabilistic µ-analysis and its ambitions are twofold.
First, develop cheaper and reliable tools to improve the
characterization of rare but nonetheless possible events, so
as to tighten the aforementioned V&V analysis gap. Second,
apply these tools to a challenging high accuracy satellite
pointing control problem to show how they can be integrated
into the traditional AOCS V&V cycle, so as to improve the
current industrial standard and fasten the validation process.

The latest advances in probabilistic µ-analysis are first pre-
sented in Section II. The resulting computational tool is then
described in Section III. It is finally applied in Sections IV
and V to a challenging and realistic AOCS benchmark.

II. LATEST ADVANCES IN PROBABILISTIC µ

A. Problem statement

Let us consider a continuous-time uncertain linear time-
invariant system (usually including control laws):{

ẋ = A(δ)x+B(δ)u

y = C(δ)x+D(δ)u
(1)

where the parametric uncertainties δ = (δ1, . . . , δN ) ∈ RN
are independent random variables with probability density
functions f = (f1, . . . , fN ). It is assumed that A(δ), B(δ),
C(δ), D(δ) are polynomial or rational functions of the δi.
As a result, system (1) can be transformed into a linear
fractional representation (LFR) as in Fig. 1 (right): the
uncertainties are separated from the nominal (closed-loop)
system M(s) and isolated in a block-diagonal operator ∆ =
diag(δ1In1 , . . . , δNInN

), where Ini is the ni × ni identity
matrix. This paper focuses on real uncertainties, but complex
uncertainties and neglected dynamics can also be considered.
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Fig. 1. Standard interconnections for robust stability (left) and worst-case
performance (right) analysis

The set of matrices with the same block-diagonal structure
as ∆ is denoted ∆. It is assumed that the uncertainties are
normalized, so that the subset B∆ of ∆ defined as B∆ =
{∆ ∈ ∆ : σ(∆) < 1} = {∆ ∈ ∆ : |δi| < 1, i ∈ [1, N ]}
corresponds to the set of physically meaningful uncertainties.
With these notations in mind, two main problems can be
solved using probabilistic µ-analysis:



Problem 2.1 (Probabilistic robust stability): Compute the
probability P∆,f (M(s)) that the interconnection of Fig. 1
(left) is unstable when ∆ ∈ B∆.

Problem 2.2 (Probabilistic worst-case H∞ performance):
Given a performance level γ > 0, compute the probability
P
γ

∆,f (M(s)) that ‖Tu→y(s,∆)‖∞ > γ on Fig. 1 (right)
when ∆∈B∆, where Tu→y(s,∆) is the transfer from u to y.

Once computed, these probabilities can be confronted to
a given tolerance level ε, so as to validate or reject the con-
sidered control system, depending on whether P∆,f (M(s))
and P

γ

∆,f (M(s)) are lower or higher than ε.
Remark 2.1: The uncertainties being bounded, their prob-

ability distributions must be supported on a bounded interval.
Uniform and truncated normal distributions are often used.

B. Probabilistic robust stability

Classical µ-analysis [7] aims at computing the robust
stability margin kr, which satisfies the following properties:
• the interconnection of Fig. 1 (left) is stable for all

∆ ∈ kr∆ = {∆ ∈∆ : |δi| < kr, i ∈ [1, N ]},
• for all k > kr, there exists at least one ∆ ∈ k∆ such

that the interconnection is unstable.
This defines an uncertainty box centered at 0 and of radius
kr, which touches the instability domain and where stability
is guaranteed. So if kr < 1, there are parts of the uncertainty
domain B∆ that can be stable or unstable, but for which
nothing can be concluded. This is illustrated in Fig. 2, which
corresponds to the simple example of [6] with 2 normalized
uncertainties. In this particular case, the stability and insta-
bility domains (in light/dark green and red respectively) can
be calculated analytically. The domain kr∆ where stability
is guaranteed by µ-analysis is the light green box, and it is
clear that there are both stable and unstable zones outside
this area, where no information is available at this stage.

Fig. 2. Guaranteed stability domain (light green) obtained with µ-analysis

Remark 2.2: Computing kr is in general NP-hard, so
lower and upper bounds are computed instead. Much work
has been done to reduce the gap between these bounds, and
many efficient algorithms are now available [20]. It can thus
usually be assumed that the (almost) exact value of kr can
be computed with a reasonable computational time.

A branch-and-bound (B&B) algorithm can be used to
explore the whole uncertainty domain. The idea is to partition
B∆ into smaller boxes until each box has guaranteed stability
or is sufficiently small to be neglected [13]. Taking the

union of the boxes with guaranteed stability leads to an
approximation Ds ∈ B∆ of the exact stability domain. In
practice, this approximation is usually quite accurate, as can
be seen here by comparing the green areas in Fig. 2 and 3.

Fig. 3. Guaranteed stability domain (light green) obtained with B&B

This strategy can however result in a significant computa-
tional time for large-scale problems. In particular, the boxes
where the uncertain system is unstable are never identified
as such by the algorithm, since µ-analysis requires to start
with a nominally stable system. They are partitioned until
they reach a negligible size, which leads to unnecessary box
generations. This is materialized in Fig. 3 by the use of the
blue color to represent these very small undetermined boxes.
But this issue can be addressed easily. µ-analysis indeed
detects when the poles of the nominally stable system M(s)
reach the imaginary axis as the size of ∆ increases. The
same strategy can be applied to a nominally unstable system.
Integrated into the previous B&B scheme, this directly yields
a domain Ds of guaranteed instability.

The domain Ds of guaranteed stability conveniently takes
the form of a finite union of disjoint boxes D(k)

s :

Ds =
⋃
k

D(k)
s where D(k)

s = [δ
(k)
1 , δ

(k)

1 ]× · · · × [δ
(k)
N , δ

(k)

N ]

making the associated probability p(Ds) easy to compute:

p(Ds) =
∑
k

Pr(δ
(k)
i ≤ δi ≤ δ

(k)

i , i = 1, . . . , N) (2)

=
∑
k

N∏
i=1

∫ δ
(k)
i

δ
(k)
i

fi(δi)dδi (3)

The same applies to Ds, which finally leads to both lower
and upper bounds on the exact probability P∆,f (M(s)) of
instability, thus solving Problem 2.1:

p(Ds̄) ≤ P∆,f (M(s)) ≤ 1− p(Ds) (4)

The considered control system can then be either validated
if 1 − p(Ds) < ε or rejected if p(Ds̄) > ε, where ε is the
tolerance level introduced in Section II-A. In practice, B&B
is executed until the gap between the bounds becomes small
enough and one of the two previous conditions occurs. The
uncertainty domain is finally partitioned as follows:

B∆ = Ds ∪Ds ∪Dsu (5)

where Dsu denotes the domain of undetermined stability,
with probability p(Dsu). The B&B algorithm can indeed



only approximate Ds and Ds, and not compute them exactly.
The application to the academic example of [6] is shown in
Fig. 4, and it can be seen that very good approximations of
the exact stability and instability domains are obtained.
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Fig. 4. Domains of guaranteed stability Ds (green), guaranteed instability
Ds (red) and undetermined stability Dsu (blue) obtained with B&B

Remark 2.3: When applying B&B, the boxes can be di-
vided along the direction with the highest µ-sensitivity (i.e.
corresponding to the uncertainty with the greatest influence
on stability, see [5]), instead of the longest edge as usually
done. This significantly reduces the number of boxes and the
computational time in most cases [22], [11]. This is observed
here by comparing the number of green boxes in Fig. 3 and 4,
obtained without and with the µ-sensitivities respectively.

C. Probabilistic worst-case H∞ performance
As with robust stability, B&B is combined with µ-analysis

to compute domains of guaranteed performance satisfaction
Dγ and guaranteed performance violation Dγ̄ , as well as
the associated probability measures p(Dγ) and p(Dγ̄). This
leads to bounds on the exact probability P

γ

∆,f (M(s)) of
non-performance, thus solving Problem 2.2:

p(Dγ̄) ≤ P γ

∆,f (M(s)) ≤ 1− p(Dγ) (6)

Performance is guaranteed on a given boxD, i.e.D∈Dγ , if:

max
∆∈D

‖Tu→y(s,∆)‖∞ ≤ γ (7)

This can be reformulated as a skew-µ problem using the
main loop theorem [15] and solved using existing µ-based
tools [19]. On the other hand, checking if non-performance
is guaranteed on D, i.e. if D ∈ Dγ̄ , requires to solve:

min
∆∈D

‖Tu→y(s,∆)‖∞ > γ (8)

This is a minimax problem, which cannot be directly re-
formulated as a skew-µ problem as above. To address this
issue, a sufficient condition for inequality (8) to hold is
introduced in [22], in the form of a skew-µ calculation
involving the inverse transfer T −1

u→y(s,∆). It is very efficient
from a computational point of view, but it may introduce
conservatism, although this is usually not the case in practice.
The main limitation is that this condition is restricted to a
scalar performance channel, i.e. u ∈ R and y ∈ R in (1). It
can then be integrated into a B&B scheme as for stability,
which leads to a partition of the uncertainty domain B∆:

B∆ = Dγ ∪Dγ̄ ∪Dγu (9)

where Dγu is the domain of undetermined performance.

III. A NEW COMPUTATIONAL TOOL

All the results and algorithms presented in Section II
have been implemented in the Matlab function mupb avail-
able at w3.onera.fr/smac/smart download. The latter
solves Problems 2.1 and 2.2 by computing guaranteed lower
and upper bounds on the probabilities P∆,f (M(s)) and
P
γ

∆,f (M(s)) with the desired accuracy. It is fully com-
patible with the Generalized State-Space (GSS) Library of
the SMAC Toolbox [3], which offers a powerful and user-
friendly way to model LFR, including the ability to define
probability distributions for parametric uncertainties. This
library is itself compatible with the standard uss object
of the Robust Control Toolbox, and it provides automated
tools to convert uss objects to gss objects, as well as to
incorporate probability distributions initially not present in
uss objects. Finally, the function mupb is also fully interfaced
with the Skew Mu Analysis Robustness Tools (SMART)
Library of the SMAC Toolbox [19], which allows the user
to benefit from a number of state-of-the-art µ-analysis based
algorithms. It can be called quite easily as follows:

[pbnds,domout]=mupb(gsys,pb,domin,options);

where:
• gsys is a gss object describing the LFR of Fig. 1,
• pb specifies if Problem 2.1 or 2.2 is to be solved,
• domin can be used to provide an initial description of
Ds, Ds̄, Dsu , Dγ , Dγ̄ and Dγu coming from a previous
call to mupb,

• options contains tuning parameters related to the stop-
ping criterion of the B&B algorithm, the use of µ-
sensitivities and the accuracy of the µ computation,

• pbnds gives the guaranteed bounds on P∆,f (M(s))
and P

γ

∆,f (M(s)),
• domout provides the final list of boxes which make up
Ds, Ds̄, Dsu , Dγ , Dγ̄ and Dγu (same format as domin).

IV. BENCHMARK DESCRIPTION

As already emphasized in the introduction, pointing per-
formances are continuously more demanding on both sci-
entific and observation space missions of future generations
[21]. In the presence of uncertainties, performances degrada-
tion remains very challenging to quantify reliably as it results
from complex interactions between external perturbations
and structural flexible modes of the spacecraft at very specific
frequencies. Inspired by previous works presented in [21],
[18], [4], the proposed benchmark focuses on the effects
on pointing accuracy of micro-perturbations induced by a
Solar Array Drive Mechanism (SADM) on a spacecraft.
Since coupling effects remain limited, a single axis case of
a spacecraft attitude control system is considered next.

A. Model description

The system under consideration illustrated by Fig. 5 is
essentially composed of a main body, two solar arrays, an
isolated payload and a wheel whose mass and inertia are
neglected here. Let us denote X = [θ xSA1

xSA2
xP ]′ the



position vector of the plant where θ is the pointing error.
Using the M-D-K formalism the model is then described as:

.[
Ẋ

Ẍ

]
=

[
0 I

−M−1K −M−1D

] [
X

Ẋ

]
+M

−1
W

[
ΓB

ΓSA

]
(10)

where the generalized inertia, damping and stiffness matrices
are respectively defined as:

M = diag(JB , JSA1
, JSA2

, JP ) = 102 × diag(13, 21, 22, 5)

D = S(VD)
K = S(VK)

with: S(V ) =

[
sum(V ) −V ′
−V diag(V )

]
and:

VD = [DSA1
DSA2

DP ]′ = 102 × [0.5 0.5 8]′

VK = [KSA1 KSA2 KP ]′ = 105 × [1 1 200]′

Finally, the input matrix W =

[
1 0 0 0
0 1 1 0

]′
distributes

the control torque ΓB applied to the main body and the
input perturbation torques ΓSA = ΓSA1 = ΓSA2 which, for
simplicity, are assumed to affect similarly the 2 solar panels.

Fig. 5. Simplified view of the nominal plant

Uncertainties mainly affect the first 3 elements of M : JB = (1 + 0.1 δ0)JB0

JSA1 = (1 + 0.2 δ1)JSA10

JSA2 = (1 + 0.2 δ2)JSA20

(11)

where the δi denote normalized uncertain parameters. Thus,
the characteristics of the first two flexible modes vary signif-
icantly (see Table I), which requires a robust control design.

Element Damping Pulsation (rad/s)

SA1 [1.6 , 1.8]× 10−3 [6.35 , 7.39]
SA2 [3.0 , 3.3]× 10−3 [11.9 , 13.1]

Payload [4.7 , 4.8]× 10−3 [231 , 238]

TABLE I
FLEXIBLE MODES CHARACTERISTICS

The particular structure of equation (10) where the uncer-
tainties, through M−1, clearly enter the model in a rational
way, strongly suggests the use of the LFT framework. Either
using uss or gss objects [3], a minimal LFR Fu(G(s),∆),
with ∆ = diag(δ0, δ1, δ2) is readily obtained and can be
integrated in a robust H∞ control design scheme (Fig. 6). In
this scheme A(s) = (1+0.05s)−1 denotes the actuator model
while the WXX are the standard input/output weighting
functions of the H∞ framework. Here, the most specific
ones are WSA(s) and WAPE(s) which respectively shape

the disturbance inputs interacting with the flexible modes
of the solar panels and the absolute pointing error (APE)
output. Based on previous work introducing relevant metrics
for pointing accuracy [16], [14], [17], it appears that such
a requirement can be quantified via the H∞ norm of a
weighted transfer. In this application, the proposed weighting
functions, extracted from [4]:

WSA(s) =

(
1.245× 10−2 s

s2 + 1.245× 10−2 s+ 155

)2

WAPE(s) = 2× 105 × 300s+ 1

3s+ 1

are such that the main performance requirement is met when:

γape = ‖TwSA→zAPE
(s)‖∞ ≤ 1 (12)

WSA(s) is a selective bandpass filter that excites the system
near 12.5 rad/s, while WAPE(s) is a highpass filter.

Fig. 6. Weighted LFT-based closed-loop model

B. Controller design

Control design is performed in two steps. A preliminary
PD-like first order controller is initially designed by a modal-
based approach that robustly stabilizes the double integrator
of the plant for all admissible δi. Next, the poor perfor-
mance level of this initial controller is improved by a multi-
model structured H∞ design approach based on systune

as proposed in [1] for example. Since the optimization
problem is strongly nonconvex, the routine is initialized by
the robustly stabilizing PD controller using a non-minimal
third order augmentation. With this approach, a very low-
order controller is rapidly obtained despite the relatively high
order of the weighted design interconnection (n = 17). As
is visible on the Bode plot of Fig. 7, this controller exhibits
poorly damped poles and zeros near 12.5 rad/s and 13 rad/s
respectively. These are the necessary ingredients to ensure a
good rejection of the input perturbations on the solar panels.
However, with such a low-order solution, it was not possible
to ensure a priori that the performance requirement (12) is
met for all admissible uncertainties.

C. Preliminary robustness analysis

A preliminary analysis is realized to evaluate the robust-
ness of the pointing performance. This is first achieved by
a standard evaluation of the H∞ norm for 2000 randomly
generated configurations according to a uniform distribution



for each parameter. The results are presented in Fig. 8 which
also displays a worst-case plot detected by skew µ analysis.
At this stage, the controller seems to be validated by the
standard MC approach, while it is invalidated by µ-analysis.

Fig. 7. Controllers Bode diagrams

Fig. 8. Robust performance: Monte-Carlo vs skew µ analysis

Method # samples P(γape > 1) γ?ape CPU time

MC 5000 0 0.76 20 s
MC 25000 2.4× 10−4 1.34 100 s
MC 50000 1× 10−4 1.76 190 s
MC 100000 9× 10−5 1.89 410 s
MC 200000 9.5× 10−5 2.23 860 s

skew µ NA NA 3.08 6 s

TABLE II
REFINED MONTE-CARLO ROBUSTNESS ANALYSIS

A refined and time consuming1 MC analysis (see Table II)
is required to obtain a tight approximation of the probability
of failure P(γape > 1) ≈ 10−4, which, as proven by skew
µ analysis, is not zero.

V. APPLICATION OF STOCHASTIC µ-ANALYSIS

In this example, involving a low probability of failure
(however invalidated by µ-analysis), MC techniques are
not well suited. The new computational tool presented in
Section III is then used here to address Problem 2.2.

1All computations have been performed on a standard laptop equipped
with a processor Intel i5-8400H, 2.50GHz with 16Gb RAM installed.

A. Initial characterization of the performance regions

Considering first uniform distributions for all parametric
uncertainties, the routine mupb is called on the uncertain (but
robustly stable) closed-loop LFT model to evaluate the per-
formance regions Dγ , Dγ̄ and Dγu from which guaranteed
probability bounds are deduced. A stopping criterion (see
Section III) is fixed such that a good compromise is obtained
between accuracy and computational time as illustrated in
Table III. Note that in both cases, the computed intervals
confirm the previous Monte-Carlo analysis.

CPU time 55 s 270 s
P(γape > 1) [0.53 10−4 2.02 10−4] [[0.86 10−4 1.4 10−4]

TABLE III
GUARANTEED PROBABILITY BOUNDS OBTAINED WITH MUPB

A cross-sectional visualization (with δ0 = 1) of the
performance regions in the plane < δ1 × δ2 > is presented
in Fig. 9, for the highest accuracy case. The undetermined
region (visualized in blue) is reasonably small.

Fig. 9. Cross-sectional visualization (δ0 = 1) of the performance regions

B. Probability levels cheap reassessment

Beyond the guaranteed results (through hard bounds on the
probability of failure) provided by probabilistic µ-analysis,
the most interesting feature is that it also provides a set of
regions (see Fig. 9) which can be re-used at a very low
cost to evaluate new probability levels for any distribution of
the uncertain parameters in their respective intervals. In this
application this is achieved by considering truncated normal
distributions with the same varying standard deviation σ ∈
[0.3 , 5] for each parameter. The results, obtained in a few
seconds, are presented in Fig. 10 which shows the evolution
of the guaranteed upper and lower bounds as a function of σ.

As expected a convergence towards the bounds obtained
with uniform distribution (black solid and dashed lines) is
observed when σ → ∞. Conversely, for small values of σ,
the probability levels become unsurprisingly so small that
they could not be detected by any MC type approach. In this
respect, the proposed approach clearly bridges a gap between
classical methods and µ-analysis. It also permits to highlight
a relationship between the probability to be demonstrated
and the characteristics of the uncertainties. For example, if



the targeted probability of failure is 10−6, then the controller
is validated when σ ≤ 0.45.
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Fig. 10. Probability evaluation w.r.t standard deviation

VI. CONCLUSIONS AND PERSPECTIVES

Based on recent algorithmic advances on probabilistic µ-
analysis and a new Matlab-based implementation, promis-
ing results have been obtained on a realistic benchmark,
thus opening the way towards more efficient design-and-
validation cycles as suggested in Fig. 11. As emphasized
in Subsection V-B, a very interesting feature of the pro-
posed approach is to enable very fast iterations between the
probability level and the uncertainties characterization. At a
medium cost, uncertainty resizing is also possible. Future
work will also be devoted to more advanced evaluations
involving several criteria simultaneously such as H∞ per-
formance on multiple channels but also robust gain and
phase margins. Next, extensions to uncertain time-varying
parameters should also be considered.
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