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Abstract. As computational systems become more heterogeneous and
the number of computing nodes increases, designing high-performance
and energy-efficient scheduling policies for Edge/IoT platforms has be-
come increasingly important. This work evaluates multi-armed bandit
(MAB) strategies for efficient resource allocation in Edge platforms, like
smart cities or smart buildings. Factors like parallel performance and
energy usage optimization were taken into account. The resource alloca-
tion methods proposed in this paper extend beyond simulations, involv-
ing real tasks run on actual IoT devices. We find that MAB scheduling,
adapted to the specifics of applications running on heterogeneous IoT
devices, can effectively balance execution time and power consumption,
thus achieving optimal task allocation and resource utilization.

Keywords: Multi-Armed Bandit Algorithms · Resource Allocation ·
Scheduling · Edge Computing · IoT.

1 Introduction

Power-efficient scheduling policies have become a crucial issue in parallel and
distributed computational systems. The complexity of the scheduling problem
increases with the number of heterogeneous compute nodes displaying various
resource properties (e.g., memory, computational power, etc.). In addition, time-
varying workload characteristics require schedulers to adapt dynamically. More-
over, a beneficial scheduling decision in the short term may become detrimental
in the mid or longer term for the whole system. Emerging smart cities or build-
ings, leveraging IoT systems, directly benefit from solving this issue. In a typical
Edge Computing architecture, multiple heterogeneous IoT nodes interact with
sensors or actuators to communicate data and/or commands. Data are collected
and aggregated in the Edge Layer, to later be pre-processed and further uploaded
to an upper layer, e.g., a cloud. The outcome of these activities may turn into
knowledge and/or produce responses that will trigger commands in the actua-
tors. The collected and pre-processed data sent to the cloud outside the building
for further processing and storage adds to the overall power consumption.
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Further, individual objects are becoming smarter: they embed higher-end
micro-processors with very low power consumption. Some IoT devices are mostly
idle, performing a single action with a high periodicity. Such highly heteroge-
neous IoT systems could be used to leverage additional computations and be
leveraged to preprocess data during idle times, before sending it to a fog or a
cloud system. Hence, a smart scheduler is required, capable of coping with the
particularities of IoT devices: reduced computing power, limited battery time,
etc.. Classic schedulers often perform a static workload distribution across het-
erogeneous but otherwise identical compute nodes. More advanced scheduling
techniques categorise workloads according to their characteristics (priority, re-
sources utilisation, etc.) to take workload and the architecture into account.

Our previous work [6] explored the resolution of energy-efficient online re-
source allocation problems in cloud-edge platforms, proposing an energy-efficient
online resource allocation method based on MAB algorithms. We theoretically
proved that certain MAB algorithms keep converging when we explicitly account
for unavailable computing IoT devices, resulting in a time-varying available set
of arms at each stage. In this follow-up work, we start from the premise that
different devices are suitable for different types of tasks. Therefore, different
types of tasks require different devices for task allocation. This work involves
implementing these MAB algorithms in an actual IoT testbed, proving that we
can reach optimal provisioning policies, with real workloads, in time-varying
environments.

We propose an online adaptive scheduling system capable of perform-
ing resource allocation and load-balance work across the various heterogeneous
nodes, while learning the most suitable device allocation policy according to
criteria such as performance, energy consumption, etc., in the process.

The rest of this article is organized as follows: Section 2 covers the State of the
Art in MAB-based scheduling policies in IoT. Section 3 presents the architecture
design of our testbed. Section 4 discusses our results. We conclude our article
and explore future work in Section 5.

2 Related work

Task and job scheduling in an IoT context is a very well-explored topic in general.
Several surveys tackle the subject, for instance Laroui et al. [3].

Multi-armed bandit (MAB) scheduling has naturally been applied in vari-
ous IoT-related fields, including wireless communication networks [4]; Fog-based
computing [5,7]; application-specific task allocation, e.g. federated learning [8,2],
space-air-ground-edge maritime networks [9], etc. Such works often decide to
favour one criterion over another depending of the chosen application, e.g., power
consumption over computational capability. All these works tend to target a het-
erogeneous network of objects. However, our work focuses on using idle times
of such devices, i.e., exploit edge devices which are often over-provisioned in
an IoT context, with a main task to perform, and idle cores. As battery life is
another concern for (self-monitored) devices, we must take into account device
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availability as a dynamic factor too, even when the devices are marked compute
nodes as “available.”

3 Testbed Design

3.1 IoT cluster structure

We need an infrastructure capable of allocating workloads to different IoT de-
vices according to the policy of our MAB-based scheduler. The architecture of
our IoT cluster is presented in Figure 1. The cluster comprises twelve devices,
divided in three categories: 2 NVIDIA Jetson TX2, 4 Raspberry Pi 4, and 5 Bea-
gleBoard Black. Technical specifications are given in Table 1. Benchmark testing
indicates that the performance of the NVIDIA Jetson TX2 surpasses that of the
Raspberry Pi 4, which in turn exceeds that of the BeagleBoard. Conversely, the
power consumption of the BeagleBoard is less than that of the Raspberry Pi 4,
which is less than that of the NVIDIA Jetson TX2.

Table 1: Specifications of the three types of devices used in the experiments.

Device Specifications

Nvidia Jetson TX2
(IDs: 0-1)

Denver 2.0 (2 cores); ARM Cortex-A57 (4 cores), clocked at
2GHz. 64-bit ISA. 256-core GPU (unused here).

Raspberry Pi 4 (IDs:
2-5)

Broadcom BCM2711 SoC with ARM Cortex-A72, clocked at
1.5GHz. 64-bit ISA.

BeagleBoard Black
(IDs: 6-10)

ARM Cortez-A8 (1 core). 32-bit ISA.

The device running the MAB scheduling system is referred to as the master
device, while the other IoT devices executing the test task programs are referred
to as worker devices. In our tests, 1 master device was used, along with 11 worker
devices. All devices are connected via an Ethernet switch.

3.2 Workloads

To evaluate the distribution of a workload among the available devices in the
IoT cluster, we used the MPI version of the NAS Parallel Benchmarks suite
(NPB) [1]. Due to their properties, we focused on two particular benchmarks:
EP (Embarrassingly Parallel), which processes independent data sets with min-
imal communication overhead, and LU, which requires frequent data exchange
and synchronisation during the parallel execution1. Our testing task currently
involves assigning variable-sized tasks to different devices for execution and ob-
taining the time and total power consumption upon completion. The current
NAS benchmarks do not consider the possibility of allocating uneven workloads
to different devices, so we modified the EP and LU benchmarks to accept pa-
rameters such as the device type and allocation percentage, and then determine
the amount of data to be allocated to each device.
1 A link to our modified source code will be added upon acceptance of this work.
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Fig. 1: IoT cluster structure: 2 Jetson TX2; 4 Raspberry Pi 4; 5 Beagleboards.

3.3 Model learning process

Figure 2 depicts the learning model process within our designed MAB scheduling
system, which operates on the Master device. It comprises two parts: a MAB
allocation model and a scheduling subsystem. The scheduling system features
two components: the Device Manager and the Task Manager. The Device Man-
ager is responsible for managing the status of devices. ”Device Status” records
the state of the devices. If a device is already running a task, and a second task
still requires the same device, ”Task Blocking” prevents the second task from
running until the first task is completed and the device status updates to avail-
able, allowing the second task to proceed. The Task Manager is responsible for
managing the execution of tasks, including: Generating commands to execute
tasks based on the devices and allocation ratios selected by the MAB allocation
model; and, after the completion of a task, returning the task execution time
and power consumption back to the MAB allocation model.

The Task Manager comprises two threads: Thread 1 is used for executing the
task assigned by the MAB Scheduler (Workload Task), while Thread 2 is used
for executing the task that the device was originally performing (Main Task).
When the Main Tasks are running, the MAB allocation model cannot select the
devices for running Workload Tasks; that is, the Main Task is used to recreate
a multi-tasking situation where certain devices are unavailable, reflecting the
choices made by the MAB allocation model.

After the Workload Task is completed, the MAB allocation model receives
the task execution time and power consumption from the task scheduling system,
calculates the Reward based on the Reward calculation formula, and updates the
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model parameters according to the Reward. Then, based on the current state
of devices provided by the task scheduling system, it selects new devices and
allocation percentages. This process continues in a loop until the model learning
process concludes. Ultimately, we obtain a MAB allocation model tailored for
this specific task. Authors will be providing a link to the source code upon
acceptance of this paper.

Fig. 2: Model Learning System Structure

3.4 MAB Action Space

By setting the allocation ratio precision to 0.1, a total of 11 allocation ratios can
be produced. We refer to the combination of the device and workload percent-
age chosen by the MAB allocation system at one time as an action, for example,
“Jetson1: 0.3, Rpi4: 0.7”. When devices of the same category are considered
different (i.e., “Jetson1: 0.3, Rpi4: 0.7” and “Jetson2: 0.3, Rpi4: 0.7” are con-
sidered different actions), the resulting action space explodes exponentially the
total number of devices and the number of allocations increase, raising up to
34,166 possible combinations for 11 available devices, with 4 of them allocated.
In our previous simulations [6], where the complexity of tasks was represented
numerically and tasks could be completed instantly, the size of the action space
was not a concern. However, in real-world testing, if the action space is very
large, it will take a very long time to get the results. Therefore, in our project,
we treat devices of the same category as the same device, i.e., only one device
of the same type is selected at a time, which can significantly reduce the action
space, as shown in Table 2.
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Table 2: Action Spaces Composed of the Same Devices within the Same Category

ID Total Devices Allocated Devices Precision Action Space

1 6[2,2,2] 2 0.1 60

2 6[2,2,2] 3 0.1 366

3 6[2,2,2] 4 0.1 1221

4 11[2,4,5] 2 0.1 60

5 11[2,4,5] 3 0.1 476

6 11[2,4,5] 4 0.1 2431

In our experiments, the following format was used: #devices[#Jetsons,#Raspberry
Pi 4s, #BeagleBoards]. For instance, 11[2,4,5] means all our available devices
were usable. The device IDs are provided in Table 1.

3.5 Reward

MPI programs distribute the required data across the cores of different devices
for computation, and end with a global barrier, meaning the slowest process sets
the overall latency to produce results. Hence, in our experiments, the system
must wait until all cores have completed their computations before it can collect
their results. On the other hand, the power consumption of the device can also
be determined using measurements from the device. All things considered, we
propose the reward formula shown in Equation 1, which is the reward for action
at executed at step t, where β is the execution time reward weight factor, and γ
is the power consumption reward weight factor.

ut(at) = β ∗ 1

execution time
+ γ ∗

∑n
i

15

P consumption
(1)

4 Results and discussion

As shown in Figure 3, the rewards obtained with actual workloads are similar
to those predicted by the simulations, and both converge. This section analyzes
the actions selected by the MAB allocation model when different action spaces
are chosen, and explores the reasons behind these selections.

Impact of the Number of Devices We chose the action space with ID
5 from Table 2 to run a workload, meaning a maximum of three devices are
selected for task allocation, running for 2000 steps and setting both alpha and
beta to 1. The results are shown in Table 3. Compared with Rank1, Rank2,
and Rank4, it is observed that the longest execution time and the smallest time
reward occur when only one device is chosen. However, this setting results in
the largest power consumption reward. When the number of devices performing
tasks increases, the execution time can be reduced. For example, the time taken
for three devices to complete tasks in Rank4 is less than the time for two devices
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(a) UCB1 (b) EXP3

Fig. 3: Reward convergence graphs for the EP benchmark using the UCB1 and
EXP3 algorithm models.

in Rank1, resulting in a higher time reward. However, selecting more devices
leads to increased power consumption, thereby reducing the power consumption
reward. Since α and β are set to 1, indicating a need to balance the impact of
time and power consumption, the optimal action for the trained MAB allocation
model is to distribute the tasks between two Raspberry Pis, with the allocation
ratio of 0.5 for each.

Table 3: Action Ranking and Associated Metrics. Action ID=5 for EP and UCB1

Rank Action Freq* E time* T R* P R*

1 3: 0.5, 4: 0.5 886 0.189 5.736 8.194

2 4: 1.0 236 0.314 3.300 9.341

3 2: 0.5, 4: 0.5 69 0.213 5.203 7.505

4 2: 0.3, 3: 0.4, 4: 0.3 47 0.165 6.794 6.532

5 3: 1.0 44 0.300 3.363 9.703

6 0: 0.3, 2: 0.4, 3: 0.3 20 0.152 7.184 5.890

24 0: 0.4, 1: 0.4, 2: 0.2 5 0.161 4.446 6.250

25 0: 0.5, 1: 0.5 5 0.204 4.606 4.912

Freq: Frequency, E time:Average Execution Time
T R: Execution Time Reward, P R: Average Power Consumption Reward

Impact of Action Space Size When we run the model with the action space
with ID 6, the set of devices available for task allocation is increased from three
to four and the action space increases from 476 to 2431. The results for 5000 steps
and α = β = 1 indicate that when the number of devices increases further, the
execution time decreases compared to when three devices are used. However, the
power consumption also increases. Thus, the best action remains to distribute
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tasks between two Raspberry Pis, with an allocation ratio of 0.5 each. Since
α = β = 1 to balance the impact of execution time and power consumption,
we observe that the frequency of choosing two, three, or four Raspberry Pis for
execution is similar. When increasing from three to four devices, we observe that
the learning time increases from 1.21 hours to 4.65 hours. Therefore, deciding
how many devices to allocate for tasks must consider the number of available
devices and the available running time, depending on whether the goal is to
reduce execution time or power consumption.

Impact of the Type of Device As observed from Rank 1 and 25 in Table 3,
when Jetson devices are chosen (i.e., IDs 0-1) to execute work, the task ex-
ecution time is longer than when using Raspberry Pis. Consequently, the time
reward is lower. Additionally, since the operating power of Jetson exceeds that of
Raspberry Pis, the power consumption associated with tasks executed on Jetson
is significantly higher than that on Raspberry Pis, resulting in a substantially
lower average power consumption reward. Therefore, the MAB allocation model
is less likely to choose Jetson for task execution. There are several possibilities
why task execution takes longer on Jetsons compared to Raspberry Pis:

Impact of Inter-Core Data Exchange: The NVIDIA Jetson is a heterogeneous
multi-core CPU, containing a dual-core NVIDIA Denver 64-bit CPU and a quad-
core Arm-Cortex-A57 processor. These different processor architectures can work
together to efficiently complete a variety of tasks. However, when utilizing both
to perform tasks, data exchange between different cores may lead to certain time
wastage. This is because different types of cores have distinct data processing
and memory access patterns. When data is transferred from one core to an-
other, additional time may be required to process and adapt to the different
architectural characteristics. To test if the impact of inter-core data exchange is
to blame, we separately utilized the Denver and Cortex-A57 CPUs, as well as
both processors simultaneously to run the same task (EP, LU, S classes repre-
sent lightweight tasks, A class represents complex tasks), analyzing whether the
execution time changes and comparing it with the Raspberry Pi. We verified
that using both Denver and ARM cores to execute the LU.S task takes 0.012s
longer than using the ARM core alone. For the EP.S, EP.A, LU.A tasks, using
both Denver and ARM cores to execute tasks is significantly faster than using
the ARM core alone. Therefore, data transmission between different cores indeed
wastes time, which is in the millisecond range, impacting ultra-lightweight tasks.
For complex tasks, using all six cores is a better choice.

Impact of Task Type: As mentioned before, EP is a kernel that essentially does
not require inter-processor communication. LU, on the other hand, performs a
comprehensive computational fluid dynamics (CFD) calculation, which requires
frequent data exchange and synchronization, significantly increasing the com-
munication demands during parallel execution. We empirically verified that the
Raspberry Pi completes the EP task in less time than the Jetson. However,
for the LU task, the Raspberry Pi’s execution time is significantly longer than
that of the Jetson. When tested with the LU benchmark, the data obtained
by the UCB1 and EXP3 algorithms is shown in Table 4. It can be seen that
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for the LU benchmark, both models eventually converge to selecting the second
Jetson(1:1.0) for execution.

Table 4: Best Action and Associated Metrics. Action ID=6 for LU

Rank Action Freq* E time* T R* P R*

UCB1 1: 1.0 2962 3.240 6.191 11.609

EXP3 1: 1.0 2553 3.222 6.211 11.646

Freq: Frequency, E time:Average Execution Time
T R: Execution Time Reward, P R: Average Power Consumption Reward

Figure 4 confirms the convergence for the LU benchmark.

(a) UCB1 (b) EXP3

Fig. 4: Reward convergence. LU benchmark using the UCB1 and EXP3 algorithm
models.

Also, analyzing the CPU’s instruction execution efficiency with the perf

command in Linux, it is observed that when executing the EP.A task, the in-
struction per cycle rate of Raspberry Pi is higher than that of Jetson (0.84 VS
0.65). However, when executing the LU.A task, the Jetson’s instruction rate sur-
passes that of Raspberry Pi (0.81 VS 0.61). This suggests that different tasks
require different devices to run.

5 Conclusions and Future Work

This paper presented an Edge testbed that allows evaluating different schedul-
ing strategies to run workloads in the free CPU cycles of the heterogeneous IoT
devices. We tested two MABs scheduling techniques with two different parallel
workloads, proposing a reward function that takes into account both perfor-
mance and power consumption. In our tests, we confirmed that both algorithms
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converge, even in incomplete information scenarios, and that they balance the
impact of execution time and power consumption for different tasks, selecting
the optimal combination of devices and allocation percentages.

Future work includes testing new workloads with different degrees of par-
allelism, evaluating the allocation of tasks to devices such as the BeagleBoard,
which takes a long learning time, and fine tuning the values of α and β in
the reward, according to different performance requirements on the testbed. In
addition, we will run the same benchmarks with various types of connectivity
(Ethernet, Wi-Fi, etc.), to get closer to how edge devices are being used.
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