
HAL Id: hal-04808787
https://hal.science/hal-04808787v1

Submitted on 28 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Tracking Consistency over Data Streams with InkStream
Samuele Langhi, Angela Bonifati, Riccardo Tommasini

To cite this version:
Samuele Langhi, Angela Bonifati, Riccardo Tommasini. Tracking Consistency over Data Streams with
InkStream. VLDB 2024 Workshop: International Workshop on Quality in Databases (QDB’24), Aug
2024, Guangzhou, China. �hal-04808787�

https://hal.science/hal-04808787v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Tracking Consistency over Data Streams with InkStream
Samuele Langhi

samuele.langhi@univ-lyon1.fr

Lyon 1 University

Lyon, France

Angela Bonifati

angela.bonifati@univ-lyon1.fr

Lyon 1 University & IUF

Lyon, France

Riccardo Tommasini

riccardo.tommasini@insa-lyon.fr

INSA Lyon

Lyon, France

ABSTRACT
Establishing robust frameworks to safeguard data consistency in

streaming applications is a strategic imperative. Nevertheless, ex-

isting methods cannot deal with the infinite nature of streaming

data. On the other hand, Stream Processing Engines, systems that

serve as the infrastructure for executing continuous queries effi-

ciently, were never leveraged for data consistency management.

Indeed, handling data consistency by enforcing constraints over

data streams may compromise the strict performance requirements

that streaming applications impose on latency and throughput. In

this demonstration, we introduce InkStream, a novel system uti-

lizing provenance-based techniques to track the consistency of

streaming data. InkStream enriches each record in the input stream

with provenance annotations, encoding its consistency across a set

of constraints. These annotations are propagated through query op-

erators, enabling the quantification of the impact of the consistency

on the query results. Users can engage with InkStream through in-

teractive visualizations, real-time monitoring of query outputs, and

runtime monitoring of consistency metrics. Through InkStream,

monitoring data consistency over streams becomes accessible and

actionable during runtime, unlike traditional post-hoc approaches.

VLDBWorkshop Reference Format:
Samuele Langhi, Angela Bonifati, and Riccardo Tommasini. Tracking

Consistency over Data Streams with InkStream. VLDB 2024 Workshop:

International Workshop on Quality in Databases (QDB’24).

VLDBWorkshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/riccardotommasini/inkstreamui.

1 INTRODUCTION
Streaming data, which are characterized by their continuous and

rapid generation, demands not only swift processing but also strin-

gent adherence to data management principles [7]. At any point

of continuous analysis, we shall ensure that every piece of data is

accurate and consistent with reference to a set of constraints.

Data consistency (DC) over streams is foundational to reliable

decision-making and operational effectiveness in various high-

stakes domains, such as smart-grid management, financial trading,

and emergency response systems. Failing to assess DC can lead to

flawed insights, operational risks, and strategic missteps. However,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment. ISSN 2150-8097.

handling data consistency in streaming is hard as it involves val-

idating an integrity constraint over the infinite stream while the

application and the related continuous queries are executed.

For doing so, traditional approaches require complex stateful

computations, e.g., an arbitrary number of joins, that do not apply

as is to streaming data. First, the infinite nature of data streams [7]

prevents a complete DC validation, and calls for the use of windows
operators [2] to reduce the query scope to finite stream subsets [1].

Moreover, once the integrity constraints are validated, techniques

like repair [6], are applied before the (windowed) query execu-

tion permanently altering the input stream, resulting in a loss of

the mapping between input and output. This can lead to missed

answers [5] or inaccurate analysis.

In this demonstration, we propose InkStream, a system prototype

capable of leveraging polynomial-provenance to track the consis-

tency of streaming data across streaming queries. In practice, it

involves annotating streaming data with polynomials that describe

their consistency and propagating them up to the queries’ results.

To derive such polynomial annotations, InkStream combines

window operations with a graph-based method that tracks the

consistency relation across tuples. Navigating the graph, the poly-

nomials are built. Then annotations are propagated through the

query operators at runtime following the semantics of provenance

semirings algebra [3]. Such a method offers a non-invasive and flex-

ible solution for dealing with DC, as annotations can be exploited

to generalize different techniques, e.g., data repair [6].

To exemplify our approach, we consider the real-world con-

sumption monitoring of two electric grids (A and B). Data comes as

a relational stream with schema ⟨consA, consB, ts⟩, where consA
and consB represent the consumption of the two grids at time ts.
The monitoring query, written in CQL [1] and illustrated in List-

ing 1, consumes the Consumption stream and calculates the usage

percentages over a sliding window of 5 minutes every 2 minutes.

SELECT percent(consA ,consB),percent(consB ,consA),ts
FROM Consumption [RANGE 5 minutes SLIDE 2 minutes]

WHERE consA >= 0 AND consB >= 0

Listing 1: Monitoring the usage percentages by zone over a
sliding window of 5 minutes every 2 minutes. Percent is a
UDF (x,y) = sum(x)*100/(sum(y)+sum(x)).

The monitoring aims to prevent malfunctions on both grids. To

enforce this, Speed Constraints [6] such as SC1 and SC2 are applied

on records, to detect inconsistent "spikes" in the consumption [6].

∀𝑟𝑖 , 𝑟 𝑗 − 2 ≤
𝑟𝑖 .consA − 𝑟 𝑗 .consA

𝑟𝑖 .ts − 𝑟 𝑗 .ts
≤ 2 (SC1)

∀𝑟𝑖 , 𝑟 𝑗 − 2 ≤
𝑟𝑖 .consB − 𝑟 𝑗 .consB

𝑟𝑖 .ts − 𝑟 𝑗 .ts
≤ 2 (SC2)

These spikes should not be repaired, as they may be related

to problems in the grids. Moreover, these inconsistent behaviours

https://github.com/riccardotommasini/inkstreamui
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org


Figure 1: An Overview of our approach.

cannot always be derived from aggregate information like the result

percentages in Listing 1. As a result, constraint violations should

be encoded in metadata and made available to the end users.

Through InkStream, users can engage in the monitoring data

consistency over streams in the following aspects:

• An interactive visualization of consistency annotation of

streaming input records wrt the reference window, with

the additional monitoring of the underlining, graph-based

data structure and its evolution

• The real-time monitoring of query outputs and their con-

sistency, encoded in the form of provenance annotations

• The runtime monitoring of various consistency metrics

calculated over such provenance annotations

2 TRACKING STREAMING CONSISTENCY
This section provides an overview of our approach for tracking data

consistency over streams, i.e., infinite sequences of time-ordered

records. Figure 1 shows a high-level representation. Records are

first annotated according to their violation of a set of constraints,

provided by the user. Such annotations are built over provenance

polynomial semirings [3]. Then, they are propagated by integrating

the semiring positive algebra with CQL operators [1].

Table 1: Stream 𝑆 , where each row is a record. In red the sud-
den changes (SC1/SC2), annotatedwith violations of SC1, SC2.

ts consA consB id AW

0 8 2 𝑟0 1

1 8 2 𝑟1 1

2 8 2 𝑟2 1

3 8 2 𝑟3 1

4 5 5 𝑟4 𝑆𝐶13 × 𝑆𝐶23
5 3 7 𝑟5 𝑆𝐶13 × 𝑆𝐶23
6 1 10 𝑟6 𝑆𝐶13 × 𝑆𝐶22

3
× 𝑆𝐶24 × 𝑆𝐶25

7 0 10 𝑟7 1

... ... ... ...

2.1 Consistency Annotation
The annotation process is based on the consistency of the records

involved, validated against a set of constraints. The validation re-

sults are encoded into a metadata annotation based on Provenance

Semirings [3], specifically polynomials.

Intuitively, windows are necessary when the constraint evalu-

ation involves multiple records, e.g., for binary constraints. Thus,

the intuition behind our framework is that the constraint validation

and the related annotation procedure operates within a window,

denoted as W, inherited from the user query, as in Figure 1.

From a formal perspective, validation and annotation are de-

fined through the same function, calledW-Relation (AW
). For each

record 𝑟 , its annotation AW (𝑟 ) returns a finite polynomial where

each variable 𝑉 represents a violation generated by 𝑟 wrt a given

constraint validated within a windowW.

In the context of the example from Section 1, we consider the

constraint labels SC1 and SC2 as variables, although our approach

can be generalized for an arbitrary number of constraints. Since

speed constraints SC1 and SC2 are binary, we also use subscripts to

reference the record with which the violation is caused, e.g.,𝑆𝐶13
represents a violation of SC1 wrt 𝑟3 (cf. Table 1). Moreover, polyno-

mials can be exploited to represent the violation "degree", by adding

the distance 𝜖 as the exponent of violation labels. Such distance is

the difference between the actual and repaired value of a record [6].

Example 1. Continuing the example from Section 1, Table 1 shows
how a stream can be annotated wrt the violation of constraints SC1
and SC2. Record 𝑟4 violates both constraints if combined with 𝑟3, thus

AW (𝑟4) = 𝑆𝐶13 × 𝑆𝐶23

The same violations are generated by 𝑟5 and 𝑟6, which violates SC2
also with 𝑟4 and 𝑟6. Moreover, 𝑟6 and 𝑟3 present a high degree of
violation, which can be calculated through the following formula

𝑟3 .𝑐𝑜𝑛𝑠𝐵 + 2(𝑟6 .𝑡𝑠 − 𝑟3 .𝑡𝑠)︸                            ︷︷                            ︸
repaired consB of 𝑟6

− 𝑟6 .𝑐𝑜𝑛𝑠𝐵︸    ︷︷    ︸
actual 𝑟6

= 2 → 𝑆𝐶22
3

2



Figure 2: Exploration of the consistency graph for constraint SC1 built over the input stream from Figure 5 on record r6 arrival.

2.2 Consistency Graph
In practice, the annotation phase can be naively implemented

through an arbitrary number of join operations. However, this

can highly impact performances due to the complexity of the opera-

tion. For this reason, we designed an approach based on consistency
(provenance) graphs to annotate constraint violations efficiently. In

the graph, each node corresponds to a record 𝑟𝑘 , and each directed

edge (𝑟𝑖 , 𝑟𝑘 ) represents the consistency between the two records

wrt a given constraint. Since constraints evaluation follow temporal

order, an edge (𝑟𝑖 , 𝑟𝑘 ) is present if 𝑟𝑖 .𝑡𝑠 > 𝑟𝑘 .𝑡𝑠 . Consequently, the

graph is acyclic and topologically ordered wrt time.

Performance-wise, the advantage of this graph-based approach

comes from exploiting a transitive (inc)consistency relation be-

tween records when using certain constraints. For instance, for SC1

and SC2, when a record 𝑟𝑥 is consistent with record 𝑟𝑦 , and 𝑟𝑦 is

consistent with record 𝑟𝑧 , then 𝑟𝑥 and 𝑟𝑧 are consistent. As a result,

a path within the graph indicates a set of consistent records.

The annotation is executed by navigating the graph in a BFS-like

approach, represented in Figure 2. When the new element (in blue)

arrives, its consistency is evaluated starting from graph roots (in

green). If a node is inconsistent with the new record, the latter is

annotated with a violation, and the check progresses on child nodes.

Otherwise, if transitive consistency is satisfied, the traversal ends.

Compared to a naive join-based annotation over 𝑛 records, that

has a time complexity of𝑂 (𝑛), the graph traversal is𝑂 (𝑖), with 𝑖 be-
ing the number of constraint violations generated by the annotated

record, which is inherently less than 𝑛.

Notably, the consistency graph is time-varying in the streaming

context and the annotation process is scoped over a given window,

as specified in Section 2.1. Thus, a graph is maintained for each win-

dow. In particular, when a new element arrives, expired windows

are cleared. Then, the earliest window that contains the arrived ele-

ment and the related graph is selected for annotation (cf. Figure 2).

To guarantee completeness of analysis for future records, the new

record is inserted in all graphs related to overlapping windows.

Example 2. If we consider the example from Section 1 and the related
query from Listing 1, we annotate wrt to a time-based window sliding
windowW of size 5 and slide 2. In this context, the annotation window
for 𝑟6 is the earliest window that containing it, i.e., [2, 7). For this
window, the construction of the consistency graph wrt constraint SC1
starts with 𝑟2, which is the first node inserted. Then, 𝑟3 is consistent
with 𝑟2, so it is connected to the related node. On the other hand, 𝑟4 is
instead inconsistent with 𝑟3, but remains consistent with 𝑟2. The same
approach is adopted at the arrival of 𝑟5 and 𝑟6. Figure 2 shows the

annotation process for the latter: the new node is inserted and checks
the consistency wrt 𝑟5 and 𝑟3 first; while the former is consistent,
the latter is not, resulting in the annotation of 𝑟6 with 𝑆𝐶13 and the
further check with 𝑟2, which is ultimately connected to the new node.

2.3 Provenance-based Propagation
Our framework combines CQL continuous semantics with the

provenance semirings and the positive relational algebra (RA
+
) [3].

For instance, join results are annotated with the product (·) of the
contributing tuples’ polynomials when using the related semiring.

On the one hand, RA
+
associates each relational algebra operator

with an operator over a generic semiring. In the following, we

provide the operator definitions.

selection. Given a selection predicate 𝑃 : Ω → {0, 1}, we define
Selection as the application of the W-relations multiplied by the

selection predicate. If the prediction is

(𝜎+𝑃A
W) (𝑟 ) = AW (𝑟 ) · 𝑃 (𝑑)

projection. Since we operate under set semantics, when a projec-

tion is performed over a record, it may collapse with other projected

records. The resulting annotation is the sum of all annotations of the

collapsed records. More formally, let 𝐴 and𝑈 be sets of attributes

such that 𝐴 ⊂ 𝑈 . Given a W-relation 𝜋𝐴AW
defined over a stream

schema 𝐴, and AW
defined over record tuples with schema𝑈 is

(𝜋+𝐴A
W) (𝑟 ) =

∑︁
𝑟=𝜋𝐴𝑟

′∧AW (𝑟 ′ )≠0
AW (𝑟 ′)

union. Similar to the projection, the union may cause duplicates

to collapse into one, and the annotation is the sum of the collapsed

records’ annotations. Given AW
1
,AW

2
:

(AW
1

∪+ AW
2
) (𝑟 ) = AW

1
(𝑟 ) + AW

2
(𝑟 )

Figure 3: The enhanced CQL continuous semantics for Con-
sistency Annotation and Propagation.

3



Join. When performing a join, the final annotation is the product of

the two input annotations. Given two annotation policiesAW
1
,AW

2
,

and records 𝑟1 = (𝜔1, 𝜏1), 𝑟2 = (𝜔2, 𝜏2), 𝑟 = 𝑟1 ⊲⊳ 𝑟2,

(AW1

1
⊲⊳+ AW2

2
) (𝑟 ) = AW3

𝑟𝑒𝑠 (𝑟 ) = AW1

1
(𝑟1) · AW2

2
(𝑟2)

with W3 = [𝑚𝑖𝑛(W1 .𝑜,W2 .𝑜),𝑚𝑎𝑥 (W1 .𝑐,W2 .𝑐)]
Stream processing often concerns aggregate queries (e.g., percent

from Listing 1). We do not formally define aggregate operators due

to space limitations. However, since aggregates can be derived from

a projection over the aggregated value, we consider its annotation

as the sum of the annotations of the aggregated records.

On the other hand, CQL semantics are based on three operators

types: stream-to-relation (S2R) which convert a stream into a rela-

tion, relation-to-relation (R2R) which perform data manipulation

through classic SQL relational operators, and relation-to-stream

(R2S) which unrolls the continuously updated relation into a stream.

Figure 3 shows how the two frameworks are combined. The W-

Relation AW
operates on the result of an S2R operator, returning

a time-varying, annotated relation [1]. In this context, CQL’s and

RA
+
operators are seamlessly integrated with each other, since they

all stem from the relational model [1, 3]. For each R2R operator

manipulating the data, the respective RA
+
operator manipulates

the annotations. Ultimately, annotations can be used to calculate

consistency parameters through a function 𝑓𝑆 , returning a relation,

which can be unrolled into a stream through an R2S operator.

Example 3. According to the query from Listing 1, the records pro-
cessed are first filtered through the WHERE condition and then ag-
gregated through the percent function. According to the Positive
Relational Algebra (cf. Section 2.3), the WHERE selection (𝜎𝑃 ) would
simply propagate the annotation of those records that satisfy the re-
lated condition, turning them to 0 in the opposite case, which would
imply the removal of the record. On the other hand, the percent
aggregation instead, would sum up all the annotations of the record
involved in the aggregation, according to a reference window. Table 2
shows the final results. For instance, the aggregation performed over
records in the window [2, 7), i.e., 𝑟2, 𝑟3, 𝑟4, 𝑟5 and 𝑟6, would sum all the
related annotations, ending up with the following polynomial, where
no violations of 𝑟2 and 𝑟3 can be detected (they are totally consistent)

2(𝑆𝐶13 × 𝑆𝐶23)︸              ︷︷              ︸
𝑟4 & 𝑟5

+ 𝑆𝐶14 × 𝑆𝐶15 × 𝑆𝐶24 × 𝑆𝐶22
5︸                               ︷︷                               ︸

𝑟6

Resulting annotations can then be used to manage constraint

violations in techniques like repair or top-k analysis [4]. Multiple

approaches might be adopted. An intuitive approach is to quantify
the degree of consistency, for instance, by utilizing the polynomial’s

degree, as demonstrated in [4]. Polynomials with higher degrees

might indicate more severe constraint violations due to multiple

constraint interactions or annotations. Another similar parameters

might be the number of variables within the polynomials, stand-

ing as the number of violations from that specific record. A more

expressive yet less intuitive approach is polynomial simplification,
which may reveal underlying consistency patterns.

Example 4. In Table 2, we reported in the last three columns the three
proposed usages of annotations in the context of the example from
Section 1. More specifically, the percentages calculated over windows

[0, 5) and [2, 7) are both generated from inconsistent records. By deep-
ening the analysis through the calculation of the polynomial degree
(𝐷𝑒𝑔𝑟𝑒𝑒) and the number of variables in the polynomial (𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠),
we derive that percentages from window [2, 7) carry much more in-
consistency than the ones calculated from [0, 5). Additionally, the
polynomial annotations enables to detect the co-violation of SC1 and
SC2, which signifies healthy system behavior since grid B correctly
backs up the malfunction on grid A. The percentages calculated over
[0, 5) become in this case entirely consistent. Indeed, the related anno-
tation can be simplified (𝑆𝑖𝑚𝑝𝑙) by removing simultaneous violation
labels of SC1 and SC2. Thus, 𝑆𝐶13 × 𝑆𝐶23 becomes 1.

3 USE CASES
Stock Analysis.Aside from the electric grid consumption scenario,

andother potential use case for our approach is financial analytics.

In this context, constraints like SC1 or SC2 can be used to monitor

the volatility of a financial asset, i.e., the price fluctuation within

a unit of time. Volatility is generally regarded as major risk factor,

and needs to be taken into account in multiple task, e.g., Portfolio

Diversification. More specifically, traders aims at diversifying their

portfolios by investing in multiple uncorrelated assets, which are

identified through a given parameter, e.g., Pearson’s coefficient.

In practice, correlation can bemonitoredwith a continuous query

like the one in Listing 2, while annotations can be generated wrt the

violation of a Speed Constraint defined over the asset price. The
query performs a self-join between records of diverse assets, and

calculate the pearson coefficient over the last 5 minutes for each

combination (GROUP BY). The coefficients are enhanced through the

annotations, highlighting whether the correlated assets are volatile.

SELECT S1.name , S2.name , pearson(S1.price ,S2.price)
FROM Stock [RANGE 5 Min SLIDE 1 Min] AS S1,

Stock [RANGE 5 Min SLIDE 1 Min] AS S2

WHERE S1.ts = S2.ts AND S1.name <> S2.name

GROUP BY S1.name , S2.name;

Listing 2: A CQL query checking assets correlation.

Movie Review Analysis. With the advent of social media, stream

processing solutions are commonly used to address low-latency

requirements in sentiment analysis, which is another potential use

case for our approach. Specifically, review platforms aim tomaintain

the integrity of their review systems by filtering out manipulated

reviews, identifies through an integrity constraint.

For example, constraints like SC1 or Primary Keys can be used

to identify Review Bombing anomalies in user reviews. Review

bombing is generally regarded as a major issue in online reviews

and it generally consists in sudden influxes of extreme ratings for

a particular movie posted from the same specific user. In practice,

such phenomena can be monitored by checking the violation of a

Primary Key Constraint defined on the user and the movie title,
which imply multiple reviews from the same user on a movie.

Such policy can be used for calculating average stars of the movie

in a day, performed through the query from Listing 3, where results

annotations highlights signs of manipulation in the average scores.

SELECT title , avg(stars)
FROM MovieReviews [RANGE 24 HOURS SLIDE 24 HOURS]

GROUP BY title;

Listing 3: A CQL query analysing the movie review stream.

4



Table 2: The results from Listing 1, with related annotations, reference windows, and consistency metrics.

Window (W) %consA %consB ts AW 𝑆𝑖𝑚𝑝𝑙 𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

[0,5) 74 26 5 𝑆𝐶13 × 𝑆𝐶23︸         ︷︷         ︸
𝑟4

1 1 2

[2,7) 47 53 7 2(𝑆𝐶13 × 𝑆𝐶23)︸              ︷︷              ︸
𝑟4 & 𝑟5

+ 𝑆𝐶14 × 𝑆𝐶15 × 𝑆𝐶24 × 𝑆𝐶22
5︸                               ︷︷                               ︸

𝑟6

𝑆𝐶22
5

2 6

[4,9) ... ... 9 ... ... ...

GPS Position Analysis. Another promising use case for our ap-

proach is detecting anomalies in GPS data for bike-sharing services.

Specifically, bike-sharing services need to ensure the precision of

their tracking systems by detecting and filtering out or adjust erro-

neous GPS data. In this context, constraints like SC1 or SC2 can help

identify abnormal bike movements, such as sudden and implausible

changes in position over short periods.

In practice, GPS data integrity can be ensured with annotations

generated from violations of a Speed Constraint defined over the

bike’s coordinates x and y. The annotated violations are crucial

indicators of potential issues and must be accounted in tasks like

ensuring accurate billing, performed through a continuous query

from Listing 4. The query calculates the distance each client travels

between two subsequent positions, which is then used to deter-

mine the client’s charge. The results are further enhanced with

annotations that highlight any detected anomalies in movement.

SELECT clientId , distance(x, y) * 1.5

FROM GPSPosition [RANGE 2 TUPLES SLIDE 1 TUPLE] AS P

GROUP BY clientId;

Listing 4: Sn SQL analyzing bike-sharing GPS data stream.

4 INKSTREAM SYSTEM ARCHITECTURE
We developed our system on top of RSP4J [8], a stream processing

framework that enables fast prototyping and fine-grained control

over stream ingestion. Originally implemented for graphs, we ex-

tended its data model over records with attribute-value pairs. The

system implements a processing model inspired by CQL [1], making

RSP4J natively compatible with our approach (cf. Figure 1).

As presented in Section 2, our method for tracking data con-

sistency over streams consists of two phases, i.e., annotation and

propagation. The two phases are mapped to the system architecture

components, represented in Figure 4.

Annotation is implemented through an R2R operator that inte-

grates Provenance4J, i.e., the module that implements consistency

graphs, including their maintenance and annotation algorithms (cf.

Section 2.2). The module inherits the window used by the user-

defined continuous query, that in RSP4J is implemented by an S2R

operator. Consistent graph traversal results are encoded in a poly-

nomial, whose logic is implemented in the Polyomials4J module.

For the Propagation phase, we provided a set of R2R, SQL-like

operators capable of natively dealing with polynomial annotations.

For each operator, i.e., selection, projection, join, and aggregate, we

designed a variant that manipulates annotations according to the

positive streaming algebra described in Section 2.

We created a Streaming Dashboard tailored for InkStream,

enabling users to input streaming queries and desired constraints,

monitor the progression of consistency graphs, and visualize their

results within a controlled environment.

Once a query and the related constraint are submitted and regis-

tered within the InkStream engine, they are converted into a set of

streaming operators. The resulting data is streamed and promptly

exhibited in the user interface, together with the consistency anno-

tation derived from the propagation phase.

5 DEMONSTRATION PIPELINE
The demonstration pipeline aligns with the approach shown in Fig-

ure 1, serving as a bridge between theory and practical application.

Designed to cater to both novice and expert users, it operates within

the framework of a web interface for tracking consistency across

data streams, specifically tailored around the Web User Interface

(WUI) as illustrated in 5. The WUI is composed by the following

components: 1) theControl Panel provides the button for controlling
the ingestion of records, including the possibility of processing the

next event, defining query and constraints; 2) in the Input Stream
Tab, we represent the input stream in a relational format, indicating

through the column "Cursor" the elements processed; 3) the Output
Stream Tab enables to see the results of the query, but also view

their annotations and consistency metrics; 4) the Policy Display
allows to view and modify both the query and constraints used;

5) finally, the Graph Display shows the evolution of the consistency

graphs for each defined constraint.

In practice, the demonstration follows the steps described below.

Policy Definition. First, Users must choose a use case scenario

that provides the basic query and constraints. For instance, in the

case of grid monitoring, the constraints SC1 and SC2, the query is

the one from Listing 1, as shown in Figure 5. The demonstration will

Figure 4: The Architecture of the system.

5



Figure 5: The InkStreamWeb Interface.

include other scenarios of different levels of complexity, including

Stock Correlation Analysis, Review Bombing, and GPS malfunction

Detection. Once the scenario is defined, users can modify the query

or the constraints in the Policy Display. For instance, monitoring of

the electric grid may cover only those records where the cumulative

consumption does not exceed a threshold, i.e., consA + consB < 𝑛.

Graph & Annotation Visualization. As events are ingested
through the corresponding buttons in the control panel, users can

visualize the consistency graphs’ evolution in the upper part of

the WUI, as shown in Figure 5. In particular, the WUI shows a

consistency graph for each assigned constraint and the earliest

reference window, whose label is reported on the graph’s edges.

Nodes are instead marked with the record label of the form r_i,

where “i" is an incrementally assigned index. The graph put a visual

highlight on the consistency of streaming records: disconnected

nodes in the graph represent records that are inconsistent with

all the others, while paths within the graph represent groups of

consistent records. Consequently, the number of different paths

within a connected component is also indicative of how inconsistent

are the records. Moreover, the earliest added node is shown in blue,

and the roots of the graph are shown in green, as in Figure 2. Figure 5

shows the consistency graph for the Electric Grid scenario when r_6

is added, thus reporting in the WUI the graph from Figure 2. In the

“Polynomials" tab, users can visualize the polynomial annotations.

As shown by their annotations, r_4, r_5, and r_6 are inconsistent

wrt both SC1 and SC2, which indicates a sudden increase/decrease

in the electricity consumption of both consA and consB.

Result Monitoring. Users can view the query result over the

ingested records as the last step of the demonstration. Users can

also view the annotations for each result, derived according to the

input annotations and the positive algebra [3], shown in Section 2.3.

In a separate tab, we provide different approaches for using the

annotations to monitor consistency as reported in Section 2.3. For

instance, in Figure 5 we reported the results of Table 2, where per-

centages calculated over window [2,7) in the electric grid scenario

are the most inconsistent, being based on r_4, r_5, and r_6.

REFERENCES
[1] Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2006. The CQL continuous

query language: semantic foundations and query execution. VLDB J. 15, 2 (2006).
[2] Angela Bonifati and Riccardo Tommasini. 2024. An Overview of Continuous

Querying in (Modern) Data Systems. In Companion of the 2024 International
Conference on Management of Data, SIGMOD/PODS 2024, Santiago AA, Chile, June
9-15, 2024, Pablo Barceló, Nayat Sánchez Pi, Alexandra Meliou, and S. Sudarshan

(Eds.). ACM, 605–612. https://doi.org/10.1145/3626246.3654679

[3] Todd J. Green, Gregory Karvounarakis, and Val Tannen. 2007. Provenance semir-

ings. In Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, June 11-13, 2007, Beijing, China. ACM.

[4] Ousmane Issa, Angela Bonifati, and Farouk Toumani. 2020. Evaluating Top-k

Queries with Inconsistency Degrees. Proc. VLDB Endow. 13, 11 (2020).
[5] Dimitris Palyvos-Giannas, Katerina Tzompanaki, Marina Papatriantafilou, and

Vincenzo Gulisano. 2022. Erebus: Explaining the Outputs of Data Streaming

Queries. Proc. VLDB Endow. 16, 2 (2022).
[6] Shaoxu Song, Aoqian Zhang, Jianmin Wang, and Philip S. Yu. 2015. SCREEN:

Stream Data Cleaning under Speed Constraints. In Proceedings of the 2015 ACM
SIGMOD, Melbourne, Victoria, Australia, May 31 - June 4, 2015. ACM.

[7] Michael Stonebraker, Ugur Çetintemel, and Stanley B. Zdonik. 2005. The 8 re-

quirements of real-time stream processing. SIGMOD Rec. 34, 4 (2005).
[8] Riccardo Tommasini, Pieter Bonte, Femke Ongenae, and Emanuele Della Valle.

2021. RSP4J: An API for RDF Stream Processing. In The Semantic Web - 18th
International Conference, ESWC 2021, June 6-10, 2021, Proceedings. Springer.

6

https://doi.org/10.1145/3626246.3654679

	Abstract
	1 Introduction
	2 Tracking Streaming Consistency
	2.1 Consistency Annotation
	2.2 Consistency Graph
	2.3 Provenance-based Propagation

	3 Use Cases
	4 InkStream System Architecture
	5 Demonstration pipeline
	References

