
HAL Id: hal-04808300
https://hal.science/hal-04808300v1

Submitted on 28 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

MOSAIC: Detection and Categorization of I/O Patterns
in HPC Applications

Théo Jolivel, François Tessier, Julien Monniot, Guillaume Pallez

To cite this version:
Théo Jolivel, François Tessier, Julien Monniot, Guillaume Pallez. MOSAIC: Detection and Catego-
rization of I/O Patterns in HPC Applications. PDSW 2024 - 9th International Parallel Data Systems
Workshop, Nov 2024, Atlanta, United States. pp.1-7, �10.1109/SCW63240.2024.00172�. �hal-04808300�

https://hal.science/hal-04808300v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


MOSAIC: Detection and Categorization of I/O
Patterns in HPC Applications
Théo Jolivel, François Tessier, Julien Monniot, Guillaume Pallez

Univ Rennes, Inria, CNRS, IRISA
Rennes, France

{first name}.{last name}@inria.fr

Abstract—With the gap between computing power and I/O
performance growing ever wider on HPC systems, it is becoming
crucial to optimize how applications perform I/O on storage
resources. To achieve this, a good understanding of application
I/O behavior is an essential preliminary step. In this paper,
we introduce MOSAIC, a method for categorizing applications
according to their I/O behavior. We first propose an abstrac-
tion for characterizing I/O operations in terms of periodicity,
temporality and metadata access. We then present a set of
segmentation-based techniques for quickly and automatically
detecting meaningful data access patterns. In the end, MOSAIC
is able to characterize a full set of real-world I/O traces from
the Blue Waters supercomputer with 92% accuracy.

Index Terms—I/O, characterization, analysis, traces

I. INTRODUCTION

While the ratio of I/O performance to computing power has
declined by a factor of 10 in the last decade [1], the volume
of data generated by scientific workflows and applications
has significantly grown. In some supercomputing centers for
instance, this volume has increased almost 40-fold in ten
years [2]. This has made access to storage resources a major
bottleneck to scaling up applications.

Several levers exist along the data path to mitigate this
burden. For example, optimizations can be applied at the
I/O library level [3]–[5] or within the application source
code [6] to improve I/O performance. At the job scheduler
level, decisions can be taken when allocating resources to
avoid I/O interference between jobs [7]–[9]. However, all
these optimizations require a good upstream understanding of
application I/O behavior. While very detailed information is
both hard to obtain and not necessary for making rapid and
efficient decisions [10]–[12], an abstraction able to describe
an application’s overall I/O behavior is a good tradeoff. Tools
exist to trace application execution and monitor I/O operations
but they lack a way to analyze and depict them rapidly.

In this paper, we propose MOSAIC, an approach to cate-
gorize execution traces and give information about the gen-
eral behavior of applications from an I/O perspective. To
demonstrate our method, we analyze a full year of I/O
execution traces of Blue Waters, a supercomputer that is
now decommissioned. From these traces, we determine a set
of non-exclusive categories to describe the I/O behavior of
jobs, including the temporality and the periodicity of the
accesses and the metadata overhead. We then propose a set
of algorithms based on event fusion and trace segmentation to

automatically categorize the I/O traces and implement them in
a tool called MOSAIC (Merging Operations and SegmentAtion
for I/o Categorization). For example, a numerical simulation
performing regular checkpoints throughout its execution and
writing a final result before finishing will be identified as
periodic and write on end by MOSAIC. Over more than
24,000 I/O traces, we verified that our method has an accuracy
of 92% in categorizing data access patterns. Based on these
results, we present a post-mortem analysis of I/O behavior on
Blue Waters, and we highlight some significant correlations
between categories that could drive scheduling algorithms.

Our contributions are as follows:
• An analysis of I/O execution traces to determine a set of

common and redundant features
• A method for categorizing jobs according to their I/O

behavior
• An analysis of this categorization on a year of I/O traces
In the rest of this paper, we first present an overview of

relevant related work. Section III then describes both the cate-
gories we determined to characterize data access patterns and
MOSAIC, our categorization algorithm. We show in Section IV
the result produced by MOSAIC, run on one year of Blue
Waters I/O traces. We also discuss here some implementation
details and the accuracy of our method evaluated with sam-
pling.

II. RELATED WORK

A. I/O Monitoring and Analysis

Tracing the I/O behavior of applications running at large
scale is a topic that has been studied for years. Several ap-
proaches have been proposed, from very low-level monitoring
tools like Recorder [13] or EZTrace [14], which collect a
large volume of information at each execution, to higher-level
abstractions like Darshan [15], which partially aggregates I/O
operations between the opening and closing of a file. Overall,
a trade-off must be found between the overhead a user is
prepared to face and the precision of the information needed.

In this ecosystem, Darshan [15] is one of the most widely
used tools and the source of the largest publicly available I/O-
enabled execution trace datasets. It is able to trace the I/O
behavior of an application running on supercomputers with
very low overhead and without modifying the application’s
source code. Darshan supports multiple I/O APIs, such as



POSIX, MPI-IO, or STDIO. An additional module, called
DXT (Darshan eXtended Traces) [16], allows gathering addi-
tional information at a higher level of detail but at the cost of
a higher overhead. However, no large DXT-enabled I/O trace
datasets are publicly available to the best of our knowledge.

Numerous studies have used Darshan traces to analyze the
overall I/O behavior of a supercomputer [17], [18], to guide
the design of storage systems [19] or to improve the way
applications perform I/O operations [6]. Luu et al. [20] used
Darshan traces from three machines to gather insights about
how applications generally access data on the PFS. Karimit
et al. [21] also used Darshan data to compare the behavior
in I/O performance of machine learning workloads from their
scientific domains. Given this large volume of information, a
natural idea is to take advantage of it to better characterize
I/O behavior of scientific applications.

B. I/O Characterization

Several approaches have been proposed to analyze and
categorize executions according to their I/O activities [22],
[23]. Recent work, for example, uses frequency techniques
such as discrete Fourier transforms to detect periodicity in
I/O traces [24]. However, this approach fails to distinguish
between two intricate periodic behaviors and does not cover
other types of behaviors. Other works present a categorization
based on aggregate statistics (total data volume, number of
processes involved in I/O, etc.) rather than on individual
I/O operations [25]. This type of categorization only makes
it possible to establish very high-level patterns that do not
provide temporal information. Another approach consists of
predicting activity spikes on the parallel file-system from
Darshan files to understand the global load and anticipate when
the system will likely experience higher stress than usual [26].
However, this work does not allow to describe the global
I/O behavior of an application, which could be used for job
scheduling, for example.

Finally, rather than adopting an application view, Boito et
al. [10], [27] focused on analyzing the logs of a parallel file-
system to determine classes of I/O behavior and study the file
system’s configuration in the face of these access patterns.
The categorization here is very high-level and does not allow
to describe the temporality or periodicity of accesses.

In MOSAIC, we use a clustering algorithm that allows better
flexibility in identifying mixed patterns. We also analyze the
temporality of accesses to determine when an application
needs resources the most, and the load on the metadata server.

III. APPROACH

We present here our approach for assigning applications into
representative categories based on their I/O behavior. We first
propose an abstraction able to describe at a high-level the data
access pattern of an application. Then we introduce MOSAIC,
an algorithm for automatically detecting and categorizing these
patterns from I/O traces.

Categories

Temporality {read , write }: on start, on end, after start,
before end, after start before end, steady, insignificant

Periodicity
periodic, periodic second, periodic minute,

periodic hour, periodic day or more,
periodic low busy time, periodic high busy time

Metadata high spike, high density, multiple spikes,
insignificant load

TABLE I: Categories for characterizing I/O behavior

A. Category Definition

The main goal of our method is to provide a high-level,
fast-to-detect and representative description of I/O behavior
in large-scale applications. Therefore, the categories need to
be wide enough to identify the general motifs encountered.
A preliminary analysis from the literature [28] shows that
applications mainly exhibit intermittent I/O behavior (writing
final results, reading input data) and periodic behavior (check-
pointing, periodically reading files). These operations lead to
metadata access (opening/closing files, searching for offsets).
Our categorization is intended to be representative of these
behaviors. We have thus identified three different aspects:

• Periodicity: These categories describe periodic behaviors
that generally correspond to checkpointing phases. Sev-
eral labels give an order of magnitude of the period or
the volume of data involved.

• Temporality: The corresponding categories describe when
read or write operations have occurred. The most
common labels are, for example: read on start or
write on end.

• Metadata impact: This category class describes the impact
of I/O on the parallel file-system metadata server.

Table I lists the categories we have defined for each class
of behavior (periodicity, temporality, metadata). Most of these
categories, though evocatively named, are described in more
detail in Section IV when detected. The ”insignificant” cat-
egories are used to exclude applications that are not I/O-
intensive from characterization. Therefore, we estimate that
applications reading or writing less than 100MB or carrying
out fewer metadata operations than the number of ranks fall
into those categories. These thresholds have been determined
experimentally for the dataset processed, but do not cover
certain cases (massive library loading at application start, for
example). Future work will investigate advanced methods for
determining them. MOSAIC evaluates these criteria (below or
above the threshold) independently for read and write oper-
ations. A trace can be both categorized as read insignificant
and get labels highlighting an important write activity. The
abovementioned threshold can be modified in MOSAIC to
extend or narrow the amount of I/O activities to categorize.

In total, our categories describe 98% of a year’s worth of
Blue Waters’ Darshan traces.

B. MOSAIC: I/O Pattern Categorization Algorithm

MOSAIC takes I/O traces in the format provided by Dar-
shan as input, applies pre-processing (merging) and uses a



Merging2

Output
4

Concurrent
operationsa

Neighborsb Metadata c

Periodic a

Temporal b

Pre-processing
1

Darshan
Traces

JSON
outputCategorization 3

Fig. 1: MOSAIC workflow for processing an I/O trace

segmentation algorithm to detect data access patterns of the
job. Figure 1 describes these steps.

1) Trace Pre-processing : MOSAIC begins by opening each
Darshan trace file to check its validity 1 . The corrupted
entries (when a deallocation happens before the end of the
application’s execution for instance) are deleted.

The next step is to obtain a representative dataset without
retaining all the executions. Indeed, it is very common on
a supercomputer to run the same application several times
(sometimes several hundred times), generating as many execu-
tion traces. Since we want to categorize application behavior,
we assume that all executions of an application from a given
user will belong to the same categories. Therefore, it allows
us to drastically reduce the number of traces to categorize
while ensuring a satisfactory diversity in observed I/O patterns.
To validate this hypothesis, we looked at the most executed
applications during one year from our input dataset. These
applications correspond to typical HPC simulations such as
LAMMPS, MILC, VASP or NEK5000. A study of the cor-
responding I/O traces shows that their I/O behavior is mostly
stable regardless the execution parameters. For example, about
97% of the ≈12000 runs of LAMMPS are similarly catego-
rized by MOSAIC while this percentage is 80% for NEK5000.
For a set of executions, MOSAIC only analyzes the heaviest
(i.e. the most I/O-intensive) trace.

2) Merging of I/O Operations: From this point, MOSAIC
handles read and write operations independently. For each
I/O trace kept from the previous step, MOSAIC applies two
merging algorithms 2 :

a) Concurrent operation merging 2 a : if two I/O oper-
ations overlap, those are merged into a single one. This
fusion has two objectives: manage process desynchro-
nization so that, for example, several processes writing
to the same file in a slightly desynchronized way will
have their write operations merged as a single operation,
and clarify the trace to enable the detection of periodic
behavior (see Section III-B3).

b) Neighbor merging 2 b : since we want to detect
global application behaviors, MOSAIC merges nearby
operations if the gap between them is negligible (less
than 0.1% of the total execution time or less than 1% of
the duration of the nearby merged operation). This sec-
ond algorithm reduces the trace complexity by lowering
the number of I/O operations to process and retain only

the data necessary for a correct categorization. Again, it
helps when processes are slowly desynchronized. If the
desynchronization slowly slides operations until they are
no longer overlapping, they can still be merged in the
same operation if they are close enough.

3) Categorization:
a) Detection of Periodic Operations: 3 a Once the

traces have been refined using previously described merging
techniques, MOSAIC segments them by I/O operation. More
concretely, a segment starts at the beginning of an I/O opera-
tion and ends at the beginning of the next one. The upper part
of Figure 2 illustrates this division. Once this segmentation
has been completed, our algorithm calculates the duration and
volume of data read or written for each segment. A clustering
algorithm based on Mean Shift [29] identifies all the segments
that share comparable duration and data size, and groups them.
A group with a size strictly greater than 1 formed by this
algorithm corresponds to a periodic operation. In this way,
several groups and therefore several periodic operations can
be detected within a single application, which corresponds to
real-life cases (for example, a numerical simulation performing
both checkpointing and data reading at regular intervals).
However, this technique requires defining the thresholds at
which two segments are considered part of the same periodic
operation. We empirically set and refined these thresholds on
one month of traces until periodic operations were correctly
identified, avoiding overfitting drawbacks from other methods.
Then, we validated these thresholds on the whole dataset
using a sampling method: we randomly selected 512 elements
among all the categorized traces for one year of data to verify
that the different patterns are handled correctly.

Once a periodic behavior has been recognized, MOSAIC
calculates the order of magnitude of its period from the length
of a segment, the volume of data read or written by each
operation, and the activity rate during the period.

b) Temporality Characterization: 3 b Independently,
MOSAIC also characterizes the temporality of read and write
accesses. To do so, it splits each trace into four equal chunks,
each representing 25% of the execution time. The lower part
of Figure 2 shows an example of this type of segmentation.
The first and last chunks represent the beginning and end of
the execution. For each chunk, MOSAIC sums the amount
of bytes handled by the underlying I/O operations. It then
compares these values to determine which one(s) contain(s) the



Base Trace

Timestamp

Ra
nk

s 
Re

ad
in

g

M
etadata O

perations

USER380111U_iobubble_bgrch1p3_off_id9807799_4-9-68521-5326334451444447589_1.darshan

02:04
Apr 10, 2019

02:06 02:08 02:10

0

5

10

15

20

25

30

0

20

40

60

80

100

02:04
Apr 10, 2019

02:06 02:08 02:10

0

5

10

15

20

25

30

Trace After Pre-Processing + Segmentation

Timestamp

Ra
nk

s 
Re

ad
in

g 
(O

PE
N

 fo
r 

ea
ch

 o
pe

ra
tio

n)

02:04
Apr 10, 2019

02:06 02:08 02:10

0

5

10

15

20

25

30

Periodicity Detection Result

Timestamp

Ra
nk

s 
Re

ad
in

g

02:04
Apr 10, 2019

02:06 02:08 02:10
0

0.2B

0.4B

0.6B

0.8B

1B

1.2B

1.4B

Data Amount Read Per Division

Timestamp

By
te

s 
Re

ad

02:04
Apr 10, 2019

02:06 02:08 02:10

0

5

10

15

20

25

30

Trace After Pre-Processing + Temporal Chunks

Timestamp

Ra
nk

s 
Re

ad
in

g 
(O

PE
N

 fo
r 

ea
ch

 o
pe

ra
tio

n)

Legend:
Read Operations from Darshan Trace
Metadata Requests from Darshan Trace
Operations after Pre-Processing
Periodicity Detection Result

Fig. 2: Trace processing example

most impactful operations and assigns the associated category.
For example, if the first chunk contains more than twice
the amount of bytes operated in the other segments, the
trace will be assigned to a {read/write} on start category.
On the contrary, if all chunks contain the same amount of
data (coefficient of variation under 25%), the trace will be
characterized as {read/write} steady.

c) Metadata Access: 3 c Finally, MOSAIC must be
able to describe application behavior at the metadata server
level when it is significant. To do so, it uses the number
of OPEN, CLOSE, and SEEK requests emitted for each I/O
operation. Because Darshan does not precisely trace SEEK
operations, we assume these are co-located with each OPEN
operation.

MOSAIC then assigns the application to categories to tell if
a trace contains a high spike of requests, if multiple request
spikes are present, and if there is a high density of requests
at some point, i.e., multiple requests spread over several
seconds. The number of metadata requests from which we
consider an activity to have an impact is not obvious. Our
thresholds are based on the work of JM Kunkel and GS
Markomanolis [30], which benchmarked different metadata
servers from supercomputers. The Mistral supercomputer at
DKRZ is similar to Blue Waters, including its parallel file-
system, and is saturated at roughly 3000 requests per second.

From that, MOSAIC considers a trace as having a high spike
if more than 250 requests are emitted in one second, multiple
spikes if there are at least 5 spikes of 50 requests or more,
and a high density of requests if there are at least 5 spikes and
an average of 50 requests or more per second throughout the
execution.

4) Output: Once MOSAIC has processed a trace, it saves
the assigned categories and the calculated values (period for

instance) in a JSON file 4 . It also outputs statistics about
the global behavior of an application and patterns found in
the traces. For example, MOSAIC provides the number of
applications with a given behavior (i.e, belonging to the same
category), based both on data from pre-processed traces and on
raw data including multiple executions of the same application
(see Section III-B1). The former data analyzes the behavior of
the executed applications, while the latter gives information
about the load on the parallel file system. A heatmap also
gives information about recurrent associations of classes, with
Jaccard index [31]. Section IV discusses this output data in
greater detail.

IV. EVALUATION

To build and evaluate MOSAIC, we worked on the 2019
traces from the Blue Waters supercomputer. Blue Waters,
which was decommissioned in 2021, was a 13.3 PFlops Cray
XE/XK HPC system featuring more than 26,000 compute
nodes interconnected within a 3D-torus network interconnect.
In terms of storage, the machine was equipped with 26PB of
storage space managed by a Lustre file-system. The ”scratch”
partition was distributed across 360 OSSs and 1440 OSTs.
For several years, the I/O of applications running on Blue
Waters were monitored by default with Darshan (DXT module
disabled) unless explicitly stated by the user at compile time.
These traces have been made publicly available 1. We have
selected 2019 as the peak year for machine usage. To the
best of our knowledge, this is the most comprehensive dataset
available. Other more recent machines, such as Theta at
Argonne National Laboratory or Cori at NERSC, have also
been monitored, but the traces, when available, are lossy
aggregated versions of the Darshan traces.

1https://bluewaters.ncsa.illinois.edu/data-sets

https://bluewaters.ncsa.illinois.edu/data-sets


Fig. 3: Pre-processing of one year I/O traces from Blue Waters

The pre-processing phase of this dataset, as described in
Section III-B1, is presented in Figure 3. It resulted in 32% of
traces being corrupted and therefore evicted, and 8% of unique
executions in the set of remaining valid traces. From an initial
set of 462’502 traces, MOSAIC retained 24’606 entries for
categorization.

In the remainder of this section, we present the results of
MOSAIC on this dataset in terms of characterizing periodic
behavior, access temporality and the impact of metadata oper-
ations. We then provide an analysis of significant correlations
between certain behaviors and discuss the accuracy of our
algorithm.

A. Periodicity

Execution Non-Periodic Periodic
Single run 98% 2%

Min. Hour
All runs 92% 6% 2%

TABLE II: Detection of periodic write operations

Table II shows how many applications have been catego-
rized as performing periodic write operations from our dataset
while considering unique executions of an application and
the full set of executions. Therefore, 2% of the analyzed
applications are periodic, representing 8% of the executions.
The frequency of these periodic accesses fluctuates between a
few minutes and a few hours.

However, this result needs to be treated cautiously. Indeed,
one limitation of Blue Waters Darshan traces is that accesses
are aggregated between the opening and closing of a file. In
the case of an application that opens files at start time and
keeps them open throughout the execution, Darshan will only
provide a single entry in the trace set, signifying that several
I/O operations have taken place during this interval without
giving their temporal distribution. MOSAIC categorizes this
behavior as {read/write} steady. This category represents
37% of the write behaviors (see Section IV-B). It is likely
that the majority of these behaviors are, in fact, periodic.

Periodic read accesses account for less than 2% of all
executions and are subject to the same limitations as Darshan
traces. The order of magnitude of these accesses is smaller,
ranging from several seconds to several minutes.

Studied distrib. Insignificant On start Steady Others
Single run 85% 9% 2% 4%Read All runs 27% 38% 30% 5%

Studied distrib. Insignificant On end Steady Others
Single run 87% 8% 3% 2%Write All runs 47% 14% 37% 2%

TABLE III: Detection of temporality

B. Access Temporality

Table III shows the categorization of reads and writes in
terms of temporality for the dataset reduced to single run
for each application (highlighting the behavior of individual
workloads), and for the complete dataset (emphasizing the
global load on the parallel file-system).

These results first show that most applications perform
either few reads (85%) or few writes (87%), the threshold
being set at 100MB (see Section III-A). This categorization
also shows that of the total number of application executions
studied, 95% can be described by 6 categories: 3 for reading, 3
for writing. These categories highlight two expected phenom-
ena: applications mostly read at the start of execution (38%)
or during execution (30%), while they write either regularly
(37%, probably periodic accesses related to checkpointing),
or at the end of execution (14%). Finally, we also note that
almost half of executions (47%) perform no or few writes,
while only a quarter (27%) perform no or few reads.

C. Metadata Access

0% 50% 100%

insignificant

high density

high spike

multiple spikes

39.1

12.8

59.9

45.9

88.4

7.16

11.3

8.91 Single run
All runs

Fig. 4: Category distribution for metadata access

Figure 4 depicts the distribution of metadata categories for
the traces we analyzed with MOSAIC.

The significant differences in values for the single run set or
for all runs highlight that a small number of applications with
a large number of executions are metadata-intensive. The most
represented category in these results, metadata high spike,
contains applications performing more than 250 metadata
accesses per second at least once during their execution. 60%
of the executions studied fall into this category, showing a
heavy load on the metadata server. We also note that 45.9% of
applications have several spikes (metadata multiple spikes),
which is in line with the estimated percentage of applications
with periodic writes (8% identified + 37% categorized as



1

2

3

4

5

6

7

8

9

10

11

12

13

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14
6-read_periodic
7-read_periodic_s
8-read_steady
9-write_insignificant
10-write_on_end

11-write_periodic
12-write_periodic_h
13-write_periodic_min
14-write_steady

1-metadata_high_density
2-metadata_high_spike

4-read_insignificant
5-read_on_start

3-metadata_multiple_spikes

Fig. 5: Matrix of relevant Jaccard indices. Only values higher
than 1% are shown

write steady). Finally, just under 13% of executions are cate-
gorized as having a high metadata access density, characterized
by an average of 50 requests per second throughout the
execution.

D. Noteworthy Correlations

The Jaccard indices computed by MOSAIC, which compare
similarity and diversity between samples, can be used to
identify relevant correlations. These correlations can ultimately
help in job scheduling choices to limit I/O interference be-
tween applications, for example. These correlations include
the following:

• Applications with a high metadata request density and
high metadata spikes are more likely to read on start
and/or write on end.

• The large majority of applications (95%) having no
significant read operations also have no significant write
operation.

• 66% of applications reading on start writes on end. The
pattern read, compute, write is well represented in the
traces we analyzed.

• Almost all traces with periodic writes (96%) spend less
than 25% of the time writing on the parallel file-system.

Figure 5 presents a subset of the generated Jaccard heatmap
to present other interesting results.

E. MOSAIC Accuracy and Performance

We used the categorization results of one year of traces
to estimate MOSAIC’s accuracy. To do so, we applied a
sampling method: we randomly selected a subset of 512
traces that we manually validated. We detected that 42 traces
were incorrectly classified, mainly because of a sub-optimal
detection of temporality in some cases where an operation
is unequally spread across multiple chunks. This leads to an
accuracy of 92% for MOSAIC.

In terms of performance, the complete MOSAIC workflow
described in Figure 1 is capable of processing the entire
dataset (except for 2 files that take too long to load) in 165
minutes on a 64 cores AMD Zen2 EPYC 7702 processor.
MOSAIC is written in Python 3.10.14 (1800+ lines of code)
and uses the Dispy library to parallelize trace processing. The
main bottleneck in our implementation is memory: 300 GB
of RAM is required to process the dataset (dependent on the
parallelization level). However, beyond analysis on a large set
of traces, as is the case in this paper, MOSAIC can also be
used for application-by-application categorization to provide
information to a job scheduler, for example.

V. CONCLUSION

In this paper, we presented MOSAIC, an abstraction for
describing the I/O behaviors of applications running on super-
computers, and an automatic categorization method using this
abstraction. Our categorization method, based on the fusion
and segmentation of I/O execution traces, can categorize 98%
of traces from a real-world dataset with an accuracy rate of
over 90%. This high-level and automatic fast-to-detect char-
acterization of I/O behavior paves the way for job scheduling
techniques that take data access patterns into account. For
example, two jobs categorized as reading large volumes of
data at the start of execution could be scheduled so as not to
overlap.

Looking ahead, we are considering several ways of improv-
ing MOSAIC. First, some signal-processing-based techniques
for periodic I/O detection have been shown to be effective [24].
In the short term, we plan to implement these techniques
to improve the detection of this type of pattern. Secondly,
category determination could be made more automatic using
clustering methods. Finally, in the longer term, we plan to
analyze the dataset in greater depth to detect I/O performance
losses that could be attributed to concurrency. This way, we
would like to be able to identify whether some categories
are more conflicting than others, again in order to use this
information to improve concurrency-aware job scheduling.

VI. ACKNOWLEDGMENT

As part of the ”France 2030” initiative, this work has bene-
fited from a State grant managed by the French National Re-
search Agency (Agence Nationale de la Recherche) attributed
to the Exa-DoST project of the NumPEx PEPR program,
reference: ANR-22-EXNU-0004. This research has also been
supported in part by the NCSA-Inria-ANL-BSC-JSC-Riken-
UTK Joint-Laboratory on Extreme Scale Computing (JLESC).



REFERENCES

[1] “Top500 ranking,” https://www.top500.org/.
[2] G. Lockwood, D. Hazen, Q. Koziol, R. Canon, K. Antypas, and

J. Balewski, “Storage 2020: A Vision for the Future of HPC Storage,” in
Report: LBNL-2001072. Lawrence Berkeley National Laboratory, 2017.
[Online]. Available: https://escholarship.org/uc/item/744479dp#author

[3] H. Tang, Q. Koziol, J. Ravi, and S. Byna, “Transparent asynchronous
parallel i/o using background threads,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 4, pp. 891–902, 2022.

[4] H. Zheng, V. Vishwanath, Q. Koziol, H. Tang, J. Ravi, J. Mainzer, and
S. Byna, “Hdf5 cache vol: Efficient and scalable parallel i/o through
caching data on node-local storage,” in 2022 22nd IEEE International
Symposium on Cluster, Cloud and Internet Computing (CCGrid), 2022,
pp. 61–70.

[5] F. Tessier, P. Gressier, and V. Vishwanath, “Optimizing data aggregation
by leveraging the deep memory hierarchy on large-scale systems,” in
Proceedings of the 2018 International Conference on Supercomputing,
ser. ICS ’18. New York, NY, USA: ACM, 2018, pp. 229–239.
[Online]. Available: http://doi.acm.org/10.1145/3205289.3205316

[6] J. L. Bez, H. Ather, and S. Byna, “Drishti: Guiding end-users in the i/o
optimization journey,” in 2022 IEEE/ACM International Parallel Data
Systems Workshop (PDSW), 2022, pp. 1–6.

[7] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir,
“Scheduling the i/o of hpc applications under congestion,” in 2015 IEEE
International Parallel and Distributed Processing Symposium. IEEE,
2015, pp. 1013–1022.

[8] R. Bleuse, K. Dogeas, G. Lucarelli, G. Mounié, and D. Trys-
tram, “Interference-aware scheduling using geometric constraints,” in
Euro-Par 2018: Parallel Processing, M. Aldinucci, L. Padovani, and
M. Torquati, Eds. Cham: Springer International Publishing, 2018, pp.
205–217.

[9] W. Liang, Y. Chen, J. Liu, and H. An, “Cars: A contention-aware
scheduler for efficient resource management of hpc storage systems,”
Parallel Computing, vol. 87, pp. 25–34, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S016781911830382X

[10] F. Boito, G. Pallez, L. Teylo, and N. Vidal, “Io-sets: Simple and
efficient approaches for i/o bandwidth management,” IEEE Transactions
on Parallel and Distributed Systems, vol. 34, no. 10, pp. 2783–2796,
2023.

[11] E. Jeannot, G. Pallez, and N. Vidal, “Io-aware job-scheduling:
Exploiting the impacts of workload characterizations to select the
mapping strategy,” The International Journal of High Performance
Computing Applications, vol. 37, no. 3-4, pp. 213–228, 2023. [Online].
Available: https://doi.org/10.1177/10943420231175854

[12] A. Benoit, T. Herault, L. Perotin, Y. Robert, and F. Vivien, “Revisiting
i/o bandwidth-sharing strategies for hpc applications,” Journal of
Parallel and Distributed Computing, vol. 188, p. 104863, 2024.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0743731524000273

[13] C. Wang, J. Sun, M. Snir, K. Mohror, and E. Gonsiorowski, “Recorder
2.0: Efficient parallel i/o tracing and analysis,” in 2020 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2020, pp. 1–8.

[14] M. I. Naas, F. Trahay, A. Colin, P. Olivier, S. Rubini, F. Singhoff,
and J. Boukhobza, “Eziotracer: unifying kernel and user space
i/o tracing for data-intensive applications,” in Proceedings of the
Workshop on Challenges and Opportunities of Efficient and Performant
Storage Systems, ser. CHEOPS ’21. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3439839.3458731

[15] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley, “24/7
characterization of petascale i/o workloads,” in 2009 IEEE International
Conference on Cluster Computing and Workshops, 2009, pp. 1–10.

[16] C. Xu, S. Snyder, V. Venkatesan, P. Carns, O. Kulkarni, S. Byna,
R. Sisneros, and K. Chadalavada, “Dxt: Darshan extended tracing,”
Argonne National Lab.(ANL), Argonne, IL (United States), Tech. Rep.,
2017.

[17] G. K. Lockwood, S. Snyder, T. Wang, S. Byna, P. Carns, and N. J.
Wright, “A year in the life of a parallel file system,” in SC18: In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, 2018, pp. 931–943.

[18] J. L. Bez, A. M. Karimi, A. K. Paul, B. Xie, S. Byna, P. Carns, S. Oral,
F. Wang, and J. Hanley, “Access patterns and performance behaviors

of multi-layer supercomputer i/o subsystems under production load,” in
Proceedings of the 31st International Symposium on High-Performance
Parallel and Distributed Computing, ser. HPDC ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 43–55. [Online].
Available: https://doi.org/10.1145/3502181.3531461

[19] J. Monniot, F. Tessier, M. Robert, and G. Antoniu, “Supporting
dynamic allocation of heterogeneous storage resources on hpc
systems,” Concurrency and Computation: Practice and Experience,
vol. 35, no. 28, p. e7890, 2023. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/cpe.7890

[20] H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms,
M. Prabhat, S. Byna, and Y. Yao, “A multiplatform study of
i/o behavior on petascale supercomputers,” in Proceedings of the
24th International Symposium on High-Performance Parallel and
Distributed Computing, ser. HPDC ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 33–44. [Online].
Available: https://doi.org/10.1145/2749246.2749269

[21] A. M. Karimi, A. K. Paul, and F. Wang, “I/o performance analysis of
machine learning workloads on leadership scale supercomputer,” Perfor-
mance Evaluation, vol. 157-158, p. 102318, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0166531622000268

[22] W. Yang, X. Liao, D. Dong, and J. Yu, “A quantitative study of
the spatiotemporal i/o burstiness of hpc application,” in 2022 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2022, pp. 1349–1359.

[23] M. Isakov, E. d. Rosario, S. Madireddy, P. Balaprakash, P. Carns, R. B.
Ross, and M. A. Kinsy, “Hpc i/o throughput bottleneck analysis with
explainable local models,” in SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, 2020, pp.
1–13.

[24] A. Tarraf, A. Bandet, F. Zanon Boito, G. Pallez, and F. Wolf, “Capturing
Periodic I/O Using Frequency Techniques,” in IPDPS 2024 - 38th
IEEE International Parallel & Distributed Processing Symposium, San
Francisco, United States, May 2024, pp. 1–13. [Online]. Available:
https://inria.hal.science/hal-04382142

[25] H. Devarajan and K. Mohror, “Extracting and characterizing i/o behavior
of hpc workloads,” in 2022 IEEE International Conference on Cluster
Computing (CLUSTER), 2022, pp. 243–255.

[26] E. Saeedizade, R. Taheri, and E. Arslan, “I/o burst prediction for
hpc clusters using darshan logs,” in 2023 IEEE 19th International
Conference on e-Science (e-Science), 2023, pp. 1–10.

[27] F. Boito, G. Pallez, and L. Teylo, “The role of storage target allocation in
applications’ i/o performance with beegfs,” in 2022 IEEE International
Conference on Cluster Computing (CLUSTER), 2022, pp. 267–277.

[28] J. L. Bez, S. Byna, and S. Ibrahim, “I/o access patterns in hpc
applications: A 360-degree survey,” ACM Comput. Surv., vol. 56, no. 2,
sep 2023. [Online]. Available: https://doi.org/10.1145/3611007

[29] K. Fukunaga and L. Hostetler, “The estimation of the gradient of
a density function, with applications in pattern recognition,” IEEE
Transactions on Information Theory, vol. 21, no. 1, pp. 32–40, 1975.

[30] J. M. Kunkel and G. S. Markomanolis, “Understanding metadata la-
tency with mdworkbench,” in High Performance Computing, R. Yokota,
M. Weiland, J. Shalf, and S. Alam, Eds. Cham: Springer International
Publishing, 2018, pp. 75–88.

[31] S. Fletcher and M. Z. Islam, “Comparing sets of patterns with the
jaccard index,” Australasian Journal of Information Systems, vol. 22,
Mar. 2018. [Online]. Available: https://journal.acs.org.au/index.php/ajis/
article/view/1538

https://www.top500.org/
https://escholarship.org/uc/item/744479dp#author
http://doi.acm.org/10.1145/3205289.3205316
https://www.sciencedirect.com/science/article/pii/S016781911830382X
https://doi.org/10.1177/10943420231175854
https://www.sciencedirect.com/science/article/pii/S0743731524000273
https://www.sciencedirect.com/science/article/pii/S0743731524000273
https://doi.org/10.1145/3439839.3458731
https://doi.org/10.1145/3502181.3531461
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.7890
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.7890
https://doi.org/10.1145/2749246.2749269
https://www.sciencedirect.com/science/article/pii/S0166531622000268
https://inria.hal.science/hal-04382142
https://doi.org/10.1145/3611007
https://journal.acs.org.au/index.php/ajis/article/view/1538
https://journal.acs.org.au/index.php/ajis/article/view/1538

	Introduction
	Related Work
	I/O Monitoring and Analysis
	I/O Characterization

	Approach
	Category Definition
	Mosaic: I/O Pattern Categorization Algorithm
	Trace Pre-processing 
	Merging of I/O Operations
	Categorization
	Output


	Evaluation
	Periodicity
	Access Temporality
	Metadata Access
	Noteworthy Correlations
	Mosaic Accuracy and Performance

	Conclusion
	Acknowledgment
	References

