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Abstract:
Short mindfulness-based interventions have gained traction in research due to   their positive
impact on well-being, cognition,  and clinical symptoms  across various settings. However,
these  short-term  trainings  are  viewed  as  preliminary  steps  within  a  more  extensive
transformative path, presumably leading to long-lasting trait changes. Despite this, little is
still  known  about  the  brain  correlates  of  meditation  traits.  To  address  this  gap,  we
investigated the neural correlates of meditation expertise in long-term Buddhist practitioners,
comparing  the  large-scale  brain  functional  connectivity  of  28  expert  meditators  with  47
matched novices. Our hypothesis posited that meditation expertise would be associated with
specific  and  enduring  patterns  of  functional  connectivity  present  during  both  meditative
(open  monitoring/open  presence  and  loving-kindness  compassion  meditations)  and  non-
meditative resting states, as measured by connectivity gradients. Our finding revealed a trend
toward the overall contraction in the gradient cognitive hierarchy in experts versus novices
during open presence meditation. The signature of expertise was further characterized by an
increased integration of large-scale brain networks, including the somatomotor, dorsal and
ventral attention, limbic and frontoparietal networks, which correlated with a higher ability to
create  psychological  distance  with  thoughts  and  emotions.  Applying  a  support  vector
classifier  to  states  not  included  in  training,  we successfully  decoded expertise  as  a  trait,
demonstrating  that its  non-state-dependent  nature.  Such  heightened  integration  of  bodily
maps with affective  and attentional  networks  in  meditation  experts  could  point  toward  a
signature of the embodied cognition cultivated in these contemplative practices. 



INTRODUCTION:
Short 8-week mindfulness-based interventions (MBIs) are routinely used in various clinical

and educational settings. Meta-analyses indicate that they positively impact well-being and

cognition, and decrease clinical symptoms, in particular in mood disorders  (1,2). MBI can

induce functional changes in the neural processes underlying affect and attention (3,4) which

are not  always associated  with structural  changes  (5),  the latter  being reported  following

longer meditation training (6). According to traditional meditation theories, these short-term

training  effects  are  only  preliminary  steps  within  a  longer  and more  transformative  path

leading  to  long-lasting  trait  changes  in  cognition  and  self-related  processes,  and  which

require the combined practice of a variety of meditative techniques (7). Theoretical models of

meditation have examined the psychological processes of such meditation practices, grouping

them into attentional,  constructive,  and deconstructive families  (7). The attentional family

trains attention and meta-awareness and is exemplified by focused attention (FA) meditation,

or  open  monitoring  (OM)  meditation  (8).  The  constructive  family,  exemplified  by

compassion and loving-kindness meditation (LKC), trains perspective taking and cognitive

reappraisal  capacities  and  aims  at  transforming  maladaptive  self-schema  (9).  The

deconstructive family trains in self-inquiry and aims at recognizing the nature of maladaptive

mental schemas  (7,10) that cause suffering and prevent a long-lasting form of well-being

from emerging; it has thus far received less research interest  (11). Deconstructive practice

aims in particular  at  recognizing the constructive and transient nature of  basic cognitive

structures  such  as  time,  space,  and  subject–object  orientation.  To explore  and gain  such

insights about the nature of perception and the nature of the self, some Buddhist practitioners

are trained in particular into non-dual mindfulness meditations (10), such as Open presence

meditation  (OP).  OP  meditation  is  said  to  induce  a  minimal  phenomenal  state  of

consciousness  where  the  intentional  structure  involving  the  duality  between  object  and



subject  is attenuated,  as captured by the notion of non-duality  (10,12). OP meditation is

typically practiced with attentional and constructive practices involving mental imagery and

compassion  meditations.  The  alterations  of  these  self-related  and  affective  and  attention

processes throughout these various practices is said to have long-term impact on cognition as

a  trait  (8) captured  here  by  the  notion  of  “meditation  expertise”.  This  developmental

trajectory suggests that the baseline brain functional profile of experts will gradually tend to

overlap  with  the  dynamical  profile  of  these  meditative  states  themselves.  Despite  the

potential therapeutic and scientific interest in characterizing long-term meditation expertise,

little  is  still  known about its  neurophysiological  mechanisms  (13,14). The purpose of the

present study is to investigate the neural correlates of meditation expertise in a sample of

long-term  Buddhist  meditators,  as  measured  by  changes  in  the  organization  of  intrinsic

connectivity networks in the brain. We hypothesize that any long-lasting, trait-like changes in

experts  should  correlate  with  specific  changes  compared  to  novices  in  large-scale  brain

functions detectable both during meditative states as well as at rest during non-meditative

states.  

To  investigate  the  effect  of  long-term  meditation  practice  on  the  intrinsic  functional

organization of the cerebral cortex (15), we employed a data-driven technique that captures

its organization along continuous gradients,  also known as connectivity  gradients  (16,17).

This  technique  can  reveal  multiple  dimensions  of  cortical  organization,  with  the  first

dimension describing the cognitive hierarchy  (15), starting from sensory cortex and ending

with  transmodal  regions  such as  the  default-mode network  (DMN).  The  second gradient

separates  visual  regions  from  the  other  networks  (16),  and  the  third  gradient  spans  the

multiple-demand network and the networks at opposite end (18). This network is composed

of the inferior frontal sulcus, regions of the dorsolateral prefrontal cortex, the anterior insula,



the dorsal anterior cingulate, the pre-supplementary motor area, and the intraparietal sulcus.

Previous studies have demonstrated that these gradients can be influenced by various factors,

including disorders such as depression  (19) and autistic spectrum disorder  (20), as well as

cognitive and psycho-affective training  (21). Interestingly, psychedelics, such as psilocybin

(22) and N,N-Dimethyltryptamine (DMT) (23) can induce ego dissolution and are correlated

to a collapse of the cognitive hierarchy as measured by the first gradient. Given that both

psychedelics and non-dual meditation are said to lessen self-related processes, we predicted

that non-dual meditation would be associated with a similar compression of the cognitive

hierarchy, as Timmerman and colleagues (23) reported, albeit weaker in its effects. Given the

paucity  of  data  in  the  literature  on  meditation  expertise  and  novelty  of  the  gradient

connectivity  method,  further  developing  a  specific  functional  hypothesis  is  challenging.

However,  one can identify brain networks candidates  which may be impacted within the

connectome.  Meditation  has been associated  with brain structural  and functional  changes

mainly in frontal and limbic networks  (6,24) with the insula and anterior cingulate cortex,

part of the salience network (SN), being the regions most sensitive to meditation training

according to a meta-analysis  (25). Studies on meditation traits and functional connectivity

(26,27) or  differences  between  long-term meditation  practitioners  and novices  (13,14,28)

have also shown that  individuals  with meditation experience exhibit  reduced connectivity

between the DMN and fontoparietal  network/SN, while connectivity  between the SN and

FPN increases. Yet, these effects remain inconsistent across studies, as meditation training

has also been linked to increased connectivity between the DMN and FPN/SN  (29,30). A

recent  study reported  effects  of  various  forms  of  meditation  training  on the  connectome

consisting of increased  functional  segregation of  regions,  including parietal  and posterior

insular  regions,  following  training  in  attentional  family  meditation,  indicating  that  these

networks  are  functionally  different  from  the  rest  of  the  cortex.  Conversely,  perspective



training (i.e. constructive family) resulted in increased functional integration of these regions

with other brain networks (21).

Investigating  expert  meditators  could  thus  help  develop  hypotheses  or  theoretical

understanding  about  the  long-term  developmental  trajectory  of  meditation  and  minimal

phenomenal states of consciousness.

METHODS:    

Participants
Participants  were  recruited  for  the  Brain  and  Mindfulness  ERC-funded  project,  which

includes a cross-sectional  observational neuroscientific study on the effect of mindfulness

meditation  on  experiential,  cognitive  and affective  processes  conducted  in  Lyon,  France,

from  2015  to  2018.  Participants  included  novice  and  long-term  meditation  practitioners

(referred to as ‘experts’), who were recruited through multiple screening stages (for details,

see the Brain & Mindfulness Project Manual (31)). 75 cognitively normal participants aged

35-66 (SD 7.7) including 28 expert  meditators and 47 control participants (referred to as

‘novices’)  matched  on age and gender  (p>0.5,  see Table  1)  were included in  this  study.

Novices attended a one-weekend meditation training program prior to any measurement to

get familiarized with the meditation techniques. Inclusion and exclusion criteria have been

previously reported (31)  (see (SM)). Finally, subjects had to be affiliated to a social security

system.  All  participants  received  information  on  the  experimental  procedures  during  a

screening session, and provided informed written consent. The study was approved by the

regional ethics committee on Human Research (CPP Sud-Est IV, 2015-A01472-47). After

excluding participants  who exhibited  more than  0.3mm/degree  movement   to  control  for



potential motion effects (2 experts and 3 novices), the analysis was conducted with a reduced

sample size of 70 participants (32).

Paradigm

All participants attended a single fMRI session in which we first acquired their structural
image. We then acquired functional scans, starting with a resting state (RS). We also acquired
meditative states of LKC meditation.  In addition,  for novices,  we acquired states  of OM
meditation, and for experts we acquired states of OP meditation (see SM for a description of
the meditation practices). All states lasted 10 minutes. The order of acquisition of the two
meditative  states  was random. For the present  study,  we used three psychometric  scales,
which are Drexel defusion scale (DDS) (33), Five facets mindfulness questionnaire (FFMQ)
(34), and Beck depression inventory (BDI) (35) (for details, see SM).

Data acquisition and preprocessing
Data was collected on a 3T Siemens Prisma scanner. Functional data was acquired with EPI

(TR=2100ms, TE=30ms, 39 slices, voxel size 2.8x2.8x3.1mm3). Structural scans were T1w

(1mm iso), T2w (1mm iso) and T2*w (1mm iso). Preprocessing used fMRIprep v1.2.6 (36).

This included motion correction, co-registration, normalization to MNI space, CompCor for

physiological noise removal, ICA-AROMA denoising, and FreeSurfer surface reconstruction

(see SM for details).

 Connectome gradient construction

The construction of the functional connectome gradient followed the procedures detailed in

Hong et al. (2019) (20) and in the SM.

3D gradient metrics
To investigate multidimensional differences in cortical organization,  we focused on the first

three components, which explained over 50% of total variance. We combined these gradients



by  forming  a  3D  space  (21,37),  where  each  gradient  constitutes  an  axis  of  this  space

described in Figure 1A. 

Statistical analyses
We compared gradient component scores between experts and controls using surface-based

linear models in SurfStat (http://www. math.mcgill.ca/keith/surfstat/). Surface findings were

corrected for family-wise errors using random field theory (pFWE < 0.05). To show group

differences in dispersion metrics,  we used multivariate non-parametric  two-sample testing

(38).   Post-hoc  tests  were  computed  using  Studentized  bootstrap-t  tests  with  10.000

repetitions (39). We trained classifiers on dispersion metrics to predict expertise using scikit-

learn (40) with modified-huber loss and 5-fold cross-validation repeated 5000 times. We used

area  under  the  curve  rather  than  accuracy  to  avoid  bias  from  unbalanced  samples.  To

disentangle collinear  demographic factors,  we used a back-to-back regression (B2B)  (41),

finding DDS score had a significant contribution to dispersion measures (details in SM). 

RESULTS:

RESTING STATE ANALYSIS

We hypothesized that the large-scale fMRI connectomics measures would be modulated by

trait-like effects of expertise not only during meditative states but also at rest during non-

meditative states. To test this hypothesis, we first studied the RS, which is often viewed as a

baseline, and its study is a standard approach to characterize expertise or traits (4,13,14) (see

Figure 2A). The density of eccentricity map values for both groups (Figure 1F) illustrates

how, globally, experts' vertices were embedded closer to the connectome centroid, resulting

in more integrated vertices for experts. As a similar pattern was reported in the psychedelic

literature, we explored whether the average eccentricity of experts was different from that of



novices, but the result was not significant (t(68)=0.35; p=0.16; [95% CI: -0.13,0.81]). These

findings indicate that expertise affects the functional connectivity of the brain, resulting in

changes  in  eccentricity  that  likely  signify  differences  in  information  processing  and

integration.

To  further  functionally  specify  the  group  difference  in  eccentricity,  we  explored  the

multidimensional  differences  within  the  cognitive  hierarchy,  and  between  and  within

standard brain networks, as recently proposed (21,37) (Figure 2A). Using a multivariate non-

parametric  approach  (38),  we found an overall  trend difference  between groups  between

these various dispersion metrics (rv=0.055, p=0.066). We then investigated the group effect

on each of these dispersion metrics as described in Figure 2A, as an exploratory analysis.

These findings indicate that experts’ dispersion metrics during the RS were lower compared

to  novices  in  specific  networks.  However,  as  experts  are  expected  to  exhibit  a  trait  and

possibly a trait by state effect during RS, these differences may not reflect the sole signature

of expertise.  

To address this concern, we repeated these analyses for LKC and OP/OM meditative states,

in order to identify common characteristics among these states that could be considered as an

effect  of  expertise.  First,  and  following  our  hypothesis  based  on  ego  dissolution  during

psychedelics, we tested whether there was a global reduction of eccentricity. We computed a

mixed ANOVA between groups and states to test for differences of mean eccentricity. There

was a state effect (F(2,136)=4.78, p=0.009), but contrary to our hypothesis, no interaction

effect [F(2,136)=0.83, p=0.43] and only a trend effect for the groups (F(1,68)=2.54, p=0.1).

Regarding  the  group  effect,  we  still  performed  an   exploratory  analysis  as  one  of  our

hypotheses was that experts’ connectome could show decreased eccentricity, mainly during



OP, as in psychedelics study  (22,23), albeit  much weaker. This prediction was confirmed

only during OP state which showed lower mean eccentricity for experts compared to  novices

(t(68)=0.5; p=0.048; [95% CI: 0.01,1.04]), while the LKC state showed the lowest difference

between groups (t(68)=0.15; p=0.55; [95% CI: -0.37,0.66]).

Similarly  to  RS,  we  computed  the  large-scale  networks'  dispersion  metrics  for  these

meditative  states,  revealing  different  contrasts  (Figure  2).  These  findings  indicate  an

expertise-effect  during  OM/OP meditation  but  not  LKC meditation,  which  only  partially

overlapped with the pattern found during RS. This suggests that the effect of expertise on

large-scale networks may vary depending on the cognitive state or task and that segregation

of networks, as captured by gradient dispersion, may reflect global modes of function. 

SVC EXPERTISE ANALYSIS

Our analyses revealed that each state showed a somewhat different signature of expertise,

making it difficult to characterize its enduring dynamical characteristics. Although the so-

called RS, where the participant is asked not to engage in any specific cognitive activity, is a

gold standard approach to measure it,  its instruction turns out to be ambiguous for many

expert  meditators.  This  instruction  can  typically  be  understood,  on  the  one  hand,  as  an

invitation to spontaneously engage in OP meditation, a style of non-dual meditation, or on the

other  hand,  as  an  invitation  to  actively  try  not  to  meditate  by  spontaneously  following

thoughts, such as during mind wandering.

To tackle  this  issue,  we used a machine  learning approach.  We trained a  support  vector

classifier (SVC) on a subset of a given state to distinguish experts from novices, and then

tested its  ability  to both decode the same state and to generalize to the other states.  Our



rationale was that if the expertise effect was an enduring dynamical characteristic present in

every state, the SVC should be able to generalize to the other states as well. Specifically, the

state  with  the  least  amount  of  noise  around  the  effect  of  expertise  should  be  the  most

susceptible to generalize when tested on another state (Figure 2E). We were able to decode

expertise only for the OP state, but we were not able to generalize its classification on the RS

nor on the LKC state. Next, to reduce the contribution of the trait-by-state effect, and to make

the effect of expertise more salient, we averaged all three states together, and again trained

the classifier  using the  average  pattern.  As expected,  the model  demonstrated  significant

expertise decoding ability when trained on the average state and subsequently tested on the

remaining test set. Interestingly, unlike its performance when trained on OP, the model was

also able to generalize its classification ability when tested on different states, specifically RS

and  OP.  In  the  line  with  the  previous  results  (Figure  2C),  the  decoder  was  not  able  to

distinguish experts from novices during LKC. 

AVERAGED STATE DISPERSION ANALYSIS 

To further characterize the averaged state that best  captured the fingerprint  of meditation

expertise, we examined the dispersion metrics of this averaged state using both a 3D space

exploratory analysis (Figure 3A) and a surface-based analysis (Figure 3B). We also computed

a surface-based analysis  of the averaged state’s eccentricity.  All  clusters  showed reduced

eccentricity for experts when compared to novices (Table 3). To investigate the behavioral

relevance of these group differences, we then studied the individual contribution of various

features, including sex, age, group, hours of meditation practice in life, and trait psychometric

measures (DDS, BDI, FFMQ) to decode the dispersion metrics.  To do so, we fitted a B2B

model  to  control  for  the  co-variance  between  features  while  optimizing  the  linear

combination of dispersion metrics to detect the encoding information (Figure 3C). The output



of this model is a set of beta coefficients, one for each feature. Here, only the DDS, a scale

reflecting  a  person’s  capacity  to  cognitively  defuse  thoughts,  and  emotions,  yielded  a

significant contribution to the decoding (β=0.31; p=0.043). We then applied the same B2B

model to each dispersion metric individually, meaning that we used all previous features to

predict dispersion metrics. We only present the results for DDS, as it was the only scale to

demonstrate  a  significant  relationship  (Figure  3D).  Here,  our  goal  was to  identify  which

dispersion metrics predicted by the set of features exhibited a significant contribution from

the DDS. Importantly, the only associations were negative correlations, where a higher DDS

score was associated with a lower dispersion metric, consistent with the fingerprint found in

Figure 3A. However, contrary to Figure 3A, a higher DDS score was not associated with a

change of dispersion within networks. To summarize, our analysis suggested that the capacity

to put psychological distance between thoughts and emotions was associated with reduced

network  dispersion  between  and  across  specific  networks,  largely  overlapping  with  the

expert-related  trait  signature  (Figure  3A),   indicating  a  potential  link  between  trait-like

measures  and  neural  activity  during  meditation.  Tese  findings  shed  light  on  the  neural

mechanisms  underlying  expertise  effects  in  meditation  and  highlight  the  importance  of

considering state-averaging approaches in future studies.

DISCUSSION:

In this study, we first measured  the vertex-wise eccentricity of the diffusion map embedding

gradient, which reflects  the functional integration (low eccentricity) and segregation (high

eccentricity) along a scalar value (21,37,42). We found a higher integration for experts during

OP (Figure 2D) and as a trend during RS (Figure 2D) in the overall mean eccentricity values.

In line with these  findings, previous studies have observed increased integration in long-term

meditation practitioners’ brains using different methodologies, such as graph analysis  (43)



and  diffusion-weighted  imaging  (44–46).  Additionally,  using  diffusion  map  embedding,

similar but much more pronounced patterns of increased integration have been identified in

studies  investigating  the  acute  effects  of  psychedelics  (22,23).  This  consistency  across

different  research  approaches  provides  some  support  to  our  initial  hypothesis  of  a

compression of the cognitive hierarchy associated with the lessening of self-related/discursive

processes during non-dual meditation akin to OP meditation. This observed increase in brain

integration has been proposed to be a consequence of a heightened state of brain entropy,

which has been observed both in psychedelic experiences  (47) and during meditation  (48).

For  instance,  the  REBUS  model  theorizes  that  this  heightened  brain  entropy  state  is

associated with “a relaxation of the precision weighting of priors that coincide with liberation

of  bottom-up signaling”  (49).  This  means  that  the brain becomes less  reliant  on its  pre-

existing expectations or beliefs and pays more attention to the incoming sensory information.

This mechanism also aligns with the description provided within the free energy principle

framework (50) of the deconstructive meditation family (51) as cultivated in OM meditation

and non-dual meditative states such as OP. Hence, our study provides some support with

these current  theories,  which should guide the future empirical  studies of  these non-dual

meditations.

Next, we showed specific group-related dispersion metrics effects (Figure 2B) which were

not  identical  across  the  three  states,  suggesting  both  a  group-by-state  effect  and  a  state

independent  trait  effect  (Figure  2A,C).  To  be  able  to  identify  a  state  independent  trait

measure, we used a SVC to decode expertise and to test whether its training generalized to

other states. First, we managed to decode the group only when it was trained and tested on

the OP state, suggesting that this state was functionally the most different between groups.

Yet, this pattern did not generalize as a trait, meaning that the SVC weights likely captured



also a trait-by-state effect. Next, we repeated the same procedure on the average of the three

states,  as the trait  effect  has been characterized by low-variability  functional  connectivity

(52).  If  OP-related  group differences  was reflecting  only a  state  effect,  the  predictability

should decrease, because noise was added during the averaging. If, instead, the average of the

three states was reducing noise by repeating a  trait-like feature, then the predictability and its

ability to generalize to other states should increase. We found some evidence for the latter

(Figure 2E), suggesting that the average eccentricity was the best characterization of a trait-

like effect in our sample. 

Subsequent  analyses  specified  the  specific  fingerprint  of  meditation  expertise.  Experts

exhibited reduced average eccentricity in dorsal attention (DA) and limbic networks, and, at

tendency, in the SM cortex suggesting that these networks were more integrated within the

cognitive  hierarchy  for  experts,  allowing  for  enhanced  information  exchange  with  other

networks  (21,37). In line with these findings, our surface-based analysis  revealed clusters

exhibiting  solely  decreased  eccentricity  among  the  expert  group  (Figure  3B)  in  the

parahippocampal gyrus, premotor gyrus, and supplementary motor area, thereby confirming

the  results  obtained from the  average  eccentricity  analysis  described above.  Experts  also

demonstrated  a  more  reduced  within-network  dispersion  in  the  DA  and  VA  networks

compared to novices, as previously reported in the literature on meditation traits (14,26,27),

suggesting an enhanced spread of information within these networks, as their voxels exhibit

stronger  connectivity.  Finally,  for  experts  only,  the  limbic  network  displayed  increased

connectivity  with  the  SM,  VA,  and  FP  networks,  the  SM  cortex  exhibited  stronger

connectivity  with  the  DA  network,  while  the  VA  network  demonstrated  enhanced

connectivity  with  the  FP  network.  Numerous  brain  imaging  studies  on  meditation  have

similarly  highlighted  the  role  of  these  attention  and  affective  brain  networks  during

meditation practices (for reviews see Tang et al. (24), Lutz et al. (53), and Sezer et al. (54)).



The functional coupling of these networks with the SM network in meditation is more rarely

reported (55), even if it is consistent with the embodied nature of this practice (56,57). This

finding pointed toward an important functional modulation of the SM cortex in meditation

practice, which have often not been utilized as seeds or networks of interest in previous ICA

studies. 

We  reported  that  several  metrics  capturing  the  meditation  expertise  fingerprint  were

correlated with the ability to create psychological distance between thoughts and emotions, as

measured by the DDS. These correlations were assessed while considering the co-variation of

all metrics included in the demographic table (Table 1), including expertise. Specifically, and

in line with the trait fingerprint, a higher DDS score was associated with reduced averaged

eccentricity  in  the  SM  cortex  and  limbic  network.  Additionally,  the  DDS  negatively

correlated with dispersion between the DA network and SM cortex, as well as between the

limbic network and the SM and VA networks. These correlations between a higher DDS

score and more integrated limbic, SM and VA networks, may explain how experts manage to

modify their emotional processing. For example, Zorn and colleagues showed on the same

sample  of  participants  that  these  experts  were  more  able  to  reduce  and  to  decouple  the

unpleasantness of a painful stimulus from its intensity than novices (58). Moreover, they also

showed  that  the  DDS  was  a  core  mechanism  to  explain  the  stronger  sensory-affective

uncoupling of pain found in experts (59). 

Finally,  consistent  findings  in  the  study  of  meditation  traits  involve  connectivity

modifications  between the FP and DMN, with both increased and decreased connectivity

reported in the literature (13,14,26,27,29,30,60–62). However, our expertise fingerprint was



not associated with such differences,  despite a negative correlation between the DDS and

dispersion  between  the  FP  network  and  the  DMN.  Several  factors  may  explain  these

discrepancies (see Sezer et al. (54) for discussion). 

Our study had several limitations. The cross-sectional nature of the study limits our ability to

establish causal relationships between variables. Although efforts were made to control for

potential confounding variables by matching experts and novices for age, sex, and education,

there  may  still  be  unaccounted  factors  that  could  explain  the  observed  differences.  In

addition,  our study was mainly exploratory as we used diffusion embedding to study the

effect of long-term meditation practice on the brain, thus our findings will require replication

by future studies. 

In conclusion, our study investigated the effects of long-term meditation practice on brain
functional  architecture  and connectivity  patterns,  focusing  on the  development  of  shared
characteristics associated with expertise in meditation. We  identified large-scale networks
associated with meditation expertise, which were not limited to specific meditative states, and
which shed new light on the neural mechanisms of cognitive defusion as measured by DDS. 
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TABLE 1

Table 1: Demographics comparison between experts and novices. Continuous variables are presented
as mean (standard deviation) and their p-values were calculated using t-test. For sex, the p-value was
calculated using a chi-squared test. DDS: Drexel Defusion Scale. FFMQ: Five Facets Mindfulness
Questionnaire. BDI: Beck Depression Inventory.



TABLE 2

Cluster region pFDR kE Tmax x y z

L visual association <0.001 967 3.4 -28 -75 -15

R visual association <0.001 576 3.6 39 -85 13

R temporal pole <0.001 206 -3.7 48 13 -37

R dorsal PCC <0.003 127 -3.4 13 -30 44

R supramarginal 0.005 106 -2.8 55 -32 30

R visuomotor 0.014 114 -3.8 12 -53 71

Table 2:  Surface-based analysis  of  the  RS’s  eccentricity.  All  eccentricity  cluster  were lower  for
experts than for novices, except for the bilateral visual cortex. PCC: Posterior Cingulate Cortex.



TABLE 3

Cluster region pFDR kE Tmax x y z

L superior temporal <0.001 854 -4.00 -50 0 -6

R parahippocampal <0.001 774 -3.93 32 -11 -39

R visuomotor <0.001 379 -3.9 37 -47 50

R premotor + SMA <0.001 219 -3.5 5 13 71

L supramarginal <0.001 148 -3.3 -48 -40 46

L premotor + SMA 0.001 105 -2.8 -32 -1 52

L angular 0.002 128 -3.4 -31 -50 38

L visuomotor 0.002 105 -3.3 -9 -46 41

R dorsal PCC 0.004 95 -3.9 -10 -12 43

L ventral ACC 0.015 106 -3.2 -10 -12 43

L medial temporal 0.027 85 -3.2 -45 -52 12

Table 3:  Surface-based analysis of  the  averaged states'  eccentricity.  All  eccentricity  cluster  were
lower  for  experts  than  for  novices.  SMA:  Supplementary  motor  area.  PCC:  Posterior  Cingulate
Cortex. ACC: Anterior Cingulate Cortex.  



Figure 1

Figure  1  Effect  of  long-term meditation  practice  on  eccentricity  maps:  (A)  Visualization  of
dispersion metrics within the three-gradient space. The eccentricity value of a vertex corresponds to
the Euclidean distance from the barycenter  (depicted by a  black dot)  of  the  3D space.  For  each
individual 3D map, we computed an eccentricity map defined by the Euclidean distance from each
vertex to the individual barycenter of the 3D space (21,37). These maps reflect the integration (low
eccentricity)  and  segregation  (high  eccentricity)  within  the  connectome  for  each  voxel  of  each
participant. We then quantified the dispersion metrics, which represents the segregation of large-scale
networks (21). The within-network dispersion is calculated as the sum squared Euclidean distance of
network  vertices  to  the  network  barycenter.  Between-networks  dispersion  is  quantified  as  the
Euclidean  distance  between  network  barycenters  (21).  (B)  The  first  gradient  (left)  denotes  the
cognitive hierarchy of the brain, ranging from the unimodal cortex to the DMN. The second gradient
(middle)  differentiates  the  visual  cortex  from  other  networks,  while  the  third  gradient  (right)
segregates the limbic network. (C) Visualization of the cortical parcellation  (63) used in (A). The
color code corresponds to the one in Figure 1A (D) The eccentricity map describes a continuous
coordinate system, where a lower value signifies that the vertex is closer to the barycenter of the 3D
space. Sensory regions, including the visual and somatomotor cortex, and the DMN tend to be the
least integrated regions. Although the average maps of experts and novices are similar overall, it is
evident that eccentricity values are visually lower for experts than novices, except within the visual



cortex.   (E) Surface-wide statistical comparisons between novices and experts are presented, with
increases/decreases in experts shown in red/blue. Findings were obtained using surface-based linear
models  implemented  in  SurfStat  during  RS.  They  show  statistically  significant  differences  in
eccentricity values between experts and novices particularly in the bilateral visual cortex and within
the right hemisphere of the brain. Specifically, experts had decreased eccentricity in the right temporal
pole, dorsal posterior cingulate cortex, supramarginal gyrus and visuomotor cortex (Table 2). On the
other  hand,  only  one  bilateral  cluster  within  the  visual  association  cortex  showed  increased
eccentricity for experts. This finding indicates that the visual cortex’s cluster is more segregated in
experts than in novices, whereas all the other clusters were more integrated. (F) A global histogram
analysis confirms that, overall, eccentricity values are qualitatively lower for experts than for novices,
except for vertices belonging to the visual cortex.

 



Figure 2

Figure  2  Comparison  of  networks’  dispersion  between  experts  and  novices  during  several
mental states: (A) Visual explanation of the dispersion metrics using the RS as an example. The first
row of each matrix shows the average vertex-wise eccentricity of each network, referred to as the
average embedding  (21).  The remaining dispersion metrics  display the within-network dispersion
(diagonal in green) and the between-network dispersion (the remaining squares). Significance was
tested using bootstrap-t tests  (39), and 95% confidence intervals are plotted in each box. The color
blue (respectively red) indicates that the average eccentricity value was lower (respectively higher) for
experts than novices. Bright-colored boxes indicate significant tests (p<0.05), medium-colored boxes
indicate a trend (0.1>p>0.05), while light-colored boxes indicate non-significant tests (p>0.1). The
tests  are  not  corrected  for  multiple  comparisons.  The  results  indicate  that  the  several  dispersion
metrics  decreases  in  experts  compared  to  novices  during  the  RS,  which  was  expected  based  on



previous analyses (Figure 1), except for the visual cortex, which is not significant here. Here, a higher
between-network dispersion reflects a weaker connectivity between two networks and a higher within
network dispersion, a lower connectivity between the voxels of a given network. We performed a
brain parcellation in large-scale networks (63), commonly utilized in conjunction with diffusion map
embedding (16,20). Using Studentized bootstrap tests (see details in SM), we found that, overall, the
dispersion of the visual network did not increase for experts within the 3D space during the RS, as we
would have expected from the surface-based analysis. However, the dispersion of the limbic network
decreased  (t=0.51;  p=0.045),  and  marginally  decreased  for  the  somatomotor  (t=0.45;  p=0.069),
ventral  attention  (t=0.46;  p=0.064),  and  DMN  networks  (t=0.44;  p=0.073).  Furthermore,  the
dispersion  within  the  ventral  attention  (t=0.63;  p=0.015),  frontoparietal  (t=0.68;  p=0.007),  and
default-mode  (t=0.55;  p=0.022)  networks  also  decreased.  We  observed  a  decrease  of  dispersion
between the limbic network on one side and the somatomotor (t=0.51; p=0.031),  dorsal  attention
(t=0.52; p=0.025), and ventral attention (t=0.49; p=0.035) on the other side, and between the ventral
attention and the DMN (t=0.55; p=0.03). (B) Dispersion metrics during open presence. Similarly to
the resting state, all significant results show a decreased dispersion for experts. However, the results
are not  identical  between the two states,  which suggests a modulation of the states by expertise.
Specifically,  the  average  eccentricity  of  the  dorsal  attention  (t=0.69;  p=0.007),  ventral  attention
(t=0.57; p=0.027), limbic (t=0.5; p=0.048), and frontoparietal (t=0.61; p=0.018) networks decreased
within the 3D space, and marginally for the somatomotor (t=0.52; p=0.056) cortex for the experts
compared to the novices. The eccentricity also decreased within the dorsal (t=0.82; p=0.002) and
ventral attention (t=0.55; p=0.033) networks. We also observed a decrease of dispersion between the
frontoparietal network on one side and the somatomotor (t=0.52; p=0.049), ventral attention (t=0.71;
p=0.007) and limbic network (t=0.49; p=0.032) on the other side and between the somatomor cortex
and the dorsal attention network (t=0.59; p=0.018) for experts. (C) Dispersion metrics during loving-
kindness compassion. This state appears to be more similar for both groups than the other states. (D)
Mixed-ANOVA analysis between group and state of the average eccentricity. Only the state effect
was significant. Post-hoc tests reported on the figure are not corrected for multiple comparisons.  (E)
A  stochastic  gradient  descent  classifier  was  trained  on  the  dispersion  metrics  (A-C)  to  decode
expertise. The training was performed on a subsample of the three states or the average of the three
states. The classifier was tested on the same metrics of the remaining sample, either from the same
state  or  from a different  state,  using  AUC.  Results  showed that  the  RS state  cannot  be used  to
significantly decode the effect of expertise. The SVC was able to decode expertise when trained and
tested on OP (p=0.027). However, it was not able to generalize to the other states. Only the average of
the three states was able to decode expertise (p=0.021)  and to generalize to the OP (p=0.02) and RS
(p=0.046)  states. These results suggest that the average of the three states was the best way to capture
an effect of expertise that would be present across all states. Additionally, the results confirm that the
compassion state was very similar between experts and novices, as it  was not possible to decode
expertise in this state or when trained on it. There was no group difference during LKC  (rv=0.30,
p=0.21) confirming the finding with the multivariate approach. We confirmed this negative finding on
the  individual  dispersion measures, which showed minimal variation between experts and novices,
converging with the previous analysis.  By contrast,  there was an overall  group difference on the
dispersion measures (rv=0.079, p=0.024) during OP/OM states. This global effect was driven again
by reduced dispersion, yet with a somewhat distinct pattern from RS.



Figure 3

Figure  3  Expertise  and  traits  effect  on  networks’  dispersion:  (A)  Dispersion  metrics  after
averaging RS, OP and LKC gradients. Colors are explained in Figure 2A. The red underlines indicate
which dispersion metrics contribute significantly to the decoding of expertise (Figure 2E). Again, the
results suggest that the dispersion of many networks decrease in experts compared to novices. This
effect should reflect the expertise effect on the brain's dispersion metrics and be less influenced by
state modulation. We found a significant decrease average eccentricity for the experts of the dorsal
attention using a Studentized bootstrap (t=0.54; p=0.046), limbic (t=0.61; p=0.017) networks, close to
significance for the somatomotor (t=0.51; p=0.058) network and within the dorsal (t=0.57; p=0.029)
and ventral attention (t=0.6; p=0.02) networks. Additionally, we observed a decrease in dispersion
between  the  limbic  network  and  the  somatomotor  (t=0.52;  p=0.038),  ventral  attention  (t=0.48;
p=0.039), and fronto-parietal (t=0.56; p=0.021) networks, as well as between the ventral attention and
the fronto-parietal  (t=0.51;  p=0.037)  networks,  and between the dorsal  attention network and the
somatomotor cortex (t=0.62; p=0.012). (B) Surface-wide statistical comparisons between novices and
experts after averaging RS, OP and LKC eccentricity maps. Many clusters mainly belonging to the
sensorimotor (SM), dorsal attention (DA), ventral attention (VA), and limbic (Lim) networks show
less dispersed vertices for experts than for novices. (C) The B2B regression method was computed,
using the indicated labels as features and dispersion metrics as signals. An encoder was used on top of
a decoder to determine the importance of features despite their  shared covariance.  The DDS was



found to be the only significant feature (β=0.31; p=0.043). (D) The dispersion metrics were used to
predict DDS scores using B2B on each metric. The color code is the same as in Figure 2A with the
difference that blue corresponds to an anti-correlation and red to a correlation between the DDS and
the corresponding dispersion metric.  The results  show that the DDS can predict  mainly the same
metrics that are significant in Figure 3A. A higher DDS trait score is associated with less dispersion in
these metrics. More specifically,  a higher DDS score was associated with lower average eccentricity
in SM (β=0.13; p=0.023), VA (β=0.09; p=0.046) and limbic (β=0.11; p=0.034) networks. A higher
DDS score was also associated with less dispersion between the SM network on one side and the DA
(β=0.21; p=0.006), VA (β=0.1;  p=0.038),  limbic networks (β=0.15;  p=0.016),  and DMN (β=0.11;
p=0.029) on the other side, and between the limbic and the VA networks (β=0.11; p=0.036), and
between the FP network and the DMN (β=0.15; p=0.015).


