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Abstract 1. This paper explores neighborhood-based T0, T1 & T2 separation axioms in graph theory.

These separation axioms classify graphs based on their structural properties concerning vertex neigh-

borhoods. We examine theoretical concepts, provide proofs for various types of graphs and explore

the implications of these axioms. The findings contribute to understanding graph connectivity and

separation, with potential applications in materials science and network design.
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Indroduction

Graph theory plays a crucial role in mathematical modeling, computer science, and network

analysis. The T0, T1 & T2 separation axioms provide a framework for analyzing vertex relationships

within graphs. These axioms, derived from topology, help classify graphs based on vertex distin-

guishability through neighborhood structures. This paper defines and analyzes T0, T1 & T2 graphs,

presenting theorems and proofs to characterize various graph types, including complete, bipartite,

and cyclic graphs. Understanding these axioms enhances the study of structural properties and

connectivity in complex networks.

Throughout this article, we let G be a simple graph, V (G), E(G) respectively the vertex and

edge sets of G.

Definition 1. The neighborhood of a vertex v in V (G) is denoted by N(v) and is defined as N(v) =

{u ∈ V (G) : u adj. v}

Definition 2. A graph G is said to be a T0 graph if for every pair of vertices u and v of G, there

exists a neighborhood N(w), where w is distinct from u and v, which contains one of u or v, but not

both.

Examples

G1:

v3 v4

v2 v1

G2:

v2 v3

v1

G1 is T0 G2 is not T0

It is easy to see from the definition that the order of a T0 graph is greater than or equal to 3, and

must have at least one edge. Thus an empty graph is not T0.

Proposition 1. The order of a T0 graph is greater than 3.

Proof: Let us consider all possible simple graphs of order 3. For the existence of a neighborhood,

there should be at least one edge. Thus the possibilities are :
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G1: v1 v2 v3
G2: v2 v3

v1

G3: v1 v2 v3

Not T0 (Consider v1, v3) Not T0 (Consider any two vertices) Not T0 (Consider v1, v2)

Thus a T0 graph contains at least 4 vertices.

Theorem 1. The complete graph Kn is not T0 for any n.

Proof: In Kn each vertex is adjacent to all other vertices. So the neighborhood of any vertex

contains all other vertices.

Theorem 2. The complete bipartite graph G = Kmn for m,n ≥ 2 is not T0.

Proof: Let V (G) = V1 ∪ V2. Suppose V1 = {p1, p2, · · · , pm} and V2 = {q1, q2, · · · , qn}.

G:
q1 q2 qn

p1 p2 pn

In G, qi is adjacent to pj ∀i, j. Therefore N(qi) = V1 and N(pj) = V2. So Kmn is not T0.

Theorem 3. The cycle Cn with n vertices is T0 ∀n > 4.

Proof: C4 is not T0.

C4:

v4 v3

v1 v2

Consider v1, v3.

Consider Cn for n > 4 Cn: vjvi

Consider any two vertices vi and vj (i < j) of Cn. If vi adjacent to vj, then j = i+1 and N(vi−1)

contains vi not vj. If vi not adjacent to vj, then N(vi−1) or N(vi+1) will contain vi not vj. Thus Cn

is T0 for n ≥ 5.

Theorem 4. The path Pn of n vertices is T0 for n > 3.

Proof:

Pn: v1 v2 vn

Consider any two vertices vi and vj (i < j) of Pn. If vi adjacent to vj, then j = i+1 and N(vi−1)

contains vi not vj. If vi not adjacent to vj, then N(vi−1) or N(vi+1) will contain vi not vj. Thus Pn

is T0 for n ≥ 4.
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Theorem 5. A graph is T0 iff each of its component is so.

Proof: Let G be a T0 graph. If G is connected, done. Suppose not. Let G has r components.

Consider an arbitrary component Gk of G. If Gk is not T0 then there exists vertices u and v of Gk

such that the neighborhood N(w) of any vertex w ̸= u, v contains both u and v, which in turn makes

G not T0. Thus G is T0 implies each of its component is T0.

Conversely assume that each component of G is T0. Then obviously G is T0.

Corollary 1. Let G be a graph with n vertices. If Kn, n > 2 is a component of G, then G is not T0

.

Theorem 6. The T0 axiom is preserved under isomorphism.

Proof: Let G1 be a T0 graph and suppose that G1 ≈ G2. By suitably redrawing G2 can be

identified with G1. Thus G2 is also T0.

Theorem 7. The join of two T0 graphs is again T0.

Proof: Let G1 and G2 be two T0 graphs and suppose G = G1 ∨ G2, the join of G1 and G2.

Consider any two vertices u1 and u2 of G. If u1 and u2 are in G1 (or in G2), which is T0, there exists

a vertex v in G1 (or in G2) such that N(v) contains either u1 or u2 but not both. Suppose u1 is in

G1 and u2 is in G2. Since G1 is T0 there exists a vertex v in G1 such that N(v) does not contain u1,

but it contains u2 in G. Thus G is T0.

Definition 3. A graph G is said to be a T1 graph if for every pair of vertices u and v of G, there

exists a neighborhood N(w), where w is distinct from u and v, which contains u but not v (and hence

there exists another N(w′) containing v but not u).

Examples

G1: G2:

G1 is T1 G2 is not T2

Remark: It is obvious that every T1 graph is T0 but the converse is not true (the graph G2 above

is T0 but not T1).

Proposition 2. Since every T1 graph is T0, we have the following:

(a) The order of a T1 graph is greater than 3.

(b) The complete graph Kn is not T1.

(c) A T1 graph cannot contain Kn as its component for any n > 1.
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(d) The complete bipartite graph Kmn is not T1.

Theorem 8. The cycle Cn with n vertices is T1 ∀n ≥ 5.

Proof: C4 is not T1.

C4 :

v4 v3

v1 v2

Consider the vertices v1 and v3.

Consider Cn for n > 4 Cn: vjvi

Consider any two vertices vi and vj (i < j) of Cn. If vi adjacent to vj, then j = i + 1. In this

case, N(vi−1) contains vi not vj and N(vj+1) contains vj not vi. If vi not adjacent to vj, then either

vi ∈ N(vi−1) and vj ∈ N(vj+1) or vi ∈ N(vi+1) and vj ∈ N(vj−1). Thus Cn is T1 for n ≥ 5.

Theorem 9. The path Pn of n vertices is not T1 for any n.

Proof:

Pn: v1 v2 v3 vnvjvi

Consider the vertices v1 and v2. The only neighborhood of v1 is v2 and hence Pn is not T1.

Theorem 10. A graph is T1 iff each of its component is so.

Proof: Let G be a T1 graph. If G is connected, done. Suppose not. Let G has r components.

Consider an arbitrary component Gk of G. If Gk is not T1 then there exist vertices u and v of Gk

such that either every neighborhood N(w) of any vertex w ̸= u, v contains both u and v (as in Kn)

or at least one of u or v does not have such a neighborhood. In either case G not T1. Thus G is T1

implies each of its component is T1.

Conversely assume that each component of G is T1. Then obviously G is T1.

Theorem 11. In a T1 graph G, δ(v) ≥ 2 ∀ v ∈ V (G).

Proof: A vertex of degree 0 is not a neighbor of any vertex. If d(v) = 1, then v has only one

neighbor, say u. Then {u, v} cannot be separated by neighborhoods N(u′) and N(v′)(u′, v′ ̸= u, v)

as in the definition of a T1 graph. Thus in a T1 graph, δ(v) ≥ 2.

Theorem 12. The T1 axiom is preserved under isomorphism.

Proof: Let G1 be a T1 graph and suppose G1 ≈ G2. By suitably redrawing G2 can be identified

with G1. Thus G2 is also T1.
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Theorem 13. The join of two T1 graphs is never T1.

Proof: Let G1 and G2 be two T1 graphs and suppose G = G1 ∨ G2, the join of G1 and G2. Let

u and v be any two vertices of G where u ∈ V (G1) and v ∈ V (G2). G1 is a T1 graph and therefore

there is a vertex u′ in G1 such that N(u′) does not contain u. Also each vertex in G1 is adjacent to

every vertex of G2 and thus every such N(u′) will contain v. So we cannot find a vertex w in V (G1)

or in V (G2) such that u ∈ N(w) and v /∈ N(w). Hence G is not T1.

Definition 4. A graph G is said to be a T2 graph if for every pair of vertices u and v of G there

exists disjoint neighborhoods N(u′), N(v′) (where u, v ̸= u′, v′) such that u ∈ N(u′) and v ∈ N(v).

Examples

G1:

G1 is T2

G2 :

v4 v3

v1 v2

G2 is not T2

Remark: It is obvious that every T2 graph is T1 and therefore T0., but the converse is not true

(C5 is T1 but not T2).

Proposition 3. Since every T2 graph is T1, we have the following:

(a) The order of a T2 graph is > 3.

(b) The complete graph Kn is not T2.

(c) A T2 graph cannot contain Kn as its component for any n > 1.

(d) The complete bipartite graph Kmn is not T2.

(e) The path Pn of n vertices is not T2 for any n.

(f) In a T2 graph G, δ(v) ≥ 2 for every v ∈ V (G)

Theorem 14. The cycle Cn with n vertices is T2 ∀ n ≥ 7.

Proof: C6 is not T2.

C6:

v6

v1

v2

v3

v4

v5

Consider the vertices v3 and v5.

Consider Cn for n ≥ 7 Cn:
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Consider any two vertices vi and vj (i < j) of Cn. If vi adjacent to vj, then j = i+1. In this case

N(vi−1) and N(vj+1) are disjoint neighborhoods containing vi and vj respectively. If vi not adjacent

to vj, then either N(vi−1) and N(vj+1) or N(vi+1) and N(vj−1) are disjoint neighborhoods containing

vi and vj. Thus Cn is T2 for n ≥ 7.

Theorem 15. A graph is T2 iff each of its component is so.

Proof: Let G be a T2 graph. If G is connected, done. Suppose not. Let G has r components.

Consider an arbitrary component Gk of G. If Gk is not T2 then there exists a pair of vertices u

and v of Gk every neighborhood N(u′), N(v′) (where u, v ̸= u′, v′) containing u and v has at least a

common vertex in them. In any case G not T2. Thus G is T2 implies each of its component is T2.

Conversely assume that each component of G is T2. Then obviously G is T2.

Theorem 16. Isomorphisms preserve the T2 axiom.

Proof: Let G1 be a T0 graph and suppose G1 ≈ G2. By suitably redrawing G2 can be identified

with G1. Thus G2 is also T2.

Theorem 17. The join of two T2 graphs is never T2.

Proof: We know that every T2 graph is T1 and the join of two T1 graphs is never T1. Thus the

join of T2 graphs is not T2.

Conclusion

Conclusion This paper presents a comprehensive study of neighborhood-based T0, T1, and T2

separation axioms in graph theory. Through definitions, examples, and theorems, we demonstrated

how these axioms classify different types of graphs and their components. The study enhances the

understanding of graph properties, contributing to various applications in science and engineering.

Further research could explore the computational aspects of these axioms in larger and more complex

networks.
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