
HAL Id: hal-04808057
https://hal.science/hal-04808057v1

Submitted on 27 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cluster-based solution for virtual and augmented reality
applications

Antoine Tarault, Thomas Convard, Patrick Bourdot, Jean-Marc Vézien

To cite this version:
Antoine Tarault, Thomas Convard, Patrick Bourdot, Jean-Marc Vézien. Cluster-based solution for
virtual and augmented reality applications. 3rd International Conference on Computer Graphics and
Interactive Techniques in Australasia and South East Asia, Nov 2005, Dunedin, New Zealand. pp.293-
296, �10.1145/1101389.1101448�. �hal-04808057�

https://hal.science/hal-04808057v1
https://hal.archives-ouvertes.fr

Cluster based solution for virtual and augmented reality

applications
Antoine Tarault

LIMSI-CNRS
BP 133

F-91403 ORSAY CEDEX,
FRANCE

+33 (0)1-69-85-81-70

tarault@limsi.fr

Thomas Convard
LIMSI-CNRS

BP 133
F-91403 ORSAY CEDEX,

FRANCE
+33 (0)1-69-85-80-32

convard@limsi.fr

Patrick Bourdot
LIMSI-CNRS

BP 133
 F-91403 ORSAY CEDEX,

FRANCE
+33 (0)1-69-85-81-73

bourdot@limsi.fr

Jean-Marc Vézien

LIMSI-CNRS
BP 133

 F-91403 ORSAY CEDEX,
FRANCE

+33 (0)1-69-85-81-67

vezien@limsi.fr

ABSTRACT

This paper presents a cluster based architecture designed for an

augmented reality interface. It can manage and synchronize video

flows as well as deformable objects coming from several

computers, on top of OpenSceneGraph. It was also designed to be

easy of use and lies on commercial software called RTMaps®,

which allows a graphical programming of the cluster based

application. We present this system applied to an augmented

reality interface for remote driving called SACARI.

Keywords

Augmented Reality, graphical Cluster, Scene graphs

1. INTRODUCTION
In recent years, PC platform have become the most used

architecture to develop Virtual and Augmented Reality (V&AR).

However, the hardware of a PC is not powerful enough to support

high-end application such as a display in a full immersive

environment. Indeed, this kind of displays, such as CAVE [1] or

Workbench [2] needs several stereoscopic projections. One

solution would be to integrate multiple graphic boards in a single

PC. This approach, exploited in NVidia® SLITM and Alienware®

Video ArrayTM, is unfortunately not yet validated for VR

applications. The only remaining solution is to use a PC cluster to

display a VR application in several screens. Compared to a shared

memory solution, this approach is far less expensive and more

performing, but needs more software developments.

The latest software have allowed to use such PC clusters, but they

are uneasy of use and not always tuned for specific applications.

Our system allows the distribution of a V&AR application over

the nodes of a cluster, each part of the application being a

“component” that can be placed in a graphical interface.

The different constraints of this work were:

1. Easy of use: the different components of the system

should be easily integrated

2. Modularity: each part of the system should be tested

separately

3. Genericity: the system should support Virtual Reality

applications as well as Augmented Reality applications

2. RELATED WORK
There are three main approaches in the literature for cluster

graphics, each corresponding to a level of distribution: the

application level, the scene graph level and the graphical

commands level.

The approach of Chromium [5] (formerly WireGL [6]), is to

broadcast OpenGL commands emitted by the master to the slaves.

This approach was developed in order to perform tiled rendering,

but is also viable for multi wall VR rendering systems. The main

advantage of this method is that desktop applications can be

ported to PC clusters without any modification of their codes, by

tuning Chromium configuration files. But in this kind of

architecture, the slave graphical nodes are the replica of the

master, except for the point of view of the scene and the

projection. The slave nodes cannot integrate data coming from

other cluster nodes to their scene. The scene cannot be different

from the master node in any way. That means that most of the

load of the application is on the master node. Another backdraw is

that for the moment, such architecture doesn’t support adaptative

stereo.

Another option is to replicate the VR application on each node of

the cluster (Figure 1). This is the approach chosen in Net-Juggler

[3], a cluster extension for VR-Juggler [4]. In this case,

applications must share input events and must be synchronized at

each frame buffer swap. This is particularly efficient when an

application was already developed with VR-Juggler. However,

this scheme is the opposite of a true distributed system: for a

complex application, resource consuming tasks will be replicated

“as is" on each node of the cluster.

The last approach, the closest to ours, is to replicate only the

scene descriptor (also known as scene graph) over the PC cluster.

This architecture, developed in Syzygy [7] and Avango [8]

enables a single master application to manage and share

synchronized updates of a scene with slave nodes using a

distributed scene graph.

Figure 1. (top) Application replication approach. (left)

scene graph distribution approach. (right) OpenGL

command broadcasting approach.

Our system can be defined as being between these two last

approaches. You can tune it to a totally applicative level, or to a

level closest to scenegraph level, depending on the need of your

application and features of the cluster.

3. ARCHITECTURE
Our cluster based system is composed of two main products:

RTMaps® and OpenSceneGraph. Our immersive device is

biplane, but the system is extensible to any number of faces. We

have developed a package that uses OpenSceneGraph for

RTMaps®, and we have extended this package for it to support a

CAVE multi-displays environment.

We chose to use a master-slave architecture for our system. All

the information is collected on the master node: 6 DOF trackers

for the wand and the head, and data related to the scene graph.

Each slave node is a graphical node connected to a face of the

CAVE (see fig. 2). The master node communicates with the slave

node via a gigabit network.

3.1 Graphical Data
There are two main kinds of graphical data that are exchanged

between the master node and the slave nodes.

First, the Modelview matrix and the virtual camera features are

transmitted. The Modelview matrix corresponds to the position

and orientation of the virtual camera in the scene. This matrix is

transmitted to each slave node, for them to know the position of

the virtual camera. Then a transformation proper to each slave

node is applied depending on the position of the screen towards

the main camera (see fig. 3).

Other features of the camera are transmitted:

 Stereo features (stereo mode (anaglyph, quad buffer), screen

distance, fusion distance, eye separation)

 Frustum

Then, stereo features and frustum can be adjusted in real time.

The Modelview matrix and other camera feature are synchronized

in the slave nodes with the master Node, together with the update

of the scene, for the refresh of the screens to be synchronous.

3.2 Distribution of the peripheral data
To collect the peripheral data, we use a software developed by the

LIMSI-CNRS: VeServer [9]. It is a real time client/server

architecture that can drive synchronously the peripheral he is in

charge with. It can collect data from numerous devices

(ARTTrack tracker, MotionStar tracker, ViaVoice voice

recognition software, …), coming from different computers. We

use that software to take back peripheral data to the master node.

The mouse is managed separately, its position on the

OpenSceneGraph window being directly related to this last

software. Clicks, movements and wheel rolling of the mouse are

transformed to RTMaps® events. We multicast all the peripheral

data that are useful to the slave nodes, in a FIFO buffer with the

RTMaps® software (see fig.4). By useful, we call data that are

relevant for the slave node such as a mouse click that changes the

state of a node of the graph. Not useful data are those that only

affect the camera position, for example.

Master Node

Slave Node

Node

Slave Node

Node

Modelview +

Camera features

(broadcast)

Figure 2. Our 2 face CAVE architecture

6 DOF Tracker

Components

Multicast

sender component

Mouse events

component

Master Viewer

Component

(intrinsic broadcast

sending) Gigabit network

Multicast

receiver component

Slave Viewer

Component

(intrinsic broadcast

reception)

Figure 4. Distribution of the different date to the slave

Node

Figure 3. Distribution of the Modelview to a 2 faces CAVE

Offset: -π/4

Offset: π/4

Camera associated to

the Modelview

3.3 Distribution of the Video Data
Another challenge in designing a cluster architecture for an

augmented reality application is the distribution of the video

stream. In such a system, we have two separate video streams, one

corresponding to the left eye, and one corresponding to the right

eye. To resynchronize left and right eye, each image is attached to

a Timestamp, corresponding to the capture time of the two

images. The images can be sent from the remote site to the slave

nodes with a classical JPEG compression.

4. APPLICATIONS
We have tested this architecture on two kinds of applications.

First, a car driving simulator, then, a remote stereo video

visualization.

4.1 The car driving simulation
This application is a simulation of the driving of a semi-

autonomous vehicle. Several data must be transmitted from the

master node to the slave nodes (see fig. 5):

 The path of the vehicle, chosen by the remote driver

 The last position of the next trajectory

 The orientation of the vehicle at the end of the next trajectory

This data is only coming from a 6DOF tracker. The mouse events

for starting/stopping the simulation are only used by the master

node, because those data only affect the position of the camera.

This example allow discovering the first design rule in such a

cluster architecture: graphical data must be totally decorrelated

with other data. In this case, the path of the vehicle must only be

dependant of the data directly concerning it: distance, orientation,

final angle, and calculated path. The distributed diagram is then

the one presented figure 6.

We can see that the graphical data specific to the slaves are only

duplicated on the slaves node. That’s why this system is fully

distributed: each part of the cluster has specific computing.

Master node is in charge with path calculation, collision of the

vehicle with the ground, peripheral data grabbing, and camera

position calculation. Slave nodes are only in charge with graphical

nodes, which are not necessary on the master node but for

possible monitoring.

Tests for this applications where made with Performer® town (see

fig. 7).

System benches were measured on a cluster system composed of

one master node and two slave nodes equipped with NVidia

Quadro NVS 400 graphic cards for genlocking and framelocking

Distance

Orientation

Final Position

of the trajectory

Final Orientation

of the vehicle

(Final Angle)

Figure 5. Data associated to the supervision of the vehicle

Mouse events

component

6DOF Tracker

components

Tracker values

→ real values

convertors

Path

calculation

Multicast

sender

Switch supervision /

remote driving

Master

Viewer

Multicast

Receiver

Path

graphical node

Slave Viewer

Figure 6. RTMaps® diagram for the driving application

Figure 7. Remote driving / supervision application

capabilities (see table 1). The network theoretical bandwidth is 1

Gbits/s (700 Mbits/s in practice). Cluster nodes run on Microsoft

Windows operating system (see table 1).

Table 1. System benches

Configuration Performances

Single

1 Master + 2 Slaves

4.2 Remote Stereo Video Application
The purpose of this application is to transmit a stereo video stream

to a remote user. The stereo camera is mounted on a turret for the

remote user to see most of the remote environment.

The main advantage of this system is that is specifically designed

for video capture and transmission through a network. Video is

captured in the remote site via a RTMaps® component that we

developed. A timestamp is associated to each pair of frame. This

video is transmitted to each slave node, because as we said before,

data that is only relevant for graphics is directly transmitted and

computed by the slave nodes. In this application not only video is

necessary for the slave nodes, but also position of the head, for the

texture to be moved on the CAVE walls (see fig. 8). In this

application, no camera’s position broadcasting is necessary,

because the video texture doesn’t depend on the virtual camera

position, but on the head orientation.

5. CONCLUSION
Our system has proven to be really easy of use, modular, and

generic, supporting VR applications as well as AR applications.

The main backdraw of the system is that each application has a

specific distribution on the master and the slaves. But it is also its

force: we have a truly distributed system, which can be tuned

depending of the performances of each node of the cluster.

Further developments of this system could be to manage

adaptative stereo, which is a changing stereo depending on the

position of the user. For the moment, we only consider the user

being at one specific point. Such a system should be easily

integrable, because we currently transmit all the camera features

to each node of the graph.

6. REFERENCES
[1] Cruz-Niera, Sandin, D., DeFanti, T. Surround-Screen

Projection-Based Virtual Reality : The Design and

Implementation of the CAVE. In Proceedings of SIGGRAPH

’93, Anaheim, CA, 1993.

[2] Kruger, W., Bohn, C., Frohlich, B., Schuth, H., Strauss, W.,

Weshe, G. The Responsive Workbench: A Virtual Work

Environment. IEEE Computer 28, 1995, 42-48.

[3] Allard, J., Gouranton, V., Lecointre, L., Melin, E., Raffin, B.

NetJuggler : Running VRJuggler with MultipleDisplays on a

Commodity Component Cluster. In IEEE Virtual Reality

Conference ’02, Orlando, Florida, 2002, 273

[4] Bierhaum, A., Just, C., Hartling, P., Meinert, K., Baker, A.,

Cruz-Neira, C. VRJuggler, A Virtual Platform for Virtual

Reality Application Developpment. In IEEE Virtual Reality

Conference ’01, Yokohama, Japan, 2001

[5] Humphreys, G., Houston, M., Ng, R., Frank, R., Ahern, S.,

Kirshner, P. D., Klosowski, J.T. Chromium: A Stream

Processing Framework for Interactive Rendering on Clusters.

ACM Transactions on Graphics. In Proceedings of

SIGGRAPH ’02, San Antonio, Texas, 2002, 693-702

[6] Humphreys, G., Eldridge, M., Buck, I., Stoll, G., Everett, M.,

Hanrahan, P.: WireGL: A Scalable Graphics System for

Clusters. In Proceedings of SIGGRAPH ’01, Los Angeles,

California, 2001, 129-140

[7] Schaeffer, B., Goudeseune, C. Syzygy: Native PC Cluster

VR. In Proceedings of IEEE Virtual Reality Conference ’03,

2003, 15-22

[8] Tramberend, H. Avango: A Ditributed Virtual Reality

Framework. In Proceedings of IEEE Virtual Reality ’99, JW

Mariott Hotel, Houston, Texas, USA, 1999

[9] Touraine, D., Bourdot, P., Bellick, Y., Bolot, L. A

framework to manage multimodal fusion of events for

advanced interactions within Virtual Environments, 8th

Eurographics Workshop on Virtual Environment (EGVE

’02), Barcelona, 2002

Figure 8. Remote stereo video principle

