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ABSTRACT 

This paper presents a cluster based architecture designed for an 

augmented reality interface. It can manage and synchronize video 

flows as well as deformable objects coming from several 

computers, on top of OpenSceneGraph. It was also designed to be 

easy of use and lies on commercial software called RTMaps®, 

which allows a graphical programming of the cluster based 

application. We present this system applied to an augmented 

reality interface for remote driving called SACARI. 
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1. INTRODUCTION 
In recent years, PC platform have become the most used 

architecture to develop Virtual and Augmented Reality (V&AR). 

However, the hardware of a PC is not powerful enough to support 

high-end application such as a display in a full immersive 

environment. Indeed, this kind of displays, such as CAVE [1] or 

Workbench [2] needs several stereoscopic projections. One 

solution would be to integrate multiple graphic boards in a single 

PC. This approach, exploited in NVidia® SLITM and Alienware® 

Video ArrayTM, is unfortunately not yet validated for VR 

applications. The only remaining solution is to use a PC cluster to 

display a VR application in several screens. Compared to a shared 

memory solution, this approach is far less expensive and more 

performing, but needs more software developments. 

The latest software have allowed to use such PC clusters, but they 

are uneasy of use and not always tuned for specific applications.  

Our system allows the distribution of  a V&AR application  over 

the nodes of a cluster, each part of the application being a 

“component” that can be placed in a graphical interface.  

The different constraints of this work were: 

1. Easy of use: the different components of the system 

should be easily integrated 

2. Modularity: each part of the system should be tested 

separately 

3. Genericity: the system should support Virtual Reality 

applications as well as Augmented Reality applications 

 

2. RELATED WORK 
There are three main approaches in the literature for cluster 

graphics, each corresponding to a level of distribution: the 

application level, the scene graph level and the graphical 

commands level. 

The approach of Chromium [5] (formerly WireGL [6]), is to 

broadcast OpenGL commands emitted by the master to the slaves. 

This approach was developed in order to perform tiled rendering, 

but is also viable for multi wall VR rendering systems. The main 

advantage of this method is that desktop applications can be 

ported to PC clusters without any modification of their codes, by 

tuning Chromium configuration files. But in this kind of 

architecture, the slave graphical nodes are the replica of the 

master, except for the point of view of the scene and the 

projection. The slave nodes cannot integrate data coming from 

other cluster nodes to their scene. The scene cannot be different 

from the master node in any way. That means that most of the 

load of the application is on the master node. Another backdraw is 

that for the moment, such architecture doesn’t support adaptative 

stereo. 

Another option is to replicate the VR application on each node of 

the cluster (Figure 1). This is the approach chosen in Net-Juggler 

[3], a cluster extension for VR-Juggler [4]. In this case, 

applications must share input events and must be synchronized at 

each frame buffer swap. This is particularly efficient when an 

application was already developed with VR-Juggler. However, 

this scheme is the opposite of a true distributed system: for a 

complex application, resource consuming tasks will be replicated 

“as is" on each node of the cluster.  

The last approach, the closest to ours, is to replicate only the 

scene descriptor (also known as scene graph) over the PC cluster. 

This architecture, developed in Syzygy [7] and Avango [8] 

enables a single master application to manage and share 

synchronized updates of a scene with slave nodes using a 

distributed scene graph. 

 

 

 

 

 

 

 

 

 

 

 

 

    

Figure 1. (top) Application replication approach. (left) 

scene graph distribution approach. (right) OpenGL 

command broadcasting approach. 



Our system can be defined as being between these two last 

approaches. You can tune it to a totally applicative level, or to a 

level closest to scenegraph level, depending on the need of your 

application and features of the cluster. 

 

3. ARCHITECTURE 
Our cluster based system is composed of two main products: 

RTMaps® and OpenSceneGraph. Our immersive device is 

biplane, but the system is extensible to any number of faces. We 

have developed a package that uses OpenSceneGraph for 

RTMaps®, and we have extended this package for it to support a 

CAVE multi-displays environment. 

We chose to use a master-slave architecture for our system. All 

the information is collected on the master node: 6 DOF trackers 

for the wand and the head, and data related to the scene graph. 

Each slave node is a graphical node connected to a face of the 

CAVE (see fig. 2). The master node communicates with the slave 

node via a gigabit network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Graphical Data 
There are two main kinds of graphical data that are exchanged 

between the master node and the slave nodes. 

First, the Modelview matrix and the virtual camera features are 

transmitted. The Modelview matrix corresponds to the position 

and orientation of the virtual camera in the scene. This matrix is 

transmitted to each slave node, for them to know the position of 

the virtual camera. Then a transformation proper to each slave 

node is applied depending on the position of the screen towards 

the main camera (see fig. 3). 

Other features of the camera are transmitted: 

 Stereo features (stereo mode (anaglyph, quad buffer), screen 

distance, fusion distance, eye separation) 

 Frustum 

Then, stereo features and frustum can be adjusted in real time. 

The Modelview matrix and other camera feature are synchronized 

in the slave nodes with the master Node, together with the update 

of the scene, for the refresh of the screens to be synchronous. 

 

 

 

 

 

 

 

 

 

 

3.2 Distribution of the peripheral data 
To collect the peripheral data, we use a software developed by the 

LIMSI-CNRS: VeServer [9]. It is a real time client/server 

architecture that can drive synchronously the peripheral he is in 

charge with. It can collect data from numerous devices 

(ARTTrack tracker, MotionStar tracker, ViaVoice voice 

recognition software, …), coming from different computers. We 

use that software to take back peripheral data to the master node. 

The mouse is managed separately, its position on the 

OpenSceneGraph window being directly related to this last 

software. Clicks, movements and wheel rolling of the mouse are 

transformed to RTMaps® events. We multicast all the peripheral 

data that are useful to the slave nodes, in a FIFO buffer with the 

RTMaps® software (see fig.4). By useful, we call data that are 

relevant for the slave node such as a mouse click that changes the 

state of a node of the graph. Not useful data are those that only 

affect the camera position, for example. 
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Figure 2. Our 2 face CAVE architecture 
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3.3 Distribution of the Video Data 
Another challenge in designing a cluster architecture for an 

augmented reality application is the distribution of the video 

stream. In such a system, we have two separate video streams, one 

corresponding to the left eye, and one corresponding to the right 

eye. To resynchronize left and right eye, each image is attached to 

a Timestamp, corresponding to the capture time of the two 

images. The images can be sent from the remote site to the slave 

nodes with a classical JPEG compression.  

4. APPLICATIONS 
We have tested this architecture on two kinds of applications. 

First, a car driving simulator, then, a remote stereo video 

visualization. 

4.1 The car driving simulation 
This application is a simulation of the driving of a semi-

autonomous vehicle. Several data must be transmitted from the 

master node to the slave nodes (see fig. 5): 

 The path of the vehicle, chosen by the remote driver 

 The last position of the next trajectory 

 The orientation of the vehicle at the end of the next trajectory 

This data is only coming from a 6DOF tracker. The mouse events 

for starting/stopping the simulation are only used by the master 

node, because those data only affect the position of the camera. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This example allow discovering the first design rule in such a 

cluster architecture: graphical data must be totally decorrelated 

with other data. In this case, the path of the vehicle must only be 

dependant of the data directly concerning it: distance, orientation, 

final angle, and calculated path. The distributed diagram is then 

the one presented figure 6. 

 

 

 

 

 

 

 

 

 

We can see that the graphical data specific to the slaves are only 

duplicated on the slaves node. That’s why this system is fully 

distributed: each part of the cluster has specific computing. 

Master node is in charge with path calculation, collision of the 

vehicle with the ground, peripheral data grabbing, and camera 

position calculation. Slave nodes are only in charge with graphical 

nodes, which are not necessary on the master node but for 

possible monitoring. 

Tests for this applications where made with Performer® town (see 

fig. 7). 

 

 

System benches were measured on a cluster system composed of 

one master node and two slave nodes equipped with NVidia 

Quadro NVS 400 graphic cards for genlocking and framelocking 
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Figure 5. Data associated to the supervision of the vehicle 
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Figure 6. RTMaps® diagram for the driving application 

Figure 7. Remote driving / supervision application 



capabilities (see table 1). The network theoretical bandwidth is 1 

Gbits/s (700 Mbits/s in practice). Cluster nodes run on Microsoft 

Windows operating system (see table 1). 

 

Table 1. System benches 

Configuration Performances 

Single  

1 Master + 2 Slaves  

 

4.2 Remote Stereo Video Application 
The purpose of this application is to transmit a stereo video stream 

to a remote user. The stereo camera is mounted on a turret for the 

remote user to see most of the remote environment. 

The main advantage of this system is that is specifically designed 

for video capture and transmission through a network. Video is 

captured in the remote site via a RTMaps® component that we 

developed. A timestamp is associated to each pair of frame. This 

video is transmitted to each slave node, because as we said before, 

data that is only relevant for graphics is directly transmitted and 

computed by the slave nodes. In this application not only video is 

necessary for the slave nodes, but also position of the head, for the 

texture to be moved on the CAVE walls (see fig. 8). In this 

application, no camera’s position broadcasting is necessary, 

because the video texture doesn’t depend on the virtual camera 

position, but on the head orientation. 

 

 

 

 

 

 

 

 

 

5. CONCLUSION 
Our system has proven to be really easy of use, modular, and 

generic, supporting VR applications as well as AR applications. 

The main backdraw of the system is that each application has a 

specific distribution on the master and the slaves. But it is also its 

force: we have a truly distributed system, which can be tuned 

depending of the performances of each node of the cluster. 

Further developments of this system could be to manage 

adaptative stereo, which is a changing stereo depending on the 

position of the user. For the moment, we only consider the user 

being at one specific point. Such a system should be easily 

integrable, because we currently transmit all the camera features 

to each node of the graph. 
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Figure 8. Remote stereo video principle 


