
HAL Id: hal-04807947
https://hal.science/hal-04807947v1

Preprint submitted on 27 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Navier-Stokes limit of kinetic equations for low
regularity data

Kleber Carrapatoso, Isabelle Gallagher, Isabelle Tristani

To cite this version:
Kleber Carrapatoso, Isabelle Gallagher, Isabelle Tristani. The Navier-Stokes limit of kinetic equations
for low regularity data. 2024. �hal-04807947�

https://hal.science/hal-04807947v1
https://hal.archives-ouvertes.fr


THE NAVIER-STOKES LIMIT OF KINETIC EQUATIONS

FOR LOW REGULARITY DATA

KLEBER CARRAPATOSO, ISABELLE GALLAGHER, AND ISABELLE TRISTANI

Abstract. In this paper, we investigate the link between kinetic equations (including
Boltzmann with or without cutoff assumption and Landau equations) and the incom-
pressible Navier-Stokes equation. We work with strong solutions and we treat all the
cases in a unified framework. The main purpose of this work is to be as accurate as
possible in terms of functional spaces. More precisely, it is well-known that the Navier-
Stokes equation can be solved in a lower regularity setting (in the space variable) than
kinetic equations. Our main result allows to get a rigorous link between solutions to the
Navier-Stokes equation with such low regularity data and kinetic equations.
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1. Introduction

In this paper, we are interested in a problem in the theory of hydrodynamical limits. Our
goal is to obtain a rigorous result of convergence of solutions to various kinetic equations
towards solutions to the incompressible Navier-Stokes equation. This problem can be
seen as a part of the program initiated by the 6th problem of Hilbert in 1900 at the
International Congress of Mathematicians. Indeed, the question is to understand the link
between microscopic and macroscopic descriptions of a fluid, and deriving macroscopic
equations from mesoscopic ones can be seen as an intermediate step of this program. We
refer for instance to the book by Saint-Raymond [52] for a detailed presentation of the
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2 K. CARRAPATOSO, I. GALLAGHER, AND I. TRISTANI

subject and for mathematical results in the field. More specifically, in this paper, we
seek to get a result on the convergence of sequences of strong solutions to the rescaled
mesoscopic equations in which the connection between the kinetic and the fluid equations
is as accurate as possible in terms of functional spaces.

1.1. Kinetic equations. At the kinetic level, we shall consider Boltzmann or Landau
type equations for not too soft potentials. We denote by F = F (t, x, v) the density of
particles, which depends on time t ∈ R+, position x ∈ T3 (the unit periodic box) and
velocity v ∈ R3. The dimensionless version of our kinetic equation reads

St ∂tF + v · ∇xF =
1

Kn
Q(F,F ) ,

where the Strouhal number St and the Knudsen number Kn are dimensionless parameters
which are natural in kinetic problems. Here and below, Q can be the Boltzmann (with
or without cutoff) collision operator or the Landau collision operator. The Boltzmann
collision operator is an integral operator defined as

(1.1) QB(g, f) :=

∫

R3×S2
B(v − v∗, σ)

(
g′

∗f
′ − g∗f

)
dσ dv∗ .

Here and below, we are using the shorthand notations f = f(v), g∗ = g(v∗), f ′ = f(v′)
and g′

∗ = g(v′
∗). In this expression, v, v∗ and v′, v′

∗ are the velocities of a pair of particles
after and before collision. We make a choice of parametrization of the set of solutions to
the conservation of momentum and energy (physical laws of elastic collisions):

(1.2)
v + v∗ = v′ + v′

∗

|v|2 + |v∗|2 = |v′|2 + |v′
∗|2

so that the pre-collisional velocities are given by

v′ =
v + v∗

2
+

|v − v∗|
2

σ , v′
∗ =

v + v∗

2
− |v − v∗|

2
σ , σ ∈ S2 .

The Boltzmann collision kernel B = B(v−v∗, σ) only depends on the relative velocity |v−
v∗| and on the deviation angle ϑ through cosϑ = 〈v−v∗, σ〉/|v−v∗| where 〈·, ·〉 is the usual
scalar product in R3. The form of the collision kernel depends on the type of collisions
that occur between particles. In dimension 3 in the case where particles behave as billiard
balls, known as the hard-spheres case, the collision kernel is proportional to the norm of
the relative velocity, namely

B(v − v∗, σ) = C|v − v∗| , C > 0 .

When particles interact through inverse power law potentials of type

(1.3) φ(r) = r−(p−1) with p ∈ (2,+∞) ,

the collision kernel cannot be computed explicitly but Maxwell [46] has shown that the
collision kernel can be computed in terms of the interaction potential φ. More precisely,
in dimension 3, the kernel B satisfies the following properties.

– It takes product form in its arguments as

(1.4) B(v − v∗, σ) = Φ(|v − v∗|) b(cos ϑ) .

– The angular function b is locally smooth, and has a nonintegrable singularity for ϑ → 0:
it satisfies for some cb > 0 and any ϑ ∈ (0, π/2],

(1.5)
cb

ϑ1+2s
6 sinϑ b(cos ϑ) 6

1

cb ϑ1+2s
with s :=

1

p− 1
∈ (0, 1) .

– The kinetic factor Φ satisfies

(1.6) Φ(|v − v∗|) = |v − v∗|γ with γ :=
p− 5

p− 1
∈ (−3, 1) .
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One traditionally calls hard potentials the case p > 5 (for which 0 < γ < 1), Maxwell
molecules the case p = 5 (for which γ = 0), moderately soft potentials the case corre-
sponding with 3 6 p < 5 (for which −2s 6 γ < 0) and very soft potentials the case
2 < p < 3 (for which −3 < γ < −2s). In this paper, we shall not consider the very soft
potentials case, meaning we shall restrict to γ > −2s (see Remark 2 for a discussion on
this restriction).

Grad’s cut-off assumption consists in additionally supposing that the angular kernel b is
integrable on the sphere by removing its singularity for small deviation angles ϑ (see (1.5)).
In that case, the Boltzmann collision operator is thus of the form (1.1) with

B(v − v∗, σ) = b(cos ϑ)|v − v∗|γ with

∫

S2
b(cos ϑ) dσ < ∞ and γ ∈ (−3, 1] .

Notice that this in particular includes the case of hard-spheres collisions by taking the
angular kernel to be constant. Here again, we do not consider the very soft potentials
case, that is we restrict ourselves to γ > 0.

In the case of the Coulomb potential (s = 1 and thus γ = −3), the Boltzmann operator
does not make any sense (see [55] for example). The Boltzmann operator has then to be
replaced by the Landau one which can be obtained in the so-called grazing collision limit
after having made a cut-off on the Coulomb interaction. The Landau operator, defined
in 1936 by Landau [41] (independently of the Boltzmann operator), is used in plasma
physics and is an integro-differential operator given by

(1.7) QL(g, f)(v) := ∂vi

∫

Rd
aij(v − v∗)

(
g(v∗)∂vjf(v) − f(v)∂vjg(v∗)

)
dv∗ ,

where we use the convention of summation of repeated indices. The matrix aij is symmet-
ric, semi-positive and is given by

(1.8) aij(v) := |v|γ+2
(
δij − vivj

|v|2
)
, −3 6 γ 6 1 .

Similarly to the Boltzmann equation, we have the following classification according to
the values of γ: interactions are referred to as hard potentials if γ ∈ (0, 1], Maxwellian
molecules if γ = 0, moderately soft potentials if γ ∈ [−2, 0), very soft potentials if γ ∈
(−3,−2) and Coulomb potential if γ = −3. We mention that only the case γ = −3 is
relevant from a physical viewpoint and is the one that has been derived by Landau in [41].
Once more, we shall only consider not too soft potentials, which correspond to γ > −2.

In the three cases (Boltzmann with and without cut-off assumption and Landau), weak
formulations of the collision operators allow to obtain the following conservation laws:

(1.9)

∫

R3
Q(g, g)(v)ϕ(v) dv = 0 for ϕ(v) = 1, v , |v|2,

as well as Boltzmann’s H-theorem that asserts that Boltzmann’s entropy of solutions to

these equations, namely

∫
f log f , is non-increasing along time. Moreover, the second part

of the theorem states that any distribution minimizing the entropy is a local Maxwellian
distribution in velocity.

1.2. Hydrodynamic limit. All kinetic models leading to incompressible models are
based on a regime in which both the Strouhal and the Knudsen numbers are small. In order
to reach the incompressible Navier-Stokes equation, we shall work with St = Kn = ε ≪ 1
(see for example [7]). Our kinetic equation then reads

(1.10)

{
∂tF

ε + ε−1v · ∇xF
ε = ε−2Q(F ε, F ε) in R+ × T3 × R3

F ε
|t=0 = F ε

in in T3 × R3 .

The Knudsen number is actually proportional to the inverse of the average number of
collisions for each particle per unit of time. Taking ε small has thus the effect of enhancing
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the role of collisions. To relate our kinetic models to the incompressible Navier-Stokes
equation, we then look at equation (1.10) under the following linearization of order ε:

F ε = µ+ ε
√
µf ε ,

where µ is the global Maxwellian defined by

µ(v) :=
1

(2π)
3
2

e−
|v|2

2 .

The equation we are going to study on the fluctuation f ε is thus the following:

(1.11)

{
∂tf

ε + ε−1v · ∇xf
ε = ε−2Lf ε + ε−1Γ(f ε, f ε) in R+ × T3 × R3

f ε
|t=0 = f ε

in := ε−1(F ε
in − µ)µ− 1

2 in T3 × R3

with

Γ(f1, f2) := µ− 1
2Q(

√
µf1,

√
µf2)

and

(1.12) Lf := Γ(
√
µ, f) + Γ(f,

√
µ) .

We say that a distribution f = f(x, v) has global mass, momentum and energy when it
satisfies

(1.13)

∫

T3

∫

R3
f(x, v)ϕ(v)

√
µ(v) dv dx = 0 , for ϕ(v) = 1, v, |v|2 .

Conservation laws (1.9) imply that the perturbation f ε satisfies (1.13) for all times t > 0
if F ε

in satisfies
∫

T3

∫

R3
F ε

in(x, v)ϕ(v) dv dx =

∫

R3
µ(v)ϕ(v) dv , for ϕ(v) = 1, v, |v|2 .

For every f = f(x, v) we write the decomposition

f = P⊥
0 f + P0f , P⊥

0 = Id − P0 ,

where P0 is the orthogonal projection onto

(1.14) KerL =
{√

µ(v), v1
√
µ(v), v2

√
µ(v), v3

√
µ(v), |v|2√

µ(v)
}

given by the so-called hydrodynamic modes

(1.15) P0f(x, v) :=

{
ρ[f ](x) + u[f ](x) · v + θ[f ](x)

|v|2 − 3

2

}
√
µ(v)

where

ρ[f ](x) :=

∫

R3
f(x, v)

√
µ(v) dv ,

u[f ](x) :=

∫

R3
f(x, v)v

√
µ(v) dv ,

θ[f ](x) :=

∫

R3
f(x, v)

|v|2 − 3

3

√
µ(v) dv .

Returning to (1.11), it is expected that as ε goes to zero, the solution f ε should converge
to an element of Ker(L). This is actually proved in many situations (see Paragraph 1.4
below), and in particular the hydrodynamic modes of the limit satisfy the incompressible
Navier-Stokes Fourier system

(NSF)





∂tu+ u · ∇u− νNS∆u = −∇p
∂tθ + u · ∇θ − νheat∆θ = 0

divu = 0

∇(ρ+ θ) = 0 .
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To define the viscosity coefficients, we introduce the two unique functions Φ (which is a
matrix function) and Ψ (which is a vectorial function) in (KerL)⊥ such that

µ− 1
2L
(
µ

1
2 Φ
)

=
|v|2
3

Id − v ⊗ v and µ− 1
2L
(
µ

1
2 Ψ
)

= v
(5

2
− |v|2

2

)
.

The viscosity coefficients are then defined by

νNS :=
1

10

∫
Φ : L

(
µ

1
2 Φ
)
µ

1
2 dv and νheat :=

2

15

∫
Ψ · L

(
µ

1
2 Ψ
)
µ

1
2 dv .

1.3. Functional framework and notation. We first define weighted Lebesgue spaces
as follows. For any nonnegative measurable weight function m : R3 → R+ (notice that
all the weights we consider will depend only on velocity, i.e. m = m(v)), we define the
Lebesgue space Lp

v(m) for 1 6 p 6 +∞ through its norm

‖g‖Lp
v(m) := ‖gm‖Lp

v
.

In order to treat the three cases (Boltzmann with and without cut-off assumption and
Landau equations) in a unified framework, we introduce the space Hs,⋆

v with s ∈ [0, 1] by:
for s = 0 (corresponding to the Boltzmann operator with cutoff)

(1.16) ‖f‖H0,⋆
v

= ‖f‖
L2

v

(
〈v〉

γ
2
) ,

for s ∈ (0, 1) (corresponding to the Boltzmann operator without cutoff)

(1.17)

‖f‖2
Hs,⋆

v
:=

∫

R3

∫

R3

∫

S2
b(cos ϑ)|v − v∗|γµ(v∗)[f(v′) − f(v)]2 dσ dv∗ dv

+

∫

R3

∫

R3

∫

S2
b(cos ϑ)|v − v∗|γf(v∗)2[

√
µ(v′) − √

µ(v)]2 dσ dv∗ dv ,

and finally for s = 1 (corresponding to the Landau operator) we define

(1.18) ‖f‖2
H1,⋆

v
:=
∥∥〈v〉

γ
2

+1f
∥∥2

L2
v

+
∥∥〈v〉

γ
2 prv ∇vf

∥∥2

L2
v

+
∥∥〈v〉

γ
2

+1(Id − prv)∇vf
∥∥2

L2
v
,

where prv stands for the projection on v, namely

∀w ∈ R3 , prv w =

(
w · v|v|

)
v

|v| ·

For every s ∈ [0, 1], we also define the dual space (Hs,⋆
v )′ endowed with the norm

‖φ‖(Hs,⋆
v )′ := sup

‖f‖
H

s,⋆
v

61
〈φ, f〉 .

It is worth mentioning that for s ∈ [0, 1] there holds (see [1, 34] for the case s ∈ (0, 1), the
other cases being immediate),

∥∥〈v〉
γ
2

+sf
∥∥

L2
v

+
∥∥〈v〉

γ
2 f
∥∥

Hs
v
. ‖f‖Hs,⋆

v
.
∥∥〈v〉

γ
2

+sf
∥∥

Hs
v
.

We recall that if ℓ > 3/2, then Hℓ
x ⊂ L∞

x . For m > 0 and when Ev is a Lebesgue

or Sobolev space in velocity, we define the space L̃∞
(
[0, T ],Hm

x Ev
)

(with the notation
introduced in [19]) through its norm

‖f‖2

L̃∞
(

[0,T ],Hm
x Ev

) :=
∑

k∈Z3

〈k〉2m
∥∥f̂(·, k, ·)

∥∥2

L∞([0,T ],Ev)
.

We have denoted by (f̂(k))k∈Z3 the Fourier coefficients of f in the space variable. When
more convenient, we will sometimes use the notation Fx. To lighten notation, we shall
often write Lp

IH
m
x Ev for Lp(I,Hm

x Ev) and similarly L̃∞
I H

m
x Ev for L̃∞

(
I,Hm

x Ev
)

when I

is an interval of R+. If I = [0, T ] we will simply write Lp
TH

m
x Ev and L̃∞

T H
m
x Ev. Finally

if T = ∞ and in the absence of ambiguity we write Lp
tH

m
x Ev for Lp(R+,Hm

x Ev).
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We will use the notation P for the Leray projector onto divergence free vector fields. For
any triplet (ρin, uin, θin) defined on T3 (considered as initial data, whence the subscript “in”)
we denote their projection onto incompressible/Boussinesq modes by

(1.19) ρ̄in :=
2

5
ρin − 3

5
θin , ūin := Puin and θ̄in := −ρin .

The kinetic counterpart of (ρ̄in, ūin, θ̄in) will be denoted

(1.20) ḡin(x, v) :=
{
ρ̄in(x) + ūin(x) · v + θ̄in(x)

|v|2 − 3

2

}√
µ(v)

and if (ρ, u, θ) solves (NSF) with the initial data (ρ̄in, ūin, θ̄in) then we will write

(1.21) g(t, x, v) :=
{
ρ(t, x) + u(t, x) · v + θ(t, x)

|v|2 − 3

2

}√
µ(v) .

Note that if (ρin, uin, θin) lie in Hℓ−1(T3) with ℓ > 3/2, then g belongs to L̃∞
T H

ℓ−1
x L2

v ∩
L2

TH
ℓ
xH

s,⋆
v for some T > 0 (the life span of the Navier-Stokes-Fourier system).

1.4. State of the art. We here give a short overview of the existing literature on the
problem of deriving fluid equations from kinetic ones.

The first justifications of the link between kinetic and fluid equations were formal and
based on asymptotic expansions by Hilbert [38], Chapman, Enskog [17] and Grad [32].
The first rigorous convergence proofs based also on asymptotic expansions were given by
Caflisch [12] (see also [40] and [20]). In those papers, the limit is justified up to the first
singular time for the fluid equation. By using his nonlinear energy method, Guo [37]
justified the limit towards the Navier-Stokes equation and beyond in Hilbert’s expansion
from Boltzmann and Landau equations.

There have also been some convergence proofs based on spectral analysis in the frame-
work of strong solutions close to equilibrium introduced by Grad [33] and Ukai [54] for the
Boltzmann equation. In this respect, we refer to the works by Nishida [50], Bardos and
Ukai [8]. These results use the description of the spectrum of the linearized Boltzmann
equation in Fourier space in the space variable performed in [49, 16, 25] by respectively
Nicolaenko; Cercignani, Illner and Pulvirenti; Ellis and Pinsky. The approach in the
present paper as well as in [26, 15, 27, 28, 29, 13] are reminiscent of these ones.

Finally, let us mention that this problem has been extensively studied in the framework
of weak solutions, the goal being to obtain solutions for the fluid models from renormalized
solutions introduced by DiPerna and Lions in [22] for the Boltzmann equation. We shall
not make an extensive presentation of this program as it is out of the realm of this paper,
but let us mention that it was started by Bardos, Golse and Levermore at the beginning
of the nineties in [7, 6] and was continued by those authors, Saint-Raymond, Masmoudi,
Lions among others. We mention here a (non exhaustive) list of papers which are part of
this program [30, 31, 44, 45, 52].

More recently, some uniform in ε estimates on kinetic equations have allowed to prove
(at least) weak convergence towards the Navier-Stokes equation. Let us mention [39, 51]
in which the cases of the Boltzmann equation without cut-off and the Landau equations
are treated by Jiang, Xu and Zhao on the one hand and by Rachid on the other hand.
In [10, 11], Briant and Briant, Merino-Aceituno and Mouhot have obtained convergence
to equilibrium results for the rescaled Boltzmann equation (and also the Landau equation
in [10]) uniformly in the rescaling parameter using respectively hypocoercivity and enlarge-
ment methods. In [11], the authors are able to weaken the assumptions on the data down
to Sobolev spaces with polynomial weights (see also [3] for the inelastic Boltzmann equa-
tion). Notice that Briant [10] has combined this with the Ellis and Pinsky result [25] to
recover strong convergence in the case of the elastic Boltzmann equation. To end this part,
we mention the works [15, 13] in which the authors also obtain uniform in ε estimates on
the Landau equation and Boltzmann equation without cutoff respectively and also obtain
a result of strong convergence towards the incompressible Navier-Stokes equation.
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Finally, let us bring up more recent works that have inspired the present paper. First,
the paper [26] in which the second and third authors proved that the life span of the
solutions to the rescaled Boltzmann equation (for hard-spheres collisions) is bounded from
below by that of the Navier-Stokes equation for ε small enough. The main feature of the
proof was to perform a fixed point argument by using information on the limit system
since the starting point is the solutions of the Navier-Stokes system (which is not the most
common viewpoint). Gervais [27, 28] extended the functional framework in which this
result holds. He proved a similar result in polynomially weighted spaces, his strategy is a
combination of [26] and of the one used in [11] by Briant, Merino-Aceituno and Mouhot
in order to get uniform in ε estimates on solutions in polynomially weighted spaces. We
also point out the paper by Gervais and Lods [29] in which a unified framework is also
provided, which encompasses a large class of kinetic equations (including in particular the
result in [26]).

1.5. Main result. All the results mentioned in the previous paragraph concerning the
convergence of strong solutions are stated in functional spaces which are usual for the
study of strong solutions to nonlinear kinetic problems, namely in which there is an algebra
structure in the space variable, typically Hℓ

x with ℓ > 3/2 (more generally ℓ > d/2 in
dimension d). Indeed the collision operator QB involves the product of f(x, v) and f(x, v′)
at the same point x, so continuity of f seems to be required to make sense of the product.
However it is well-known that the Navier-Stokes equations can be solved for initial data

with less regularity, namely H
1
2
x (H

d
2

−1
x in dimension d). Our goal in this work is to

analyze to what extent the assumptions one makes on the initial data f ε
in to the kinetic

equation (1.11) can reflect this discrepancy between the kinetic and the fluid frameworks.

The main goal of our analysis is thus to show that given an initial data in H
1
2
x (actually

we will consider Hℓ−1
x with ℓ > 3/2) for the incompressible (NSF) system, the associate

solution to (NSF) is the limit, as long as it exists, of a sequence of solutions to the rescaled
Boltzmann or Landau equation. More precisely we are able to construct, on the same life
span as the solution to (NSF), a sequence of solutions to the kinetic equation associated
with initial data whose hydrodynamic part converges in Hℓ−1

x to the given hydrodynamic
profile, and whose microscopic part converges to zero in Hℓ−1

x and belongs to Hℓ
x but is

allowed to blow up (in a controled way) in that norm. Let us also underline that there is
no smallness assumption on the initial data of the fluid system, and we are able to treat
the cases of non-global and global solutions to the fluid system in a unified framework.

Theorem 1. Let ℓ ∈ (3/2, 5/2) be given. Consider (ρin, uin, θin) ∈ Hℓ−1(T3) that are
mean-free. With the notation (1.19), let (ρ, u, θ) be the unique solution to (NSF) associated

with the initial data (ρ̄in, ūin, θ̄in) in the space L̃∞
T H

ℓ−1
x ∩L2

TH
ℓ
x, for some T > 0. We also

consider ḡin and g as defined in (1.20) and (1.21).
Given α ∈ (0, 1/4) and β ∈ (α, 1/2), let f ε

in be a family of functions such that

P0f
ε
in = χ(εα|Dx|)ḡin and ‖P⊥

0 f
ε
in‖Hℓ−1

x L2
v

+ εβ‖P⊥
0 f

ε
in‖Hℓ

xL2
v

−−−→
ε→0

0

for some smooth, compactly supported function χ. Then, there is ε0 > 0 such that for
any ε 6 ε0, there exists a unique solution f ε to the kinetic equation (1.11) with initial

data f ε
in, which belongs to the space L̃∞

T H
ℓ
xL

2
v ∩ L2

TH
ℓ
xH

s,⋆
v , and it moreover satisfies

‖f ε − g‖
L̃∞

T Hℓ−1
x L2

v
+ ‖f ε − g‖L2

T Hℓ
xHs,⋆

v
−−−→
ε→0

0 .

Remark 1. The restriction ℓ < 5/2 is purely technical, the result would hold for any ℓ > 3/2
up to some adaptations in the nonlinear estimates. The threshold value 1/4 for the
truncation parameter α comes from technical considerations that appear throughout the
proof. The additional parameter β quantifies the possible blow up of the Hℓ

xH
s,⋆
v norm

of the “microscopic” part of the initial data. Such an assumption is reminiscent of the
setting chosen in [24] in the context of the incompressible limit.
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Remark 2. Throughout this paper, we only consider the case of well-prepared data in the
torus and also only the case of not too soft potentials for the kinetic equations. We believe
that using the same method of proof combined with arguments and estimates of [26, 13],
our analysis could be extended to a more general setting by considering the problem in
the whole space (also including ill-prepared data) and very soft potentials for the kinetic
equations.

1.6. Sketch of the proof and plan of the paper. The idea of the proof follows the
method of [26], consisting in solving by a fixed point argument the equation obtained by
taking the difference between the kinetic and hydrodynamic equations, written in Duhamel
form. The main interest of this equation is that it no longer involves the kinetic unknown
but writes schematically as

(1.22) δε(t) = Dε(t) + Sε(t) + Lε[δε](t) + Ψε[δε, δε](t) ,

where Dε(t) depends only on the initial data, Sε(t) is a source term depending only on
the hydrodynamical solution, Lε[δε] is a linear operator depending on the hydrodynamic
solution, and Ψε[δε, δε] is the usual, Boltzmann bilinear operator (see (3.8) below). The
difficulty then consists in proving that Dε(t) and Sε(t) are small, and that Ψε is bilinear
continuous, in a low regularity framework. An additional difficulty comes from the fact
that Lε is not small if ḡin is not small : smallness is necessary for the fixed-point to work,
but a Gronwall-type argument allows to get round this difficulty (in this regard, the proof
differs from the one presented in [26]).

In Section 2, we give some useful tools to estimate each part of equation (1.22) (spectral
decomposition, semi-group and nonlinear estimates). In Section 3, we make the strategy
of our proof more precise and reduce the proof to a number of intermediate estimates.
Finally, in Section 5, we provide all the necessary estimates to conclude the proof of our
main result.

Acknowledgments. KC was partially supported by the Project CONVIVIALITY ANR-
23-CE40-0003 of the French National Research Agency. IT was supported by the French
government through the France 2030 investment plan managed by the National Research
Agency (ANR), as part of the Initiative of Excellence Université Côte d’Azur under refer-
ence number ANR-15-IDEX-01.

2. Preliminaries

Our approach heavily relies on previous results on the spectral analysis of the linearized
kinetic operator

Λε :=
1

ε2
L− 1

ε
v · ∇x

in Fourier space for the space variable x (see [49, 25, 27, 29]), where we recall that L is
defined in (1.12). We denote by U ε(t) the semi-group associated to Λε.

Taking the Fourier transform in the space variable, we denote, for all k ∈ Z3,

Λ̂ε(k) :=
1

ε2
L− 1

ε
iv · k

and Û ε(t, k) := etΛ̂ε(k), so that U ε(t) = F−1
x Û ε(t, ·)Fx. We also denote

(2.1) Ψε[f1, f2](t) :=
1

ε

∫ t

0
U ε(t− t′)Γsym(f1(t′), f2(t′)) dt′ ,

where Γsym(f1, f2) := 1
2

(
Γ(f1, f2) + Γ(f2, f1)

)
denotes the symmetrized form of Γ, so

that (1.11) takes the Duhamel form

(2.2) f ε(t) = U ε(t)f ε
in + Ψε[f ε, f ε](t) .

In Fourier space we have

Ψ̂ε[f1, f2](t, k) =
1

ε

∫ t

0
Û ε(t − t′, k)Γ̂sym

(
f1(t′), f2(t′)

)
(k) dt′ ,
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where

Γ̂sym(f1, f2)(k) :=
∑

k′∈Z3

Γsym
(
f̂1(k − k′), f̂2(k′)

)
.

Observe that

Ψε[f1, f2](t) = F−1
x Ψ̂ε[f1, f2](t, ·)Fx .

It turns out that there is a complete description of the operator U ε: this goes back
to [49, 25] for the Boltzmann hard-spheres kernel, [56] for the Boltzmann non-cutoff (resp.
Landau) kernels with hard and moderately soft potentials γ+2s > 0 (resp. γ+2 > 0), and
[57] for the Boltzmann non-cutoff (resp.Landau) kernels with very soft potentials γ+2s < 0
(resp. γ + 2 < 0). For the not too soft potentials, we also refer to the paper [29] in which
the authors provide a more modern spectral approach.

Let us start by noticing that

(2.3) Û ε(t, k) = Û1
( t
ε2
, εk

)
.

Roughly speaking, for |k| 6 κ small enough, the operator Λ̂1(k) := L− iv · k can be seen
as a perturbation of L. In particular it can be proved (see [25]) that the 5-dimensional
kernel of L recalled in (1.14) splits into 4 eigenvalues (the first one below is double) that
satisfy for all |k| 6 κ

(2.4)
λNS(k) := −νNS|k|2 + γNS(k) , νNS > 0 , |γNS(k)| 6 νNS

2
|k|2

λheat(k) := −νheat|k|2 + γheat(k) , νheat > 0 , |γheat(k)| 6 νheat

2
|k|2

and

(2.5)
λwave±(k) := ±ic|k| − νwave±|k|2 + γwave±(k) ,

c > 0 , νwave± > 0 , |γwave±(k)| 6 νwave±

2
|k|2 .

Moreover, the associate projectors P⋆ can be written (where ⋆ stands for NS,heat, or wave±)

P⋆ = P0
⋆

(
k

|k|

)
+ |k|P1

⋆

(
k

|k|

)
+ |k|2P2

⋆ (k) ,

with Pn
⋆ bounded linear operators on L2

v with operator norms uniform for |k| 6 κ. We
even have that P0

⋆ (k/|k|), P1
⋆ (k/|k|) and P2

⋆ (k) are bounded from (Hs,⋆
v )′ into Hs,⋆

v uni-
formly in |k| 6 κ. We refer to [29, Theorem 1.6-(2)] for this property (note the following
correspondance of notation H• = Hs,⋆

v and H◦ = (Hs,⋆
v )′). We also have that if ⋆ 6= ⋆′,

then P0
⋆ P0

⋆′ = 0 and the orthogonal projector P0 onto KerL satisfies

P0 =
∑

⋆∈{NS,heat,wave±}

P0
⋆

( k
|k|
)
.

Actually P0
NS(k/|k|) is the projection onto the 2-dimensional space spanned by v − prk v

for any k (this corresponds to the divergence free condition), and

P0
heat

( k
|k|
)
f̂(k, v) =

2

5

(
− 1 +

1

2
(|v|2 − 3)

)√
µ(v)

∫

R3

(
− 1 +

1

2
(|w|2 − 3)

)√
µ(w)f̂ (k,w) dw .

Finally

P0
wave±

( k
|k|
)
f̂(k, v)

=
3

10

(
1 ± k

|k| · v +
1

3
(|v|2 − 3)

)√
µ(v)

∫

R3

(
1 ± k

|k| · w +
1

3
(|w|2 − 3)

)√
µ(w)f̂(k,w) dw .

Thanks to (2.3) and to this spectral study, we deduce as in [8, 26] that U ε can be decom-
posed as follows:

(2.6) U ε(t) = U ε,♭(t) + U ε,♯(t)
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where U ε,♭(t) corresponds to the contribution of the low frequencies in the right part of
the plane:

(2.7) Û ε,♭(t, k) := χ
(ε|k|
κ

) ∑

⋆∈{NS,heat,wave±}

eλ⋆(εk) t
ε2 P⋆(εk) ,

where χ is a fixed smooth, compactly supported function. Moreover, since we consider not
too soft potentials, there is λ0 > 0 such that uniformly in k ∈ Z3

(2.8) ‖Û ε,♯(t, k)‖L2
v→L2

v
. e−λ0

t
ε2 , ∀t > 0 .

In the study of the limit ε → 0 of (1.11), it will be useful to decompose U ε,♭(t) into a part
independent of ε and a remainder, which will be shown to go to zero, in a sense to be
made precise later:

(2.9) U ε,♭ = UNSF + U ε,♭
wave + Ũ ε ,

where in Fourier variables

(2.10)

ÛNSF(t, k) := e−νNS|k|2tP0
NS

( k
|k|
)

+ e−νheat|k|2tP0
heat

( k
|k|
)

Û ε,♭
wave(t, k) := χ

(ε|k|
κ

)∑

±

eλwave±(εk) t
ε2 Pwave±(εk) .

According to (2.1) and (2.6), we can also decompose

(2.11) Ψε = Ψε,♭ + Ψε,♯

where

(2.12) Fx

(
Ψε,♯[f1, f2](t)

)
(k) :=

1

ε

∫ t

0
Û ε,♯(t− t′)Γ̂sym

(
f1(t′), f2(t′)

)
(k) dt′

and
(2.13)

Fx

(
Ψε,♭[f1, f2](t)

)
(k) :=

1

ε
χ
(ε|k|
κ

)∑

⋆

∫ t

0
eλ⋆(εk) t−t′

ε2 P⋆(εk)Γ̂sym
(
f1(t′), f2(t′)

)
(k) dt′ ,

where the sum runs over {NS,heat,wave±}. In the interest of the limit ε → 0, this can
be again decomposed as in (2.9), as follows:

(2.14) Ψε,♭ = ΨNSF + Ψε,♭
wave + Ψ̃ε

where writing Ψ̂⋆[f1, f2](t) = Fx
(
Ψ⋆[f, f ](t)

)
and recalling that P0Γsym = 0,

Ψ̂NSF[f1, f2](t, k) :=
∑

⋆∈{NS,heat}

∫ t

0
e−ν⋆(t−t′)|k|2|k|P1

⋆

( k
|k|
)
Γ̂sym

(
f1(t′), f2(t′)

)
(k) dt′ ,

Ψ̂ε,♭
wave[f1, f2](t, k) := χ

(ε|k|
κ

)

×
∑

±

∫ t

0
eλwave±(εk) t−t′

ε2 Pwave±(εk)Γ̂sym
(
f1(t′), f2(t′)

)
(k) dt′ .

3. Proof of the theorem

Let us start by presenting the functional framework in which we shall develop our proof.
We fix a parameter β ∈ (α, 1/2) where we recall that α ∈ (0, 1/4) has been introduced in
Theorem 1 and define for any interval I of R+

(3.1) X ε
I :=

{
f ∈ L̃∞

I H
ℓ−1
x L2

v ∩ L2
IH

ℓ
xH

s,⋆
v ∩ L̃∞

I H
ℓ
xL

2
v

∣∣∣ ‖f‖X ε
I
< +∞

}

which we endow with the norm

(3.2) ‖f‖X ε
I

= ‖f‖
L̃∞

I
Hℓ−1

x L2
v

+
1√
ε

‖P⊥
0 f‖L2

I
Hℓ

xHs,⋆
v

+ ‖P0f‖L2
I
Hℓ

xHs,⋆
v

+ εβ‖f‖
L̃∞

I
Hℓ

xL2
v
.
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In the following we write X ε
T := X ε

[0,T ].

Remark 3. If f = f(x, v) is a function in Hℓ−1
x L2

v and if χ is a smooth, compactly supported
function on R3, then the sequence f ε := χ(εα|Dx|)f goes to zero in εβHℓ

xL
2
v, in the sense

that

εβ‖f ε‖Hℓ
xL2

v
. εβ−α‖f‖Hℓ−1

x L2
v
.

Recall that we consider well-prepared initial data ḡin in Hℓ−1
x L2

v and the associated fluid

solution g ∈ L̃∞
T H

ℓ−1
x L2

v ∩ L2
TH

ℓ
xL

2
v for T < T ⋆, where the maximal life span T ⋆ > 0 is

such that

lim
T →T ⋆

‖g‖L2
T Hℓ

xL2
v

= ∞ .

This solution satisfies

(3.3) ‖g‖
L̃∞

T
Hℓ−1

x L2
v

+ ‖g‖L2
T Hℓ

xL2
v
. ‖ḡin‖Hℓ−1

x L2
v
.

We then build a family of initial data f ε
in to (1.11) such that P0f

ε
in = χ(εα|Dx|)ḡin for some

smooth, compactly supported function χ. We assume moreover that P⊥
0 f

ε
in goes to zero

in Hℓ−1
x L2

v and εβP⊥
0 f

ε
in goes to zero in Hℓ

xL
2
v. Then as pointed out in Remark 3, P0f

ε
in

goes to 0 in εβHℓ
xL

2
v (since β > α). Our goal is to prove that the solution f ε of (1.11)

with data f ε
in converges to g as stated in Theorem 1, on the same life span as g.

The first step consists in replacing g by a smooth solution to (NSF) in the following
way: let us define

gε(t, x, v) :=
{
ρε(t, x) + uε(t, x) · v + θε(t, x)

|v|2 − 3

2

}√
µ(v)

where (ρε, uε, θε) solves (NSF) with the initial data χ(εα|Dx|)(ρ̄in, ūin, θ̄in). It is classi-
cal (see for instance [26, Proposition B.5], and [18, 4, 42] for more), that for ε small
enough, (ρε, uε, θε) has a life span at least T and there holds

(3.4) ‖gε − g‖
L̃∞

T Hℓ−1
x L2

v
+ ‖gε − g‖L2

T
Hℓ

xHs,⋆
v

−−−→
ε→0

0 .

Note that in particular

(3.5) ‖gε‖
L̃∞

T Hℓ−1
x L2

v
−−−→
ε→0

‖g‖
L̃∞

T Hℓ−1
x L2

v
and ‖gε‖L2

T Hℓ
xHs,⋆

v
−−−→
ε→0

‖g‖L2
T Hℓ

xHs,⋆
v
.

To prove Theorem 1, it thus suffices to prove that

‖gε − f ε‖
L̃∞

T Hℓ−1
x L2

v
+ ‖gε − f ε‖L2

T Hℓ
xHs,⋆

v
−−−→
ε→0

0 .

Note that by propagation of regularity (see again [26, Proposition B.5]) there holds

(3.6)

‖gε‖
L̃∞

T Hℓ
xL2

v
+ ‖gε‖

L2
T Hℓ+1

x Hs,⋆
v

. ‖P0f
ε
in‖Hℓ

xL2
v

exp
(
C‖gε‖2

L2
T Hℓ

xHs,⋆
v

)

. ‖P0f
ε
in‖Hℓ

xL2
v

exp
(
C‖g‖2

L2
T

Hℓ
xHs,⋆

v

)

. ‖P0f
ε
in‖Hℓ

xL2
v

exp
(
C‖ḡin‖2

Hℓ−1
x L2

v

)

due to (3.5) and (3.3). In particular gε satisfies

(3.7)
εβ‖gε‖

L̃∞
T Hℓ

xL2
v
. εβ‖P0f

ε
in‖Hℓ

xL2
v

exp
(
C‖g‖2

L2
T Hℓ

xHs,⋆
v

)

. εβ−α‖ḡin‖Hℓ−1
x L2

v
exp

(
C‖ḡin‖2

Hℓ−1
x L2

v

)
−−−→
ε→0

0

because β > α.
It is also worth mentioning that gε = P0g

ε so that ‖gε(t, x, ·)‖Hs,⋆
v

. ‖gε(t, x, ·)‖L2
v
.

In what follows, we shall look for a solution f ε to (1.11) under the form f ε = gε + δε.
Since

gε(t) = UNSF(t)P0f
ε
in + ΨNSF[gε, gε](t) ,
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elementary algebraic computations lead to the following equation on δε:

(3.8)

δε(t) =
(
U ε(t) − UNSF(t)

)
P0f

ε
in + U ε(t)P⊥

0 f
ε
in

+ Ψε[gε, gε](t) − ΨNSF[gε, gε](t)

+ Ψε[gε, δε](t) + Ψε[δε, δε](t) .

As we shall see, the main point is to be able to solve the equation on δε, with an Hℓ
x

norm which is finite but blows up (in a controled way) as ε → 0. Our method of proof will
allow us to prove that the equation has a unique solution on the same time interval as gε

hence as g, at least for ε small enough. In doing so we shall also prove that δε converge
to 0.

The method will rely on the following fixed point lemma.

Lemma 3.1. There is a constant C0 > 0 such that the following holds. Let X be a Banach
space, L be a continuous linear map from X to X, and B be a bilinear map from X × X
to X. Let us define

‖L‖ := sup
‖x‖=1

‖Lx‖ and ‖B‖ := sup
‖x‖=‖y‖=1

‖B(x, y)‖ .

If ‖L‖ < 1, then for any x0 in X such that

(3.9) ‖x0‖X <
(1 − ‖L‖)2

4‖B‖
the equation x = x0 + Lx + B(x, x) has a unique solution in the ball of center 0 and

radius
1 − ‖L‖

2‖B‖ and ‖x‖ 6 C0‖x0‖ .

In the next sections, we shall provide all the necessary estimates in order to implement
this fixed-point argument to solve (3.8), which we re-write in the following form:

δε(t) = Dε(t) + Sε(t) + Lε[δε](t) + Ψε[δε, δε](t) ,

where the data Dε, source Sε and linear Lε[δε] terms are defined by

(3.10)

Dε(t) :=
(
U ε(t) − UNSF(t)

)
P0f

ε
in + U ε(t)P⊥

0 f
ε
in ,

Sε(t) := Ψε[gε, gε](t) − ΨNSF[gε, gε](t) ,

Lε[δε](t) := Ψε[gε, δε](t) .

Paragraphs 5.1 to 5.5 will be devoted to the proof of the following result.

Proposition 3.2. Under the assumptions of Theorem 1, the following holds.

(1) For any τ ∈ (0, T ) there holds

‖U ε(· − τ)F (τ)‖X ε
[τ,T ]

. ‖F‖X ε
[0,τ ]

.

(2) The data term goes to zero globally in time: for any t > 0

‖Dε‖X ε
∞

. ε
1
2

−α‖ḡin‖Hℓ−1
x L2

v
+ ‖P⊥

0 f
ε
in‖Hℓ−1

x L2
v

+ εβ‖P⊥
0 f

ε
in‖Hℓ

xL2
v

−−−→
ε→0

0 .

(3) The source term goes to zero in X ε
T : there is an increasing function Φ such that for

any t ∈ [0, T ]

‖Sε‖X ε
T
6 ε

1
2

−2α Φ
(
‖ḡin‖

Hℓ−1
x L2

v

)
−−−→
ε→0

0 .

(4) The linear term satisfies the following continuity estimate for ε small enough:

‖Lε[f ]‖X ε
T
. ‖f‖X ε

T

(
εβ‖gε‖

L̃∞
T Hℓ

xL2
v

+
√
ε‖gε‖

L̃∞
T Hℓ−1

x L2
v

+ ‖gε‖L2
T

Hℓ
xL2

v

)
.

(5) The nonlinear term satisfies the following continuity estimate:

‖Ψε[f1, f2]‖X ε
T
. ‖f1‖X ε

T
‖f2‖X ε

T
.
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Let us investigate how Proposition 3.2 ensures the wellposedness of (3.8) in X ε
T and the

convergence of δε to zero, thus proving Theorem 1.

End of the proof of Theorem 1. We shall check that (3.8) takes the form required by Lemma 3.1.
On the one hand thanks to Proposition 3.2 we have

‖Dε‖X ε
∞

+ ‖Sε‖X ε
T

−−−→
ε→0

0

so (3.9) will be satisfied as soon as we have a hold on the continuity constant on Lε: we need
the linear operator Lε to be a a contraction in X ε

T . As can be seen from Proposition 3.2–
(4), for that to be the case one needs ‖g‖L2

T Hℓ
xL2

v
to be small, which unfortunately is not

the case (unless ḡin is small, which we do not assume here).
In order to get around this difficulty, we shall apply Lemma 3.1 iteratively on small

time intervals. Note that due to Proposition 3.2–(4) and the estimates (3.3) and (3.7),
there is a constant C > 0 and ε0 > 0 such that for all ε 6 ε0

‖Lε[f ]‖X ε
T
6 C‖f‖X ε

T

( 1

4C
+ ‖g‖L2

T
Hℓ

xHs,⋆
v

)
.

Now there exists K > 0 and a succession of times t1 := 0 < t2 < · · · < tK such that

∀1 6 i 6 K − 1 , ‖g‖L2([ti,ti+1];Hℓ
xHs,⋆

v ) 6
1

4C
·

Then

(3.11) ‖Lε[f ]‖X ε
t2

6
1

2
‖f‖X ε

t2
·

Applying Lemma 3.1 on [0, t2] then implies that there is a unique solution δε to (3.8) in X ε
t2

,
which satisfies

(3.12) ‖δε‖X ε
t2

6 C0

(
Dε

in + ‖Sε‖X ε
t2

)
−−−→
ε→0

0 ,

with thanks to Proposition 3.2–(2)

(3.13) Dε
in := ε

1
2

−α‖ḡin‖Hℓ−1
x L2

v
+ ‖P⊥

0 f
ε
in‖Hℓ−1

x L2
v

+ εβ‖P⊥
0 f

ε
in‖Hℓ

xL2
v
.

Then we solve (3.8) on [t2, t3]. We recall that (3.8) writes

∀t ∈ [t2, t3] , δε(t) = Dε(t) + Sε(t) + Lε[δε](t) + Ψε[δε, δε](t) ,

with Dε, Sε and Lε defined in (3.10). We want to recast this equation in a form suited to
a fixed point on [t2, t3]. According to (2.1) and since U ε is a semigroup, we can write for
all t > t2

Ψε[f, g](t) =
1

ε
U ε(t − t2)

∫ t2

0
U ε(t2 − t′)Γsym(f(t′), g(t′)) dt′

+
1

ε

∫ t

t2

U ε(t − t′)Γsym(f(t′), g(t′)) dt′

=:
1

ε
U ε(t− t2)

∫ t2

0
U ε(t2 − t′)Γsym(f(t′), g(t′)) dt′ + Ψε[f, g](t2; t) .

We also define the operator

Lε[f ](t2; t) := Ψε[gε, f ](t2; t)

and we set

Dε
2(t) := Dε(t) − U ε(t− t2)Dε(t2)

and

Sε
2(t) := Sε(t) − U ε(t − t2)Sε(t2) .

Then (3.8) can be recast on [t2, t3] as follows:

δε(t) = U ε(t − t2)δε(t2) + Dε
2(t) + Sε

2(t) + Lε[δε](t2; t) + Ψε[δε, δε](t2; t) .
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Thanks to Proposition 3.2–(1), (2) and (3), Dε
2 and Sε

2 go to zero in X ε
[t2,t3], with for some

universal constant C1

‖Dε
2‖X ε

[t2,t3]
6 C1D

ε
in

with notation (3.13), and

‖Sε
2‖X ε

[t2,t3]
6 C1ε

1
2

−2αΦ
(
‖ḡin‖Hℓ−1

x L2
v

)
.

The linear operator Lε[δε](t2; t) is dealt with exactly as above to produce similarly to (3.11),
for ε small enough,

‖Lε[f ]‖X ε
[t2,t3]

6
1

2
‖f‖X ε

[t2,t3]
·

Finally thanks to Proposition 3.2–(1) and (3.12), we have for some universal constant C2 >
0 that

‖U ε(t− t2)δε(t2)‖X ε
[t2,t3]

. ‖Dε‖X ε
∞

+ ‖Sε‖X ε
t2

6 C2

[
Dε

in + ε
1
2

−2αΦ
(
‖ḡin‖Hℓ−1

x L2
v

)]
.

We can therefore apply Lemma 3.1 which implies that

‖δε‖X ε
[t2,t3]

6 C0

(
‖U ε(· − t2)δε(t2)‖X ε

[t2,t3]
+ ‖Dε

2‖X ε
[t2,t3]

+ ‖Sε
2‖X ε

[t2,t3]

)

6 C0(C1 + C2)
[
Dε

in + ε
1
2

−2αΦ
(
‖ḡin‖Hℓ−1

x L2
v

)]
.

Iterating this argument K times and noticing that K is of the order of ‖g‖L2
T Hℓ

xHs,⋆
v

, we

find that there is a unique solution δε ∈ X ε
T to (3.8) on [0, T ] which satisfies for some

universal constant C > 2

‖δε‖X ε
T
. C

‖g‖
L2

T
Hℓ

xH
s,⋆
v

[
Dε

in + ε
1
2

−2αΦ
(
‖ḡin‖Hℓ−1

x L2
v

)]
−−−→
ε→0

0 .

Theorem 1 is proved. �

4. Some results on the operators U ε and Ψε

In this section, we provide useful continuity estimates on U ε and Ψε. We also refine
decomposition (2.11) on Ψε using the spectral properties introduced in Section 2.

4.1. Estimates on U ε and Ψε. The first series of estimates (Propositions 4.1, 4.2 and
Corollary 4.3) are very close to the ones established in [13] (and in [29]) and are based
on hypocoercive energy estimates (see Appendix A for a presentation of hypocoercivity
results). Since the functional framework is a bit different, we reformulate them in our
functional setting. Some key elements of proofs are provided in Appendix A.

Proposition 4.1. Let m > 0 and T > 0. There holds:

(1) Let f ∈ Hm
x L

2
v and assume f verifies (1.13). Then

‖U ε(·)f‖
L̃∞

T
Hm

x L2
v

+
1

ε
‖P⊥

0 U
ε(·)f‖L2

T Hm
x Hs,⋆

v
+ ‖P0U

ε(·)f‖L2
T Hm

x L2
v
. ‖f‖Hm

x L2
v
,

and moreover U ε(t)f verifies (1.13) for all t > 0.

(2) Let S = S(t, x, v) satisfy P0S = 0 and S ∈ L2
TH

m
x (Hs,⋆

v )′, then for any t 6 T ,

∥∥∥∥
∫ t

0
U ε(t − t′)S(t′) dt′

∥∥∥∥
L̃∞

T Hm
x L2

v

+
1

ε

∥∥∥∥P
⊥
0

∫ t

0
U ε(t− t′)S(t′) dt′

∥∥∥∥
L2

T Hm
x Hs,⋆

v

+

∥∥∥∥P0

∫ t

0
U ε(t − t′)S(t′) dt′

∥∥∥∥
L2

T
Hm

x L2
v

. ε‖S‖L2
T Hm

x (Hs,⋆
v )′ .

From [29, Lemmas 4.8 and 4.9] we also have estimates for the semi-group U ε,♯.

Proposition 4.2. Let m > 0 and T > 0. There holds:
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(1) Let f ∈ Hm
x L

2
v, then

‖U ε,♯(·)f‖
L̃∞

T Hm
x L2

v
+

1

ε
‖U ε,♯(·)f‖L2

T Hm
x Hs,⋆

v
. ‖f‖Hm

x L2
v
.

(2) Let S = S(t, x, v) satisfy S ∈ L2
TH

m
x (Hs,⋆

v )′. Then for any t 6 T ,
∥∥∥∥
∫ t

0
U ε,♯(t− t′)S(t′) dt′

∥∥∥∥
L̃∞

T
Hm

x L2
v

+
1

ε

∥∥∥∥
∫ t

0
U ε,♯(t − t′)S(t′) dt′

∥∥∥∥
L2

T
Hm

x Hs,⋆
v

. ε‖S‖L2
T Hm

x (Hs,⋆
v )′ .

From the two previous propositions, since Γsym is such that P0Γsym = 0, it is straight-
forward to deduce the following result.

Corollary 4.3. Consider m > 0, f1, f2 such that Γsym(f1, f2) ∈ L2
TH

m
x (Hs,⋆

v )′ for some
given T > 0. Then, there holds:

‖Ψε[f1, f2]‖
L̃∞

T
Hm

x L2
v

+
1

ε

∥∥∥P⊥
0 Ψε[f1, f2]

∥∥∥
L2

T Hm
x Hs,⋆

v

+ ‖P0Ψε[f, g]‖L2
T Hm

x L2
v
. ‖Γsym(f1, f2)‖L2

T
Hm

x (Hs,⋆
v )′

and

‖Ψε,♯[f1, f2]‖
L̃∞

T Hm
x L2

v
+

1

ε
‖Ψε,♯[f1, f2]‖L2

T Hm
x Hs,⋆

v
. ‖Γsym(f1, f2)‖L2

T Hm
x (Hs,⋆

v )′ .

We finally give a straighforward estimate for U ε,♭.

Proposition 4.4. Let m > 0 and T > 0. For any f ∈ Hm
x L

2
v there holds

‖U ε,♭(·)f‖L2
T

Hm+1
x Hs,⋆

v
. ‖f‖Hm

x L2
v
.

4.2. Nonlinear estimates. We now provide nonlinear estimates that are central to es-
timate the nonlinear collisional operator Γ in various functional spaces. It is well-known
(see [36] for cutoff Boltzmann, [34, 2] for non-cutoff Boltzmann, [35] for Landau) that

∣∣〈Γ(f1, f2), f3〉L2
v

∣∣ . ‖f1‖L2
v
‖f2‖Hs,⋆

v
‖f3‖Hs,⋆

v
,

from which we obtain

(4.1) ‖Γ(f1, f2)‖(Hs,⋆
v )′ := sup

‖φ‖
H

s,⋆
v

61
〈Γ(f1, f2), φ〉L2

v
. ‖f1‖L2

v
‖f2‖Hs,⋆

v
.

Proposition 4.5. Let m > 0. For any r1, r2 6= 3/2, any p1, q1, p2, q2 ∈ [1,∞] that are
such that 1/p1 + 1/q1 = 1/p2 + 1/q2 = 1/2, and any smooth enough functions f1, f2 there
holds:

‖Γ(f1, f2)‖L2
T Hm

x (Hs,⋆
v )′ . ‖f1‖

L̃
p1
T

H
m+(3/2−r1)+
x L2

v

‖f2‖
L̃

q1
T H

r1
x Hs,⋆

v

+ ‖f1‖
L̃

p2
T

H
r2
x L2

v
‖f2‖

L̃
q2
T H

m+(3/2−r2)+
x Hs,⋆

v

.

Proof. To simplify we write F1(t, k) = ‖f̂1(t, k, ·)‖L2
v

and F2(t, k) = ‖f̂2(t, k, ·)‖Hs,⋆
v

. By (4.1)

we have, for any k ∈ Z3,

‖Γ̂(f1, f2)(k)‖L2
T (Hs,⋆

v )′ .





∫ T

0


 ∑

n∈Z3

F1(t, k − n)F2(t, n)




2

dt





1
2

,

and applying Minkowski’s inequality yields

‖Γ̂(f1, f2)(k)‖L2
T (Hs,⋆

v )′ .
∑

n∈Z3

{∫ T

0
|F1(t, k − n)|2|F2(t, n)|2 dt

}1
2

.

We now follow [43, Lemma 7.3]. We first split

‖Γ̂(f1, f2)(k)‖L2
T (Hs,⋆

v )′ . I1(k) + I2(k)



16 K. CARRAPATOSO, I. GALLAGHER, AND I. TRISTANI

with

I1(k) =
∑

n∈Z3

1|n|<|k−n|

{∫ T

0
|F1(t, k − n)|2|F2(t, n)|2 dt

}1
2

and

I2(k) =
∑

n∈Z3

1|k−n|>|n|

{∫ T

0
|F1(t, n)|2|F2(t, k − n)|2 dt

} 1
2

.

We now estimate the term I1. Thanks to Hölder’s inequality in time, we obtain

(4.2) I1(k) .
∑

n∈Z3

1|n|<|k−n|‖F1(·, k − n)‖L
p1
T

‖F2(·, n)‖L
q1
T
,

where 1/p1 + 1/q1 = 1/2, and to simply notation we introduce F1(k) = ‖F1(·, k)‖L
p1
T

and F2(k) = ‖F2(·, k)‖L
q1
T

. By the Cauchy-Schwarz inequality it follows that

I1(k) . ‖〈·〉r1F2‖ℓ2(Z3)




∑

n∈Z3

1|n|<|k−n|〈n〉−2r1F1(k − n)2





1
2

where we recall that r1 6= 3/2. Multypliying I1(k) by 〈k〉m then taking the square and
summing it gives

∑

k∈Z3

〈k〉2mI1(k)2 . ‖〈·〉r1F2‖2
ℓ2(Z3)

∑

k∈Z3

∑

n∈Z3

1|n|<|k−n|〈k〉2m〈n〉−2r1F1(k − n)2 .

Using that 1|n|<|k−n|〈k〉2m . 1|n|<|k−n|〈k − n〉2m, the above sum can be bounded by

∑

n′∈Z3




∑

n∈Z3

1|n|<|n′|〈n〉−2r1



 〈n′〉2mF1(n′)2

and we observe by standard arguments that

∑

n∈Z3

1|n|<|n′|〈n〉−2r1 .

{
〈n′〉3−2r1 if r1 <

3
2 ,

1 if r1 >
3
2 .

This implies
∑

k∈Z3

〈k〉2mI1(k)2 . ‖〈·〉r1F2‖2
ℓ2(Z3)‖〈·〉m+(3/2−r1)+F1‖2

ℓ2(Z3)

= ‖f1‖2

L̃
p1
T H

m+(3/2−r1)+
x L2

v

‖f2‖2
L̃

q1
T

H
r1
x Hs,⋆

v
.

The term I2 can be estimated in a similar fashion, by exchanging the role of f1 and f2.
Indeed, we first apply to Hölder’s inequality in time with 1/p2 + 1/q2 = 1/2 to obtain

(4.3) I2(k) .
∑

n∈Z3

1|k−n|>|n|‖F1(·, n)‖L
p2
T

‖F2(·, k − n)‖L
q2
T
.

Denoting F ′
1(k) = ‖F1(·, k)‖L

p2
T

and F ′
2(k) = ‖F2(·, k)‖L

q2
T

, the Cauchy-Schwarz inequality

yields

I2(k) . ‖〈·〉r2F ′
1‖ℓ2(Z3)




∑

n∈Z3

1|k−n|>|n|〈n〉−2r2F ′
2(k − n)2





1
2

.

Arguing as above, it follows
∑

k∈Z3

〈k〉2mI2(k)2 . ‖f1‖2
L̃

p2
T

H
r2
x L2

v
‖f2‖2

L̃
q2
T H

m+(3/2−r2)+
x Hs,⋆

v

,

which completes the proof. �

We give another estimate on Γ in the specific case where both entries are macroscopic
(which in particular implies that there is no loss of regularity in the velocity variable).
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Proposition 4.6. Let m > 0. For any r1, r2 6= 3/2 and any smooth enough func-
tions f1, f2 there holds:

‖Γ(P0f1,P0f2)‖
L̃∞

T Hm
x L2

v
. ‖P0f1‖

L̃∞
T

H
m+(3/2−r1)+
x L2

v

‖P0f2‖
L̃∞

T H
r1
x L2

v

+ ‖P0f1‖
L̃∞

T
H

r2
x L2

v
‖P0f2‖

L̃∞
T H

m+(3/2−r2)+
x L2

v

.

Proof. Using the regularization properties of P0, thanks to [53, 15] respectively for the
noncutoff Boltzmann and Landau equations, and the fact that ‖〈v〉pP0φ‖Hq

v
. ‖P0φ‖L2

v

for all p, q > 0, we have

(4.4) ‖Γ(P0f1,P0f2)‖L2
v
. ‖P0f1‖L2

v
‖P0f2‖L2

v
.

Therefore we have for any k ∈ Z3,

‖Γ̂(P0f1,P0f2)(k)‖L∞
T L2

v
.
∑

n∈Z3

‖P̂0f1(k − n)‖L∞
T L2

v
‖P̂0f2(n)‖L∞

T L2
v
.

We then conclude as in the proof of Proposition 4.5. �

4.3. Refined estimates on Ψε. We recall that as introduced in Section 2

(4.5) Ψε = Ψε,♭ + Ψε,♯

and
Ψε,♭ = ΨNSF + Ψε,♭

wave + Ψ̃ε .

We can further expand Ψε,♭ by writing

(4.6) Ψε,♭ = ΨNSF + Ψε1,♯
NSF + Ψε1,♭

wave + Ψε1,♭ + Ψε2,♭

where writing Ψ̂⋆[f1, f2](t) = Fx
(
Ψ⋆[f, f ](t)

)
and recalling that P0Γsym = 0,

Ψ̂NSF[f1, f2](t, k) :=
∑

⋆∈{NS,heat}

∫ t

0
e−ν⋆(t−t′)|k|2|k|P1

⋆

( k
|k|
)
Γ̂sym

(
f1(t′), f2(t′)

)
(k) dt′ ,

Ψ̂ε1,♯
NSF[f1, f2](t, k) :=

(
χ
(ε|k|
κ

)
− 1

)

×
∑

⋆∈{NS,heat}

∫ t

0
e−ν⋆|k|2(t−t′)|k|P1

⋆

( k
|k|
)
Γ̂sym

(
f1(t′), f2(t′)

)
(k) dt′ ,

Ψ̂ε1,♭
wave[f1, f2](t, k) := χ

(ε|k|
κ

)

×
∑

±

∫ t

0
e(±icε|k|−νwave±ε2|k|2) t−t′

ε2 |k|P1
wave±

( k
|k|
)
Γ̂sym

(
f1(t′), f2(t′)

)
(k) dt′ ,

Ψ̂ε1,♭[f1, f2](t, k) := χ
(ε|k|
κ

) ∑

⋆∈{NS,heat,wave±}

∫ t

0
e(±ic⋆ε|k|−ν⋆ε2|k|2) t−t′

ε2

×
(
e(t−t′)

γ⋆(ε|k|)

ε2 − 1
)
|k|P1

⋆

( k
|k|
)
Γ̂sym

(
f1(t′), f2(t′)

)
(k) dt′ ,

Ψ̂ε2,♭[f1, f2](t, k) := χ
(ε|k|
κ

)

×
∑

⋆∈{NS,heat,wave±}

∫ t

0
eλ⋆(εk) t−t′

ε2 ε|k|2P2
⋆ (εk)Γ̂sym

(
f1(t′), f2(t′)

)
(k) dt′ .

We have used the notation c⋆ := 0 if ⋆ ∈ {NS,heat}.
In what follows, we give estimates on specific parts of Ψε coming from the decomposi-

tion (4.5)–(4.6) which will imply continuity estimates on Ψε in various functional spaces.

Proposition 4.7. Consider T > 0 and m > 0. For any smooth enough functions f1

and f2, we have

(4.7)
∥∥Ψε,♭[f1, f2]

∥∥
L2

T Hm+1
x Hs,⋆

v
. ‖Γsym(f1, f2)‖L2

T
Hm

x (Hs,⋆
v )′ .
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Proof. Recalling (2.13), for any k ∈ Z3, there holds

Ψ̂ε,♭[f1, f2](t, k)

=
1

ε
χ
(ε|k|
κ

) ∑

⋆∈{NS,heat,wave±}

∫ t

0
eλ⋆(εk) t−t′

ε2 P⋆(εk)Γ̂sym
(
f1(t′), f2(t′)

)
(k) dt′ .

Due to the form (2.4)-(2.5) of λ⋆ and to the fact that P0Γsym = 0, there is a constant λ1 > 0
such that∥∥∥Ψ̂ε,♭[f1, f2](t, k)

∥∥∥
Hs,⋆

v

. |k|χ
(ε|k|
κ

) ∫ t

0
e−λ1|k|2(t−t′)

∥∥∥P1
( k

|k|
)
Γ̂sym(f1, f2)(t′, k)

∥∥∥
Hs,⋆

v

dt′

+ ε|k|2χ
(ε|k|
κ

) ∫ t

0
e−λ1|k|2(t−t′)

∥∥∥P2(εk)Γ̂sym(f1, f2)(t′, k)
∥∥∥

Hs,⋆
v

dt′

. |k|χ
(ε|k|
κ

) ∫ t

0
e−λ1|k|2(t−t′)

∥∥∥P1
( k

|k|
)
Γ̂sym(f1, f2)(t′, k)

∥∥∥
Hs,⋆

v

dt′

+ |k|χ
(ε|k|
κ

) ∫ t

0
e−λ1|k|2(t−t′)

∥∥∥P2(εk)Γ̂sym(f1, f2)(t′, k)
∥∥∥

Hs,⋆
v

dt′

where we used that εk lies in a compact set to get the last inequality and where P1 and P2

are bounded from (Hs,⋆
v )′ into Hs,⋆

v uniformly in ε|k| 6 κ. We then have
∥∥∥P1

( k
|k|
)
Γ̂sym(f1, f2)(t′, k)

∥∥∥
Hs,⋆

v

+
∥∥∥P2(εk)Γ̂sym(f1, f2)(t′, k)

∥∥∥
Hs,⋆

v

.
∥∥Γ̂sym(f1, f2)(t′, k, ·)

∥∥
(Hs,⋆

v )′ .

We denote A(t′, k) := ‖Γ̂sym(f1, f2)(t′, k, ·)‖(Hs,⋆
v )′ , and we use Young’s inequality in time L2

T ⋆

L1
T ⊂ L2

T to estimate

‖Ψ̂ε,♭[f1, f2](k)‖L2
T Hs,⋆

v
.

∥∥∥∥
∫ t

0
|k|2e−λ1(t−t′)|k|2|k|−1A(t′, ·) dt′

∥∥∥∥
L2

T

.
∥∥|k|−1A(·, k)

∥∥
L2

T
.

Therefore we obtain

‖Ψε,♭[f1, f2]‖L2
T

Hm+1
x Hs,⋆

v
. ‖〈k〉mA‖ℓ2

k
L2

T
. ‖Γsym(f1, f2)‖L2

T Hm
x (Hs,⋆

v )′ ,

which concludes the proof. �

We now give an estimate on Ψε,♯ when both entries are macroscopic.

Proposition 4.8. Consider T > 0 and m > 0. For any smooth enough functions f1

and f2 we have:
∥∥Ψε,♯[P0f1,P0f2]

∥∥
L̃∞

T Hm
x L2

v
. ε‖Γsym(P0f1,P0f2)‖

L̃∞
T Hm

x L2
v
.

Proof. We first write for any k ∈ Z3,
∥∥∥Ψ̂ε,♯[P0f1,P0f2](k)

∥∥∥
L∞

T
L2

v

.
1

ε

∥∥∥∥
∫ t

0

∥∥∥Û ε,♯(t − t′, k)Γ̂sym(P0f1,P0f2)(t′, k)
∥∥∥

L2
v

dt′
∥∥∥∥

L∞
T

.

Using then (2.8), we deduce that
∥∥∥Ψ̂ε,♯[P0f1,P0f2](k)

∥∥∥
L∞

T L2
v

.
1

ε

∥∥∥∥
∫ t

0
e−λ0

t−t′

ε2

∥∥∥Γ̂sym(P0f1,P0f2)(t′, k)
∥∥∥

L2
v

dt′
∥∥∥∥

L∞
T

,

and thus Young’s inequality in time yields
∥∥∥Ψ̂ε,♯[P0f1,P0f2](k)

∥∥∥
L∞

T L2
v

. ε
∥∥∥Γ̂sym(P0f1,P0f2)(k)

∥∥∥
L∞

T L2
v

.

Thsi concludes the proof of Proposition 4.8. �
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5. The equation on δε: proof of Proposition 3.2

This section is devoted to the proof of Proposition 3.2.

5.1. Continuity estimate for U ε. We start with a continuity estimate for U ε. From
Proposition 4.1 we have

εβ‖U ε(· − τ)F (τ)‖
L̃∞

[τ,T ]
Hℓ

xL2
v
. εβ‖F (τ)‖Hℓ

xL2
v
,

as well as

‖U ε(· − τ)F (τ)‖
L̃∞

[τ,T ]
Hℓ−1

x L2
v
. ‖F (τ)‖

Hℓ−1
x L2

v

and
1√
ε

‖P⊥
0 U

ε(· − τ)F (τ)‖L2
[τ,T ]

Hℓ
xHs,⋆

v
.

√
ε‖F (τ)‖Hℓ

xL2
v
.

We now decompose P0U
ε = P0U

ε,♯ + P0U
ε,♭ as in (2.6). By Proposition 4.2 we get

‖P0U
ε,♯(· − τ)F (τ)‖L2

[τ,T ]
Hℓ

xHs,⋆
v

. ε‖F (τ)‖Hℓ
xL2

v
.

Furthermore, Proposition 4.4 yields

‖P0U
ε,♭(· − τ)F (τ)‖L2

[τ,T ]
Hℓ

xHs,⋆
v

. ‖F (τ)‖Hℓ−1
x L2

v
.

Gathering previous estimates and using that β < 1/2, it follows that

‖U ε(· − τ)F (τ)‖X ε
[τ,T ]

. εβ‖F (τ)‖Hℓ
xL2

v
+ ‖F (τ)‖Hℓ−1

x L2
v

. εβ‖F‖
L̃∞

[0,τ ]
Hℓ

xL2
v

+ ‖F‖
L̃∞

[0,τ ]
Hℓ−1

x L2
v
. ‖F‖X ε

[0,τ ]
.

This concludes the proof of Proposition 3.2–(1).

5.2. Contribution of the data Dε. Recall that

(5.1) Dε(t) :=
(
U ε(t) − UNSF(t)

)
P0f

ε
in + U ε(t)P⊥

0 f
ε
in .

Let us first prove that

(5.2)
∥∥(U ε(t) − UNSF(t)

)
P0f

ε
in

∥∥
X ε

∞
. ε

1
2

−α‖ḡin‖Hℓ−1
x L2

v
.

We start that by recalling that by (2.6) and (2.9) there holds
(
U ε(t) − UNSF(t)

)
P0f

ε
in =

(
Ũ ε + U ε,♭

wave + U ε,♯)(t)P0f
ε
in .

We notice that since P0f
ε
in is well-prepared, then U ε,♭

wave(t)P0f
ε
in ≡ 0 so

(
Ũ ε + U ε,♭

wave + U ε,♯)(t)P0f
ε
in =

(
Ũ ε + U ε,♯)(t)P0f

ε
in .

Let us start by considering U ε,♯(t)P0f
ε
in. Thanks to Proposition 4.2–(1) we have

‖U ε,♯(·)P0f
ε
in‖L2

t Hm
x Hs,⋆

v
. ε‖P0f

ε
in‖Hm

x L2
v

for any m > 0. We shall now follow the arguments of [26] (see in particular the proofs of
Lemmas 3.3 and 3.5). We notice as in [8, Lemma 6.2] that

U ε,♯(t)f = U ε(t)U ε,♯(0)f = U ε(t)
[
F−1

x

(
Id − χ

(ε|k|
κ

) ∑

⋆∈{NS,heat,wave±}

P⋆(εk)f̂ (k)
]

so in particular

U ε,♯(t)P0f
ε
in = U ε(t)

[
F−1

x

((
Id−χ

(ε|k|
κ

))
−ε|k|χ

(ε|k|
κ

) ∑

⋆∈{NS,heat,wave±}

P⋆(εk)

)
P̂0f

ε
in(k)

]
.

The Hm
x L

2
v-norm of the first term in the right-hand side can be estimated using

(5.3)
∣∣∣χ
(ε|k|
κ

)
− 1

∣∣∣ . ε|k| ,
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and thanks to the fact that the projectors P⋆ are bounded from L2
v to L2

v. The same holds
for the terms coming from the second part of the right-hand side, so we find that

‖U ε,♯(·)P0f
ε
in‖

L̃∞
t Hm

x L2
v
. ε‖P0f

ε
in‖Hm+1

x L2
v
.

Using Remark 3, we deduce that

εβ‖U ε,♯(·)P0f
ε
in‖

L̃∞
t Hℓ

xL2
v
. ε1+β‖P0f

ε
in‖

Hℓ+1
x L2

v
. ε1+β−2α‖ḡin‖

Hℓ−1
x L2

v
,

as well as

‖U ε,♯(·)P0f
ε
in‖

L̃∞
t Hℓ−1

x L2
v

+
1√
ε

‖P⊥
0 U

ε,♯(·)P0f
ε
in‖L2

t Hℓ
xHs,⋆

v
+ ‖P0U

ε,♯(·)P0f
ε
in‖L2

t Hℓ
xHs,⋆

v

.
(√
ε+ ε

)
‖P0f

ε
in‖Hℓ

xL2
v
. ε

1
2

−α‖ḡin‖Hℓ−1
x L2

v
.

We conclude that

(5.4)
∥∥U ε,♯(·)P0f

ε
in

∥∥
X ε

∞
. ε

1
2

−α‖ḡin‖Hℓ−1
x L2

v
−−−→
ε→0

0 .

Now let us turn to Ũ ε(t)P0f
ε
in as defined in (2.10). By construction it is made of three

terms, defined in Fourier variables by

̂̃
U ε(t, k) :=

̂̃
U ε,♯

NSF(t, k) + ̂̃U ε1,♭(t, k) + ̂̃U ε2,♭(t, k)

:=
(
1 − χ

(ε|k|
κ

)) ∑

⋆∈{NS,heat}

e−ν⋆|k|2t P0
⋆

( k
|k|
)

+ χ
(ε|k|
κ

) ∑

⋆∈{NS,heat}

(
eλ⋆(εk) t

ε2 − e−ν⋆|k|2t
)
P0

⋆

( k
|k|
)

+ χ
(ε|k|
κ

) ∑

⋆∈{NS,heat}

eλ⋆(εk) t
ε2

[
ε|k|P1

⋆ ( k
|k|) + ε2|k|2P2

⋆ (εk)
]
.

We shall study the three contributions in turn, starting with Ũ ε,♯
NSF(t). We recall again that

the projectors Pj
⋆ are bounded from L2

v to L2
v and from Hs,⋆

v to Hs,⋆
v . Using the fact that

since P0f
ε
in is mean free which implies that there is no contribution to k = 0, we have for

any m > 0,

∥∥Ũ ε,♯
NSF(·)P0f

ε
in

∥∥2

L2
t Hm

x Hs,⋆
v

.
∑

⋆∈{NS,heat}

∑

k∈Z3\{0}

〈k〉2m|k|−2
(
1 − χ

(ε|k|
κ

))2∥∥∥P̂0f ε
in(k, ·)

∥∥∥
2

Hs,⋆
v

.

Using (5.3) and the fact that ‖P0f‖Hs,⋆
v

. ‖P0f‖L2
v
, we get

∥∥Ũ ε,♯
NSF(·)P0f

ε
in

∥∥
L2

t Hm
x Hs,⋆

v
. ε


∑

k∈Z3

〈k〉2m
∥∥∥P̂0f ε

in(k, ·)
∥∥∥

2

L2
v




1
2

. ε‖P0f
ε
in‖Hm

x L2
v
.

Similar computations give
∥∥Ũ ε,♯

NSF(·)P0f
ε
in

∥∥
L̃∞

t Hm
x L2

v
. ε‖P0f

ε
in‖Hm

x L2
v
.

Therefore, arguing similarly as for obtaining estimate (5.4) for the term U ε,♯, we also get

(5.5)

∥∥Ũ ε,♯
NSF(·)P0f

ε
in

∥∥
X ε

∞
. (ε1+β +

√
ε+ ε)‖P0f

ε
in‖Hℓ

xL2
v

+ ε‖P0f
ε
in‖Hℓ−1

x L2
v

.
(
ε1+β−α + ε

1
2

−α
)

‖ḡin‖Hℓ−1
x L2

v
.

Next we turn to Ũ ε1,♭(t). We write

χ
(ε|k|
κ

)∣∣∣eλ⋆(εk) t
ε2 − e−ν⋆|k|2t

∣∣∣ . χ
(ε|k|
κ

)
e− ν⋆

2
|k|2ttε|k|3

. e− ν⋆
4

|k|2tε|k| .
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Compared to the computations above we have gained a factor ε but lost a power of k. The
same argument gives

∥∥Ũ ε1,♭(·)P0f
ε
in

∥∥
L̃∞

t Hm
x L2

v
+
∥∥Ũ ε1,♭(·)P0f

ε
in

∥∥
L2

t Hm
x L2

v
. ε‖P0f

ε
in‖Hm

x L2
v
.

We can then again argue as for obtaining the bound (5.5) to deduce

(5.6)
∥∥Ũ ε1,♭(·)P0f

ε
in

∥∥
X ε

∞
.
(
ε1+β−α + ε

1
2

−α
)

‖ḡin‖Hℓ−1
x L2

v
.

Finally the computations for Ũ ε2,♭(t) are very similar: We find
∥∥Ũ ε2,♭(·)P0f

ε
in

∥∥
L̃∞

t Hm
x L2

v
+
∥∥Ũ ε2,♭(·)P0f

ε
in

∥∥
L2

t Hm
x L2

v
. ε‖P0f

ε
in‖Hm

x L2
v

+ ε2‖P0f
ε
in‖Hm+1

x L2
v
,

so that arguing as before

(5.7)
∥∥Ũ ε2,♭(·)P0f

ε
in

∥∥
X ε

∞
.
(
ε1+β−α + ε

1
2

−α + ε2+β−2α + ε3/2−2α
)

‖ḡin‖Hℓ−1
x L2

v
.

Putting together the estimates on Ũ ε,♯
NSF(t)P0f

ε
in, Ũ ε1,♭(t)P0f

ε
in and Ũ ε2,♭(t)P0f

ε
in gives (5.2).

Recalling (5.1), it remains to prove that

(5.8)
∥∥U ε(t)P⊥

0 f
ε
in

∥∥
X ε

∞
. εβ‖P⊥

0 f
ε
in‖Hℓ

xL2
v

+ ‖P⊥
0 f

ε
in‖Hℓ−1

x L2
v
.

From Proposition 4.1–(1), we have
∥∥U ε(t)P⊥

0 f
ε
in

∥∥
L̃∞

T Hℓ−1
x L2

v
. ‖P⊥

0 f
ε
in‖Hℓ−1

x L2
v
,

as well as
1√
ε

∥∥P⊥
0 U

ε(t)P⊥
0 f

ε
in

∥∥
L2

T Hℓ
xHs,⋆

v
.

√
ε‖P⊥

0 f
ε
in‖Hℓ

xL2
v
,

and also

εβ
∥∥U ε(t)P⊥

0 f
ε
in

∥∥
L̃∞

T Hℓ
xL2

v
. εβ‖P⊥

0 f
ε
in‖Hℓ

xL2
v
.

From the decomposition (2.6), for any k ∈ Z3 and t > 0, we have

‖Û ε(t, k)P⊥
0 ‖L2

v→L2
v
. ε|k|e−t|k|2 + e−λ0

t
ε2 .

Using that P0 is bounded from Hs,⋆
v into L2

v and that P⊥
0 P⊥

0 = P⊥
0 , we obtain

‖P0Û
ε(·, k)P⊥

0 f̂
ε
in(k)‖L2

t Hs,⋆
v

. ε‖P⊥
0 f̂

ε
in(k)‖L2

v
,

from which we deduce

‖P0U
ε(·)P⊥

0 f
ε
in‖L2

t Hℓ
xHs,⋆

v
. ε‖P⊥

0 f
ε
in‖Hℓ

xL2
v
.

Gathering previous estimates ends the proof of (5.8). The estimates (5.2) and (5.8)
together complete the proof of Proposition 3.2–(2).

5.3. Contribution of the source term Sε. We recall that

Sε(t) = Ψε[gε, gε](t) − ΨNSF[gε, gε](t) ,

and we want to prove that

‖Sε‖X ε
T
6 ε(1−4α)/2Φ

(
‖ḡin‖Hℓ−1

x L2
v

)
.

Due to decompositions (4.5)-(4.6) one can write

(5.9) Sε(t) =
(
Ψε,♯ + Ψε1

wave + Ψε1,♯
NSF + Ψε1,♭ + Ψε2,♭

)
[gε, gε](t) ,

and we estimate each term separately.
We start with the first term in (5.9).

Lemma 5.1. There holds

‖Ψε,♯[gε, gε]‖X ε
T
. ε1+β‖Γ(gε, gε)‖

L̃∞
T Hℓ

x(Hs,⋆
v )′ + ε‖Γ(gε, gε)‖

L̃∞
T Hℓ−1

x L2
v

+
√
ε‖Γ(gε, gε)‖L2

T Hℓ
x(Hs,⋆

v )′ .
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Proof. Since gε = P0g
ε, from Proposition 4.8 we obtain

‖Ψε,♯[gε, gε](t)‖
L̃∞

T Hℓ
xL2

v
. ε‖Γ(gε, gε)‖

L̃∞
T Hℓ

xL2
v
,

and also

‖Ψε,♯[gε, gε](t)‖
L̃∞

T Hℓ−1
x L2

v
. ε‖Γ(gε, gε)‖

L̃∞
T Hℓ−1

x L2
v
.

Moreover thanks to Corollary 4.3 we know that

‖Ψε,♯[gε, gε]‖L2
T Hℓ

xHs,⋆
v

. ε‖Γ(gε, gε)‖L2
T Hℓ

x(Hs,⋆
v )′ .

We conclude the proof by gathering previous estimates. �

Before looking at the other contributions, let us remark that from (4.6), for k = 0, we
have

Ψ̂ε[gε, gε](t, 0) = Ψ̂ε,♯[gε, gε](t, 0) ,

it is thus enough to analyze the other contributions in (5.9) for k ∈ Z3 \{0} i.e. for |k| > 1.
For the second term Ψε1

wave in (5.9), we follow the arguments of [26, 13]: one needs to
exploit the oscillations of the phase by integrations by parts in time. Thus with notation
inspired from [26, 13] we define

Hε
±(t, t′, x) := F−1

x

(
χ
(ε|k|
κ

)
e−νwave±(t−t′)|k|2|k|P1

wave±

( k
|k|
)
Γ̂(gε, gε)(t′, k)

)

so that after an integration by parts in time

Ψ̂ε1
wave[g

ε, gε](t, k)

=
∑

±

ε

ic|k|
( ∫ t

0
e±ic|k| t−t′

ε ∂t′Ĥε
±(t, t′, k) dt′ − Ĥε

±(t, t, k) + e±ic|k| t
ε Ĥε

±(t, 0, k)
)
.

Let us define

(5.10) Ĵε
±(t, k) := χ

(ε|k|
κ

) ε
ic

∫ t

0
e±ic|k| t−t′

ε
−νwave±(t−t′)|k|2P1

wave±

( k
|k|
)
∂t′ Γ̂(gε, gε)(t′, k) dt′

and

(5.11) Îε
±(t, k) := Ψ̂ε1

wave[g
ε, gε](t, k) − Ĵε

±(t, k) ,

which will be estimated separately.
For the term Iε

± we have the following result.

Lemma 5.2. There holds

‖Iε
±‖X ε

T
. ε1+β‖Γ(gε, gε)‖

L̃∞
T

Hℓ
xL2

v
+ ε‖Γ(gε, gε)‖

L̃∞
T

Hℓ−1
x L2

v

+
√
ε‖Γ(gε, gε)‖L2

T Hℓ
x(Hs,⋆

v )′ +
√
ε‖Γ(gε

in, g
ε
in)‖Hℓ

x(Hs,⋆
v )′ .

Proof. Since P1
wave± is bounded from L2

v into L2
v as well as from (Hs,⋆

v )′ into Hs,⋆
v , we

obtain from [13, Proof of Lemma 6.5] that, for all t ∈ [0, T ] and k ∈ Z3 \ {0},

‖Îε
±(t, k)‖L2

v
. ε

∫ t

0
|k|2e−νwave±(t−t′)|k|2‖Γ̂(gε, gε)(t′, k)‖L2

v
dt′

+ ε‖Γ̂(gε, gε)(t, k)‖L2
v

+ εe−νwave±t|k|2‖Γ̂(gε
in, g

ε
in)(k)‖L2

v
,

and

‖Îε
±(t, k)‖Hs,⋆

v
. ε

∫ t

0
|k|2e−νwave±(t−t′)|k|2‖Γ̂(gε, gε)(t′, k)‖(Hs,⋆

v )′ dt′

+ ε‖Γ̂(gε, gε)(t, k)‖(Hs,⋆
v )′ + εe−νwave±t|k|2‖Γ̂(gε

in, g
ε
in)(k)‖(Hs,⋆

v )′ .

Applying Young’s convolution in time L1
T ∗L∞

T ⊂ L∞
T and, respectively, L1

T ∗L2
T ⊂ L2

T , we
therefore obtain

‖Îε
±(k)‖L∞

T L2
v
. ε‖Γ(gε, gε)(k)‖L∞

T L2
v
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and

‖Îε
±(k)‖L2

T
Hs,⋆

v
. ε‖Γ(gε, gε)(k)‖L2

T
(Hs,⋆

v )′ + ε‖Γ̂(gε
in, g

ε
in)(k)‖(Hs,⋆

v )′ .

This implies

εβ‖Iε
±‖

L̃∞
T

Hℓ
xL2

v
. ε1+β‖Γ(gε, gε)‖

L̃∞
T

Hℓ
xL2

v
,

as well as

‖Iε
±‖

L̃∞
T

Hℓ−1
x L2

v
+

1√
ε

‖P⊥
0 I

ε
±‖L2

T Hℓ
xHs,⋆

v
+ ‖P0I

ε
±‖L2

T Hℓ
xHs,⋆

v

. ε‖Γ(gε, gε)‖
L̃∞

T
Hℓ−1

x L2
v

+
(√
ε+ ε

) (
‖Γ(gε, gε)‖L2

T Hℓ
x(Hs,⋆

v )′ + ‖Γ(gε
in, g

ε
in)‖Hℓ

x(Hs,⋆
v )′

)
.

Lemma 5.2 is proved. �

Recalling the definition of Jε
± in (5.10), we have:

Lemma 5.3. There holds

‖Jε
±‖X ε

T
. ε1+β‖Γsym(gε, ∂tg

ε)‖
L̃∞

T
Hℓ−2

x L2
v

+ ε‖Γsym(gε, ∂tg
ε)‖

L̃∞
T

Hℓ−3
x L2

v

+
√
ε‖Γsym(gε, ∂tg

ε)‖L2
T

Hℓ−2
x (Hs,⋆

v )′ .

Proof. Starting from (5.10), we use the fact that P1
wave± is bounded from L2

v into L2
v as

well as from (Hs,⋆
v )′ into Hs,⋆

v to obtain that, for all t ∈ [0, T ] and k ∈ Z3 \ {0},

‖Ĵε
±(t, k)‖L2

v
. ε

∫ t

0
|k|2e−νwave±(t−t′)|k|2|k|−2‖∂tΓ̂(gε, gε)(t′, k)‖L2

v
dt′

and

‖Ĵε
±(t, k)‖Hs,⋆

v
. ε

∫ t

0
|k|2e−νwave±(t−t′)|k|2|k|−2‖∂tΓ̂(gε, gε)(t′, k)‖(Hs,⋆

v )′ dt′ .

Using Young’s inequality for convolutions as in the proof of Lemma 5.2 together with the
fact that ∂tΓ̂(gε, gε) = Γ̂(∂tg

ε, gε) + Γ̂(gε, ∂tg
ε) , we thus deduce

‖Ĵε
±(t, k)‖L∞

T L2
v
. ε|k|−2‖Γ̂sym(gε, ∂tg

ε)(k)‖L∞
T L2

v

and

‖Ĵε
±(t, k)‖L2

T Hs,⋆
v

. ε|k|−2‖Γ̂sym(gε, ∂tg
ε)(k)‖L2

T (Hs,⋆
v )′ .

These two inequalities imply

εβ‖Jε
±‖

L̃∞
T Hℓ

xL2
v
. ε1+β‖Γsym(gε, ∂tg

ε)‖
L̃∞

T Hℓ−2
x L2

v
,

and also

‖Jε
±‖

L̃∞
T Hℓ−1

x L2
v

+
1√
ε

‖P⊥
0 J

ε
±‖L2

T Hℓ
xHs,⋆

v
+ ‖P0J

ε
±‖L2

T Hℓ
xHs,⋆

v

. ε‖Γsym(gε, ∂tg
ε)‖

L̃∞
T

Hℓ−3
x L2

v
+
(√
ε+ ε

)
‖Γsym(gε, ∂tg

ε)‖L2
T Hℓ−2

x (Hs,⋆
v )′ .

Lemma 5.3 is proved. �

The contributions of the terms Ψε1,♯
NSF, Ψε1,♭ and Ψε2,♭ in (5.9) are easier to be obtained.

Lemma 5.4. There holds

‖Ψε1,♯
NSF[gε, gε]‖X ε

T
+ ‖Ψε1,♭[gε, gε]‖X ε

T
+ ‖Ψε2,♭[gε, gε]‖X ε

T

. ε1+β‖Γ(gε, gε)‖
L̃∞

T Hℓ
xL2

v
+ ε‖Γ(gε, gε)‖

L̃∞
T Hℓ−1

x L2
v

+
√
ε‖Γ(gε, gε)‖L2

T Hℓ
x(Hs,⋆

v )′ .

Proof. Recall that P1
wave± is bounded from L2

v into L2
v as well as from (Hs,⋆

v )′ into Hs,⋆
v .

Let t ∈ [0, T ] and k ∈ Z3 \ {0}. Remarking that
∣∣∣∣χ
(
ε|k|
κ

)
− 1

∣∣∣∣ . min (1, ε|k|) ,
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we obtain that denoting ν0 = min(νNS, νheat) > 0,

‖Ψ̂ε1,♯
NSF[gε, gε](t, k)‖L2

v
. ε

∫ t

0
|k|2e−ν0(t−t′)|k|2‖Γ̂(gε, gε)(t′, k)‖L2

v
dt′,

and

‖Ψ̂ε1,♯
NSF[gε, gε](t, k)‖Hs,⋆

v
. ε

∫ t

0
|k|2e−ν0(t−t′)|k|2‖Γ̂(gε, gε)(t′, k)‖(Hs,⋆

v )′ dt′.

Using that

χ
(ε|k|
κ

)
e−ν⋆t|k|2

∣∣∣∣e
t

γ⋆(ε|k|)

ε2 − 1

∣∣∣∣ |k| . χ
(ε|k|
κ

)
e− ν⋆

2
t|k|2tε|k|4 . ε|k|2χ

(ε|k|
κ

)
e− ν⋆

4
t|k|2 ,

we also get, denoting ν1 = min(νNS, νheat, νwave±) > 0,

‖Ψ̂ε1,♭[gε, gε](t, k)‖L2
v
. ε

∫ t

0
|k|2e−

ν1
4

(t−t′)|k|2‖Γ̂(gε, gε)(t′, k)‖L2
v

dt′,

and

‖Ψ̂ε1,♭[gε, gε](t, k)‖Hs,⋆
v

. ε

∫ t

0
|k|2e−

ν1
4

(t−t′)|k|2‖Γ̂(gε, gε)(t′, k)‖(Hs,⋆
v )′ dt′.

Finally, observing that

χ
(ε|k|
κ

)
e−ν⋆t|k|2+t

γ⋆(ε|k|)

ε2 ε|k|2 . χ
(ε|k|
κ

)
e− ν⋆

2
t|k|2ε|k|2 . ε|k|2χ

(ε|k|
κ

)
e− ν⋆

2
t|k|2,

we also deduce

‖Ψ̂ε2,♭[gε, gε](t, k)‖L2
v
. ε

∫ t

0
|k|2e−

ν1
2

(t−t′)|k|2‖Γ̂(gε, gε)(t′, k)‖L2
v

dt′,

and

‖Ψ̂ε2,♭[gε, gε](t, k)‖Hs,⋆
v

. ε

∫ t

0
|k|2e−

ν1
2

(t−t′)|k|2‖Γ̂(gε, gε)(t′, k)‖(Hs,⋆
v )′ dt′.

We can then conclude by arguing as in the proof of Lemma 5.2. Lemma 5.4 is proved. �

We can now gather the contributions of Lemmas 5.1, 5.2, 5.3 and 5.4 to conclude the
proof of Proposition 3.2–(3). We first observe that from Proposition 4.6, since P0g

ε = gε,
we obtain

‖Γ(gε, gε)‖
L̃∞

T Hℓ
xL2

v
. ‖gε‖2

L̃∞
T Hℓ

xL2
v
,

as well as
‖Γ(gε, gε)‖

L̃∞
T

Hℓ−1
x L2

v
. ‖gε‖

L̃∞
T

Hℓ−1
x L2

v
‖gε‖

L̃∞
T

Hℓ
xL2

v
.

Furthermore from Proposition 4.5 we have

‖Γ(gε, gε)‖L2
T

Hℓ
x(Hs,⋆

v )′ . ‖gε‖
L̃∞

T
Hℓ

xL2
v
‖gε‖L2

T
Hℓ

xL2
v
.

By Proposition 4.6 there holds

‖Γ(gε
in, g

ε
in)‖Hℓ

x(Hs,⋆
v )′ . ‖gε

in‖2
Hℓ

xL2
v
.

Therefore estimates (3.3) and (3.7) together with Lemma 5.1, Lemma 5.2 and Lemma 5.4
yield
(5.12)

‖Ψε,♯[gε, gε]‖X ε
T

+ ‖Iε
±‖X ε

T
+ ‖Ψε1,♯

NSF[gε, gε]‖X ε
T

+ ‖Ψε1,♭[gε, gε]‖X ε
T

+ ‖Ψε2,♭[gε, gε]‖X ε
T

. ε
1
2

−α‖ḡin‖2
Hℓ−1

x L2
v

exp
(
2C‖ḡin‖2

Hℓ−1
x L2

v

)
+ ε

1
2

−2α‖ḡin‖2
Hℓ−1

x L2
v
.

It only remains to investigate the contribution of the term Jε
±. Since 3/2 < ℓ < 3,

thanks to Proposition 4.6 we write

‖Γsym(gε, ∂tg
ε)‖

L̃∞
T Hℓ−3

x L2
v
. ‖Γsym(gε, ∂tg

ε)‖
L̃∞

T L2
xL2

v

. ‖gε‖
L̃∞

T Hℓ
xL2

v
‖∂tg

ε‖
L̃∞

T L2
xL2

v
.
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In order to estimate the other terms we split into two cases. If ℓ−2 > 0 then Proposition 4.6
and Proposition 4.5 imply, respectively,

‖Γsym(gε, ∂tg
ε)‖

L̃∞
T Hℓ−2

x L2
v
. ‖gε‖

L̃∞
T Hℓ

xL2
v
‖∂tg

ε‖
L̃∞

T Hℓ−2
x L2

v
,

and
‖Γsym(gε, ∂tg

ε)‖L2
T Hℓ−2

x (Hs,⋆
v )′ . ‖gε‖

L̃∞
T Hℓ

xL2
v
‖∂tg

ε‖L2
T Hℓ−2

x L2
v
.

Otherwise if ℓ− 2 < 0 then we write

‖Γsym(gε, ∂tg
ε)‖

L̃∞
T

Hℓ−2
x L2

v
. ‖Γsym(gε, ∂tg

ε)‖
L̃∞

T
L2

xL2
v

. ‖gε‖
L̃∞

T Hℓ
xL2

v
‖∂tg

ε‖
L̃∞

T L2
xL2

v
,

thanks to Proposition 4.6, and also

‖Γsym(gε, ∂tg
ε)‖L2

T
Hℓ−2

x (Hs,⋆
v )′ . ‖Γsym(gε, ∂tg

ε)‖L2
T L2

x(Hs,⋆
v )′

. ‖gε‖
L̃∞

T
Hℓ

xL2
v
‖∂tg

ε‖L2
T L2

xL2
v
,

using Proposition 4.5. We now observe from (NSF) that, for all t > 0 and k ∈ Z3,

|∂tĝε(t, k)| . |k|2|ĝε(t, k)| + |k|
∣∣∣
(
ĝε(t, ·) ∗ ĝε(t, ·)

)
(k)
∣∣∣ .

Hence when ℓ− 2 > 0 we compute

‖∂tg
ε‖

L̃∞
T

Hℓ−2
x L2

v
. ‖gε‖

L̃∞
T

Hℓ
xL2

v
+ ‖(gε)2‖

L̃∞
T

Hℓ−1
x L2

v
.

Arguing as in the proof of Proposition 4.5, we have

‖(gε)2‖
L̃∞

T
Hℓ−1

x L2
v
. ‖gε‖

L̃∞
T

Hℓ−1
x L2

v
‖gε‖

L̃∞
T

Hℓ
xL2

v
,

and thus

‖∂tg
ε‖

L̃∞
T Hℓ−2

x L2
v
.

(
1 + ‖gε‖

L̃∞
T Hℓ−1

x L2
v

)
‖gε‖

L̃∞
T Hℓ

xL2
v
.

Similarly we obtain

‖∂tg
ε‖L2

T
Hℓ−2

x L2
v
. ‖gε‖L2

T
Hℓ

xL2
v

+ ‖(gε)2‖L2
T

Hℓ−1
x L2

v
,

then we get, as in the proof of Proposition 4.5,

‖(gε)2‖L2
T Hℓ−1

x L2
v
. ‖gε‖

L̃∞
T

Hℓ−1
x L2

v
‖gε‖L2

T Hℓ
xL2

v
,

and finally

‖∂tg
ε‖L2

T
Hℓ−2

x L2
v
.

(
1 + ‖gε‖

L̃∞
T Hℓ−1

x L2
v

)
‖gε‖L2

T Hℓ
xL2

v
.

Furthermore, arguing in a similar fashion, we also have

‖∂tg
ε‖

L̃∞
T L2

xL2
v
. ‖gε‖

L̃∞
T H2

xL2
v

+ ‖(gε)2‖
L̃∞

T H1
xL2

v

.

(
1 + ‖gε‖

L̃∞
T

Hℓ−1
x L2

v

)
‖gε‖

L̃∞
T

H2
xL2

v
,

as well as
‖∂tg

ε‖L2
T

L2
xL2

v
. ‖gε‖L2

T
H2

xL2
v

+ ‖(gε)2‖L2
T

H1
xL2

v

.

(
1 + ‖gε‖

L̃∞
T Hℓ−1

x L2
v

)
‖gε‖L2

T
H2

xL2
v
.

Therefore estimates (3.3) and (3.7) together with Lemma 5.3 yield: if ℓ− 2 > 0 we have

(5.13)
‖Jε

±‖X ε
T
.
(
ε1+β−2α + ε1−α(3−ℓ) + ε

1
2

−α
)

× ‖ḡin‖2
Hℓ−1

x L2
v

(
1 + ‖ḡin‖Hℓ−1

x L2
v

)
exp

(
2C‖ḡin‖2

Hℓ−1
x L2

v

)
.

Otherwise if ℓ− 2 < 0 we have

(5.14)
‖Jε

±‖X ε
T
.
(
ε1+β−α(3−ℓ) + ε1−α(3−ℓ) + ε

1
2

−α(3−ℓ)
)

× ‖ḡin‖2
Hℓ−1

x L2
v

(
1 + ‖ḡin‖Hℓ−1

x L2
v

)
exp

(
2C‖ḡin‖2

Hℓ−1
x L2

v

)
.
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We finally gather (5.12), (5.13) and (5.14), and use the fact that 3/2 < ℓ < 5/2, α ∈ (0, 1/4)
and β ∈ (0, 1/2), which yields

(5.15) ‖Sε‖X ε
T
6 ε

1
2

−2α Φ
(
‖ḡin‖Hℓ−1

x L2
v

)

where Φ(z) = C(1 + z)z2e2Cz2
. This completes the proof of Proposition 3.2–(3).

5.4. Estimates on the linear term Lε[·]. Consider f ∈ X ε
T . First we have, from

Corollary 4.3 and Proposition 4.5 and using additionally the fact that gε = P0g
ε and

Hs,⋆
v ⊂ L2

v,

‖Ψε[f, gε]‖
L̃∞

T Hℓ
xL2

v
+

1

ε
‖P⊥

0 Ψε[f, gε]‖L2
T

Hℓ
xHs,⋆

v
+

1

ε
‖Ψε,♯[f, gε]‖L2

T
Hℓ

xHs,⋆
v

. ‖Γsym[f, gε]‖L2
T

Hℓ
x(Hs,⋆

v )′

. ‖f‖L2
T Hℓ

xHs,⋆
v

‖gε‖
L̃∞

T
Hℓ

xL2
v
.

We then compute, thanks to Corollary 4.3, Proposition 4.7 and Proposition 4.5,

‖Ψε[f, gε]‖
L̃∞

T
Hℓ−1

x L2
v

+ ‖Ψε,♭[f, gε]‖L2
T

Hℓ
xHs,⋆

v

. ‖Γsym(P⊥
0 f, g

ε) + Γsym(P0f, g
ε)‖L2

T Hℓ−1
x (Hs,⋆

v )′

. ‖P⊥
0 f‖L2

T Hℓ
xHs,⋆

v
‖gε‖

L̃∞
T

Hℓ−1
x L2

v
+ ‖P0f‖

L̃∞
T

Hℓ−1
x L2

v
‖gε‖L2

T Hℓ
xL2

v
.

Gathering previous estimate and using that Ψε = Ψε,♯ + Ψε,♭ finally yield

(5.16)

εβ‖Ψε[f, gε]‖
L̃∞

T Hℓ
xL2

v
+

1√
ε

‖P⊥
0 Ψε[f, gε]‖L2

T Hℓ
xHs,⋆

v

+ ‖P0Ψε[f, gε]‖L2
T Hℓ

xHs,⋆
v

+ ‖Ψε[f, gε]‖
L̃∞

T Hℓ−1
x L2

v

.

(
‖f‖

L̃∞
T Hℓ−1

x L2
v

+
1√
ε

‖P⊥
0 f‖L2

T
Hℓ

xHs,⋆
v

+ ‖P0f‖L2
T

Hℓ
xHs,⋆

v

)

×
([
εβ +

√
ε+ ε

]
‖gε‖

L̃∞
T Hℓ

xL2
v

+
√
ε‖gε‖

L̃∞
T Hℓ−1

x L2
v

+ ‖gε‖L2
T

Hℓ
xL2

v

)
.

This completes the proof of Proposition 3.2–(4).

5.5. Estimates on the nonlinear term Ψε[·, ·]. Thanks to Corollary 4.3 and Proposi-
tion 4.5 we have

‖Ψε[f1, f2]‖
L̃∞

T
Hℓ

xL2
v

+
1

ε
‖P⊥

0 Ψε[f1, f2]‖L2
T Hℓ

xHs,⋆
v

+
1

ε
‖Ψε,♯[f1, f2]‖L2

T Hℓ
xHs,⋆

v

. ‖Γsym(f1, f2)‖L2
T Hℓ

x(Hs,⋆
v )′

. ‖f1‖
L̃∞

T Hℓ
xL2

v
‖f2‖L2

T
Hℓ

xHs,⋆
v

+ ‖f1‖L2
T

Hℓ
xHs,⋆

v
‖f2‖

L̃∞
T Hℓ

xL2
v
,

as well as

‖Ψε[f1, f2]‖
L̃∞

T Hℓ−1
x L2

v
. ‖Γsym(f1, f2)‖L2

T Hℓ−1
x (Hs,⋆

v )′

. ‖f1‖
L̃∞

T
Hℓ−1

x L2
v
‖f2‖L2

T
Hℓ

xHs,⋆
v

+ ‖f1‖L2
T

Hℓ
xHs,⋆

v
‖f2‖

L̃∞
T

Hℓ−1
x L2

v
.

Moreover from Proposition 4.7 and Proposition 4.5 it follows

‖Ψε,♭[f1, f2]‖L2
T

Hℓ
xHs,⋆

v
. ‖Γsym(f1, f2)‖L2

T Hℓ−1
x (Hs,⋆

v )′

. ‖f1‖
L̃∞

T Hℓ−1
x L2

v
‖f2‖L2

T
Hℓ

xHs,⋆
v

+ ‖f1‖L2
T

Hℓ
xHs,⋆

v
‖f2‖

L̃∞
T Hℓ−1

x L2
v
.
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Gathering previous estimates and using that Ψε = Ψε,♯ + Ψε,♭ , we deduce
(5.17)

εβ‖Ψε[f1, f2]‖
L̃∞

T Hℓ
xL2

v
+

1√
ε

‖P⊥
0 Ψε[f1, f2]‖L2

T Hℓ
xHs,⋆

v

+ ‖P0Ψε[f1, f2]‖L2
T Hℓ

xHs,⋆
v

+ ‖Ψε[f1, f2]‖
L̃∞

T
Hℓ−1

x L2
v

.

(
[εβ +

√
ε+ ε]‖f1‖

L̃∞
T Hℓ

xL2
v

+
1√
ε

‖P⊥
0 f1‖L2

T Hℓ
xHs,⋆

v
+ ‖P0f1‖L2

T Hℓ
xHs,⋆

v
+ ‖f1‖

L̃∞
T Hℓ−1

x L2
v

)

×
(

[εβ +
√
ε+ ε]‖f2‖

L̃∞
T Hℓ

xL2
v

+
1√
ε

‖P⊥
0 f2‖L2

T Hℓ
xHs,⋆

v
+ ‖P0f2‖L2

T Hℓ
xHs,⋆

v
+ ‖f2‖

L̃∞
T Hℓ−1

x L2
v

)
.

This completes the proof of Proposition 3.2–(5), since β < 1/2.

Appendix A. Hypocoercivity

It is well-known, see for instance [21, 35, 48, 5, 47], that the linearized Boltzmann and
Landau collision operators satisfy the following coercive-type inequality

(A.1) 〈Lf, f〉L2
v
6 −λ2‖(Id −P0)f‖2

Hs,⋆
v
,

for some λ2 > 0, where we recall that P0 is the orthogonal projection onto KerL given
by (1.15).

For all ε ∈ (0, 1] and all k ∈ Z3, we recall that Λε(k) is the Fourier transform in space
of the full linearized operator

1

ε2
L− 1

ε
v · ∇x ,

namely

(A.2) Λε(k) :=
1

ε2
(L− iεv · k) .

We now state a hypocoercive result for Λε(k) (for a detailed presentation of the subject,
we refer to [9] and the references therein, we also point out the papers [53] and [23] in the
case of the whole space), as presented in [13, 14].

Proposition A.1. There is an inner product 〈〈·, ·〉〉L2
v

on L2
v (depending on k) such that

the associate norm ||| · |||L2
v

is equivalent to the standard norm ‖·‖L2
v

on L2
v with bounds that

are independent of k and ε, and there exists λ3 > 0 such that for every f satisfiying (1.13)
and all k ∈ Z3, there holds

Re〈〈Λε(k)f̂(k), f̂(k)〉〉L2
v
6 −λ3

(
1

ε2
‖(Id −P0)f̂(k)‖2

Hs,⋆
v

+ ‖P0f̂(k)‖2
L2

v

)
.

Proof. For every k ∈ Z3, we define

ψ[f1, f2](k) :=
δ1i

〈k〉2
kθ[f̂1(k)] ·M [(Id −P0)f̂2(k)] +

δ1i

〈k〉2
kθ[f̂2(k)] ·M [(Id −P0)f̂1(k)]

+
δ2i

〈k〉2
(k ⊗ u[f̂1(k)])sym :

{
Θ[(Id − P0)f̂2(k)] + θ[ĝ(k)]I

}

+
δ2i

〈k〉2
(k ⊗ u[f̂2(k)])sym :

{
Θ[(Id − P0)f̂1(k)] + θ[f̂(k)]I

}

+
δ3i

〈k〉2
kρ[f̂1(k)] · u[f̂2(k)] +

δ3i

〈k〉2
kρ[f̂2(k)] · u[f̂1(k)] ,

with constants 0 < δ3 ≪ δ2 ≪ δ1 ≪ 1, where Id is the 3 × 3 identity matrix and the
moments M and Θ are defined by

M [f ] :=

∫

R3
fv (|v|2 − 5)

√
µ(v) dv , Θ[f ] :=

∫

R3
f (v ⊗ v − Id)

√
µ(v) dv ,
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and where for vectors a, b ∈ R3 and matrices A,B ∈ R3×3, we denote

(a⊗ b)sym =
1

2
(ajbk + akbj)16j,k63 , A : B =

3∑

j,k=1

AjkBjk .

We then define the inner product 〈〈·, ·〉〉L2
v

on L2
v (depending on k) by

(A.3) 〈〈f̂1(k), f̂2(k)〉〉L2
v

:= 〈f̂1(k), f̂2(k)〉L2
v

+ εψ[f1, f2](k) ,

and the associated norm

(A.4) |||f̂(k)|||2L2
v

:= 〈〈f̂(k), f̂(k)〉〉L2
v
.

We then argue as in [53], the only difference being the factor ε in the second term of (A.3).
�

Using this hypocoercivity result, we are able to prove Proposition 4.1.

Proof of Proposition 4.1.
• (1) Let f(t) = U ε(t)fin for all t > 0, which satisfies the equation

(A.5) ∂tf =
1

ε2
(L− εv · ∇x)f , f|t=0 = fin .

We already observe that f(t) verifies (1.13) thanks to the conservation properties of Γ
(and hence of L). Taking the Fourier transform in space of the above equation, we obtain

that f̂ satisfies

(A.6) ∂tf̂(k) = Λε(k)f̂(k) , f̂(k)|t=0 = f̂in(k) ,

for all k ∈ Z3. Applying Proposition A.1 yields, for all t > 0,

1

2

d

dt
|||f̂(k)|||2L2

v
= Re〈〈Λε(k)f̂(k), f̂(k)〉〉L2

v

6 −λ3

(
1

ε2
‖P⊥

0 f̂(k)‖2
Hs,⋆

v
+ ‖P0f̂(k)‖2

L2
v

)
,

which implies

‖f̂(t, k)‖2
L2

v
+

1

ε2

∫ t

0
‖(Id −P0)f̂(t′, k)‖2

Hs,⋆
v

dt′ +

∫ t

0
‖P0f̂(t′, k)‖2

L2
v

dt′ . ‖f̂in(k)‖2
L2

v
,

where we have used that ||| · |||L2
v

is equivalent to ‖ · ‖L2
v

independently of k and ε. Taking

the supremum in time and then multipliyng by 〈k〉2m yields

〈k〉2m‖f̂(k)‖2
L∞

t L2
v

+
〈k〉2m

ε
‖(Id −P0)f̂(k)‖2

L2
t Hs,⋆

v
+ 〈k〉2m‖P0f̂(k)‖2

L2
t L2

v
. 〈k〉2m‖f̂in(k)‖2

L2
v
.

We conclude by summing in k.

• (2) Denote

h(t) =

∫ t

0
U ε(t− t′)S(t′) dt′

which is the solution to

(A.7) ∂th =
1

ε2
(L− εv · ∇x)h+ S , h|t=0 = 0 .

Taking the Fourier transform in space gives

(A.8) ∂tĥ(k) = Λε(k)ĥ(k) + Ŝ(k), ĥ(k)|t=0 = 0 ,
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for all k ∈ Z3. From the definition of (A.3) and the hypothesis P0S = 0, we observe that

〈〈Ŝ(k), ĥ(k)〉〉L2
v

= 〈Ŝ(k), ĥ(k)〉L2
v

+ εΨ[S, h](k)

= 〈Ŝ(k), (Id −P0)ĥ(k)〉L2
v

+ ε
δ1i

1 + |k|2 kθ[ĥ(k)] ·M [(Id −P0)Ŝ(k)]

+ ε
δ2i

1 + |k|2 (k ⊗ u[ĥ(k)])sym : Θ[(Id −P0)Ŝ(k)] .

Observing that for any polynomial p = p(v) we have
∣∣∣∣
∫

R3
Ŝ(k)p(v)

√
µ(v) dv

∣∣∣∣ . ‖Ŝ(k)‖(Hs,⋆
v )′ ,

we get

|Ψ[S, h](k)| . ‖(Id −P0)Ŝ(k)‖(Hs,⋆
v )′

|k|
〈k〉‖P0ĥ(k)‖L2

v
.

By duality, we also have

〈Ŝ(k), (Id −P0)ĥ(k)〉L2
v
. ‖Ŝ(k)‖(Hs,⋆

v )′‖(Id −P0)ĥ(k)‖Hs,⋆
v
,

therefore gathering previous estimates yields

(A.9) 〈〈Ŝ(k), ĥ(k)〉〉L2
v
. ε‖Ŝ(k)‖(Hs,⋆

v )′

(
1

ε
‖(Id −P0)ĥ(k)‖Hs,⋆

v
+ ‖P0ĥ(k)‖L2

v

)
.

Using Proposition A.1 and arguing as in the proof of Proposition 4.1–(1) we have, for
all t > 0 and all k ∈ Z3,
(A.10)

1

2

d

dt
|||ĥ(k)|||2L2

v
6 −λ3

(
1

ε2
‖(Id −P0)ĥ(k)‖2

Hs,⋆
v

+ ‖P0ĥ(k)‖2
L2

v

)

+ εC‖Ŝ(k)‖(Hs,⋆
v )′

(
1

ε
‖(Id −P0)ĥ(k)‖Hs,⋆

v
+ ‖P0ĥ(k)‖L2

v

)

6 −λ3

2

(
1

ε2
‖(Id −P0)ĥ(k)‖2

Hs,⋆
v

+ ‖P0ĥ(k)‖2
L2

v

)
+ Cε2‖Ŝ(k)‖2

(Hs,⋆
v )′ ,

where we have used Young’s inequality in last line. This implies

‖ĥ(t, k)‖2
L2

v
+

1

ε2

∫ t

0
‖(Id −P0)ĥ(t′, k)‖2

Hs,⋆
v

dt′ +

∫ t

0
‖P0ĥ(t′, k)‖2

L2
v

dt′

. ε2
∫ t

0
‖Ŝ(t′, k)‖2

(Hs,⋆
v )′ dt′ .

Taking the supremum in time and then multiplying by 〈k〉2m yields

〈k〉2m‖ĥ(k)‖2
L∞

t L2
v

+
〈k〉2m

ε2
‖(Id −P0)ĥ(k)‖2

L2
t Hs,⋆

v
+ 〈k〉2m‖P0ĥ(k)‖2

L2
t L2

v

. ε2〈k〉2m‖Ŝ(k)‖2
L2

t (Hs,⋆
v )′ ,

and we conclude by summing in k. Proposition 4.1 is proved. �
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