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THE NAVIER-STOKES LIMIT OF KINETIC EQUATIONS
FOR LOW REGULARITY DATA

KLEBER CARRAPATOSO, ISABELLE GALLAGHER, AND ISABELLE TRISTANI

ABSTRACT. In this paper, we investigate the link between kinetic equations (including
Boltzmann with or without cutoff assumption and Landau equations) and the incom-
pressible Navier-Stokes equation. We work with strong solutions and we treat all the
cases in a unified framework. The main purpose of this work is to be as accurate as
possible in terms of functional spaces. More precisely, it is well-known that the Navier-
Stokes equation can be solved in a lower regularity setting (in the space variable) than
kinetic equations. Our main result allows to get a rigorous link between solutions to the
Navier-Stokes equation with such low regularity data and kinetic equations.

CONTENTS
1. Introduction 1
1.1. Kinetic equations 2
1.2. Hydrodynamic limit 3
1.3. Functional framework and notation 5
1.4. State of the art 6
1.5. Main result 7
1.6. Sketch of the proof and plan of the paper 8
2.  Preliminaries 8
3. Proof of the theorem 10
4. Some results on the operators U¢ and W¢ 14
4.1. Estimates on U® and ¥* 14
4.2. Nonlinear estimates 15
4.3. Refined estimates on W¢ 17
5. The equation on §°: proof of Proposition 3.2 19
5.1. Continuity estimate for U¢ 19
5.2.  Contribution of the data D* 19
5.3.  Contribution of the source term S¢ 21
5.4. Estimates on the linear term L[] 26
5.5. Estimates on the nonlinear term We[., -] 26
Appendix A. Hypocoercivity 27
References 29

1. INTRODUCTION

In this paper, we are interested in a problem in the theory of hydrodynamical limits. Our
goal is to obtain a rigorous result of convergence of solutions to various kinetic equations
towards solutions to the incompressible Navier-Stokes equation. This problem can be
seen as a part of the program initiated by the 6th problem of Hilbert in 1900 at the
International Congress of Mathematicians. Indeed, the question is to understand the link
between microscopic and macroscopic descriptions of a fluid, and deriving macroscopic
equations from mesoscopic ones can be seen as an intermediate step of this program. We
refer for instance to the book by Saint-Raymond [52] for a detailed presentation of the
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2 K. CARRAPATOSO, I. GALLAGHER, AND I. TRISTANI

subject and for mathematical results in the field. More specifically, in this paper, we
seek to get a result on the convergence of sequences of strong solutions to the rescaled
mesoscopic equations in which the connection between the kinetic and the fluid equations
is as accurate as possible in terms of functional spaces.

1.1. Kinetic equations. At the kinetic level, we shall consider Boltzmann or Landau
type equations for not too soft potentials. We denote by F' = F(t,z,v) the density of
particles, which depends on time ¢t € R*, position 2 € T? (the unit periodic box) and
velocity v € R3. The dimensionless version of our kinetic equation reads

1
StOF +v- Vo F = -—Q(F.F),

where the Strouhal number St and the Knudsen number Kn are dimensionless parameters
which are natural in kinetic problems. Here and below, @ can be the Boltzmann (with
or without cutoff) collision operator or the Landau collision operator. The Boltzmann
collision operator is an integral operator defined as

(1.1) Qs(g, f) ::/ B(w —v.,0) (g,f — g«f) doduv..
R3xS?

Here and below, we are using the shorthand notations f = f(v), g« = g(v«), f' = f(V')

and g, = g(v.). In this expression, v, v, and v’, v} are the velocities of a pair of particles

after and before collision. We make a choice of parametrization of the set of solutions to

the conservation of momentum and energy (physical laws of elastic collisions):

/ /
V+ v =V + 0,

1.2
(12 ol + [l = /2 + o]

so that the pre-collisional velocities are given by

v+ |v — vy v+ |v — vy
"= 2* 2*0, — 2*— 2*0, oeS?.

The Boltzmann collision kernel B = B(v — vy, o) only depends on the relative velocity |v—
v«| and on the deviation angle ¥ through cos ¥ = (v—wv,, o) /|v—v.| where (-, -) is the usual
scalar product in R3. The form of the collision kernel depends on the type of collisions
that occur between particles. In dimension 3 in the case where particles behave as billiard
balls, known as the hard-spheres case, the collision kernel is proportional to the norm of
the relative velocity, namely

B(v —vy,0) = Clv — vy, C>0.

When particles interact through inverse power law potentials of type
(1.3) o(r) = r~P=1) with  pe(2,400),

the collision kernel cannot be computed explicitly but Maxwell [46] has shown that the
collision kernel can be computed in terms of the interaction potential ¢. More precisely,
in dimension 3, the kernel B satisfies the following properties.

— It takes product form in its arguments as

(1.4) B(v —vy,0) = ®(Jv — vs|) b(cos ) .

— The angular function b is locally smooth, and has a nonintegrable singularity for ¥ — 0:
it satisfies for some ¢, > 0 and any ¥ € (0,7/2],

cp 1 1

(15) m § Sinﬂb(COS 'ﬁ) § m with S = ]?1 S (O, 1) .
— The kinetic factor ® satisfies

-5
(1.6) (v —v]) = v —v]"  with =L"2¢(-31).
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One traditionally calls hard potentials the case p > 5 (for which 0 < v < 1), Maxwell
molecules the case p = 5 (for which v = 0), moderately soft potentials the case corre-
sponding with 3 < p < 5 (for which —2s < 7 < 0) and very soft potentials the case
2 < p < 3 (for which —3 < v < —2s). In this paper, we shall not consider the very soft
potentials case, meaning we shall restrict to v > —2s (see Remark 2 for a discussion on
this restriction).

Grad’s cut-off assumption consists in additionally supposing that the angular kernel b is
integrable on the sphere by removing its singularity for small deviation angles 9 (see (1.5)).
In that case, the Boltzmann collision operator is thus of the form (1.1) with

B(v —w,,0) =b(cosF)|v —v,|”  with /2 b(cos¥)do < oo and € (-3,1].
S

Notice that this in particular includes the case of hard-spheres collisions by taking the
angular kernel to be constant. Here again, we do not consider the very soft potentials
case, that is we restrict ourselves to v > 0.

In the case of the Coulomb potential (s = 1 and thus v = —3), the Boltzmann operator
does not make any sense (see [55] for example). The Boltzmann operator has then to be
replaced by the Landau one which can be obtained in the so-called grazing collision limit
after having made a cut-off on the Coulomb interaction. The Landau operator, defined
in 1936 by Landau [41] (independently of the Boltzmann operator), is used in plasma
physics and is an integro-differential operator given by

(L7)  Qulg, Nv) =0, /R i (v =) (9(0:)00, F(0) = F@)Dy, g(0.) ) v,
where we use the convention of summation of repeated indices. The matrix a;; is symmet-
ric, semi-positive and is given by

VU4
(1.8) aij(v) := o'+ (5ij - hl)lg) » T3sos

Similarly to the Boltzmann equation, we have the following classification according to
the values of v: interactions are referred to as hard potentials if v € (0, 1], Maxwellian
molecules if v = 0, moderately soft potentials if v € [—2,0), very soft potentials if v €
(—3,—2) and Coulomb potential if v = —3. We mention that only the case v = —3 is
relevant from a physical viewpoint and is the one that has been derived by Landau in [41].
Once more, we shall only consider not too soft potentials, which correspond to v > —2.
In the three cases (Boltzmann with and without cut-off assumption and Landau), weak
formulations of the collision operators allow to obtain the following conservation laws:

(19) [ Quo@ed =0 for  pw) = Lo.fo?

as well as Boltzmann’s H-theorem that asserts that Boltzmann’s entropy of solutions to
these equations, namely / flog f, is non-increasing along time. Moreover, the second part

of the theorem states that any distribution minimizing the entropy is a local Maxwellian
distribution in velocity.

1.2. Hydrodynamic limit. All kinetic models leading to incompressible models are
based on a regime in which both the Strouhal and the Knudsen numbers are small. In order
to reach the incompressible Navier-Stokes equation, we shall work with St = Kn =¢ <« 1
(see for example [7]). Our kinetic equation then reads

{@Fﬂf*wVﬂ”ngMFﬂﬁ)h1R+xWxR3

(1.10) = F in T3 xR3.

€
|t=0

The Knudsen number is actually proportional to the inverse of the average number of
collisions for each particle per unit of time. Taking € small has thus the effect of enhancing
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the role of collisions. To relate our kinetic models to the incompressible Navier-Stokes
equation, we then look at equation (1.10) under the following linearization of order &:

Fe=p+e/ufe,
where p is the global Maxwellian defined by
1 1?
(2m)z

The equation we are going to study on the fluctuation f¢ is thus the following:

p(v) ==

Opfe 4+ e -Vauft = 2Lfe +e7'I(f5, f°) in Rt x T3 x R3
(1.11) { _1 _1 : 3 o R3
Jimo=Ta=e (R —pp? in T° xR
with
L(f1, f2) == 2Q(V1f1, Virf2)
and
(112) Lf = D(y7 f) + T(. /B

We say that a distribution f = f(z,v) has global mass, momentum and energy when it
satisfies

(1.13) / / (x,v) Vi) dvdz =0, for ¢(v)=1,0,|v[?.
T3 JR3

Conservation laws (1.9) imply that the perturbation f¢ satisfies (1.13) for all times ¢ > 0
if F}; satisfies

/ ES (z,v) p(v) dv de —/ ) pv)dv, for @) =1,v,v>.
T3 JR3 R3
For every f = f(z,v) we write the decomposition

f=Pyf+Pof, Py=Id-Py,

where Py is the orthogonal projection onto

(1.14) Ker L = { /A(v), 01 VE(v), v2y/i(0), 3 /), [0 VE(v) }

given by the so-called hydrodynamic modes

o[

(1.15) Py f(x,v) = {pm (2) + ulf](x) - v + H[f](w)T_?’} VA()

where

o)) i= [ | fla o)) do,

R3

ulfl(@) = [ favovie)do
o) = [, 72 V@ o,

Returning to (1.11), it is expected that as e goes to zero, the solution f¢ should converge
to an element of Ker(L). This is actually proved in many situations (see Paragraph 1.4
below), and in particular the hydrodynamic modes of the limit satisfy the incompressible
Navier-Stokes Fourier system

o+ u - Vu — vNnsAu = —Vp
00 +1u- VO — Vpeat A0 =0
divu =0
Vip+0)=0.

(NSF)
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To define the viscosity coefficients, we introduce the two unique functions ¢ (which is a

matrix function) and ¥ (which is a vectorial function) in (Ker L)+ such that

[v]?
3

The viscosity coeflicients are then defined by

2
Id-v®wv and M_%L(/ﬁ\I}) = v(E — M) .

pEL(pE ) = 5 5

1 1 1 2 1 1
UNS 1= 1—0/<I> :L(p2®)p2dv and  Vheat := 1—5/\1’-L(,u2\11),u2 dv.

1.3. Functional framework and notation. We first define weighted Lebesgue spaces
as follows. For any nonnegative measurable weight function m : R3 — R* (notice that
all the weights we consider will depend only on velocity, i.e. m = m(v)), we define the
Lebesgue space LP(m) for 1 < p < +oo through its norm

90122 oy = llgml e -

In order to treat the three cases (Boltzmann with and without cut-off assumption and
Landau equations) in a unified framework, we introduce the space H3* with s € [0, 1] by:
for s = 0 (corresponding to the Boltzmann operator with cutoff)

(1.16) g = Wl )
for s € (0,1) (corresponding to the Boltzmann operator without cutoff)
111 = [ [ [ bleosolo = v P )l ) = (@) dodu, dv
v R3 JR3 Js2
[ L beos )l = 0P @ VW) = V@) dodo. do,
R3 JR3 Js2
and finally for s = 1 (corresponding to the Landau operator) we define

(118) (1200 = 1) 3T 7o + (00 % pr, Vafl[7s + |02 (1d = pr,) Vo £ s

where pr, stands for the projection on v, namely

(1.17)

v v

Vw e R3, pr,w = (w—)—
vl /) |v|

For every s € [0, 1], we also define the dual space (H2*)" endowed with the norm

[l (rsry == sup (¢, f).
ILf |Hs7* <1
It is worth mentioning that for s € [0, 1] there holds (see [1, 34] for the case s € (0, 1), the
other cases being immediate),

1) 2 £ s+ 16007 Fll gy S WSz S 110D 2+ F ] -

We recall that if £ > 3/2, then H. C L¥. For m > 0 and when E, is a Lebesgue
or Sobolev space in velocity, we define the space L*([0,T], H"E,) (with the notation
introduced in [19]) through its norm

2 L 2m|| 7 2
Hf”foo([O,TLH;"Ev) T Z (kYIS C ')HL‘X’([O,TLEU).

keZ3

~

We have denoted by (f(k))rezs the Fourier coefficients of f in the space variable. When
more convenient, we will sometimes use the notation F,. To lighten notation, we shall
often write LYH™E,, for LP(I, H'E,) and similarly L H"E, for L°°(~I, H™E,) when [
is an interval of R™. If I = [0,7] we will simply write L} H?'E,, and L H"E,. Finally
if T'= oo and in the absence of ambiguity we write LY H"E,, for LP(RT, H""E,).
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We will use the notation P for the Leray projector onto divergence free vector fields. For
any triplet (pin, Uin, in) defined on T3 (considered as initial data, whence the subscript “in”)
we denote their projection onto incompressible/Boussinesq modes by

2 3 _ ~
gpin - gain s Uin = Puin and Oin = —pPin -
The kinetic counterpart of (pin, Uin, éin) will be denoted

_ vl2 —
(1.20) Gin(2,0) = {ﬁin(x)—l—ﬁm(m)-v—i-ﬁm(x)’ ’2 3}\/,7(1))

and if (p, u, d) solves (NSF) with the initial data (pin, Uin, fin) then we will write

2 ).

Note that if (pin, win, Oin) lie in H~1(T?) with £ > 3/2, then g belongs to E%"Hﬁ_lL% N
L2HLHS* for some T > 0 (the life span of the Navier-Stokes-Fourier system).

(1.19) Pin 1=

(1.21) g(t,z,v) :== {p(t, x)+u(t,z) v+ 0(tx)

1.4. State of the art. We here give a short overview of the existing literature on the
problem of deriving fluid equations from kinetic ones.

The first justifications of the link between kinetic and fluid equations were formal and
based on asymptotic expansions by Hilbert [38], Chapman, Enskog [17] and Grad [32].
The first rigorous convergence proofs based also on asymptotic expansions were given by
Caflisch [12] (see also [40] and [20]). In those papers, the limit is justified up to the first
singular time for the fluid equation. By using his nonlinear energy method, Guo [37]
justified the limit towards the Navier-Stokes equation and beyond in Hilbert’s expansion
from Boltzmann and Landau equations.

There have also been some convergence proofs based on spectral analysis in the frame-
work of strong solutions close to equilibrium introduced by Grad [33] and Ukai [54] for the
Boltzmann equation. In this respect, we refer to the works by Nishida [50], Bardos and
Ukai [8]. These results use the description of the spectrum of the linearized Boltzmann
equation in Fourier space in the space variable performed in [49, 16, 25] by respectively
Nicolaenko; Cercignani, Illner and Pulvirenti; Ellis and Pinsky. The approach in the
present paper as well as in [26, 15, 27, 28, 29, 13] are reminiscent of these ones.

Finally, let us mention that this problem has been extensively studied in the framework
of weak solutions, the goal being to obtain solutions for the fluid models from renormalized
solutions introduced by DiPerna and Lions in [22] for the Boltzmann equation. We shall
not make an extensive presentation of this program as it is out of the realm of this paper,
but let us mention that it was started by Bardos, Golse and Levermore at the beginning
of the nineties in [7, 6] and was continued by those authors, Saint-Raymond, Masmoudi,
Lions among others. We mention here a (non exhaustive) list of papers which are part of
this program [30, 31, 44, 45, 52].

More recently, some uniform in ¢ estimates on kinetic equations have allowed to prove
(at least) weak convergence towards the Navier-Stokes equation. Let us mention [39, 51]
in which the cases of the Boltzmann equation without cut-off and the Landau equations
are treated by Jiang, Xu and Zhao on the one hand and by Rachid on the other hand.
In [10, 11], Briant and Briant, Merino-Aceituno and Mouhot have obtained convergence
to equilibrium results for the rescaled Boltzmann equation (and also the Landau equation
in [10]) uniformly in the rescaling parameter using respectively hypocoercivity and enlarge-
ment methods. In [11], the authors are able to weaken the assumptions on the data down
to Sobolev spaces with polynomial weights (see also [3] for the inelastic Boltzmann equa-
tion). Notice that Briant [10] has combined this with the Ellis and Pinsky result [25] to
recover strong convergence in the case of the elastic Boltzmann equation. To end this part,
we mention the works [15, 13] in which the authors also obtain uniform in ¢ estimates on
the Landau equation and Boltzmann equation without cutoff respectively and also obtain
a result of strong convergence towards the incompressible Navier-Stokes equation.
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Finally, let us bring up more recent works that have inspired the present paper. First,
the paper [26] in which the second and third authors proved that the life span of the
solutions to the rescaled Boltzmann equation (for hard-spheres collisions) is bounded from
below by that of the Navier-Stokes equation for € small enough. The main feature of the
proof was to perform a fixed point argument by using information on the limit system
since the starting point is the solutions of the Navier-Stokes system (which is not the most
common viewpoint). Gervais [27, 28] extended the functional framework in which this
result holds. He proved a similar result in polynomially weighted spaces, his strategy is a
combination of [26] and of the one used in [11] by Briant, Merino-Aceituno and Mouhot
in order to get uniform in € estimates on solutions in polynomially weighted spaces. We
also point out the paper by Gervais and Lods [29] in which a unified framework is also
provided, which encompasses a large class of kinetic equations (including in particular the
result in [26]).

1.5. Main result. All the results mentioned in the previous paragraph concerning the
convergence of strong solutions are stated in functional spaces which are usual for the
study of strong solutions to nonlinear kinetic problems, namely in which there is an algebra
structure in the space variable, typically H. with £ > 3/2 (more generally ¢ > d/2 in
dimension d). Indeed the collision operator @ involves the product of f(z,v) and f(x,v")
at the same point x, so continuity of f seems to be required to make sense of the product.
However it is well-known that the Navier-Stokes equations can be solved for initial data

1 a

1 41
with less regularity, namely H? (H7 — in dimension d). Our goal in this work is to
analyze to what extent the assumptions one makes on the initial data f; to the kinetic

equation (1.11) can reflect this discrepancy between the kinetic and the fluid frameworks.

1

The main goal of our analysis is thus to show that given an initial data in HZ (actually
we will consider H.™! with ¢ > 3/2) for the incompressible (NSF) system, the associate
solution to (NSF) is the limit, as long as it exists, of a sequence of solutions to the rescaled
Boltzmann or Landau equation. More precisely we are able to construct, on the same life
span as the solution to (NSF), a sequence of solutions to the kinetic equation associated
with initial data whose hydrodynamic part converges in H:~! to the given hydrodynamic
profile, and whose microscopic part converges to zero in Hﬁ_l and belongs to Hf; but is
allowed to blow up (in a controled way) in that norm. Let us also underline that there is
no smallness assumption on the initial data of the fluid system, and we are able to treat
the cases of non-global and global solutions to the fluid system in a unified framework.

Theorem 1. Let £ € (3/2,5/2) be given. Consider (pin,Uin,0n) € H™Y(T3) that are
mean-free. With the notation (1.19), let (p,u,8) be the unique solution to (NSF) associated
with the initial data (pin, Uin, Oin) in the space L%"Hﬁfl N LQTH:,‘;, for some T > 0. We also
consider gin and g as defined in (1.20) and (1.21).

Given o € (0,1/4) and § € (a,1/2), let f5 be a family of functions such that

Pofs, = X(Dagn and PG Fill o1 + " P filligrs — 0

for some smooth, compactly supported function x. Then, there is g > 0 such that for
any £ < €y, there exists a unique solution f€ to the kinetic equation (1.11) with initial
data f5,, which belongs to the space L HEL2 N LAHLHS*, and it moreover satisfies

in’

I = 0l meorsg + 157 = ol 5O

Remark 1. The restriction ¢ < 5/2 is purely technical, the result would hold for any ¢ > 3/2
up to some adaptations in the nonlinear estimates. The threshold value 1/4 for the
truncation parameter o« comes from technical considerations that appear throughout the
proof. The additional parameter S quantifies the possible blow up of the HﬁHiv* norm
of the “microscopic” part of the initial data. Such an assumption is reminiscent of the
setting chosen in [24] in the context of the incompressible limit.
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Remark 2. Throughout this paper, we only consider the case of well-prepared data in the
torus and also only the case of not too soft potentials for the kinetic equations. We believe
that using the same method of proof combined with arguments and estimates of [26, 13],
our analysis could be extended to a more general setting by considering the problem in
the whole space (also including ill-prepared data) and very soft potentials for the kinetic
equations.

1.6. Sketch of the proof and plan of the paper. The idea of the proof follows the
method of [26], consisting in solving by a fixed point argument the equation obtained by
taking the difference between the kinetic and hydrodynamic equations, written in Duhamel
form. The main interest of this equation is that it no longer involves the kinetic unknown
but writes schematically as

(1.22) 0°(t) = D°(t) + S°(t) + LE[0°](t) + ¥=[6°, 6°](¢) ,

where D?(t) depends only on the initial data, S¢(¢) is a source term depending only on
the hydrodynamical solution, £5[6¢] is a linear operator depending on the hydrodynamic
solution, and W¢[d%, 0¢] is the usual, Boltzmann bilinear operator (see (3.8) below). The
difficulty then consists in proving that D¢(t) and S°(t) are small, and that W€ is bilinear
continuous, in a low regularity framework. An additional difficulty comes from the fact
that £° is not small if g;, is not small : smallness is necessary for the fixed-point to work,
but a Gronwall-type argument allows to get round this difficulty (in this regard, the proof
differs from the one presented in [26]).

In Section 2, we give some useful tools to estimate each part of equation (1.22) (spectral
decomposition, semi-group and nonlinear estimates). In Section 3, we make the strategy
of our proof more precise and reduce the proof to a number of intermediate estimates.
Finally, in Section 5, we provide all the necessary estimates to conclude the proof of our
main result.

Acknowledgments. KC was partially supported by the Project CONVIVIALITY ANR-
23-CE40-0003 of the French National Research Agency. I'T was supported by the French
government through the France 2030 investment plan managed by the National Research
Agency (ANR), as part of the Initiative of Excellence Université Cote d’Azur under refer-
ence number ANR-15-IDEX-01.

2. PRELIMINARIES

Our approach heavily relies on previous results on the spectral analysis of the linearized

kinetic operator

1 1
AA6 = gL—g’va

in Fourier space for the space variable = (see [49, 25, 27, 29]), where we recall that L is
defined in (1.12). We denote by U¢(t) the semi-group associated to A®.
Taking the Fourier transform in the space variable, we denote, for all k € Z3,

~ 1 1

and U= (t, k) := tAg(k) so that U¢(t) = F; 1US(t,)Fs. We also denote
21 Wi, fl(0) = £ [ U~ (6, o8 0

where Isym(f1, f2) = %( (f1, f2) + T(f2, f1)) denotes the symmetrized form of T, so
that (1.11) takes the Duhamel form

(2.2) f2@) = U@ fin + VELf5 £) -

In Fourier space we have

U )0 0) = 2 [ 0%~ P (), S0 ) ()
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where
Coym(f1, f2)(k) == > Toym(fi(k = k), fo(K)) .
k'ez3
Observe that
U [f1, ol (1) = F P e L1 fol (8, ) F

It turns out that there is a complete description of the operator U¢: this goes back
to [49, 25] for the Boltzmann hard-spheres kernel, [56] for the Boltzmann non-cutoff (resp.
Landau) kernels with hard and moderately soft potentials v+2s > 0 (resp. v+2 > 0), and
[57] for the Boltzmann non-cutoff (resp.Landau) kernels with very soft potentials y+2s < 0
(resp. v+ 2 < 0). For the not too soft potentials, we also refer to the paper [29] in which
the authors provide a more modern spectral approach.

Let us start by noticing that

(2.3) O (t, k) = 0! (éek) .

Roughly speaking, for |k| < x small enough, the operator Kl(k) := L —iv - k can be seen
as a perturbation of L. In particular it can be proved (see [25]) that the 5-dimensional
kernel of L recalled in (1.14) splits into 4 eigenvalues (the first one below is double) that
satisfy for all |k| < K

VNS
Ans () = —onslkl +s(R), ons >0, fus(B)] < =7 M
(24) 9 Vheat |7 2
)\heat(k:) = _Vheat|k| + Wheat(kj)a Vheat = O, |’7heat(k)| < T|k|
and
)‘wavezl:(k) = iZC’k‘ - Vwavezl:’k‘2 + 7wavei(k) s
(2.5)

v +
c> 07 Vwavet > 07 "Ywave:t(k)‘ < %‘kp .

Moreover, the associate projectors P, can be written (where x stands for NS, heat, or wave+)

P =P (,’;) + |k|P} (,’;) + |k[*P2(K),

with P? bounded linear operators on L? with operator norms uniform for |k| < k. We
even have that PY(k/|k|), P}(k/|k|) and P2(k) are bounded from (HS*)" into H™* uni-
formly in |k| < k. We refer to [29, Theorem 1.6-(2)] for this property (note the following
correspondance of notation H®* = H3* and H° = (HS*)"). We also have that if x # «/,
then PYPY% = 0 and the orthogonal projector Py onto Ker L satisfies

k
Py = Z P ( ] )
*E€{NS,heat,wave=t}

Actually PRg(k/|k|) is the projection onto the 2-dimensional space spanned by v — pry v
for any k (this corresponds to the divergence free condition), and

2 ~

Pheat(,k‘)ﬂ 0) =2 (=14 5ol - ))\/ﬁ(v)/RS(—H (wl? = 3)) y/ia(w) f(k, w) du
Finally
0 k £
Pwavei (m)f(kj’ U)
= (T g o 3o =) Vi) [ (1% g w0+ (10l =) Vi) w)

Thanks to (2.3) and to this spectral study, we deduce as in [8, 26] that U® can be decom-
posed as follows:

(2.6) US(t) = U’ (t) + USH(t)
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where U®P(t) corresponds to the contribution of the low frequencies in the right part of
the plane:

~ k t
(2.7) e =x(I) T M,
x *€{NS,heat,wave=t}

where y is a fixed smooth, compactly supported function. Moreover, since we consider not
too soft potentials, there is A9 > 0 such that uniformly in k € Z3

(2:8) 10t k)3 S €%, >0

In the study of the limit € — 0 of (1.11), it will be useful to decompose U’ (t) into a part
independent of £ and a remainder, which will be shown to go to zero, in a sense to be
made precise later:

(2.9) U" = Unsr + Ugpe + U,
where in Fourier variables

O (t, k) = e—uNslthpgS(ﬁ) 4 e thenlk2tp0 (ﬁ)

14 L4

(2.10) &b e|k| Avaver (ek)
Uwave(t7 k) = X(T) Z e e? Wave:t(gk) :
+

According to (2.1) and (2.6), we can also decompose

(2.11) e = 0P 4 gt

where

@12)  F (WAL SI0) 0= T [ 04— O (A0, ) ()
and

(2.13)

Fo (U511, (1)) () 1=

€

1 elk t =t ~
D (@Y 5 [ E o) P (106, o) R
*

where the sum runs over {NS, heat, wavet}. In the interest of the limit ¢ — 0, this can
be again decomposed as in (2.9), as follows:
(2.14) U = Ungp + WE2 4+ 0°
where writing W, [f1, f2](t) = Fo(U.[f, f](t)) and recalling that Polsym = 0,

Unselfi, fol( ) = >0 / B "f'2\/<:r7>1(|k|) Coym (), fo(t')) (k) dt',

*€{NS,heat}

Vil 1, fo(t k) = X(M)

K

t _¢/ ~
X Z /0 ekwavei (ak)tf_gpwavei (5k)rsym (fl (tl)a f2 (t/)) (k) dt/ .
+

3. PROOF OF THE THEOREM

Let us start by presenting the functional framework in which we shall develop our proof.
We fix a parameter § € («,1/2) where we recall that o € (0,1/4) has been introduced in
Theorem 1 and define for any interval I of Rt

(3.1) X = {f € LPH 2N LIHLHy* 0 LF HLL? : < +oo)

which we endow with the norm

1
(32)  [flla; = Il pre-rpa + %HPWHL;H;;H;* + Pofllc2mems~ + EBHszc;ngLg -
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3 3 e . £
In the following we write X% := 0,1]"

Remark 3. If f = f(x,v) is a function in H~'L? and if  is a smooth, compactly supported
function on R?, then the sequence £ := x(e*|D,|)f goes to zero in e? HL L2, in the sense
that

NS N mers S €N gy -

Recall that we consider well-prepared initial data gi, in H5"'L2 and the associated fluid
solution g € L H. L2 N L2HLL? for T < T*, where the maximal life span 7% > 0 is
such that

TILH%* ”9HL2TH§;L3 = 00.

This solution satisfies
(3.3) ol ze 122+ M2 ez < Nl

We then build a family of initial data f£ to (1.11) such that Py f5 = x(¢%|Dx|)gin for some
smooth, compactly supported function xy. We assume moreover that P& = goes to zero
in H:71L2 and %Py f5, goes to zero in HSL2. Then as pointed out in Remark 3, Pqff,
goes to 0 in e? HL? (since f > «). Our goal is to prove that the solution f° of (1.11)
with data f; converges to g as stated in Theorem 1, on the same life span as g.

The first step consists in replacing g by a smooth solution to (NSF) in the following
way: let us define

o[> =3

g (t,xz,v) := {pe(t,x) +ut(t,z) - v+ 6°(t,x) }\/ﬁ(v)

where (p°,u®,6°) solves (NSF) with the initial data x(¢%|Ds|)(pin, Uin, Oin). It is classi-
cal (see for instance [26, Proposition B.5], and [18, 4, 42] for more), that for ¢ small
enough, (p°,u®, 6°) has a life span at least 7" and there holds

1> €
(3.4) 9" = 9lzee pre=1p2 + 19" = 9llLzmemys —5 0
Note that in particular
(35) HQEHZ%OHﬁ*lL% ;_0_) HgHZ%’Hﬁ*lL% and ||g€HL%H£H5’* 6—;(? HgHL%H%Hs’* :
To prove Theorem 1, it thus suffices to prove that
€ € € €
9" = Nz g1 + 1197 = SNz —57 0

Note that by propagation of regularity (see again [26, Proposition B.5]) there holds

19°17e0 pre 2 + 197N 12 presr g S WP Sl gz exp (CngH%gHgHg»*)
(3.6) S IPo fillmerz exp (Cllgl Tz pre s

S IPofillmesz e (Cllgnl2e-1y, )

due to (3.5) and (3.3). In particular ¢° satisfies

(3.7) N9 e gz < &IPS g2z ex0 (CllgllF2 s )
S g1 050 (Clanllr ) T 0

because 5 > a.

It is also worth mentioning that g° = Pog® so that [|g°(t,z, )| gs+ < 9 2, )| 2

In what follows, we shall look for a solution f€ to (1.11) under the form f€ = ¢° + 6.
Since

g°(t) = Unsr (t)Po f5, + Ynsrlg%, 9°] (1)
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elementary algebraic computations lead to the following equation on 6¢:
0%(t) = (U(t) — Unsr(1))Pofiy + US(t)Pg [,
(3.8) + ¥lg%, g7](t) — Unsrlg™, g7](F)
+ UF[g", 8°](2) + WE[0°, 6°](¢) -

As we shall see, the main point is to be able to solve the equation on ¢, with an Hfi
norm which is finite but blows up (in a controled way) as & — 0. Our method of proof will
allow us to prove that the equation has a unique solution on the same time interval as ¢°
hence as g, at least for € small enough. In doing so we shall also prove that ° converge
to 0.

The method will rely on the following fixed point lemma.

Lemma 3.1. There is a constant Cy > 0 such that the following holds. Let X be a Banach

space, L be a continuous linear map from X to X, and B be a bilinear map from X x X
to X. Let us define

I£] == sup |[Lz]| and |[B]:= sup |[B(z,y).
=1 lell=ly=1

If ||£]| < 1, then for any xo in X such that

L —1cl?
(3.9) zollx <
Al|B|
the equation x = xg + Lx + B(x,z) has a unique solution in the ball of center 0 and
1—||£
radius I£] and ||z|| < Colzol| -

2|18l

In the next sections, we shall provide all the necessary estimates in order to implement
this fixed-point argument to solve (3.8), which we re-write in the following form:

0°(t) = D°(t) + S°(8) + L7[07](¢) + W°[6%, 67](¢)
where the data D?, source S° and linear £°[0°] terms are defined by
DA(t) := (U*(t) — Unsr (1)) Pofiy + U ()Pq i,

(3.10) S°(t) == V¥[g%, g71(t) — Unsrlg®, °](1)
Lo[6°](2) == W¥[g", &°](2) -

Paragraphs 5.1 to 5.5 will be devoted to the proof of the following result.

Proposition 3.2. Under the assumptions of Theorem 1, the following holds.
(1) For any T € (0,T) there holds

g(. — e < <
105 = DF W lae, S 1Pl
(2) The data term goes to zero globally in time: for anyt > 0
1o
1D°l1es, < el ge1 5 + IPE Fallges s + < IPg Fell sy — 0.

(3) The source term goes to zero in X7: there is an increasing function ® such that for
any t € [0,

1_ _
||S€||/\’§ < el 2a g (HginHHﬁAL%) 5——>—0—> 0.

(4) The linear term satisfies the following continuity estimate for € small enough:

Ve g S ez (P9 o g o+ VENS e g1 g + 97 2 gz -
(5) The nonlinear term satisfies the following continuity estimate:

19E[f1, folllae S N fallae Il f2ll s -
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Let us investigate how Proposition 3.2 ensures the wellposedness of (3.8) in X% and the
convergence of ¢ to zero, thus proving Theorem 1.

End of the proof of Theorem 1. We shall check that (3.8) takes the form required by Lemma 3.1.
On the one hand thanks to Proposition 3.2 we have

154 €
ID%llxs, + 15% M5 —5 0

so (3.9) will be satisfied as soon as we have a hold on the continuity constant on £°: we need
the linear operator £° to be a a contraction in X7. As can be seen from Proposition 3.2—
(4), for that to be the case one needs |g|| 2.tz to be small, which unfortunately is not

the case (unless gi, is small, which we do not assume here).

In order to get around this difficulty, we shall apply Lemma 3.1 iteratively on small
time intervals. Note that due to Proposition 3.2-(4) and the estimates (3.3) and (3.7),
there is a constant C' > 0 and ¢ > 0 such that for all ¢ < gg

1
121l < Ol g (55 + Noleg g -

Now there exists K > 0 and a succession of times ¢t1 := 0 < t3 < --- < tg such that

] 1
V1 << K — 1’ ||gHL2([ti,ti+1];H£HS’*) < E ’

Then
1
€
(3.11) 12, < 57,

Applying Lemma 3.1 on [0, £5] then implies that there is a unique solution 6% to (3.8) in &%,
which satisfies

€ 13 3
(3.12) 16z, < Co(D5 + 187z, ) — 0.
with thanks to Proposition 3.2—(2)
1oan-
(3.13) Df, = €2 N Ginll e 12 + 1P Sill e 2 + €7 1P il area -
Then we solve (3.8) on [to,t3]. We recall that (3.8) writes
Vt € [ta,t3], 0°(t) = D°(t) + S°(t) + LE[6°)(t) + W&[6°,0°](¢),

with D¢, 8¢ and L£° defined in (3.10). We want to recast this equation in a form suited to
a fixed point on [tg,t3]. According to (2.1) and since U® is a semigroup, we can write for
all t >ty

VIS0 = 20— t2) [ U2 — ) F(), 90

t
+§ t Us(t —t')Poym (f(t), g(t")) At/

1 t>
=i Ut t) [ VSt = OO (), 9(¢)) At + W (gl (12:0).
We also define the operator
Lo[fI(t2 ) = W=[g", fl(t2; 1)

and we set

D5(t) :==D(t) — U%(t — t2)D"(t2)
and

S5(t) :=8°(t) = US(t — t2)S"(t2) .
Then (3.8) can be recast on [ta, 3] as follows:

0°(t) = US(t — t2)0% (t2) + D5(t) + S5(t) + LE[0°](t2;t) + ¥E[6°, 6% (t2st) .
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Thanks to Proposition 3.2—(1), (2) and (3), D5 and S5 go to zero in X
universal constant C

to.ts]” with for some

D5l < CLDi
with notation (3.13), and
185 11xe

[ta:t3]

1 _
< C165_2a(1) (HginHHQ‘;*1L12)) .

The linear operator £°[6%|(t2; t) is dealt with exactly as above to produce similarly to (3.11),
for € small enough,

15
Il < 50,

Finally thanks to Proposition 3.2—(1) and (3.12), we have for some universal constant Cy >
0 that

[ta,t3]

[U(t = 2)0° (2) | x D% [leg, + 115° 12,

X S|
< G [D5, + 27 (|ginll o112 -

We can therefore apply Lemma 3.1 which implies that

Co(HUs( —t2)0"(t2)llg |+ [ Dallae ,  + IS5l t])

< Co(Cr + Ca) | D5, +272°@ (1Iginl e 1) | -

5
19z,

Iterating this argument K times and noticing that K is of the order of | g|| L2 HLHS " We

find that there is a unique solution 6° € X% to (3.8) on [0,7] which satisfies for some
universal constant C' > 2

9l 2, gt e L _
16°]1vs. S €A [DE 4 637200 (| ginl| o110 )| — 0.

e—0

Theorem 1 is proved. O

4. SOME RESULTS ON THE OPERATORS U¢ AND W¢

In this section, we provide useful continuity estimates on U® and W¢. We also refine
decomposition (2.11) on W€ using the spectral properties introduced in Section 2.

4.1. Estimates on U® and W¢. The first series of estimates (Propositions 4.1, 4.2 and
Corollary 4.3) are very close to the ones established in [13] (and in [29]) and are based
on hypocoercive energy estimates (see Appendix A for a presentation of hypocoercivity
results). Since the functional framework is a bit different, we reformulate them in our
functional setting. Some key elements of proofs are provided in Appendix A.

Proposition 4.1. Let m > 0 and T > 0. There holds:
(1) Let f € H™L? and assume f verifies (1.13). Then

1
10OV g0 e 2 + <P U= Fll g gz + IPOU= () fll gz S IF ez
and moreover US(t) f verifies (1.13) for allt >0
(2) Let S = S(t,z,v) satisfy PoS =0 and S € LTHm(H *)', then for any t < T,

/ US(t — )S () df’

1 t
+||Pg [ US(t =St at

LeHmPL2 €

LZHPH™

4 HPO US(t — #)S(¢) dt T [
0 © A

L2HPL2
From [29, Lemmas 4.8 and 4.9] we also have estimates for the semi-group U®*.

Proposition 4.2. Let m > 0 and T > 0. There holds:
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(1) Let f € H'L?, then
1
10540 g + WO gz S 1z

(2) Let S = S(t,z,v) satisfy S € LAH(HS*)'. Then for anyt < T,

t t
/ USH(t —¢)S(t') dt'|| / UsH(t —¢')S(t') dt’
0 L HML2 0

L2HMHY*
S 6HSHL2TH;"(H3’*)’ :

From the two previous propositions, since sy, is such that Pol'syr, = 0, it is straight-
forward to deduce the following result.

Corollary 4.3. Consider m >0, f1, fa such that Dsym(f1, fo) € L3HT(HS*)' for some
given T' > 0. Then, there holds:

1
e _ - 1€
19 Pl e + 2 (PR L2 e
+IPoPe(f, g1l 22 ez S sy (o )22 e iy
and

H‘I’s’ﬁ[fhfﬂHZ%OH;nLg + %”\Pe’ﬁ[flaJCZ]HLQTH;”HS’* S Psym(f1s f)ll 22 prm sy -
We finally give a straighforward estimate for U,
Proposition 4.4. Let m >0 and T > 0. For any f € H™L? there holds
U= OV f gz gt see S F Neree -

4.2. Nonlinear estimates. We now provide nonlinear estimates that are central to es-
timate the nonlinear collisional operator I' in various functional spaces. It is well-known
(see [36] for cutoff Boltzmann, [34, 2] for non-cutoff Boltzmann, [35] for Landau) that

(C(f1, f2)s f3) 2] S

2l foll g1 fall e

from which we obtain

(4.1) T f)ll sy = sup (T(f1, f2)s d) ez S I allezllfall e -

16l 7.2 <1

Proposition 4.5. Let m > 0. For any ri,m9 # 3/2, any p1,q1,p2,q2 € [1,00] that are
such that 1/p1 +1/q1 = 1/pa + 1/q2 = 1/2, and any smooth enough functions f1, fo there
holds:

P CEs F)llag oy S W illgoy ymorzero o I Follgon ps e

+ HleZg?H;QL% ‘|f2‘|Z?H;71+(3/2*T2)+H3,* .

Proof. To simplify we write Fy (t, k) = || f1(¢, k, 2 and Fy(t, k) = | fa(t, k, gz~ By (4.1)
we have, for any k € Z3,

=

2
Z Fl(t, k— ’I’L)Fg(t,n)

n€ez3

dty |

~ T
B Bl ey S 9 [

0

and applying Minkowski’s inequality yields

=

B £2) )z ey S Z{ [ 1F k=P \an)r?dt}

€73
We now follow [43, Lemma 7.3]. We first split

ITCfrs f2) (R 2 ey S Tu(k) + Io(k)
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with
T 2 2 >
00 = 3 Vuiapon | 1Frlt k= n)P Pt m)? e
3 0
neZ
and
1
T 2
Ig(k‘) = Z 1\k7n|>|n\ {/ |F1(t,n)|2|F2(t, k — ’I’L)|2d7f} .
3 0
neZ
We now estimate the term I;. Thanks to Holder’s inequality in time, we obtain
(4.2) LK) S D Lol FLC B — )l e 12 ()l o

nezs
where 1/p; + 1/q1 = 1/2, and to simply notation we introduce Fi(k) = ||F1(-,k:)||Lz%1
and Fao(k) = ||Fa(-, k)| o~ By the Cauchy-Schwarz inequality it follows that

nez3

Li(k) S 1) Fallezzsy { Y Lnj<fni(n) 2 Fu(k - ”)2}

where we recall that r # 3/2. Multypliying I (k) by (k)™ then taking the square and
summing it gives

2 RNk SN Fallfazay D D Lpnisiini (k)7 () "1 Fr(k = n)*.

kez3 ke€Z3 neZd
Using that 1< |k—n|(k)*" < 1jnj<jk—n|(k —n)*™, the above sum can be bounded by

> { > 1|n<|n'|<“>_2”} (ny™ Fy(n)?

n’'€Z3 \ neZ3
and we observe by standard arguments that

S Loy ()2 < J 7T i<,
<R it >3,

nez3
This implies
ST PR S ) Pl (Y2 B )
keZ3

2 2
= 1l e ol

The term I can be estimated in a similar fashion, by exchanging the role of f; and fs.
Indeed, we first apply to Holder’s inequality in time with 1/ps + 1/g2 = 1/2 to obtain

(4'3) IQ(k) S Z 1|kfn\>\n|HF1('7 n)HLS? HFQ('v k — n)HLqT2 :

nez?
Denoting Fi (k) = || Fi(- k)HLz;z and Fh(k) = || Fa (-, k:)HL?, the Cauchy-Schwarz inequality
yields

nezs

2
Iy(k) S 1) Filleezs) { D L () 22 Fo(k — n)2} -
Arguing as above, it follows

2 2 2 2
32 PR S Vil ol s

which completes the proof. O

We give another estimate on I' in the specific case where both entries are macroscopic
(which in particular implies that there is no loss of regularity in the velocity variable).
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Proposition 4.6. Let m > 0. For any ri,m9 # 3/2 and any smooth enough func-
tions f1, fo there holds:

HF(POfl?POf2)||LoonL2 ~ HPOfIHZOOH +(3/2— Tl)+L2|| 0f2||z%°H;1L%
+ HPof1HL%oH;2L%HPof2HZ%OH;n+<3/2—m)+L% :

Proof. Using the regularization properties of Py, thanks to [53, 15] respectively for the
noncutoff Boltzmann and Landau equations, and the fact that [|(v)?Po¢|| g < [|Podl| 2
for all p,q > 0, we have

(4.4) IT(Pof1,Pofo)llzz < PofillrzIPofllrz -

Therefore we have for any k € Z3,
IT(Pof1, Pof2)(k)lrserz S Y IPofilk —n)llzzer2 | Pofa(n)llrgers -

nez?
We then conclude as in the proof of Proposition 4.5. U
4.3. Refined estimates on V. We recall that as introduced in Section 2
(4.5) TE = U 4 P
and ~
U = Wngp + Ui + U°.
We can further expand W& by writing

(4.6) U = Unse + URgh + Voo + U7 4 U2

wave

where writing W, [f1, f2](t) = Fu (V. [f, f](t)) and recalling that PoI'sym = 0,

Unselfi ol (6 K) == Y / R RPL (VD (18, falt) (k)

*€{NS,heat} |k|

B ) = (x (22 -1)

K

S [P () R (A0, ) () 0

*€{NS,heat}
elk
\Ilizlaze[flafZ L, k ( | |)

(Licelk|—vwaver e [k[2) 5L 11 1ol k=
x Z/ e e \krpwavei(@)ﬂym<fl<t’>,f2<t’>><k>dt’7

\I’Elb[fl £](t, k) ( ) Z / (Ficke|k|— 1/*52\16|)

*€{NS,heat,wavet}

(e ) P () P (). ) )
W20, () = x( )
S / 2 kPP (k) D (1 (1), So(1) ()

*€{NS,heat,wave+}

We have used the notation ¢, := 0 if x € {NS, heat}.
In what follows, we give estimates on specific parts of W¢ coming from the decomposi-
tion (4.5)—(4.6) which will imply continuity estimates on W¢ in various functional spaces.

Proposition 4.7. Consider T > 0 and m > 0. For any smooth enough functions fi
and fs, we have

b
(4.7) H\IIE’ [f17f2]HL2TH;"+1H5’* S ”Fsym(flafZ)HLQTH;n(Hi’*)'-
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Proof. Recalling (2.13), for any k € Z3, there holds
Vi, fo)(t )
“L( )y [ E R (@) )

9 K
*€{NS heat,wavet}

Due to the form (2.4)-(2.5) of A, and to the fact that PoI'sym = 0, there is a constant A; > 0
such that

H‘I/’e\’b[fl,fﬂ(t,k)H
< |k|x (E‘k’)/ ~ |2 (t—t)

0
+e|k|2x(ﬂ)/te
< [klx (5\7?’)/ A k2 (=)

0
TNES /0

where we used that ek lies in a compact set to get the last inequality and where P! and P?
are bounded from (H2*)" into H3* uniformly in ¢|k| < k. We then have

7)1( )Sym(f17f2)(tlak) s,*+ Pz(gk)fsym(flah)(t/?k) 5%
|| H, H;

< Hrsym f17f2 t k H

P! (%)fsym(fh ), k)HHﬁ’* ar’

(k) Csym (1, o), B)| .., 4

P () P )20,

(k) Fayun (f1. )R Y

S,k
Hy

We denote A(t', k) == || Tsym(f1, f2) (', k, -) l(r3+y» and we use Young'’s inequality in time L%«
LY C L3 to estimate

— t IR
N1, 2R e [ [ e OB A | S Ik ACR
T
Therefore we obtain
1911, Folll g gt S NGE™ Al S sy Sl s gy
which concludes the proof. ]

We now give an estimate on U&# when both entries are macroscopic.

Proposition 4.8. Consider T > 0 and m > 0. For any smooth enough functions fi
and fo we have:

H\Ifa’ﬁ[Pofl,Pofz]Hz%nglL% S €lllsym (Po f1, POf?)”Zg?ngLg :

Proof. We first write for any k € Z3,

H‘T’a’ﬁ[PofhPofz](k)

t, ~
i ‘U‘fvﬁ(t — ', k)Lsym(Po f1, Pof2) (¢, k)HLz dt’

HL;@L% ~e

Ly
Using then (2.8), we deduce that
Sed 1 —Xo t_Qt/ 3 / ’
H‘I’ [Po.f1,Pofo](k H S| e |Taym(Pofi, Pofo)(t k)H ey,
L°°L2 g 0 L% L%o

and thus Young’s inequality in time yields

|20 1, Po ]

sym(POfla P0f2

HL°° 2™ ‘ )HL%C’L%.

Thsi concludes the proof of Proposition 4.8. U
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5. THE EQUATION ON ¢°: PROOF OF PROPOSITION 3.2

This section is devoted to the proof of Proposition 3.2.

5.1. Continuity estimate for U®. We start with a continuity estimate for U¢. From
Proposition 4.1 we have

ePNUS(- — 7)F(7 )HLOO ar S I merz -

as well as
||U8(_ ) ( )HLoo HZ 1L2 ~ HF( )HHQ‘;*lL%

and

1
ﬁllPolUE(- =~ EMzz e S VEIF@ ags -

We now decompose PoU¢ = PoUsH + PoUP as in (2.6). By Proposition 4.2 we get

[PoU=*( = 1) F ()2 e S EllF ()l rers -

Furthermore, Proposition 4.4 yields

b
IPoU=* (- = )F()ze stz S IF (g

Gathering previous estimates and using that § < 1/2, it follows that
U= = DF (D)l S P IF O mrz + IF O etz
SNz gay + 1P ey S 1Pl
This concludes the proof of Proposition 3.27( ).
5.2. Contribution of the data D°. Recall that

(5.1) D*(t) := (U°(t) — Unse (1) Pofs, + US(t)Pq f, -
Let us first prove that

1y
(5.2) (U= () — Unse (D) Pofinll o, S 27 NGinll ez -

We start that by recalling that by (2.6) and (2.9) there holds
(U*(8) = Unse () Pofiy = (U + Ugidve + UH) ()P0 f -
We notice that since Pgff, is well-prepared, then US? . (t)Pof5, = 0 so
(UF + Uglve + U (OP0 fi, = (U + U ()P0
Let us start by considering US#(t)Pq f5,. Thanks to Proposition 4.2—(1) we have
||U€’ﬁ(‘)Pofi€n||L2HmH5’* S €||P0f§1||ngLg

for any m > 0. We shall now follow the arguments of [26] (see in particular the proofs of
Lemmas 3.3 and 3.5). We notice as in [8, Lemma 6.2] that

vs(nf = U0 f = U0 [F (- () Puemfn)
*€{NS,heat,wavet}
so in particular
VS ()P, = U¥(1) [al((ld—x(@))— () v e <ek>) m<k>].
*€{NS,heat,wave=t}

The H™L2-norm of the first term in the right-hand side can be estimated using

3 NESEE
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and thanks to the fact that the projectors P, are bounded from L2 to L2. The same holds
for the terms coming from the second part of the right-hand side, so we find that

”UEﬁ( )PO HLoonLQ NEHPOfln”H”“LIL? :
Using Remark 3, we deduce that

U () Po fi SeNPo Sl ey S PTG

n”Z?ngt;LQ ~ ”Hﬁ_lL% )

as well as
||U€7ﬁ(')P0 §1‘|Z§°H£_1L% + f||PlUE’ﬁ( )Po f; ||L2HZHS + + [[PoU* ti( )PomeL2HZHS*

< (VE+9) IPofallmers S 3 guall sz
We conclude that

1_ _
(5-4) ||U€7ﬁ(‘)P0f§1HX§O 5 €2 aHQinHHﬁ—ng E—;()_) 0.

Now let us turn to U¢(t)Pg [, as defined in (2.10). By construction it is made of three
terms, defined in Fourier Varlables by

—_ -~ e~

Ue(t, k) := USla(t, k) + U10 (8, k) + U220 (t, k)

:( (dk‘)) ) e_y*letPO(\:y)

*€{NS,heat}

HE) 5 el

*€{NS heat}

+X(%) S MEIE [k|PL() + kPP (eR)] -

w *€{NS,heat}
We shall study the three contributions in turn, starting with UﬁéF (t). We recall again that

the projectors P! are bounded from L? to L? and from H3* to HS*. Using the fact that
since Py fi, is mean free which implies that there is no contrlbutlon to k = 0, we have for
any m = O

oo 2 mig.— NS
|08 OPo Sl S X X W (1= x()) |Pofik )|
*€{NS,heat} k€Z3\{0}
Using (5.3) and the fact that ||[Pof| s+ < |Pof|lz2, we get

2

ER
H,

1058 () Po S5 Se | S Pore)| <P
NSF 0Jin LQHmHS* ~ ] 0Jin\M» 12 ~ 0JinllH L2 -
kEZ v

Similar computations give
| O OPo Fill ey S 2P S s -
Therefore, arguing similarly as for obtaining estimate (5.4) for the term US#, we also get
|08 (Po Sl < (1 +vE+ NP Sl + <Pl
S (777 4237 ginll oo s
Next we turn to U (t). We write

X(E‘k’)’ P 5]4:)% . e_y*lk.‘Qt
K

(5.5)

8“{‘ _ bx 2
< <l == |k|“t 3
Nx( p )e 2 M e k|

S e_%‘kpta]k\ .
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Compared to the computations above we have gained a factor € but lost a power of k. The
same argument gives

rrelb rrelb
157 VP00 iz + 1T OPo el 2 < <P Sl
We can then again argue as for obtaining the bound (5.5) to deduce
- _ 1 _
(5'6) HUd’b(')PO {;H‘Xgo S (51+B 4 e a) ||ginHH£*1L12)-
Finally the computations for (752’|’(t) are very similar: We find

HUstb U€2 b )

||LoonL2 + H 6||PO n||H;”L% + 62HP0 iilHH;n'FlL%’

€
0 inHLfH;nm ~

so that arguing as before
(5‘7) ||ﬁ€27b(')P0fi€n||Xs 5 (61+57a + géfa + 62+572oz + 63/27201) ||?]in||Hf—1L2 ]

< UL (1)Po g, and U2° ()P f£, gives (5.2).

in»

Putting together the estimates on Uf}éF( t)Po
Recalling (5.1), it remains to prove that

(5.8) U= (6)Po fiall ve. S 1P fill sz + 1P Fiall e g
From Proposition 4.1—(1), we have

10=OPF fill 7ot 12 S 1P fill e
as well as

HP ianHL%HgHj* S \/E||Polf§1||H§;Lg :

and also

BHUE PJ_ €||LO0HZL2 ~ B”PJ_ nHHﬁL%

From the decomposition (2.6), for any k € Z3 and t > 0, we have
10% ()P |13z < lkle™ M 4 e
Using that Py is bounded from H3* into L2 and that PgPg = Py, we obtain
PoT= (-, )Pg fia (Rl 2 s S el P (Bl
from which we deduce
IPoU* () Py fill 2 me s S elPo fiallmers -

Gathering previous estimates ends the proof of (5.8). The estimates (5.2) and (5.8)
together complete the proof of Proposition 3.2—(2).

5.3. Contribution of the source term S°. We recall that
S°(t) = ¥¥[g%, g°1(t) — Unsrlg®, °](2) ,
and we want to prove that
180z < 47128 (|1ginll - 5 ) -
Due to decompositions (4.5)-(4.6) one can write
(5.9) () = (W 4 Wil + UREE + U7+ U [67, 7] (1),

and we estimate each term separately.
We start with the first term in (5.9).

Lemma 5.1. There holds
|’\Ile’ﬁ[g€7g€]”?(§ S €1+B”F(g€7ge)Hz%oHﬁ(Hj*)/ + 5“P(g€’g€)“z%oH£,lL%
+ Vel (g7, gE)HL%Hﬁ(Hf,’*)’ :
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Proof. Since g° = Pyg®, from Proposition 4.8 we obtain
H\I/&ﬁ[gea ge](t)|’Z%OH£L% S E”F(gea g€)|’Z%OH£L% )
and also
T4 ge, IV pre112 S (9% 9 70 e -
Moreover thanks to Corollary 4.3 we know that
19419, 071l 2 s S ElT(9 9% 2 re sy

We conclude the proof by gathering previous estimates.

0

Before looking at the other contributions, let us remark that from (4.6), for k = 0, we

have
Te[g", g°)(1, 0) = U¥[g%, g°)(2, 0)
it is thus enough to analyze the other contributions in (5.9) for k € Z3\ {0} i.e. for |k| >

1.

For the second term WEL in (5.9), we follow the arguments of [26, 13]: one needs to

wave

exploit the oscillations of the phase by integrations by parts in time. Thus with notation

inspired from [26, 13] we define

_ 3 ]{7 —u g 2 ]{j —~
Hi(t,t,,x) = ’Fm 1 <X(%)€ wave:t(t t )|k“ |k|7)vlvave:t(m)]:‘(gt5’96)(t/’ k))
so that after an integration by parts in time

(I}sl [gz-:7ge](t7 k)

wave

t . 7 - R . R
=3 % (/ eHNSE 0y HE (1,0, k) A — HE (1,1, k) + e FI S (1,0,k)) .
— ic 0
Let us define

T o (elkl i/t ticlk| =X —vgaves (t—) k|2 p1 kNo B e oy /
(510) J:I:(t7 k) _X( K )ZC 0 € Pwave:t(‘k’)at’r(g 9 )(tak) de
and

(5.11) I5(t k) = UEL 6%, 6°)(t, k) — TE(1, k),

wave

which will be estimated separately.
For the term I§ we have the following result.

Lemma 5.2. There holds
175 25 S € I00 6 e g1+ EIT(6 6 112

+ \/EHP(geage)HL%Hﬁ(Hﬁ’*)’ + \/g”r(gienagfn)HHﬁ(Hf,’*)/ :

Proof. Since Pl .. is bounded from L? into L? as well as from (H$*) into HS*, we

v o

obtain from [13, Proof of Lemma 6.5] that, for all ¢ € [0,7] and k € Z3 \ {0},
— t / 2~
T 0 Rlzg e [ IhPe o ORE IR, g2) (Bl
v 0 v

T —Vwave 2
+e|T(g°, 6°) (t, k) p2 + e =P T (ge | g ) (R) |2

and

— t L L2
1Tt ) e 55/0 [k[2em e O D (g2 g#) (¢, )| grooey At

T —Vwave 2r
+ellT(g% 9°) (8 k)l ey + e = T (g5, g5 ) (R gy

Applying Young’s convolution in time L x L3 C LS and, respectively, Lt.x L% C L%, we

therefore obtain
L (F)llzsorz S €llT (9%, 6°) (Bl s 2



THE NAVIER-STOKES LIMIT OF KINETIC EQUATIONS FOR LOW REGULARITY DATA 23

and
ITE (R) 2 gz S €l (6% 0°) ()2 gy + €lIT (9500 95) (o) ey
This implies
NN ez S &I 6 e s
as well as

1
2 7o pre-rpz + %”P(J]_IiHLQTHgHS’* + [IPoIL 2 e prsee

< eI 0 g e+ (VE ) (ID6 0 g gy + D6 g5 ey )
Lemma 5.2 is proved. O
Recalling the definition of J5 in (5.10), we have:
Lemma 5.3. There holds
172112 < €T sym (9%, 019 e yye-2 2 + llTsym (975 O197) | e 5 2

+ \/EHFSym(ga, 8tga)HL%H£—2(Hs,*), .

Proof. Starting from (5.10), we use the fact that PL, .. is bounded from L? into L? as
well as from (H3*)" into HS* to obtain that, for all t € [0,7] and k € Z3\ {0},

—~ t / 2 _ ~
It By < e /0 [P et 2T 20 0T (7, g7) (8, ) 1z
and
—~ t INTC I ~
1T (6, ) | e S 5/0 [l |Pe e UEIRE 1 =2 0, T (g%, g%) (¢, B) [ pgsovys dE
Using Young’s inequality for convolutions as in the proof of Lemma 5.2 together with the
fact that 9,I'(¢%,9°%) = ['(01g%, ¢°) + I'(¢°, Org®) , we thus deduce

1Tt k)l e 2 S €Ik 721 Tym (97, 0e9%) (K) | oo 12
and
IS ) 2.z S elkl [ Tsym (97, 0eg®) R) 2 gz -
These two inequalities imply
65”‘]:1”2%0[{5;[/12) S 51+5||Fsym(9€a atge)HZ%oHﬁ*?L% )

and also

I o1
HJin%»Hﬁ—lL% + %HPO JiHL?THng;* + HPOJ:FI:HLQTHf;HS’*

< My (07 009 s 5, + (VE + ) om0, 009 13 -2y -
Lemma 5.3 is proved. ]
The contributions of the terms \IleNléﬁF, Web? and We22 in (5.9) are easier to be obtained.
Lemma 5.4. There holds
198G l™ o7llles + 1197167, s + 1927107, o7z
S eI 0 e pre 12 + €T (9% 99 e pren 1+ VEIT (9 0% g gz ey -
Proof. Recall that PL, .., is bounded from L2 into L2 as well as from (H3*)" into HS*.

Let t € [0,T] and k € Z3 \ {0}. Remarking that

k
(B~ 1] < min 1.
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we obtain that denoting vy = min(vns, Vheat) > 0,
t
~c1 - g 2~
IS e Rl S e [ PO B 7)) g
and
t
~c1 - oy 2~
B8 710 )l e S [ eI (2, )R gy
Using that
ekl vtz |,
x(5)e

S 0 (e P efug el (e,

we also get, denoting 1 = min(vNs, Vheat s Vwavet) > 0,

B WP PAEIES
9110 R S e [ IhPe FOR PG ) R o,
and

b
191 YR e S [ e I TG ) ¢ ) ey .
Finally, observing that
elkIN —u k|24 UL elkIN _vayip2 elklN  venine
(Y e e < () et e (1) e,
we also deduce
/ 2
122 (g%, 6°] (¢, F) | 2 S 6/ ke =2 CORET(gf, g°) (¢, k)| 2 A,
and
o~ t V1 g1 2~
199", g°)(t, k)| 12+ SE/O [kl e ™= COMTT (g%, g°) (¢, B) | ggzoey '
We can then conclude by arguing as in the proof of Lemma 5.2. Lemma 5.4 is proved. [

We can now gather the contributions of Lemmas 5.1, 5.2, 5.3 and 5.4 to conclude the
proof of Proposition 3.2—(3). We first observe that from Proposition 4.6, since Pyg° = ¢,
we obtain

as well as

IT(g° ge)HZ%oHﬁ—lL% S HgEHZ%oHﬁ—lL% HgEHZ%oHDl;L% :
Furthermore from Proposition 4.5 we have

I P ez S 097 e e N6 g e
By Proposition 4.6 there holds

2
INES) [P
Therefore estimates (3.3) and (3.7) together with Lemma 5.1, Lemma 5.2 and Lemma 5.4
yield
(5.12)
17
19549, g%l vz + 17| s, + [ 0R&h107, 0z + 195 (0%, %Mz, + 1952 0%, 07l s
< 82 a”gln”HZ 1L2 exXp (20”9111”115 1L2) + 52 2aHglnHHl 1L2 .

It only remains to investigate the contribution of the term J5. Since 3/2 < ¢ < 3,
thanks to Proposition 4.6 we write

||Fsym(9€, 81596) HZ%OHQ‘Z_SL% rg ||Fsym(9€, 82598) ||Z§'9L%L%

S |’g€HZ%°H£L% Hatga”Z§-9L%L% :
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In order to estimate the other terms we split into two cases. If /—2 > 0 then Proposition 4.6
and Proposition 4.5 imply, respectively,
”Fsym(987 atga)HLooHe 22~ ”g HLOOHZLQ ”atg ”LOOHZ 22>
and
”Fsym(g org* )”L2 HE2(HE™) < llg® HLoonL2H8tg ”L2 "2
(
Otherwise if £ — 2 < 0 then we write
||FSym(g€a 82598)HZ%0H4 212~ ||FSym( 8’ 82598)”3%0[/926[/12)
thanks to Proposition 4.6, and also
||FSym(9€,8t98)||L2TH£—2(H5’*)/ S Hrsym(gaaatga)HLQTLg(Hi’*)’
S ng”Z%OHﬁL% HatQEHL%Lng )
using Proposition 4.5. We now observe from (NSF) that, for all t > 0 and k € Z3,
007 (8, k)| S (K217 (2, )] + [l | (9 (1) + (8 )) (R)| -
Hence when ¢ — 2 > 0 we compute
1009° 1 o0 212 SN0 Nzoo ez + 109) oo g1 2 -
Arguing as in the proof of Proposition 4.5, we have
£\2 € €
1(g°) Hz%oHﬁflL% < llg HZ%OHﬁ*lL% g HZ%OHQ‘;L% )
and thus
HatQSHE?Hﬁ—?L% rg (1 + ||ga||z%oH£—1L%> ||g€HZ%OH£L% :
Similarly we obtain
”atQEHL%Hﬁ—QLg N HQEHL%HQQL% + “(98)2”L2TH£—1L12) )
then we get, as in the proof of Proposition 4.5,
[ R e ' AN I [Py
and finally
10 sz mg-nay S (1416 g meorgs ) 197 g s
Furthermore, arguing in a similar fashion, we also have

€ € AW

& &
S (1 197 e 11 ) 197 e g
as well as )
10eg° 22 2222 S 197Nl 22 22 + 11(9°) Wl 22 mrars
S (1 197 e ) 19z
Therefore estimates (3.3) and (3.7) together with Lemma 5.3 yield: if £ — 2 > 0 we have
H‘]iHX% 5 (61+572a + 61704(376) + 6%70{)

(5.13)

X 1ginl2pe-1 55 (1 + 19inll o1 2 ) exp (2C1GinllZpe1,) -

Otherwise if £ — 2 < 0 we have

H‘]iHX% 5 (61+57a(37f) + 61704(376) + 6%7(1(37@)

(5.14) ) o
% 1Ginl13ye-1 13 (1 + 1ginll ye-r 2 ) exp (20 1Ginl 211, ) -
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We finally gather (5.12), (5.13) and (5.14), and use the fact that 3/2 < ¢ < 5/2, a € (0,1/4)
and S € (0,1/2), which yields

1_ _
(5.15) 15l < 27> @ (1lginll e 5)

where ®(2) = C(1+ z)z262cz2. This completes the proof of Proposition 3.2—(3).

5.4. Estimates on the linear term L°[:]. Consider f € X%. First we have, from
Corollary 4.3 and Proposition 4.5 and using additionally the fact that ¢¢ = Pgg°® and
Hy* C L,
€ 15 1 1Le € 1 et €
I LFs 9 Moo pye 2 + ZIPOELS 07z mre e + ML 0]l 2 g g
S Hrsym[fa ge]HLQTHf;(Hﬁ’*)’
W log aeme 197z g
We then compute, thanks to Corollary 4.3, Proposition 4.7 and Proposition 4.5,
b
IELFs 9 g0 e 2 + 17 1F, 0 W 22 e
rg ||Fsym(P(J)_f’ ge) + Fsym(POf’ gs)HL%Hﬁ_I(HS’*)/
1
SIPE Pl gz 10N s+ 1P e e o g e -

Gathering previous estimate and using that W& = USf 4 U finally yield

1
65H\I]€[f’ g€]||Z%OH£L% + %HP(J]_\I]E[JC’ ge]HL%Hf;Hs’*

+ 1P [f, ol 2 e s + IVELS, ge]Hz%oHﬁfng

(5.16) - 1,0
S\ Mz g + ﬁ\lPo ez aems + Pofllz geps+

([ VE+ 19 e + VRIS I s + 1 g )

This completes the proof of Proposition 3.2—(4).

5.5. Estimates on the nonlinear term ¥¢[-,-]. Thanks to Corollary 4.3 and Proposi-
tion 4.5 we have

1, 1
1= Lfrs Folll e e o + 2P0 5L foll 2 e e + g\l‘lfa’ﬁ[fh Solll gz mre mrsr
S W Tsym (Frs o)l 22 e sy
S W illgee e ol foll iz gy + I fllez g 1 F2l oo e s
as well as
||‘I’€[f1,f2]||z%oH£—1L3 S W sym(Frs Pl 2 =1 (g
S Wllzee e po ol iz g + W fill ez s+ 120 oo ez -
Moreover from Proposition 4.7 and Proposition 4.5 it follows
b
=7 f1s olllez s S IPsym (F1s F2)ll g2 e (grsvy

S W illzee g1 ol foll iz g mg + Il ez s 1 F2l oo ez -



THE NAVIER-STOKES LIMIT OF KINETIC EQUATIONS FOR LOW REGULARITY DATA 27

Gathering previous estimates and using that ¥¢ = ¥ 4+ ¥? | we deduce
(5.17)

1
NI, Pl gas + 2 PSP U Pl g

+IPoYeLf1s folllz mgmg + INELf1 folllzee e

1 1

rg ([6ﬁ + \/E+ g]Hlez%’H%L% + %HPO fluL%Hf;H{j’* + HPOfluL%Hf;HS’* + ||f1||z%oH£—1L%)
1 1

(17 + Ve + el ol g + 2P Pllgmgas + PRl nging + Ml g )

This completes the proof of Proposition 3.2—(5), since § < 1/2.

APPENDIX A. HYPOCOERCIVITY

It is well-known, see for instance [21, 35, 48, 5, 47|, that the linearized Boltzmann and
Landau collision operators satisfy the following coercive-type inequality

(A1) (LS, [z < =Xol|(Id =Po) f 75

for some Ag > 0, where we recall that Pg is the orthogonal projection onto Ker L given
by (1.15).

For all € € (0,1] and all k € Z3, we recall that A®(k) is the Fourier transform in space
of the full linearized operator

1 1
—2L — =0 - Vz y
€ €
namely
1 .
(A.2) A (k) := 6—2(L —iev - k).

We now state a hypocoercive result for A®(k) (for a detailed presentation of the subject,
we refer to [9] and the references therein, we also point out the papers [53] and [23] in the
case of the whole space), as presented in [13, 14].

Proposition A.1. There is an inner product ((-,-) 2 on L (depending on k) such that
the associate norm || -|| 12 is equivalent to the standard norm ||- |2 on L3 with bounds that
are independent of k and e, and there exists \3 > 0 such that for every f satisfiying (1.13)
and all k € 73, there holds

~ ~

Re(A° () 7). 7)) 12 < 2o (51104 -PoF®IR,e + [PoFR)IE; )

Proof. For every k € Z3, we define

Ul Fl(k) = G5 ROLF ()] MUA —Po)fa(h)] + kLK) - M1 —Po) o)
n %g(k @ ulFi(R))¥™ : {O[(la — Po) (k)] + 0[g(k)]1 |
N ((sk_> (b @ ulfa ()™ : {O[(Ta — Po) ()] + 0711}
+ bl ) - o) + ol Fa)] -ul b))

with constants 0 < d3 < do <K 01 < 1, where Iy is the 3 x 3 identity matrix and the
moments M and © are defined by

Mf = [ foel =5)VEE)dv,  Olfl= [ o -1y i) dv.
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and where for vectors a,b € R3 and matrices 4, B € R3*3, we denote

1 3
(a ® b)sym = §(ajbk + akbj)1<j7k<3, A:B= Z AjkBjk .
J,k=1

We then define the inner product ((-,-))z2 on L? (depending on k) by
(A.3) (Frk), fo(k)) 2 i= (Fu(k), fo(R)) 2 + e ¢l f1, fo) (R)
and the associated norm

(A4) IFGNIZ = (F (), F(R)) Lz -

We then argue as in [53], the only difference being the factor ¢ in the second term of (A.3).
O

Using this hypocoercivity result, we are able to prove Proposition 4.1.

Proof of Proposition 4.1.
o (1) Let f(t) = U%(¢) fin for all ¢ > 0, which satisfies the equation

(A.5) of = (L~ Vo)l fio = fin:

We already observe that f(t) verifies (1.13) thanks to the conservation properties of T’
(and hence of L). Taking the Fourier transform in space of the above equation, we obtain
that f satisfies

(A.6) O f (k) = A(R)F (k) F(R)ji=o = fin(k),
for all k € Z3. Applying Proposition A.1 yields, for all ¢ > 0,

1d

§alllf(k‘)lllig = Re((A°(k) f(k), f(k)) 12

1 ~ ~
<o (1P F®Is + IRFBIE: )

which implies

. 1t . t . .
17 b3+ [ 104 =Po) T k) at' + [P0 k) dt' S | FunlR)Is

where we have used that || - [|z2 is equivalent to || - [[z2 independently of k and e. Taking
the supremum in time and then multipliyng by (k)>™ yields

<k>2m
|

B F e g + 2 (0 ~Po) F(R) 25 e + (B [P0 F(R) 222 < (9™ | Frn(B)[2 -

We conclude by summing in k.

e (2) Denote
h(t) = /Ot Us(t—tH)SHt)dt
which is the solution to
(A7) Oyh = glz(L—av-Vgg)h—i-S, ho=0.

Taking the Fourier transform in space gives

~

(A8) Dih(k) = A°(k)R(k) + (k) h(k)mp = 0.
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for all k € Z3. From the definition of (A.3) and the hypothesis PyS = 0, we observe that
(S(k), (k)2 = (S(k), h(k)) 12 + €[S, h](k)

= (S(k), (1d —Po)h(k)) 12 + e%ﬁpw[ﬁ(m] - M[(1d —=Pg)S (k)]
Sai P .
gm(k @ u[h(k)])™™ : ©[(1d —P)S (k)] .

Observing that for any polynomial p = p(v) we have

S(k)p(v)i(v) do| S ISE) |0y

RS
we get
1S, G600 ~Po)S() gy [P Lz

By duality, we also have
(S(k), M =Po)h(k)) 12 < I9(K) | g2y [|(1d —Po) (k) | s

therefore gathering previous estimates yields

(A9)  (S(k),h(k))rz S llSKR)zzgey <—H(Id ~Po)h(k)|| gz + |Poh(k )HLg) :

Using Proposition A.1 and arguing as in the proof of Proposition 4.1-(1) we have, for
all t > 0 and all k € Z3,
(A.10)

1d 1 ~ ~
SIS < ~Aa (51104 -PoRG:) - + IPoAD; )
+C||S (k)| prz+y

(5 =P )Rz + [PoF ()12
A3

<=3 (10 -PoRGR) By + IPOR(R)IE, ) + CIS M

where we have used Young’s inequality in last line. This implies

/\

M| =

-~ 1 /¢ ~ t ~
BRI + 5 [ 10d—Po)h. ) e af' + [ [PoR(E. B3, at

t o~
SN ECROT S
Taking the supremum in time and then multiplying by (k)*™ yields

f)2m .
2 R e + L 0 =P AR 2, e+ (927 [PR(E)IE,
E t v
< 20 15(0) 25 ey -

and we conclude by summing in k. Proposition 4.1 is proved. O
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