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Abstract: Groundwater, widely used for supplying drinking water to populations, is a vital resource
that must be managed sustainably, which requires a thorough understanding of its diverse physico-
chemical and bacteriological characteristics. This study, based on a 27-year extraction from the
Sise-Eaux database (1993–2020), focused on the island of Corsica (72,000 km2), which is diverse in
terms of altitude and slopes and features a strong lithological contrast between crystalline Corsica and
metamorphic and sedimentary Corsica. Following logarithmic conditioning of the data (662 water
catchments, 2830 samples, and 15 parameters) and distinguishing between spatial and spatiotemporal
variances, a principal component analysis was conducted to achieve dimensionality reduction and to
identify the processes driving water diversity. In addition, the spatial structure of the parameters was
studied. The analysis notably distinguishes a seasonal determinism for bacterial contamination (rain,
runoff, bacterial transport, and contamination of catchments) and a more strictly spatial determinism
(geographic, lithological, and land use factors). The behavior of each parameter allowed for their
classification into seven distinct groups based on their average coordinates on the factorial axes,
accounting for 95% of the dataset’s total variance. Several strategies can be considered for the
inventory and mapping of groundwater, namely, (1) establishing quality parameter distribution
maps, (2) dimensionality reduction through principal component analysis followed by two sub-
options: (2a) mapping factorial axes or (2b) establishing a typology of parameters based on their
behavior and mapping a representative for each group. The advantages and disadvantages of each of
these strategies are discussed.

Keywords: water quality monitoring; groundwater database; bacteriological composition; chemical
composition; cluster analysis; principal component analysis; Corsica

1. Introduction

The definition of drinking water quality is based on the comparison of various bac-
teriological, chemical, organoleptic, and radiological criteria on the one hand, and the
analysis results of these same criteria in water on the other [1,2]. With the continuous
development of analytical techniques, the list of quality criteria is becoming increasingly
long, making it complex to provide a concise evaluation of water quality for human con-
sumption. This list now includes hundreds of pesticides and their metabolites, heavy
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metals, bacteriological parameters, as well as the physico-chemistry of major ions, metals,
and other trace elements [3–8]. In this context, synthetic mapping of drinking water quality
requires strategic choices. Often, the most critical parameters are selected, but this approach
does not always clearly reveal the mechanisms responsible for the situation or account
for their spatial and temporal variations. Groundwater plays a crucial role among the
available water resources for human consumption, primarily due to its lower vulnerability
to surface pollution [9–11]. Consequently, several databases on groundwater quality are
now emerging such as the Global Groundwater Information System (GGIS), the World
Water Assessment Program (WWAP) Groundwater Database, the Water Data of the United
States Geological Survey (USGS), the European Environment Agency (EEA) Groundwater
Database, and the French Groundwater Information and Management System, known
under the acronym “Sise-Eaux” [12–16]. The establishment of such databases is essential for
monitoring groundwater quality, particularly within the framework of sustainable water
resource management [17–20]. These databases enable researchers, government authorities,
and water managers to track quality trends, assess risks, and implement strategies for
aquifer protection. However, a comprehensive understanding of aquifers requires long-
term monitoring and a high density of sampling points, which entails significant costs for
the organizations responsible for this oversight.

The aim of this study is precisely to extract and interpret the information contained
in a large groundwater database for Corsica, a Mediterranean island with significant geo-
logical and altitudinal diversity, in order to propose rational approaches for cost-effective
monitoring and surveillance. To achieve this, the study will compare the spatial structure
of various quality criteria, examine their potential multiple correlations, and propose a
synthetic, spatially referenced approach to groundwater quality assessment.

2. Materials and Methods
2.1. Study Area, the Corsica Island

Corsica is a mountainous French island in the Mediterranean, stretching 180 km from
north to south and 82 km at its widest point, covering a total area of 8722 km2 (Figure 1).
The average altitude is 568 m, with numerous peaks exceeding 2000 m, and the highest
point being Monte Cinto at 2706 m. The significant elevation changes create considerable
variations in the landscape depending on the watersheds. Two major geological regions
can be distinguished: on one hand, the Hercynian Corsica, consisting of crystalline rocks in
the west and south (granodiorites, monzogranites, alkaline granites, volcanic formations
in the northwest, and a basic tholeiitic complex [21]); on the other hand, Alpine Corsica
in the northeast, composed of metamorphic formations, mainly schists. Carbonate-quartz
sedimentary formations are found in the extreme south of the island.

The climate is primarily Mediterranean but varies depending on the location on
the island and the altitude. On the coast, summers are hot and dry, with temperatures
exceeding 30 ◦C. Winters are mild (with an average temperature of around 10 ◦C) and
humid, with moderate rainfall. Inland, due to the increasing altitude, summers are cooler,
with temperatures rarely exceeding 25 ◦C. Precipitation is higher, often falling as snow in
winter from altitudes of 600 to 800 m. The island is exposed to strong winds, such as the
Mistral (from the northwest) and the Libeccio (from the southwest).

Under the Water Framework Directive (WFD) [22–24], the French Geological Sur-
vey (BRGM) mapped the island’s aquifers, identifying 40 distinct groundwater bodies.
These aquifers are highly variable due to the island’s complex geology [25], with signif-
icant differences in thickness, depth, and hydraulic conductivity. The majority consist
of compartmentalized and fractured aquifers (over 20 groundwater bodies) within the
island’s granitic and metamorphic bedrock, which provide approximately 60% of the water
extracted for drinking supplies in local communities. Sedimentary aquifers include the
karstified Bonifacio molasses in the island’s far south and the Miocene aquifer in the eastern
plain, which remains relatively unexplored [26]. Coastal aquifers alongside rivers are dis-
tributed around the island and significantly contribute to water supply for populations [27].
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These groundwater resources are fragile due to the risks of saline intrusions in aquifers near
the coast and, more generally, due to limited surface protection. In the context of climate
change, authorities anticipate a decrease in aquifer recharge, increased evapotranspiration,
and a reduction in effective rainfall. The flow rates of island springs, often modest and
highly dependent on this recharge, are expected to decline, potentially leading to the drying
up of some springs during low-flow periods [28].
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2.2. The Sise-Eaux Database

Sise-Eaux is a database that centralizes the archiving of surface and groundwater
quality data intended for human consumption [16]. This database is managed nationally
but administered regionally by Health Agencies (ARS). The water samples were collected
and analyzed by the ARS service provider laboratories, approved by the Ministry of Health,
and have all the international certifications for analytical quality. The database is primarily
fed by the results of sanitary controls on water sources that supply municipalities. It
includes both untreated waters, directly from the source, and treated waters following
disinfection by chlorination, filtration, or decantation. In this study, only raw groundwater
was considered, and where several aquifers are superimposed, only the most superficial
aquifer has been retained. For more details on data extraction, manual error correction,
coordinate retrieval, and the creation of a final georeferenced dataset consisting of 2830 ob-
servations and 15 parameters, readers can refer to the previous work [25]. This extraction,
limited to unconfined aquifers of the island of Corsica, covers a 27-year period (from April
1993 to September 2020), and the selected parameters include major ions (Ca, Mg, Na,
SO4, Cl, HCO3), electrical conductivity (EC), bacteriological parameters (total Coliforms
(Col.), revivable aerobic bacteria at 22 ◦C and 37 ◦C (Aer.22, Aer.37)), as well as fecal con-
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tamination parameters Enterococci and Escherichia coli (Ent., E.coli), nitrate ions (NO3), and
two trace metals (Fe and Mn). In the following text, a distinction will be made between
parameters and major ions, for example, SO4 representing the analyzed ion parameter
SO4

2−. Ultimately, these 2830 water samples were collected from 662 sampling points
(Figure 1), with an average of 4.3 samples per sampling point. Given the size of the study
area, the samples do not all come from the same aquifer but from 40 groundwater bodies,
averaging 71 samples per groundwater body [25]. It should be noted, moreover, that for
the crystalline part of the island (representing two-thirds of the territory), this concept of
groundwater body has a geographic meaning but lacks a clear hydrogeological significance,
as it involves flow in a fractured environment.

2.3. Mathematical Tools
2.3.1. Normality Tests, Q-Q Plots, and Data Conditioning

Before analysis, the dataset underwent Kolmogorov–Smirnov normality tests, which
are suitable for high-dimensional statistical distributions [26]. Additionally, a visual com-
parison of the distribution residuals for each parameter against a normal distribution with
the same mean and standard deviation was made using quantile–quantile (Q-Q) plots. In
these graphs, the diagonal represents the normal distribution, and the closer the data points
are to this diagonal, the closer the distribution is to normality [27]. Based on these tests,
logarithmic conditioning was applied to all parameters using the formula y = log10(x + DL),
where x represents the value of parameter X (whether physico-chemical or bacteriological),
and DL is the determination limit. This conditioning was applied to reduce the impact
of extreme values without removing them from the dataset, by dilating the gaps between
low values and contracting those between high values [28]. Indeed, these extreme val-
ues can obscure certain processes responsible for the variation in water quality during
analysis [29,30].

2.3.2. Principal Component Analysis

In order to reduce the dimensionality of the data space while minimizing the loss of
information contained in the dataset, a principal component analysis (PCA) based on the
correlation matrix was performed on all parameters [31]. This procedure, by diagonalizing
the correlation matrix, based on standardized and centered data, ensures that each variable
carries the same weight in the analysis, regardless of the unit used. This method, frequently
employed due to its robustness, is based on the principle that the resulting factorial axes
(principal components) are orthogonal to each other and thus carry concise information
related to independent processes [32,33]. This helps identify and prioritize sources of
variability. Dimensionality reduction was assessed using Bartlett’s sphericity test [34].

In the context of the dataset, sampling was conducted at various points and dates,
leading to a combination of spatial and temporal variability. To distinguish between these
two aspects, two PCAs were calculated: one including all data, capturing both spatial
and temporal variability, and the other based on the mean values of each parameter at
each sampling point. This second approach minimizes temporal variance. However, the
variability studied this way is not purely spatial since the samples were not all collected on
the same date.

2.3.3. Agglomerative Hierarchical Clustering

Agglomerative hierarchical clustering (AHC) [35,36] was then performed based on
the mean values of each parameter of the principal components obtained from the PCA,
with the aim of grouping parameters by degree of similarity across the majority of the
information contained in the dataset. For this analysis, 95% of the initial information was
retained, with the remaining 5% considered statistical and analytical noise and eliminated.
The relative similarities between the parameters were quantified using Euclidean distance,
and the similarity levels at which the parameters were merged were used to construct
a dendrogram.
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2.3.4. Variograms and Map Calculation Method

The spatial structure of the parameters, and, subsequently, of the factorial axes, was
studied through the construction and analysis of variograms, representing the evolution of
semivariance between pairs of points as a function of the distance between them. As with
the PCA processing, two variogram calculation methods were used [37]:

• Using the entire dataset. The variability measured by the semivariance is both spatial
and temporal;

• Using the mean values for each sampling point to minimize temporal variance.

Experimental variograms obtained under similar conditions to allow for comparison
(same number of points and same number of distance classes) were fitted with a model
including a nugget effect and a spherical structure. This latter was used for developing
parameter distribution maps for the island. The comparison of spatial structure is based
on variogram characteristics such as range, sill, and nugget effect. To detect possible
anisotropy in the distribution of parameter values, directional variograms were calculated
with a 15◦ increment.

3. Results

The descriptive statistics of the 15 parameters are summarized in Table 1. The greatest
variations concerned fecal bacteria, as well as the Ca and HCO3 parameters.

Table 1. Descriptive statistics for the 15 log-transformed parameters.

Parameter (2830 Values) Unit Min. Max. Mean Standard Deviation

Ent. n/100 mL 0 2.44 0.32 0.50
E.coli n/100 mL 0 2.55 0.23 0.44
Col. n/100 mL 0 0.52 0.01 0.05

Aer.22 n/100 mL 0 2.00 0.02 0.15
Aer.37 n/100 mL 0 1.69 0.01 0.10

EC mS cm−1 1.49 3.12 2.38 0.30
Ca mg L−1 0.02 2.19 1.30 0.47
Mg mg L−1 −0.15 1.91 0.78 0.34
Cl mg L−1 0.46 2.34 1.22 0.32

SO4 mg L−1 0.16 2.13 0.96 0.31
Na mg L−1 0.27 2.09 1.04 0.30

HCO3 mg L−1 0.55 2.70 1.92 0.42
NO3 mg L−1 −1 1.55 0.23 0.30

Fe µg L−1 0.13 2.27 1.12 0.25
Mn µg L−1 −1 2.74 1.04 0.19

The values correspond to the calculation y = log10(x + DL) with DL = 1 for bacteriological parameters, 10−3 mg
L−1 for major ions and nitrate, and 10−3 µg L−1 for metals.

The normality tests showed that the statistical distributions of the parameters do
not follow a normal distribution. However, the Q-Q plot of the statistical distribution of
electrical conductivity, which is representative of major ions, presented as an example in
Figure 2, highlights that logarithmic transformation significantly brought this distribution
closer to normality (Figure 2a,b). The comparison of the first factorial plane calculated
on raw and log-transformed data (Figure 2c,d) showed that the cloud representing the
majority of observations was more spread out due to the reduction of the undesirable effect
of extreme values. Finally, for this same parameter, while the variations in semivariance as a
function of the distance between pairs of points were relatively similar (Figure 2e,f, all data),
the distribution map of log-transformed values across the island was more informative,
once again due to the reduced influence of extreme values (Figure 2g,h). Consequently,
from here on, only the log-transformed data will be considered.

Several examples of spatio-temporal and spatial variograms obtained are presented in
Figures 2f and 3. The difference between the two methods of calculating the variogram,
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namely, using all data (spatio-temporal variance, black curve) or averaging each param-
eter at each sampling point (spatial variance, red curve), indicated, for each parameter,
the significance of the strictly temporal variance. Electrical conductivity and major ions
exhibited a high range of around 30 to 40 km depending on the parameters. The nugget
effect was low, approximately 20% of the sill. The difference between the two types of
variograms was small for major ions and conductivity, and slightly higher for chlorides
(Figure 3d) and sodium Directional variograms revealed, again for electrical conductivity
and major ions, a significant difference in semivariance beyond 30 km (Figure 3l), with
higher semivariance in the N45◦ direction and lower in the N150◦ direction. For fecal
contamination parameters (E. coli and Enterococci), a significant nugget effect was observed,
ranging from about one-half to one-third of the sill, along with a low range of just a few
kilometers at most (Figure 3g,h). The difference between the two methods of calculating
the variogram was substantial, indicating high temporal variance relative to total variance.
Similar characteristics (low range, high temporal variance) were also observed for coliforms
(in this case, essentially temporal variance, Figure 3f) and indigenous revivable bacteria
(Figure 3i). Metals (Figure 3j,k) exhibited a nugget effect equivalent to the sill, suggesting
that variability is very high, even over very short distances, with a significant difference
between the two variograms as well.
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Figure 2. Effects of logarithmic data transformation on (a,b) the approximation to a normal distribu-
tion, (c,d) the spread of sampling points on the first factorial plane, (e,f) the variograms, and (g,h) the
distribution maps of electrical conductivity in Corsica.

The distribution maps of several parameters are presented in Figure 4. These maps,
developed from several thousand pairs of sampling points, revealed contrasting regions
with varying distributions depending on the parameters considered. Certain parameters,
such as major ions Mg, Ca, and SO4, clearly distinguish the flows within the fractured rocks
of Hercynian crystalline Corsica from the porous metamorphic environments of Alpine
and sedimentary Corsica (Figure 4a,b,e). However, we also observed many similarities
in the distributions, for example, between log(EC) (Figure 2h) and log(SO4) or log(Mg)
(Figure 4a,b), between log(Na) and log(Cl) (Figure 4c,d), and between log(E.coli) and
log(Ent.) (Figure 4g,h). The similarities in the distribution of parameters across Corsica
highlighted the redundancy of the information provided by the parameters, which justified
dimensional reduction through PCA.
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The distribution of inertia of the factorial axes resulting from the PCA performed on
the entire dataset is shown in Figure 5a. It revealed that the PCA allowed for significant
dimensionality reduction, with the first seven axes representing over 90% of the informa-
tion conveyed by the 15 initial parameters. The first 5 principal components (PCs) had
eigenvalues greater than one, meaning they each contained more information than the
initial parameters, with PC1 alone accounting for the information carried by 5.5 of these
initial parameters. This dataset, therefore, showed a high degree of redundancy, which
is significantly reduced by focusing only on the first PCs. Bartlett’s sphericity test gave
a value of χ2 = 40063, far exceeding the critical value of 82 (significance level of 0.05 and
p-value < 0.0001), confirming the effectiveness of the dimensionality reduction. When con-
sidering the average value of each parameter at each sampling point, thereby minimizing
temporal variations, the PCA still achieved significant dimensionality reduction (Figure 5b,
χ2 = 9035). The eigenvalue of the first axis decreased from 5.5 to 4.8, while the second axis
slightly increased from 1.85 to 2.2. The eigenvalues of the subsequent PCs remained largely
unchanged, and as in the calculation with the entire dataset, the first seven factorial axes
still carried 90% of the information in the dataset.
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Figure 5. Inertia of the factorial axes for the PCAs conducted on (a) the entire dataset (spatio-temporal
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sampling point (spatial variance).

The position of the parameters in the main factorial planes PC1-PC2 and PC3-PC4 is
shown in Figure 6. The results of the spatio-temporal variance analysis (Figure 6a,c) were
presented in a previous study [25], and are reiterated here. The first factorial axis explained
37.1% of the total variance and contrasted mineralized waters, with positive coordinates for
electrical conductivity and major ions (Ca, Mg, Na, Cl, SO4, HCO3), with poorly mineralized
waters characterized by fecal contamination. The second PC contrasted waters were marked
by revivable bacteria with waters displaying a predominantly chloride-sodium chemical
profile, influenced by the presence of metals and fecal contamination. The third PC (12.1%
of the variance) was also influenced by the presence of revivable bacteria, combined with
fecal contamination and the presence of metals, again within a predominantly chloride-
sodium chemical context, while the fourth factorial axis showed positive coordinates for
fecal contamination but negative ones for metals. The PCA conducted by minimizing
temporal variance (Figure 6b,d) presented similar factorial axes to the description above,
with some notable distinctions. The first PC still represented water mineralization, but
the weight of fecal contamination, negatively correlated with this axis, was significantly
reduced. The second factorial axis was marked by revivable bacteria in a chloride-sodium
geochemical context, but also positively correlated with metals and fecal contamination,
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corresponding to the third factorial axis in the analysis with the full dataset. The third
axis was similarly driven by revivable bacteria, but also negatively scored by the chloride-
sodium chemical profile, fecal contamination, and nitrates. The fourth PC represented fecal
contamination in a calcium carbonate context.
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The maps of the first four factorial axes (all data) are presented in Figure 7. These four
axes represent more than 70% of the information contained in the dataset. The classification
of parameters based on their similarity in position across the first eight factorial axes
of the PCA, i.e., their correlational similarities, is shown in Figure 8. This is presented
both for the full dataset (spatio-temporal variance, Figure 8a) and based on the average
of each parameter for each sampling point (spatial variance, Figure 8b). There were
minimal differences between the two classification methods with seven groups. Overall,
there were strong similarities within each group, and strong dissimilarities between groups
(dissimilarity > 13). Bacteriological parameters were correlated by origin, with Enterococcus
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and Escherichia coli on one hand, indigenous revivable bacteria on the other, and finally,
coliforms correlated with nitrates in the analysis using all data (Figure 8a), whereas they
were separated when temporal variance was minimized (Figure 8b). 

5 

 
 
 
 
7 

Figure 7. Distribution of the first four factorial axes across the island of Corsica. ((a–d) = PC1 to PC4).
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4. Discussion
4.1. Redundancy Within Multifactorial Information

The similarity between the distribution maps of parameters within the island’s ground-
water reflects not only the similar behaviors of certain parameters distinguishing distinct
environments (fractured medium/porous medium), but also a redundancy of information,
which is condensed after performing a principal component analysis (PCA), significantly
reducing the dimensionality of the data hyperspace [32]. By arbitrarily setting a 10% loss of
information, the dimensionality decreases from the initial 15 parameters to 7 PCs, while for
a 20% loss, it drops to 5 PCs. This redundancy of information, quantified by the PCA, is
evident in the similar distributions of parameters across Corsica (Figure 4), such as Na and
Cl, E.coli and Ent., etc. This concretely means that the information from one variable can,
in part, be inferred from the other variable. This information redundancy is also reflected
in the clustering of parameters (Figure 8), based on the first eight principal components,
which capture 95% of the information. This clustering leads to seven distinct clusters with
low similarity. The mapping of the principal components synthesizes the information:
for instance, PC1 largely groups the information carried by EC, SO4, Mg, but also a part
by Na and Cl. The remaining information carried by Na and Cl, associated with fecal
contamination in low-altitude coastal waters, is captured by PC3.

However, several findings demonstrate that the information within the dataset is
multifactorial, and despite significant redundancy among parameters, this information
cannot be summarized by just one or two parameters. This is mainly evidenced by the
high eigenvalues of the first principal components and the necessity to consider the first
seven PCs to explain 90% of the total variance. The analysis of the position of parameters in
the main factorial planes (Figure 6) further shows that the relationship between parameter
groups and principal components is not straightforward. For example, some parameters
like E.coli and Ent. load onto multiple principal components, indicating that their spatial
and temporal distributions depend on several independent determinants. The maps of the
principal components represent the spatial distribution of each of these determinants. Thus,
the principal component maps do not exactly synthesize several parameters but rather
illustrate the key mechanisms responsible for their distribution, which is notably different.

4.2. Local or Regional and Spatial or Temporal Determinants of Water Quality

The cartographic representation based on the logarithmic transformation of electri-
cal conductivity (Figure 2h), along with the lower semivariance in the N150◦ direction
(Figure 2f), reveals a structure that coincides with the distinction between Hercynian and
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Alpine Corsica, the island’s two major structural units [25]. The least mineralized waters
are found in the crystalline bedrock at the center of the island, while the most mineralized
waters are observed in the metamorphic terrains of Alpine Corsica, the sedimentary for-
mations in the far south, and along some coastal rivers. This geographical and lithological
coincidence between major ions/conductivity and the main structural units is further
supported by the low nugget effect and the variogram ranges for these parameters, which
are about 30 to 40 km, matching the size of the structural units in the region. Thus, there
is a regional (geographical and lithological) determinism in the distribution of major ions.
This finding is consistent with results obtained from Sise-Eaux database extractions for
other French regions, such as Provence-Alpes-Côte d’Azur, Occitanie, Bourgogne-Franche-
Comté, and Auvergne-Rhône-Alpes [37–41]. The higher electrical conductivity of waters
associated with coastal rivers, primarily on the island’s western side, aligns with the general
observation of longer flow paths and prolonged water–rock interaction. Additionally, a
sodium-chloride chemical profile reflects the influence of strong northwest (Mistral) to
southwest (Libeccio) winds, which can carry salty sea spray inland for several kilome-
ters [42,43]. The difference between the two variogram calculations for Cl (Figure 3d) and
Na suggests some temporal variance, possibly indicating a seasonal phenomenon.

In contrast, bacteriological parameters exhibit a high nugget effect relative to total
semivariance and a short range, no more than a few kilometers, indicating a local determin-
ism for fecal contamination. Again, this result is consistent with observations from other
regions. The extraction of the Sise-Eaux database for Corsica highlights the complexity
of fecal contamination determinants, which contribute to several principal components,
particularly PC1 and PC4 for the analysis with all data, and primarily PC4 for the analysis
based on parameter averages at each catchment. Since the principal components are orthog-
onal to each other, they reflect independent processes, including two distinct determinants
of contamination: one with significant temporal variations (PC1), which diminishes when
temporal variance is minimized, and another with low temporal variability (PC4), whose
trace on the PCA remains unaffected by different processing methods. One could suggest
contamination during late-summer storms, which are violent in this Mediterranean climate,
combining runoff, water turbidity, and bacterial transport [44–48] to poorly protected
catchments, as well as strictly spatial contamination in environments with a predominantly
carbonate-calcium chemical facies, reflecting the weathering of metamorphic rocks. Soils
in these environments are slightly richer than soils on crystalline rocks and are used for
livestock farming, which maintains pollution pressure year-round. Methodologically, this
result parallels previous studies in other French regions [37–41] and in Corsica [25], where
the spatial and temporal components of variance were not distinguished. Such a distinction
allows for more detailed analysis and interpretations of fecal contamination determinants.
Our results also confirm observations and conclusions made in the Bourgogne-Franche-
Comté region, showing that the factors favoring fecal contamination are multiple and
interdependent. They cannot be reduced solely to runoff caused by heavy rainfall but
also depend on environmental factors that influence the presence or absence of extensive
livestock farming (cattle and pigs). The two approaches used in our work—statistical (PCA
and AHC) and geostatistical (variogram analysis)—are independent but converge in terms
of interpretation. To conclude on fecal contamination, which remains the main cause of
non-compliance with drinking water standards, the vulnerability of catchments has both a
temporal (predominant) and a strictly spatial dimension, reflecting several aspects such as
the following:

• A diversity of soil types and their varying degrees of flocculating power for particles,
the main carriers of bacteria;

• A diversity of soil textures, impacting the intrusion of contaminated surface water;
• A diversity of contamination pressure, with livestock farming not evenly distributed

across the territory, being more prominent in mountainous areas and less so in the
plains, with differences in livestock type (cattle vs. pigs) depending on lithology.
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4.3. Strategies for Water Quality Inventory and Mapping

Several strategies can be considered for the inventory and mapping of water resources.
The methodology traditionally adopted by regional health agencies involves creating
distribution maps for individual parameters, with the need to select the most limiting
parameter to estimate the quality of water intended for human consumption. In this study,
we have shown that mapping parameters one by one results in significant redundancy and
complicates water quality monitoring.

A second option is to reduce dimensionality through principal component analysis
(PCA), then map the factorial axes across the studied territory. This option provides a
precise, synthetic view of each independent source of variability in water quality. Mapping
the principal components effectively eliminates redundancies, but its interpretation is less
intuitive and might be more suitable for those familiar with mathematical analysis.

A third option involves, after dimensionality reduction, grouping the parameters into
categories that show strong intra-group similarity (meaning that the parameters within the
same group vary similarly) and strong inter-group dissimilarity. In the case of Corsica, we
observed that the seven groups exhibit these characteristics (Figure 8), but this may not
always be the case, necessitating clustering for each region studied. Choosing to monitor
one representative parameter from each group is more intuitive than the previous option
and offers a more familiar approach for water quality monitoring agents, who may not
necessarily be experts in mathematical processing. However, this option does not reveal
independent sources of information, concealing redundancies.

A fourth option is to cross-reference the information from the Sise-Eaux database with
the groundwater body framework, which introduces an independent physical constraint
in the analysis of water diversity. This option involves grouping groundwater bodies that
exhibit similar behavior in terms of the processes driving diversity. The information loss
associated with this grouping must be quantified on a case-by-case basis. This approach to
mapping, monitoring, and surveillance of water resources was developed in a previous
study on the island of Corsica [25].

It is important to keep in mind that the total variance in an extraction from a database
like Sise-Eaux (or its equivalent in other countries) includes both spatial and temporal
variance. The fact that samples are collected over an extended period raises the question of
the impact of temporal variability on the reliability of spatial distribution characterization.
Here, a preliminary step to partially distinguish between the two variance components
has been undertaken, allowing for a more detailed analysis and a better identification and
distinction of the processes responsible for water quality.

4.4. Consequences for Sustainable Management of Groundwater in Corsica

Comprehensive monitoring is costly, especially given the large number of parameters
involved. The proposal to select a representative from each group of parameters allows
for a significant reduction in these costs without substantial loss of information. The
savings made should enable an expansion of the water quality monitoring scheme, making
this monitoring more effective. Most issues of water non-compliance are related to fecal
contamination, with a limit set at zero cells per 100 mL [49]. Our approach provides a
clear view of the most vulnerable sectors or sources, which can lead to increased sampling
frequency for better monitoring in these areas, while allowing for less frequent sampling
in less vulnerable regions. Additionally, the principal component analysis offers a more
precise understanding of contamination mechanisms, particularly those related to rainfall
events. These contaminations indicate a vulnerability of the catchments or the overall water
resource, which should guide targeted monitoring in these specific areas.

5. Conclusions

This study of groundwater in Corsica allows for advancements in the handling of
large databases such as Sise-Eaux, or equivalent databases around the world. This study
confirms the need for data conditioning (in this case, log transformation) aimed at reducing
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the impact of extreme values without eliminating or artificially limiting them in the dataset.
The risk of such extreme values is high, especially for metals and bacteriological parameters,
which can obscure certain processes responsible for water diversity and make the analysis
more challenging. The extraction of the database, covering a 27-year period and 662
sampling points distributed within 40 groundwater bodies across the island, contains both
temporal and spatial variability, which have been (partially) distinguished. This distinction
reveals two components of fecal contamination that had not been clearly identified in
previous studies: on one hand, a strong temporal component likely due to the impact of
violent late-summer storms, and on the other hand, a weaker, strictly spatial component,
which we have linked to the presence of a permanent pollution pressure, driven by several
factors (topography, lithology, land use, etc.). This work represents a new step in the
analysis and understanding of groundwater diversity, although further efforts are needed
in multivariate analysis after conditioning the dataset to specifically preserve only temporal
or spatial variance. This will allow for a more rigorous refinement and better distinction of
the processes responsible for water quality diversity.
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