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ON THE INTERSECTION OF CRITICAL PERCOLATION CLUSTERS AND

OTHER TREE-LIKE RANDOM GRAPHS

AMINE ASSELAH AND BRUNO SCHAPIRA

Abstract. We study intersection properties of two or more independent tree-like random graphs.
Our setting encompasses critical, possibly long range, Bernoulli percolation clusters, incipient infi-
nite clusters, as well as critical branching random walk ranges. We obtain sharp excess deviation
bounds on the number of intersection points of two or more clusters, under minimal assumption
on the two-point function. The proofs are based on new bounds on the n-point function, in case of
critical percolation, and on the joint moments of local times of branching random walks.

Keywords and phrases. Critical percolation, incipient infinite cluster, branching random walk,
intersection of ranges, moments of local times, capacity.
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1. Introduction

Excess intersection of random walks is a classical theme in probability theory. In particular, large
deviations bounds for the intersection of two independent simple random walk ranges in dimension
five and higher can be found in Khanin, Mazel, Schlosman and Sinäı [44]. Later, van den Berg,
Bolthausen and den Hollander [15], have obtained a Large Deviation Principle for the intersection
of two Wiener sausages in a finite time horizon, in any dimension. In dimension five and higher, the
present authors were able in [7] to extend their estimates to an infinite time horizon in the discrete
setup. In this paper we consider the more intricate setting of tree-like random graphs. Our main
results are stretched exponential upper bounds for the intersection of critical percolation clusters,
together with matching upper and lower bounds for the intersection of ranges of critical branching
random walks.

Our analysis partly relies on techniques that we developed for tackling similar questions for simple
random walks [5, 6, 7, 8], and on related results for branching random walks [9, 10, 48, 49, 54, 55].
However, there are a number of important novelties here. First we adapt our arguments to the
setting of critical percolation clusters, including incipient infinite clusters (IIC) in high dimension.
Furthermore, we prove matching upper and lower bounds for the intersection of two Branching
random walks in all dimensions, except for the critical dimension eight, where we get different
exponents in the upper and lower bounds. Finally we manage to treat the intersection of more
than two random sets. The latter relies crucially on some new upper bounds on the n-point function
(in the setting of percolation clusters), see Proposition 7.1, and on the joint moments of the local
times of Branching random walks, see Proposition 8.1. In the case of percolation clusters, this can
be thought of as a kind of integrated version of the famous tree-graph inequality of Aizenman and
Newman [2], where we unravel a new labelled tree structure. Likewise, in the case of Branching
random walks, our approach complements the exact and more intricate diagrammatic expansion
derived by Angel, Hutchcroft and Járai [4]. In both cases, integrating the occupation field against
a test function and optimizing brings into the game a capacity, whose distinguished properties play
an important role in our analysis.
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1.1. Main results: case of two fractal clusters. Our results may be formulated in a quite
general setting, namely we just need some rough control on the volume growth of balls of the
ambient space, some polynomial upper bound on the two-point function, and the BK inequality.

To be more specific, consider (V, dV ) a countable metric space with polynomial volume growth,
in the sense that if for x ∈ V and r > 0,

B(x, r) = {y ∈ V : dV (x, y) ≤ r},

there exist d ≥ 1 (not necessarily integer), and positive constants c1, c2, such that

(1.1) c1 · rd ≤ |B(x, r)| ≤ c2 · rd, for all x ∈ V, r > 0.

(See e.g. [13] for examples of graphs satisfying this hypothesis for each real d ≥ 1.) The hy-
pothesis (1.1) will be in force in the whole paper, and will therefore not be recalled anymore. A
prominent example is of course when V = Zd, and the distance is given by the Euclidean norm,
which is denoted by ∥ · ∥.

Then we consider G a random graph with deterministic vertex set V and possibly random edge
set. Write {x ←→ y} for the event that two vertices x, y ∈ V are connected in G, and define the
two-point function by

τ(x, y) = P(x←→ y).

Define also for α > 0, the function gα, by

gα(x, y) =
1

1 + dV (x, y)α
, x, y ∈ V.

We will require that for some α ∈ (d/2, d),

(Hα)
there exists C > 0, such that for all x, y ∈ V,

τ(x, y) ≤ C · gα(x, y).

Furthermore, we always assume that G satisfies the van den Berg–Kesten (BK) inequality [16],
whose definition is recalled later, see Definition 2.1.

Fix arbitrarily a vertex 0 ∈ V , and denote by C0 its connected component, also sometimes called
cluster. Our first result provides a stretched exponential moment bound for the intersection of two
independent clusters.

Theorem 1.1. Assume that G satisfies the BK inequality and (Hα), for some α ∈ (3d4 , d). Let C0
and C̃0 be two independent copies of the connected component of 0 in G. There exists κ > 0, such
that

E
[
exp

(
κ · |C0 ∩ C̃0|

2α
d
−1)] <∞.

The result is mainly designed to apply to critical Bernoulli percolation on Zd, for which the BK
inequality always holds. Furthermore, it is believed that (Hα) should hold in any dimension (see
e.g. [28, Ch.9]), with an optimal α that should take its mean-field value α = d − 2, when d > 6.
Currently a proof of this latter fact is known in dimension d > 10 for the usual nearest-neighbor
lattice, and in any dimension d > 6 provided the lattice is sufficiently spread out (i.e. with edges
connecting all pairs of vertices at distance at most L one from each other, with L sufficiently large),
see [26, 27], or [24] for a recent proof not using lace expansion, and [17, 29, 30, 31, 32, 35] for
earlier results, as well as [33] for a thorough account on high dimensional percolation. Note that
in the mean-field regime where α = d − 2, the condition α > 3d/4, is equivalent to d ≥ 9. This
condition may be better understood, knowing that it is only in dimension nine and higher that
the intersection of two independent IIC is almost surely finite, but we shall comment more on this
condition in a moment.
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Interestingly, we do not make any hypothesis on the degrees of the graph. In particular our
setting covers the case of long-range percolation on Zd, for which the asymptotic behavior of the
two-point function at criticality has been obtained in [20, 21, 30, 37, 40], see also [39] for similar
results on the hierarchical lattice in the mean-field regime. Strikingly, in this model the range of
possible values for α spans the whole admissible interval (3d/4, d).

Some other examples that might be particularly interesting to look at, and which have been
extensively studied in recent years, are the closely related graphs formed by the excursion sets of a
Gaussian Free Field, the (vacant) set of Random Interlacements, and the (vacant) set of a random
walk loop soup. In the first of these examples an explicit expression of the two-point function has
been computed by Lupu [50], and its asymptotic behavior was identified in [3] for the vacant set
of a random walk loop soup. Interestingly, for level sets of the Gaussian free field, the capacity of
a cluster is now well understood thanks to [22, 23], contrarily to the case of Bernoulli percolation
on Zd. Note that one difficulty in these models is that the BK inequality is not satisfied, which
typically complicates the analysis, see however [18, 19, 53], and references therein, for recent major
progresses, which circumvent this difficulty.

Our results for branching random walks, see Theorem 1.9 below, provide evidence that the
exponent 2α

d − 1 should be sharp, in the sense that if the two-point function really decays as

dV (x, y)
−α+o(1), then the stretched exponential moment with any larger exponent should be infinite.

However, in the setting of critical percolation, proving this essentially amounts to estimate the
probability that a single cluster covers a positive fraction of a ball centered at the origin, which
appears to be a very challenging problem.

As for the condition α ∈ (3d/4, d), first note that a direct computation shows that if τ(x, y)
decays as dV (x, y)

−α, for some α > 0, then

E
[
|C0 ∩ C̃0|

]
<∞ ⇐⇒ α > d/2.

In particular, when α ≤ d/2, the tail distribution cannot be stretched exponential. In fact, based
on our computation for BRWs, we conjecture that if α < 3d/4, the tail distribution should decay at
a polynomial speed. The precise exponent of the polynomial is not easy to guess in general, since
in particular the analogy with Branching random walks might not be valid outside the mean-field
regime. However, as we will see later, for Bernoulli bond percolation in a sufficiently spread out
lattice in dimension seven, we are able to show that it decays as t−4, thanks to the computation
of the one-arm exponent by Kozma and Nachmias [46], see Section 9. Actually, it might also be
possible to compute the exponent in case of Bernoulli site percolation on the triangular lattice,
thanks to [47] and [51], but we have not tried to push further in this direction. Finally, in the
critical case α = 3d/4 (which is equivalent to d = 8 when α = d − 2), we can show that for some
constant κ > 0,

E
[
exp(κ · |C0 ∩ C̃0|1/3)

]
<∞,

see the proof in Section 9.3. In particular the tail is at least stretched exponential, but we cannot
identify the optimal exponent, even in the case of BRWs.

The proof of Theorem 1.1 is based on a multiscale analysis, which is adapted from the tech-
niques developed in [7] and in previous works. In particular it relies primarily on an exponential
moment bound for additive functionals of the occupation field of a cluster, which is the content of
Theorem 1.2 below. This result may be seen as an extension of Kac’s moment formula for random
walks, see e.g. [52, Proposition 2.9], and is interesting on its own. Given a vertex x ∈ V , we denote
by C(x) its connected component in G:

C(x) = {y ∈ V : x←→ y}.
3



For φ : V → R, and K : V × V → R, we write K ∗ φ(x) =
∑

y∈V K(x, y)φ(y). and let ∥φ∥∞ =

supx∈V |φ(x)|.

Theorem 1.2. Assume that G satisfies the BK inequality and (Hα), for some α ∈ (d/2, d). There
exists a constant κ > 0, such that for any φ : V → [0,∞), satisfying ∥g2α−d ∗ φ∥∞ ≤ 1, and any
x ∈ V ,

E

exp
κ · ∑

y∈C(x)

φ(y)

 ≤ 2.

We stress that the range of applications of this result is not merely limited to the proof of
Theorem 1.1. In particular we shall see in Section 1.2 below that it has some other interesting
consequences concerning the geometry of a typical cluster. Its proof is a variant of the tree-graph
inequality method of Aizenman and Newman [2]. However, here we use a slightly different induction
argument to bound the moments of

∑
y∈C(x) φ(y), very much as in [10] in the setting of branching

random walks.

As a matter of fact, Theorems 1.1 and 1.2 can be extended to the case of the Incipient Infinite
Cluster (IIC). To be more precise, consider Bernoulli (bond) percolation on the lattice Zd, with
either d > 10 and nearest neighbor edges, or d > 6 and edges between any pair of vertices at
distance at most L one from each other, with L sufficiently large. In this setting, the IIC can be
defined as the limit in distribution of the cluster of the origin, conditioned on being connected to
x, as we let x tend to infinity. The existence of this limit has been shown in [26, 34, 36]. Note that
the IIC has also been defined in dimension two by Kesten [43] (see also [41]), but this case falls in
another regime, which we shall not consider here.

For φ : Zd → [0,∞), we let ∥φ∥1 =
∑

x∈Zd φ(x) ∈ [0,∞].

Theorem 1.3. Let C∞ be the IIC of Bernoulli percolation on Zd, either with d > 6 and sufficiently
spread-out lattice, or d > 10 in the nearest neighbor model. There exist positive constants C and
κ, such that for any φ : Zd → [0,∞), satisfying ∥gd−4 ∗ φ∥∞ ≤ 1,

(1.2) E

[
exp

(
κ ·

∑
x∈C∞

φ(x)

)]
≤ 1 + C ∥φ∥1.

Furthermore, if d ≥ 9 and C̃∞ denotes an independent copy of C∞, then

(1.3) E
[
exp

(
κ · |C∞ ∩ C̃∞|1−

4
d

)]
<∞.

We note that in the sufficiently spread-out model with d ∈ {7, 8} the intersection of two inde-
pendent IIC has infinite volume almost surely. Indeed, this can be shown using a second moment
method and the estimates on the two-point function from [36, Theorem 1.3].

1.2. Some applications. We present now some other immediate applications of Theorem 1.2,
concerning the geometry of a typical cluster.

First recall that for critical Bernoulli percolation on a Euclidean lattice, it is widely believed that
the tail distribution of |C0| should decay as

P(|C0| ≥ n) ≈ n−1/δ+o(1),

where δ is supposed to be universal, see [28, Ch. 9]. It has been shown by Aizenman and Barsky [1]
that if it exists, δ must be at least 2, and it is also known that δ = 2 on high dimensional hypercubic
lattices, see [26] and references therein, or more generally under the triangle condition, see [2, 14, 38]
and [40] for an application to long-range percolation. The next result shows that if one considers
now the size of the cluster in a localized region, then the tail distribution is stretched exponential.
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This fact was already known for critical clusters restricted to balls, by [2], but we can now extend
it to arbitrary finite sets.

Given a function g : V × V → R, y ∈ V , and A ⊂ V , we define g(y,A) =
∑

z∈A g(y, z).

Corollary 1.4. Assume that G satisfies the BK inequality and (Hα), for some α ∈ (d/2, d). There
exists c > 0, such that for any x ∈ V , any finite A ⊂ V , and any t > 0,

P(|C(x) ∩A| > t) ≤ 2 · exp
(
− c · t

supy∈V g2α−d(y,A)

)
≤ 2 · exp

(
− c2 · t

|A|2(1−
α
d
)

)
.

Proof. Let us start with the first inequality. Let φ(y) = 1{y∈A}
supz∈V g2α−d(z,A) . Note that it satisfies

∥g2α−d ∗ φ∥∞ ≤ 1, and that

P(|C(x) ∩A| > t) ≤ P
( ∑

y∈C(x)

φ(y) >
t

supz∈V g2α−d(z,A)

)
.

It then suffices to apply Theorem 1.2, and Chebyshev’s exponential inequality. The second inequal-
ity follows from a simple rearrangement and the hypothesis of polynomial volume growth. □

Now we mention another application involving the notion of β-capacity, which plays a central
role in the proof of Theorem 1.1. For β ∈ (0, d), the β-capacity of a finite set A ⊂ V , is defined by

Capβ(A) =

inf
ν

∑
x,y∈A

gβ(x, y)ν(x)ν(y)

−1 ,
where the infimum runs over probability measures ν supported on A. It is well known (but for
reader’s convenience we provide a full proof in the Appendix) that this functional is equivalent to
the following one:

C̃apβ(A) = sup

{∑
x∈A

φ(x) : φ : V → [0,∞), ∥gβ ∗ φ∥∞ ≤ 1, φ ≡ 0 on V \A

}
,

in the sense that there are positive constants c and c′ such that for any finite A ⊂ V ,

(1.4) c · C̃apβ(A) ≤ Capβ(A) ≤ c′ · C̃apβ(A).

Corollary 1.5. Assume that G satisfies the BK inequality and (Hα), for some α ∈ (d/2, d). There
exists a constant κ > 0, such that for any x ∈ V , and any finite A ⊂ V ,

P(A ⊆ C(x)) ≤ 2 · exp
(
−κ · Cap2α−d(A)

)
.

Furthermore, the same inequality holds for the IIC on Zd, instead of C(x), with α = d − 2, when
either d ≥ 11 for the nearest neighbor model, or d > 6 in the sufficiently spread out model.

Proof. Let φ be a function realizing the maximum in the definition of C̃ap2α−d(A), and note that

P(A ⊆ C(x)) ≤ P
( ∑

y∈C(x)

φ(y) ≥
∑
y∈A

φ(y)
)
.

Then the result follows from Chebyshev’exponential inequality, Theorem 1.2, and (1.4). The proof
for the IIC is exactly the same. □
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1.3. Extension to an arbitrary finite number of clusters. One natural question one can ask
concerns the extension of our main result to the intersection of more than two clusters. It turns
out that this is a quite delicate question. Our result is as follows.

Theorem 1.6. Assume that G satisfies the BK inequality and (Hα), for some α ∈ (d/2, d). Let
(Ci0)i≥1 be independent copies of the connected component of 0 in G.

(i) If α ∈ ( (k+1)d
2k , kd

2(k−1)), for some k ≥ 2, then there exists κ > 0, such that

E
[
exp

(
κ · |C10 ∩ · · · ∩ Ck0 |

2α
d
−1
)]

<∞.

(ii) If α = kd
2(k−1) , for some k ≥ 3, then there exists κ > 0, such that for any t > e,

P(|C10 ∩ · · · ∩ Ck0 | > t) ≤ exp
(
− κ( t

log t
)
2α
d
−1
)
.

Note that if α > 3d/4 (which corresponds to Part (i) with k = 2) then the result is exactly the
same as Theorem 1.1. As for Part (ii), we believe that the logarithm appearing in our upper bound
should not be there.

The main new ingredient in the proof is a general upper bound on the n-point function, which
refines the tree-graph inequality of Aizenman and Newman [2].

The tree-graph inequality expresses the probability that n given points x1, . . . , xn are all in the
percolation cluster of another point z as a double sum. The first sum is about a finite number of
binary trees with n leaves marked with x1, . . . , xn and the root marked with z, whereas the second
sum runs over the n − 2 marks of the internal nodes different from the root, each mark running
over Zd. Now, the object we sum is a product of Green’s functions evaluated at the differences
of marks over edges of the tree. When dealing with the n-th power of the intersection of say k
independent clusters containing a fixed point z, we sum over x1, . . . , xn the k-th power of the n-
point function. In order to transfer the k-th power over Green’s functions, Jensen’s inequality is
powerful but cannot afford an infinite sum over internal nodes’ marks. In our approach, we rule
out this problem by expressing the n-point function as a single finite sum over a family of trees
which we describe explicitly.

To be more precise now, we show that there exists a constant C > 0, such that for any
x1, . . . , xn, z ∈ V , one has with x = (x1, . . . , xn),

(1.5) P(x1, . . . , xn ∈ C(z)) ≤ Cn ·
∑
t∈Tn

Gα(t, x) · gα(xt, z),

where Tn is a certain set of finite plane trees with n marked and labelled vertices; xt ∈ {x1, . . . , xn}
is the point associated to the first labelled vertex of t in the lexicographical (or depth-first search)
order, and Gα(·, ·) is some function, which is equal to the product over the edges {i, j} of an
auxiliary tree associated to t with vertex set {1, . . . , n}, of terms of the form g2α−d(xi, xj); see
Section 7 and Proposition 7.1 for more precise definition and statement.

We stress that the trees involved in Tn are not necessarily binary, in particular our proof follows
a slightly different approach from the one in [2], which in particular has the advantage of being
also well suited to the setting of Branching random walks, as we shall see later.

Finally let us mention that a similar result as Theorem 1.6 could be proved as well for the inter-
section of independent IIC. Since the argument is entirely analogous to the proof of Theorem 1.3,
we refrain from adding more details here.

6



1.4. Intersection of clusters of different types. Our techniques allow to consider as well the
intersection of two clusters of different types. For instance, we can show the following result.

Theorem 1.7. Let G and G̃ two random graphs on the same metric space (V, dV ), satisfying both
the BK inequality, and respectively (Hα) and (Hβ), for some α, β ∈ (d2 , d), with α ≤ β, and

2α + 2β > 3d. Let C0 and C̃0 the clusters of the origin in G and G̃ respectively. There exsits a
constant κ > 0, such that

(1.6) E
[
exp

(
κ · |C0 ∩ C̃0|γ

)]
<∞, with γ =

2α− d
d+ 2α− 2β

.

The proof uses the same arguments as for Theorem 1.1 (i). Some more details will be given in
Remark 5.6. A heuristic explanation of the exponent γ is as follows. If one assumes that the upper
bound given by Corollary 1.4 is sharp, then for each cluster, the probability to cover at least t points
of a ball B(0, r) would decay as exp(−t/r2d−2α), when it satisfies (Hα). Therefore, if the cluster
satisfying (Hα) spends a time t1 there, and the cluster satisfying (Hβ) a time t2, the two costs are

balanced if t1 r
2α = t2 r

2β. Furthermore, using independence between the two clusters, and making
the usual approximation that the points of each cluster are uniformly spread in the ball, the overlap
between the two clusters would then be of order t1t2/r

d, and thus we want t1t2/r
d = t. Given this,

the cost is minimized if t1/r
d is maximized, i.e. of order 1, which yields a cost exp(−tγ), with γ as

above.

Note that this heuristic suggests that if one considers more than two clusters, say k ≥ 3 clusters
satisfying (Hα) with parameters respectively α1 ≥ · · · ≥ αk, then in case when 2(α1 + α2) > 3d,
the cost should be of the same order as if we would just ask for the two first clusters (associated to
α1 and α2) to share more than t common points, because once the second cluster realizes a density
of order 1 in a ball B(0, r), the cost for the other clusters to also cover a fraction of order 1 of this
ball is smaller, and this just makes the total intersection of all clusters decay by a constant factor.
On the other hand when 2(α1 + α2) ≤ 3d, we expect a different scenario. Assuming that for some
3 ≤ i ≤ k (necessarily unique), one has 2(α1 + · · · + αi) > (i + 1)d and 2(α1 + · · · + αi−1) ≤ id,

we expect a cost of order exp(−tγi), with γi = 2αi−d
d+2(i−1)αi−2(α1+···+αi−1)

. However, except for some

cases (e.g. when all αi’s are equal), proving this result in full generality seems to require new ideas.

1.5. Intersection of Simple Random Walk (SRW) ranges. As a warmup before we inves-
tigate the more difficult case of BRW, let us consider the intersection of SRW ranges. Recall the
famous result of Erdös and Taylor [25], which asserts that if (Ri

∞)i≥1, are independent SRW ranges,
then

|R1
∞ ∩R2

∞| =∞ a.s. ⇐⇒ d ≤ 4.

|R1
∞ ∩R2

∞ ∩R3
∞| =∞ a.s. ⇐⇒ d ≤ 3.

|R1
∞ ∩R2

∞ ∩R3
∞ ∩R4

∞| =∞ a.s. ⇐⇒ d ≤ 2.

While these results can be proved using an elementary second moment method, it is a much more
difficult task to estimate the tail distribution of the intersection of these ranges (in case they are
a.s. finite). Here we provide the following answer to this question.

Theorem 1.8. Let Rk
∞, k ≥ 1, be independent SRW ranges on Zd.

(i) If d ≥ 5, then for any k ≥ 2, there exist positive constants c1, c2, such that for any t > 1,

exp(−c1 t1−
2
d ) ≤ P(|R1

∞ ∩ · · · ∩Rk
∞| > t) ≤ exp(−c2 t1−

2
d ).

(ii) If d = 4, then for any k ≥ 3, there exist positive constants c1, c2, such that for any t > e,

exp(−c1
√
t) ≤ P(|R1

∞ ∩ · · · ∩Rk
∞| > t) ≤ exp

(
− c2 (

t

log t
)1/2

)
.
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(iii) If d = 3, then for any k ≥ 4, there exist positive constants c1, c2, such that for any t > e,

exp(−c1 t1/3) ≤ P(|R1
∞ ∩ · · · ∩Rk

∞| > t) ≤ exp(−c2 (
t

log t
)1/3).

We note that prior to this result and until recently, not much was known, apart from the lower
bounds which are somewhat standard estimates. Concerning the upper bounds, a weaker version
of Part (i) was first proved in [44], with the exponent 1−2/d replaced by 1−2/d−ε, for arbitrarily
small ε > 0 (with the constant c2 depending on ε). It has remained an open problem for about thirty
years to remove the factor ε from this estimate and identify the right constant in the exponential,
until it could be solved in [7, 15].

1.6. Intersection of BRW ranges. We now discuss the more delicate case of critical Branching
random walks on Zd, starting with some definition.

Fix a probability measure µ with mean one, such that µ(1) < 1, and
∑

k≥0 e
ckµ(k) < ∞, for

some c > 0. Denote by Tc the Bienaymé-Galton-Watson (BGW) tree with offspring distribution
µ, and consider the associated BRW, which we view here as the random walk (Sv)v∈Tc , indexed
by Tc. For simplicity we will assume that the jumps of the walks are distributed according to
the uniform measure on the neighbors of the origin, but straightforward adaptations of our proofs
would work as well for centred and finitely supported measures. We also denote by T∞ either the
infinite invariant BGW tree, see e.g. [10] for a definition, or alternatively the BGW tree conditioned
to be infinite, also called Kesten’s tree, see [42]. These two trees are made of a spine, which is a
copy of N, to which are attached independent critical BGW trees at each vertex of the spine (more
precisely the offspring distribution of vertices on the spine differs from the one of other vertices,
but this is irrelevant in all our proofs). Then we denote by Rc and R∞ the ranges of respectively
a critical BRW and a random walk indexed by T∞, all starting from the origin.

Now consider (Ri
∞)i≥1 a sequence of independent random variables distributed as R∞, on Zd,

with d ≥ 5. Similarly as for the SRW, a second moment method yields

|R1
∞ ∩ · · · ∩ Rk

∞| <∞ a.s. ⇐⇒ k >
d

d− 4
.

Our main result reads as follows.

Theorem 1.9. Let (Ri
c)i≥1 and (Ri

∞)i≥1, be independent copies of Rc and R∞ respectively, on
Zd, with d ≥ 5.

(i) If d = 7 or d ≥ 9, then for any k > d
d−4 , there exist positive constants c1, c2, such that for

any t > 1,

exp(−c1 · t1−
4
d ) ≤ P(|R1

c ∩ · · · ∩ Rk
c | > t) ≤ P(|R1

∞ ∩ · · · ∩ Rk
∞| > t) ≤ exp(−c2 · t1−

4
d ).

(ii) If d ∈ {5, 6, 8}, then for any k > d
d−4 , there exist positive constants c1, c2, such that for any

t > e,

exp(−c1 · t1−
4
d ) ≤ P(|R1

c ∩ · · · ∩ Rk
c | > t) ≤ P(|R1

∞ ∩ · · · ∩ Rk
∞| > t) ≤ exp

(
− c2 · (

t

log t
)1−

4
d

)
.

We note that in dimension d ≥ 9 the upper bound for general k ≥ 2 follows from the upper
bound for k = 2, which can be done by following a similar argument as in [7], using the exponential
moment bound already proved in [10]. In lower dimension we follow the same strategy as for the
proofs of Theorems 1.6 and 1.8. In particular this requires us to prove an upper bound on the joint
moments of the local times, which is similar to (1.5), and might also be more tractable in practice
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than the exact diagrammatic expansion proved in [4]. More precisely, it takes the following form:
for x ∈ Zd, denote by

(1.7) ℓc(x) =
∑
v∈Tc

1{Sv = x}, and ℓ∞(x) =
∑
v∈T∞

1{Sv = x},

the local times at x respectively for a critical BRW and a random walk indexed by T∞. Then there
exists a constant C > 0, such that for any x1, . . . , xn, z ∈ Zd, (possibly with repetition), one has
with x = (x1, . . . , xn),

Ez

[ n∏
i=1

ℓc(xi)
]
≤ Cn

∑
t∈Tn

Gd−2(t, x) · gd−2(xt, z),

where Tn, xt, and Gd−2 are defined exactly as in the setting of percolation clusters, and

Ez

[ n∏
i=1

ℓ∞(xi)
]
≤ Cn

∑
t∈Tn

G̃(t, x, z),

with G̃ some appropriate modification of the function Gd−2, see Proposition 8.1 and the definitions
preceding it for a more precise statement.

Concerning the lower bounds, we show that the required intersection can be done, at the right
cost, in a ball with radius of order t1/d, centered at the origin, on which all the BRWs spend a time
of order the volume of the ball. The idea for proving this is to use the notion of waves, which were
introduced in [9]. Roughly speaking waves for a branching random walk play the role of excursions

for a simple random walk. We show that during each wave, between B(0, t1/d) and B(0, 2t1/d)c,

the typical number of new sites visited is of order t4/d. Thus one needs order t1−4/d waves, and we
show that the cost for this is exponentially small in the number of waves.

To conclude, note that the question of the tail distribution of the intersection of two or more
critical ranges makes sense in any dimension d ≥ 1. In this direction one can show the following.

Theorem 1.10. One has

P(|Rc ∩ R̃c| > t) ≍


t−4/d if d ∈ {1, 2, 3}
t−1 · (log t)−2 if d = 4

t−
4

8−d if d ∈ {5, 6, 7}.

Furthermore, if d = 8, there exist positive constants c1 and c2, such that for any t > 1,

(1.8) exp(−c1
√
t) ≤ P(|Rc ∩ R̃c| > t) ≤ exp

(
− c2 · t1/3

)
.

Here f ≍ g means that f/g is bounded from above and below by positive constants. Similar
bounds could be shown for the intersection of more than two clusters. In dimensions d ≤ 7 the
result follows from a soft second moment argument and known bounds on hitting probabilities.
In dimension eight, which is critical for this model (see also [12] for the related question of non-
intersection of two Branching random walks, where dimension eight is as well critical), we provide
two proofs for the upper bound, a first one based on our new bounds on the moments of local times,
and another more sophisticated one using similar ideas as for the proof of Theorems 1.1 and 1.9.
Interestingly the two arguments lead to the same exponent 1/3. Nevertheless, it is still unclear for
us, whether this gives the right order of decay.

We note that one could also show using the same proof as for BRWs that on Z8, if the lattice
is sufficiently spread-out, the same upper bound as in (1.8) holds for the tail distribution of the
intersection of two independent critical percolation clusters. Likewise, thanks to the computation
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of the one-arm exponent in [46], one could show that on Z7, the tail distribution decays as t−4

(here both the upper and lower bounds can be proved).

1.7. Intersection of mixtures of SRW and BRW ranges. Similarly as for (1.6), we can also
treat the intersection of one SRW and one critical BRW ranges in any dimension d > 6. Moreover,
by combining this with our results from the last two sections we deduce the following.

Theorem 1.11. Let (Rk
∞)k≥1, and (Rk

c )k≥1, be respectively SRW and critical BRW ranges on Zd.

(i) If d ≥ 5, then for any i ≥ 2, and any j ≥ 1, there exist positive constants c1, c2, such that
for any t > 1,

exp(−c1 t1−
2
d ) ≤ P(|R1

∞ ∩ · · · ∩Ri
∞ ∩R1

c ∩ · · · ∩ Rj
c| > t) ≤ exp(−c2 t1−

2
d ).

(ii) If d ≥ 7, then for any k ≥ 1, there exist positive constants c1, c2, such that for any t > 1,

exp(−c1 t1−
2

d−2 ) ≤ P(|R1
∞ ∩R1

c ∩ · · · ∩ Rk
c | > t) ≤ exp(−c2 t1−

2
d−2 ).

The upper bound in Part (i) is a direct consequence of Theorem 1.8, while for the upper bound
in (ii), it suffices to treat the case of one SRW and one BRW ranges, for which the proof is entirely
similar to the one for (1.6). Likewise, the lower bounds can be obtained similarly as those in
Theorems 1.8 and 1.9.

The only missing case, which we cannot treat with our present techniques, is the intersection of
one SRW and two (or more) critical BRWs in dimension 6. Note that the dimension five falls in
another regime, in particular in this case |R1

∞ ∩R1
∞ ∩R2

∞| is almost surely infinite.

On the other hand, our techniques provide additional information on the occupation density of
the walks in the region where the intersection takes place. To illustrate the type of results that one
can show, let us focus here only on the case where one SRW intersects one BRW. For t > 0, r ≥ 1
and ρ > 0, let

(1.9) Rt(r, ρ) =
{
z ∈ R∞ : |B(z, r) ∩R∞| > ρrd

}
∩B

(
0, exp(t

d−4
d−2 )

)
.

Theorem 1.12. Assume d ≥ 7. There exists β > 1, such that the two following claims hold.

(i) There exist positive constants ρ and a < b, such that

lim
t→∞

P
(
at

d
d−2 ≤ |Rβt(βt

1
d−2 , ρ)| ≤ bt

d
d−2

∣∣ |R∞ ∩R∞| > t
)
= 1.

(ii) For any ε > 0, there exists ρ > 0, such that

lim
t→∞

P
(
|R∞ ∩Rβt(βt

1
d−2 , ρ)| ≥ (1− ε)t

∣∣ |R∞ ∩R∞| > t
)
= 1.

In short, the result says that as t→∞, conditionally on having an intersection larger than t, a
fraction arbitrarily close to one of the intersection takes place in a region of volume of order td/(d−2),
where the BRW realizes an occupation density of order one, at scale t1/(d−2). This supports the
idea that the trace of the BRW should look like a kind of Swiss cheese – a picture which emerges
for instance as two SRW intersect more than usual (see [15]) – filling a positive fraction of a ball

of radius t1/(d−2), where on the other hand the SRW only realizes an occupation density of order
t−2/(d−2).

Plan of the paper. In Section 2.1 we recall the definition of the BK inequality, and prove some
basic results involving the functions gα. In Section 3, we state some elementary facts about β-
capacities. The proofs are given partly in this section, partly in the appendix. Then in Sections 4
and 5 we prove our two main results concerning the intersection of two independent random clusters,
namely Theorems 1.2 and 1.1 respectively. In Section 6 we prove Theorem 1.3 about the extension
to the incipient infinite cluster. Section 7 is dedicated to the proof of Theorem 1.6 concerning the
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extension to an arbitrary finite number of clusters. Finally in Section 8 we prove Theorems 1.8, 1.9
and 1.11 about Simple random walks and Branching random walks, Section 9 deals with the proof
of Theorem 1.10 about intersections in low dimension, and in Section 10 we prove the remaining
Theorem 1.12 describing the typical scenario under the intersection event.

Acknowledgments. We thank Perla Sousi for enlightening discussions at an early stage of this
project, and for pointing at reference [45]. We also thank Alexis Prevost for mentioning [18, 19, 53]
to us. The authors acknowledge support from the grant ANR-22-CE40-0012 (project Local).

2. Preliminaries

2.1. The BK inequality. Here we recall a definition of the BK inequality, which is a standard
tool in independent percolation, but which can be defined more generally for a random graph. First
an event E is said to be increasing if whenever {C = A} ⊆ E, with A some fixed graph (with vertex
set V ), then it also holds {C = B} ⊆ E, for each B containing A as a subgraph. We say that a
finite graph A witnesses E, if {A ⊆ C} ⊆ E. Given two increasing events E and F , we say that they
hold disjointly, and denote the corresponding event as E ◦F , if there exists two finite subgraphs of
C with disjoint edge sets, that witness these two events. Note that this is also an increasing event,
so that one can define inductively E1 ◦ E2 ◦ · · · ◦ En, for increasing events E1, . . . , En.

Definition 2.1 (BK inequality). The random graph G is said to satisfy the BK inequality, if for
any increasing events E and F , one has

P(E ◦ F ) ≤ P(E) · P(F ).

2.2. Some Green’s function computation. We prove here some basic results involving Green’s
functions gα that we shall need later.

Lemma 2.2. Assume α ∈ (d/2, d). There exists a constant C > 0, such that for any L ≥ 2, any
x1, . . . , xL, z ∈ V , one has∑

y∈V
gα(z, y)

L∏
ℓ=1

gα(y, xℓ) ≤ CL ·
∑
σ∈SL

gα(xσ(1), z)
L−1∏
ℓ=1

g2α−d(xσ(ℓ), xσ(ℓ+1)).

Proof. We prove the result by induction on L. For L = 2, the result is well known, and follows
from elementary computation. Assume now that it has been proved for some L, and let us prove
it for L+ 1. Let x1, . . . , xL+1, z ∈ V be given, and define

r = min
j=1,...,n

dV (xj , z).

We first bound the sum over y /∈ B(z, r/2). Let i be such that dV (xi, z) = r. We shall use the
induction hypothesis, together with the fact that for y /∈ B(z, r/2), one has gα(z, y) ≤ 2α gα(z, xi).
This yields, with Si

L, the set of bijections from {2, . . . , L+ 1} to {1, . . . , L+ 1} \ {i},∑
y/∈B(z,r/2)

gα(z, y)
L∏

ℓ=1

gα(y, xℓ) ≤ 2α gα(z, xi)
∑
y∈V

L∏
ℓ=1

gα(y, xℓ)

≤ 2αCL · gα(z, xi)
∑
σ∈Si

L

gα(xσ(2), xi)
L∏

ℓ=2

g2α−d(xσ(ℓ), xσ(ℓ+1))

≤ CL+1
∑
σ∈Si

L

gα(xσi(1), z)

L∏
ℓ=1

g2α−d(xσi(ℓ), xσi(ℓ+1)),(2.1)
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denoting for any σ ∈ Si
L, by σi the permutation of SL+1 sending 1 to i, and coinciding with σ on

{2, . . . , L+ 1}, and choosing a constant C > 2α.
Now it remains to bound the sum over y ∈ B(z, r/2). Let σ ∈ SL+1, be such that

dV (z, xσ(1)) ≤ dV (z, xσ(2)) ≤ · · · ≤ dV (z, xσ(L+1)).

It is immediate to see (e.g. by induction on L) that one has

∑
y∈B(z,r/2)

gα(z, y)
L∏

ℓ=1

gα(y, xℓ) ≤ CL+1 · g2α−d(xσ(1), z)
L∏

ℓ=1

gα(xσ(ℓ), xσ(ℓ+1))

≤ CL+1 · gα(xσ(1), z)
L∏

ℓ=1

g2α−d(xσ(ℓ), xσ(ℓ+1)).(2.2)

Then combining (2.1) and (2.2) concludes the proof of the lemma. □

For the next two results we specify the setting to the case where the ambient space is Zd, since
we shall only use it in this case.

Lemma 2.3. Assume d ≥ 5. There exists a constant C > 0, such that for any z, x1, x2 ∈ Zd,∑
y∈Zd

gd−2(z, y) gd−2(x1, y) gd−4(x2, y) ≤ C · gd−4(x1, x2) ·
(
gd−4(x1, z) + gd−4(x2, z)

)
.

Proof. Using translation invariance, one may always assume that x2 = 0. Now assume first that
∥x1∥ ≤ ∥z∥. Then note that∑

y∈B(0,∥x1∥/2)c
gd−2(z, y) gd−2(x1, y) gd−4(0, y)

≤ Cgd−4(0, x1)
∑
y∈Zd

gd−2(z, y) gd−2(x1, y) ≤ Cgd−4(0, x1)gd−4(z, x1).

On the other hand, ∑
y∈B(0,∥x1∥/2)

gd−2(z, y) gd−2(x1, y) gd−4(0, y)

≤ Cgd−2(z, 0)gd−2(x1, 0) · ∥x1∥4 ≤ Cgd−4(x1, z)gd−4(0, x1),

which proves the result in the case ∥x1∥ ≤ ∥z∥. A similar argument may be used in the other case
∥z∥ ≤ ∥x1∥, concluding the proof of the lemma. □

Our next result is a direct consequence of this lemma. To state it we need some additional
notation. Define inductively Tn a set of rooted trees with n vertices labelled in {1, . . . , n}, n ≥ 1,
as follows. Let T1 be the unique rooted tree with one vertex labelled 1. Then, given any t ∈ Tn,
we associate two trees in Tn+1 by first adding an edge between a new vertex with label n + 1 to
the root of t, and either rerooting the tree at this new vertex, or keeping the same root as in t. In
particular Tn has 2n−1 elements. Then define the function fn on Tn × (Zd)n, by

fn(t, x1, . . . , xn) =
∏

(i,j)∈E(t)

gd−4(xi, xj),

where E(t) denotes the edge set of t.
12



Proposition 2.4. Assume d ≥ 5. There exists a constant C > 0, such that for any L ≥ 1, any
z, x1, . . . , xL ∈ Zd,∑

y1,...,yL∈Zd

gd−2(z, y1) ·
( L−1∏
ℓ=1

gd−2(yℓ, yℓ+1)
)
·
( L∏
ℓ=1

gd−2(xℓ, yℓ)
)
≤ CL

∑
t∈TL+1

fL+1(t, xL, . . . , x1, z).

Proof. We first observe that for any yL−1 ∈ Zd,∑
yL∈Zd

gd−2(yL−1, yL)gd−2(xL, yL) ≤ Cgd−4(yL−1, xL),

which already proves the result when L = 1. The general case L ≥ 1 follows by induction, using
Lemma 2.3. □

3. Basic facts about discrete Bessel-Riesz capacities

In this section we present basic facts about β-capacities, also called Bessel-Riesz capacities in [45].
We do not claim originality of the results, but since some of them might be difficult to find in the
literature, we provide either precise references or in most cases full proofs, which we either include
in this section when they are short, or defer to the Appendix for longer ones.

We fix in the whole section β ∈ (0, d). We start with the following important result.

Lemma 3.1. For any finite sets A,B ⊂ V , one has the subadditivity property,

Capβ(A ∪B) ≤ Capβ(A) + Capβ(B).

Furthermore Capβ is monotone for the inclusion of sets.

Proof. The monotonicity follows immediately from the definition, and a proof of the subadditivity
property can be found in [11]. □

The next result provides the order of growth of the capacity of balls.

Lemma 3.2. There exist positive constants c and c′, such that for any x ∈ V and r ≥ 1,

c · rβ ≤ Capβ(B(x, r)) ≤ c′ · rβ.

Proof. For the upper bound, it suffices to notice that for any y, z ∈ B(x, r), one has gβ(y, z) ≥
1/(1 + (2r)β). Then we deduce immediately from the definition that Capβ(B(x, r)) ≤ 1 + (2r)β.

As for the lower bound, let φ(y) = 1{y∈B(x,r)}
supz gβ(z,B(x,r)) . By definition one has

C̃apβ(B(x, r)) ≥
∑

y∈B(x,r)

φ(y) ≥ c0 ·
rd

supz gβ(z,B(x, r))
≥ c · rβ,

for some positive constants c0 and c. The proof of the lower bound then follows from (1.4). □

The lower bound in the previous result can be generalized as follows.

Lemma 3.3. There exists c > 0, such that for any finite A ⊂ V ,

Capβ(A) ≥ c · |A|β/d.

Proof. Consider φ the function which is zero outside A, and constant on A equal to 1
supx∈A gβ(x,A) .

A simple rearrangement inequality shows that supx∈A gβ(x,A) ≤ C · |A|1−β/d, for some constant
C > 0, which concludes the proof, using (1.4). □
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For the next result, whose proof will be given in the appendix, it is convenient to introduce the
following notation. For A ⊂ V , and r > 0, we write

(3.1) B(A, r) = ∪x∈AB(x, r).

Also, a set A ⊂ V is said to be s-well separated, if dV (x, y) ≥ s, for all x ̸= y ∈ A.

Lemma 3.4. There exists a constant c > 0, such that for any r ≥ 1, and any 2r-well separated
finite set A ⊂ V , one can find U ⊆ A, such that

Capβ
(
B(U, r)

)
≥ c|U | · rβ, and Capβ

(
B(U, r)

)
≥ c · Capβ

(
B(A, r)

)
.

4. Proof of Theorem 1.2

We follow a similar approach as in the proof of Theorem 1.5 in [10], we integrate the occupation
field of an open cluster against a test function φ, in order to optimize and unravel a rate function
which turns out to be a capacity.

More precisely, we aim to show, that there exists a constant C > 0, such that for any n ≥ 1, and
any x ∈ V ,

(4.1) E

 ∑
y∈C(x)

φ(y)

n ≤ Cn−1 · (1 ∨ (n− 2))! · gα ∗ φ(x).

Note first that it would prove the theorem, by summation over n. Observe now that (4.1) imme-
diately follows from (Hα) for n = 1, and also that for some constant C0 > 0,

(4.2) E

 ∑
y∈C(x)

φ(y)

 =
∑
y∈V

τ(x, y)φ(y) = τ ∗ φ(x) ≤ C0 · gα ∗ φ(x) ≤ C0,

where the last equality follows from the hypothesis ∥g2α−d ∗φ∥∞ ≤ 1, and the fact that gα ≤ g2α−d.
We now prove the induction step. Assume that (4.1) holds for some n− 1 ≥ 1, and let us prove it
for n. Expanding the n-th moment, we get that

E

 ∑
y∈C(x)

φ(y)

n =
∑

y1,...,yn∈V
P
(
y1, . . . , yn ∈ C(x)

)
·

n∏
i=1

φ(yi).

On the event {y1, . . . , yn ∈ C(x)} we distinguish two cases. Either there exists i ∈ {1, . . . , n},
such that all the points y1, . . . , yn, can be connected to yi disjointly from a self-avoiding open path
connecting x to yi; or there must exist a vertex y ∈ C(x) (possibly x), and a partition of the
points y1, . . . , yn into at least 2 nonempty subsets, which are connected disjointly to y, and also
disjointly from a path going from x to y. In both cases denote by M(x; y1, . . . , yn) this vertex y
which disconnects x from the other vertices (if there are several choices, one may choose one at
random). Concerning the first case, one has using BK inequality,

P(y1, . . . , yn ∈ C(x),M(x; y1, . . . , yn) ∈ {y1, . . . , yn}) ≤
n∑

i=1

P
(
{x←→ yi} ◦ {yj ←→ yi, ∀j ̸= i}

)
≤

n∑
i=1

τ(x, yi) · P(yj ←→ yi,∀j ̸= i),
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and thus by the induction hypothesis,∑
y1,...,yn∈V

P
(
y1, . . . , yn ∈ C(x),M(x; y1, . . . , yn) ∈ {y1, . . . , yn}

)
·

n∏
i=1

φ(yi)

≤ n ·
∑
y∈V

τ(x, y)φ(y) · E

 ∑
z∈C(y)

φ(z)

n−1
≤ 3Cn−2 · (n− 2)! · gα ∗ φ(x),(4.3)

using for the last inequality that n(1∨ (n− 3))! ≤ 3(n− 2)!, for all n ≥ 2. Consider now the second
case, when M(x; y1, . . . , yn) /∈ {y1, . . . , yn}. A union bound gives

P(y1, . . . , yn ∈ C(x),M(x; y1, . . . , yn) /∈ {y1, . . . , yn})

≤
n∑

L=2

∑
y∈V

∑
∪Li=1Ii={1,...,n}

P ({y ←→ x} ◦ {yj ∈ C(y),∀j ∈ I1} ◦ · · · ◦ {yj ∈ C(y), ∀j ∈ IL}) ,

where the second sum runs over disjoint subsets I1, . . . , IL, whose union is {1, . . . , n}. We thus
obtain using BK inequality at the first line, and the induction hypothesis together with (4.2) for
the last inequality,∑

y1,...,yn∈V
P
(
y1, . . . , yn ∈ C(x),M(x; y1, . . . , yn) /∈ {y1, . . . , yn}

)
·

n∏
i=1

φ(yi)

≤
∑
y∈V

τ(x, y)

n∑
L=2

∑
n1,...,nL∑

i ni=n
ni≥1, ∀i

n!

n1! . . . nL!

L∏
i=1

E

 ∑
z∈C(y)

φ(z)

ni


≤ n! ·
∑
y∈V

τ(x, y)

n∑
L=2

Cn−LCL−2
0

∑
n1,...,nL∑

i ni=n
ni≥1, ∀i

L∏
i=1

1

ni(ni − 1)
· (gα ∗ φ(y))2,(4.4)

with the convention that 1
ni(ni−1) = 1, when ni = 1. Now it was observed in [10] that there exists

a constant c > 0, such that for any n ≥ 2 and L ≥ 2,

(4.5)
∑

n1,...,nL∑
i ni=n

ni≥1, ∀i

L∏
i=1

1

ni(ni − 1)
≤ cL−1

n2
.

Furthermore, using (Hα) and (1.1) together with the fact that ∥g2α−d ∗ φ∥∞ ≤ 1, we get

(4.6)
∑
y∈V

τ(x, y) · (gα ∗ φ(y))2 ≤ c′ · gα ∗ φ(x),

for some constant c′ > 0. Inserting (4.5) and (4.6) in (4.4) and using also (4.3) yields

E

 ∑
y∈C(x)

φ(y)

n ≤ Cn−2 · (n− 2)! ·
(
3 +

∑
L≥2

(cC0)
L−1c′

CL−2

)
· gα ∗ φ(x),

proving well the induction step, provided C is taken large enough. □
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5. Proof of Theorem 1.1

We present here a proof of Theorem 1.1. The approach we developed for studying the intersection
of the ranges of two independent random walks in [7] relies on viewing the excess deviation problem
as a problem of random walk in random environment, where the walk and the environment are
decoupled and the environment is played by the occupation field of one walk. Namely, we decompose
the occupation field of one of the range, or cluster here, intersected with a large ball, say B(0, R),
into (random) regions where on a given space-scale r, the occupation density exceeds some value
ρ. Using features of an appropriate capacity, upper bounds on the volume of such random regions
can be established for all couples (r, ρ) satisfying some constraint that also depends on R, see (5.1)
below. Then dealing with the intersection of two independent clusters, after we slice the occupation
field according to the occupation density of one of them, we transform the problem into estimating
the chance the other cluster occupies a random region of prescribed volume and density, more
than its typical value. Thus, through this approach, we reduce the problem into understanding the
covering property of a single process.

Before we enter in the core of the argument, we shall need a number of preparatory lemmas,
which we gather in Subsection 5.1. Then we conclude the proof in Subsection 5.2.

5.1. Preliminaries. Recall the notation from (3.1), and the definition following it.

Proposition 5.1. Assume that (Hα) holds, for some α ∈ (d/2, d). There exists a constant κ > 0,
such that for any r ≥ 1, any ρ > 0, and any 2r-well separated finite set A ⊂ V , one has

P
(
|C0 ∩B(x, r)| ≥ ρrd, for all x ∈ A

)
≤ exp

(
− κρ · Cap2α−d

(
B(A, r)

))
.

Proof. Consider a function φ which realizes the maximum in the definition of C̃ap2α−d
(
B(A, r)

)
.

Define φ̃ a function which is constant on each ball B(x, r), with x ∈ A, zero outside these balls, and
such that for any x ∈ A, and y ∈ B(x, r), φ̃(y) = 1

rd

∑
z∈B(x,r) φ(z). Notice that for some constant

c > 0, one has ∥g2α−d ∗ φ̃∥∞ ≤ c. Indeed, given any z ∈ V , one has for some constant C > 0,∑
x∈A:d(x,z)≥2r

∑
y∈B(x,r)

g2α−d(z, y)φ̃(y) ≤ C
∑

x∈A:d(x,z)≥2r

g2α−d(x, z)
∑

y∈B(x,r)

φ̃(y)

≤ C2
∑

x∈A:d(x,z)≥2r

∑
y∈B(x,r)

g2α−d(z, y)φ(y) ≤ C2,

where the last inequality follows from the fact that by ∥g2α−d ∗ φ∥∞ ≤ 1, by hypothesis. Further-
more, using that

∑
y∈B(z,3r) g2α−d(z, y) ≤ Cr2d−2α, yields∑

x∈A:d(x,z)≤2r

∑
y∈B(x,r)

g2α−d(z, y)φ̃(y) ≤ C · rd−2α
∑

x∈A:d(x,z)≤2r

∑
y∈B(x,r)

φ(y)

≤ C2rd−2α · Cap2α−d
(
∪x∈A:d(x,z)≤2r B(x, r)

)
≤ C3,

where the second inequality follows from the definition of C̃ap2α−d and (1.4), and the third one
from Lemmas 3.1 and 3.2. Altogether, this proves our claim that for some constant c > 0, one has
∥g2α−d ∗ φ̃∥∞ ≤ c. Now we observe that

P
(
|C0 ∩B(x, r)| ≥ ρrd, for all x ∈ A

)
≤ P

(1
c

∑
z∈C0

φ̃(z) ≥ ρ

c

∑
z∈V

φ(z)
)
,

and thus the result follows from Chebyshev’s exponential inequality and Theorem 1.2, together
with the definition of φ, and (1.4). □
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Lemma 5.2. There exists a constant C > 0, such that for any ρ > 0, any r ≥ 1, and any finite
set Λ ⊂ V satisfying

|Λ ∩B(x, r)| ≤ ρ · |B(x, r)|, for all x ∈ Λ,

one has for any R ≥ r, and any x ∈ V ,

|Λ ∩B(x,R)| ≤ C · ρRd.

Proof. Let Λ be a set satisfying the hypothesis of the lemma for some r ≥ 1 and ρ > 0. Fix
x ∈ V and R ≥ r, and assume that Λ ∩ B(x,R) is non-empty, as otherwise there is nothing to
prove. Then we define inductively a sequence (xn)n≤n0 in B(x,R) as follows. First pick arbitrarily
x1 ∈ Λ ∩ B(x,R). Now assuming, x1, . . . , xn have been chosen, for some n ≥ 1, pick arbitrarily
xn+1 ∈ Λ ∩B(x,R) ∩ (∪k≤nB(xk, r))

c, if this set is nonempty. Otherwise stop the process and set
n0 = n. Note that n0 cannot be larger than 2dc2R

d/(c1r
d), with c1 and c2 as in (1.1), for otherwise

we would have

|B(x,R)| ≥
n0∑
k=1

|B(xk, r/2)| ≥ n0c1(r/2)d > c2R
d,

contradicting (1.1). Therefore,

|Λ ∩B(x,R)| = |
⋃

k≤n0

Λ ∩B(xk, r)| ≤ c2n0ρrd ≤ C · ρRd,

with C = 2dc22/c1. □

For the next result we need some additional notation. For positive r, R, and ρ, let

CR0 (r, ρ) =
{
x ∈ C0 : ρ |B(x, r)| ≤ |C0 ∩B(x, r) ∩B(0, R)| ≤ 2ρ |B(x, r)|

}
.

Proposition 5.3. Assume that G satisfies (Hα), for some α ∈ (d/2, d). There exist positive
constants C0 and κ, such that for any r,R ≥ 1 and ρ > 0, satisfying

(5.1) ρ · r2α−d ≥ C0 · logR,
and any L ≥ 1, one has

P(|CR0 (r, ρ)| > L) ≤ exp
(
− κρ2(1−

α
d
) · L

2α
d
−1).

Proof. We note that on the event {|CR0 (r, ρ)| > L}, there are at least n0 = ⌊ L
2d+1Cρrd

⌋ points in

CR
0 (r, ρ) which are at distance at least 2r one from each other, with C as in Lemma 5.2. To see

this, define inductively (xn)n≤n0 ∈ CR0 (r, ρ), as follows. First pick arbitrarily x1 ∈ CR0 (r, ρ). Then if
x1, . . . , xn have been defined for some n < n0, pick arbitrarily xn+1 in (∪i≤nB(xi, 2r))

c∩CR0 (r, ρ), if
the latter is nonempty. The claim is that this is always the case until n = n0, which is readily seen
by the fact that by Lemma 5.2, for any n < n0, one has | ∪i≤n C0 ∩B(xi, 2r)| ≤ n0 ·Cρ(2r)d ≤ L/2.
Now by applying Lemma 3.4, one can extract a subset U ⊂ {x1, . . . , xn0}, such that for some c > 0,

Cap2α−d
(
B(U, r)

)
≥ c · |U | · r2α−d, and Cap2α−d

(
B(U, r)

)
≥ c · Cap2α−d

(
∪n0
k=1 B(xk, r)

)
.

Then recall that the points (xk)k≤n0 are all at distance at least 2r one from each other, which
implies ∣∣ n0⋃

k=1

B(xk, r)
∣∣ = n0∑

k=1

|B(xk, r)| ≥ c1 · n0rd,

with c1 as in (1.1). Together with Lemma 3.3, this yields for some c > 0,

Cap2α−d
(
∪n0
k=1 B(xk, r)

)
≥ c(L/ρ)

2α
d
−1.

Moreover, given |U |, the number of possible choices for the set U is at most |B(0, R)||U | ≤ exp(c′ ·
|U | · logR), for some c′ > 0. Taking C0 sufficiently large in (5.1) ensures that this factor can be
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absorbed by the exponential decay given by Proposition 5.1. As a result, using a union bound over
all possible U , gives that for some constant κ > 0,

P(|CR0 (r, ρ)| > L) ≤ exp
(
− κρ · (L/ρ)

2α
d
−1) = exp

(
− κ · ρ2(1−

α
d
) · L

2α
d
−1),

as wanted. □

Define now

CR,∗
0 (r, ρ) =

{
x ∈ C0 : |C0 ∩B(x, r) ∩B(0, R)| ≥ ρ |B(x, r)|

}
.

Corollary 5.4. Assume that G satisfies (Hα), for some α ∈ (d/2, d). There exist positive constants
C, C0 and κ, such that for any r,R ≥ 1 and ρ > 0, satisfying (5.1), and any L ≥ 1, one has

P(|CR,∗
0 (r, ρ)| > L) ≤ C · exp

(
− κρ2(1−

α
d
) · L

2α
d
−1).

Proof. Let ε = d−α
2α−d , and cε = 1/(

∑
i≥0 2

−εi). Note that CR,∗
0 (r, ρ) = ∪i≥0CR0 (r, 2iρ), and thus by a

union bound, and Proposition 5.3,

P(|CR,∗
0 (r, ρ)| > L) ≤

∑
i≥0

P(|CR0 (r, 2iρ)| > cε ·
L

2εi
)

≤
∑
i≥0

exp
(
− κ cε · 2i(1−

α
d
) · ρ2(1−

α
d
) · L

2α
d
−1)

≤ C · exp
(
− κ′ρ2(1−

α
d
) · L

2α
d
−1),

for some constants κ, κ′ > 0. □

One last ingredient before we proceed to the proof of Theorem 1.1 is the following elementary
fact.

Lemma 5.5. Fix β ∈ (0, d). There exists a constant C > 0, such that the following holds, for any
ρ > 0 and r ≥ 1. Let Λ ⊂ V be a finite set, such that

|Λ ∩B(x, r)| ≤ ρ · |B(x, r)|, for all x ∈ Λ.

Then for any x ∈ V ,

gβ(x,Λ ∩B(x, r)c) ≤ C · ρβ/d · |Λ|1−β/d.

Proof. Set Sk = B(x, (k + 1)r) \ B(x, kr), for k ≥ 1. By Lemma 5.2, one has for some constant
C > 0,

gβ(x,Λ ∩B(x, r)c) ≤
∑
k≥1

gβ(x,Λ ∩ Sk) ≤
∑
k≥1

1

(kr)β
· |Λ ∩ Sk|

≤ Cr−β
∑
k≥1

|Λ ∩B(x, kr)|
kβ+1

≤ Cr−β
∑
k≥1

min(ρ(kr)d, |Λ|)
kβ+1

≤ C · ρβ/d · |Λ|1−β/d.

□
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5.2. Proof of Theorem 1.1. First notice that for any r > 1,

P(C̃0 ∩ C0 ∩B(0, r)c ̸= ∅) ≤
∑

x∈B(0,r)c

τ(0, x)2 ≤ C ·
∑

x∈B(0,r)c

gα(0, x)
2 ≤ C · rd−2α,

where C is positive constant. If we tale r equal to Rt = exp(t
2α
d
−1), the probability above is

negligible. Thus, if we define

Ct(0) = C0 ∩B(0, Rt),

it just remains to prove that for some positive constants c and C,

(5.2) P
(
sup
x∈V

g2α−d(x, Ct(0)) > C · t2−
2α
d

)
≤ C · exp(−c · t

2α
d
−1).

Indeed, once this is proved, then Theorem 1.1 follows from Corollary 1.4 applied to the cluster C̃0
and A = Ct(0).

To prove (5.2) we introduce a sequence of scales and densities, linked by the constraint (5.1),
which they should satisfy. For i ≥ 0, set ρi = 2−i, and define ri by

ρi · r2α−di = C0 · t
2α
d −1,

with C0 as in (5.1). Let also

(5.3) Λi = CRt,∗
0 (ri, ρi) \

 ⋃
0≤j<i

CRt,∗
0 (rj , ρj)

 , and Λ∗i = Ct(0) \

 ⋃
0≤j≤i

CRt,∗
0 (rj , ρj)

 .

By Corollary 5.4, one has for all i ≥ 0,

P
(
|Λi| > ρ

2α−2d
2α−d

i · t
)
≤ C · exp

(
− κ · t

2α
d
−1).

Moreover, as soon as ρir
d
i > c2R

d
t , with c2 as in (1.1), then Λi is empty, in particular this holds

when r2d−2αi > c2R
d
t /C0. Thus for i > C · logRt, and C some large enough constant, one has

Λi = ∅. As a consequence, denoting by E the event

(5.4) E =
⋂
i≥0

{
|Λi| ≤ ρ

2α−2d
2α−d

i · t
}
,

one has by a union bound, and for possibly smaller κ and larger C,

P(Ec) ≤ C · exp
(
− κ · t

2α
d
−1).

On the other hand, we claim that on the event E , one has

(5.5) sup
x∈V

g2α−d(x, Ct(0)) ≤ C · t2−
2α
d ,

which would conclude the proof. So let us prove this claim. Fix x ∈ V , and for k ≥ 1, write
Sk = B(x, rk) \ B(x, rk−1). Let also S0 = B(x, r0), so that these sets (Sk)k≥0 form a partition of
V . Note that, for some constant C > 0, that might change from line to line,

g2α−d(x, Ct(0) ∩ S0) ≤ g2α−d(x,S0) ≤ Cr2d−2α0 ≤ C · t2−
2α
d .

Furthermore, for any k ≥ 1,

g2α−d(x, Ct(0) ∩ Sk) =
k∑

i=0

g2α−d(x,Λi ∩ Sk) + g2α−d(x,Λ
∗
k ∩ Sk).
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Letting S∗i = ∪k≥iSk, and summing over k ≥ 1, we get

(5.6)
∑
k≥1

g2α−d(x, Ct(0) ∩ Sk) = g2α−d(x,Λ0 ∩ S∗1 ) +
∞∑
i=1

g2α−d(x,Λi ∩ S∗i ) +
∑
k≥1

g2α−d(x,Λ
∗
k ∩ Sk).

Concerning the second sum, note that for any k ≥ 1,

g2α−d(x,Λ
∗
k ∩ Sk) ≤

|Λ∗k ∩ Sk|
r2α−dk−1

≤ C ·
ρk · rdk
r2α−dk−1

≤ C · t
2α
d
−1

r4α−3dk

.

Hence, since α > 3d/4 by hypothesis,∑
k≥1

g2α−d(x,Λ
∗
k ∩ Sk) ≤ C ·

t
2α
d
−1

r4α−3d0

≤ C · t
2α
d
−1− 4α

d
+3 = C · t2−

2α
d .

As for the first sum in (5.6), Lemma 5.5 shows that for any i ≥ 1, on the event E ,

g2α−d(x,Λi ∩ S∗i ) ≤ Cρ
2α
d
−1

i · |Λi|2−
2α
d ≤ Ct2−

2α
d · ρ

2α
d
−1− (2α−2d)2

d(2α−d)

i ≤ C · t2−
2α
d · ρ

4α+5d
2α−d

i .

Summing now over i ≥ 1, yields∑
i≥1

g2α−d(x,Λi ∩ S∗i ) ≤ C · t2−
2α
d .

Finally, on the event E ,

g2α−d(x,Λ0 ∩ S∗1 ) ≤
|Λ0|
r2α−d0

≤ t

r2α−d0

≤ C · t2−
2α
d ,

which altogether proves (5.5) and concludes the proof of Theorem 1.1. □

Remark 5.6. Note that the same argument can be used to show (1.6) concerning the case of

clusters of different types. More precisely, assume that G and G̃ satisfy respectively (Hα) and (Hβ),
for some α, β ∈ (d/2, d), not necessarily equal, with say α ≤ β. Then one can define the same sets
Λi for C0 as above, let Rt = exp(tγ), with γ as in (1.6), and consider

E =
{
|Λi| ≤ ρ

2α−2d
2α−d

i · t
γd

2α−d , ∀i
}
.

One can check first that P(Ec) ≤ C exp(−tγ), and secondly that on E , and under the additional
assumption that 2α + 2β > 3d, one has supx∈V g2β−d(x, Ct(0)) ≤ Ct1−γ , using exactly the same
argument as above, and this proves (1.6). We note that the condition 2α + 2β > 3d, should also
correspond to the upper critical dimensions in general, in the sense that if 2α + 2β < 3d, the tail
should be polynomial. In the critical case 2α + 2β = 3d, the tail should be stretched exponential,
but with an exponent that is unclear.

6. Proof of Theorem 1.3

Let us start with the proof of (1.2). For p ∈ [0, 1], let Pp denotes the law of Bernoulli bond

percolation on Zd, and let τp(x, y) = Pp(x←→ y). Let also pc be the critical value for percolation.
It is proved in [34], that for any local functional F ,

lim
∥z∥→+∞

1

τpc(0, z)
Epc [F · 1{0←→z}] = EIIC[F ],

where EIIC denotes expectation with respect to the IIC. Let now φ : Zd → [0,∞), be such that

∥gd−4 ∗φ∥∞ ≤ 1. Also for R > 0, let x
B(0,R)←→ 0, be the event that x and 0 are connected in B(0, R)
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(in particular this requires x ∈ B(0, R)). Then
∑

x∈Zd 1{x
B(0,R)←→ 0} ·φ(x) is a local functional, and

thus for any fixed R > 0, and κ > 0,

lim
∥z∥→+∞

1

τpc(0, z)
Epc

exp(κ ∑
x
B(0,R)←→ 0

φ(x)
)
· 1{0←→ z}

 = EIIC

[
exp

(
κ
∑

x
B(0,R)←→ 0

φR(x)
)]
.

We will show that there exist positive constants C and κ, such that for any R > 0,

(6.1) lim sup
∥z∥→+∞

1

τpc(0, z)
Epc

exp(κ ∑
x
B(0,R)←→ 0

φ(x)
)
· 1{0←→ z}

 ≤ C · ∥φ∥1,
which will conclude the proof of (1.2), since by monotone convergence one has

lim
R→∞

EIIC

[
exp

(
κ
∑

x
B(0,R)←→ 0

φ(x)
)]

= E
[
exp

(
κ
∑
x∈C∞

φ(x)
)]
.

To prove (6.1), notice that by (4.1), one has for any n ≥ 1, and any z ∈ Zd, with φR(x) =
φ(x) · 1{∥x∥≤R},

Epc

( ∑
x
B(0,R)←→ 0

φ(x)
)n

1{0←→ z}

 ≤ Epc

( ∑
x∈C0

φR(x)
)n

1{0←→ z}


≤ Epc

( ∑
x∈C(z)

φR(x)
)n

≤ Cn−1 · (1 ∨ (n− 2)!) · gd−2 ∗ φR(z).

Note now that for any z with ∥z∥ ≥ 2R, one has for some constant C0 > 0,

gd−2 ∗ φR(z) ≤ 2d−2 gd−2(0, z) · ∥φR∥1 ≤ C0 · τpc(0, z) · ∥φ∥1,

using the results of [26] on the two-point function for the last inequality. Then (6.1) follows, and
this concludes the proof of (1.2).

Now with (1.2) at hand, one can follow the same argument as for the proof of Theorem 1.1, to
deduce (1.3). Indeed, the only place where (1.2) is used is in the proof of Lemma 5.1, and there

one can use that for φ realizing the maximum in the definition of C̃apd−4(B(A, r)), one has by

definition ∥φ∥1 = C̃apd−4(B(A, r)), which can be absorbed in the exponential bound, at the cost of
an additional factor 1/ρ in front. As a consequence, one can deduce an analogue of Corollary 5.4
with a factor 1/ρ in front of the exponential in the upper bound. More precisely we obtain, with
hopefully obvious notation, that for any r,R ≥ 1 and ρ > 0 satisfying (5.1), and any L ≥ 1,

P(|CR,∗
∞ (r, ρ)| > L) ≤ C

ρ
· exp(−κρ4/d · L1−4/d),

for some positive constants C, C0 and κ. Then the rest of the proof can be followed word by word,
simply taking now Rt = exp(εt1−4/d), with ε a small enough constant, so that the number of sets
Λi to be considered is not too large. This concludes the proof of (1.3). □
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7. Proof of Theorem 1.6

We prove here Theorem 1.6 concerning the extension of our main result to the intersection of
more than two clusters. For this we prove first some general upper bound on the n-th point function,
see Proposition 7.1 below, which is a key result of the paper. As mentioned in the introduction, a
similar result could be deduced from the tree-graph inequality of Aizenman and Newman [2], after
summing the space-variables associated to the so-called internal vertices. However, we take here
a different route, more suited to our applications, and to more general settings such as branching
random walks. To state the result we need additional definition.

We consider here finite plane trees, and put a mark on vertices which have either zero or one
child. For n ≥ 1, we denote by Un the set of finite plane trees, which have n marked vertices. Then
denote by Tn the set of trees in Un, whose marked vertices are further endowed with a label in
{1, . . . , n}, i.e. a one-to-one map φ from {1, . . . , n} to the set of marked vertices of the tree. Note
that once such φ is given, all other labelling are obtained by composing it with an element of Sn

the group of permutations of {1, . . . , n}. In particular Tn is in bijection with Un ×Sn.

We denote by T•n the set of trees in Tn, whose root is a marked vertex, and let T◦n = Tn \ T•n.
Note that the root of any t ∈ T◦n has L ≥ 2 children, which are the roots of subtrees t1, . . . , tL,
all belonging to some Tk, (after some trivial relabelling) for some k ≤ n − 1: indeed all marked
vertices cannot be in the same subtree, as on one hand t is finite and on the other hand all its
leaves are marked. Observe that given any L ≥ 2, any partition I1, . . . , IL of {1, . . . , n}, any trees
t1 ∈ T|I1|, . . . , tL ∈ T|IL|, and any σ ∈ SL, one can construct a tree t ∈ T◦n, by considering a root
with L children, and then for each 1 ≤ ℓ ≤ L, attach to the ℓ-th child the tree tσ(ℓ) (where for each
k ≤ |Iℓ|, we replace the label k by the k-th smallest integer from Iℓ). This construction induces a
bijection between T◦n and the set of elements (L, I1, . . . , IL, t1, . . . , tL, σ) as just defined.

Finally, given t ∈ Tn, we define xt as being equal to xi, if i is the label of the first marked vertex
of t in the lexicographical order.

We now consider the set T∗n of unordered rooted trees with n vertices with distinct labels in
{1, . . . , n}. We then define inductively a map π : Tn → T∗n, as follows.

• If t ∈ T1, then necessarily t has only one vertex with label 1. In this case π(t) = t. Assume
now that π(t) has been defined for all t ∈ Tk, with k ≤ n − 1, and consider t ∈ Tn, with
n ≥ 2.
• If t ∈ T•n, i.e. if the root of t is a marked vertex, then by definition it has only one child,
which is the root of another tree t′. Then define π(t) as being the tree whose root has
the same label as the root of t, and also only one child, say v, to which we attach π(t′)
(identifying the root of π(t′) with v). Since t′ ∈ Tn−1, this is well defined by the induction
hypothesis.
• If t ∈ T◦n, π(t) is obtained by considering the L children of the root v1, . . . , vL, together
with the trees t1, . . . , tL emanating from these vertices. We join vi and vi+1 by an edge for
all i ≤ L− 1, and for i ≤ L, further attach to vi the tree π(ti) (identifying the root of π(ti)
with vi). Finally we declare v1 to be the root of π(t).

Note that in our construction, for any t ∈ Tn, the root of π(t) has the same label as the first marked
vertex of t. We are now in position to define precisely the function Gα, which has been already
briefly introduced in (1.5). First, given t ∈ T∗n, we let E(t) denote its set of edges, and we identify
the vertices with their label. In particular {i, j} ∈ E(t) if the vertices with label i and j are joined
by an edge. Then given x = (x1, . . . , xn), and t ∈ Tn, we let

(7.1) Gα(t, x) =
∏

{i,j}∈E(π(t))

g2α−d(xi, xj),
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with the convention that if t has only one vertex, then Gα(t, x1) = 1. Note that the only important
aspect of π(t) in the definition above is its tree structure, which is why we deal with unordered
trees. We can now state our main bound on the n-th point function.

Proposition 7.1. Assume that G satisfies the BK inequality and (Hα), for some α ∈ (d/2, d).
There exists a constant C > 0, such that for any x1, . . . , xn, z ∈ V , one has with x = (x1, . . . , xn),

P(x1, . . . , xn ∈ C(z)) ≤ Cn
∑
t∈Tn

Gα(t, x) · gα(xt, z).

Proof. The proof goes by induction on n. If n = 1, the result directly follows from the hypothe-
sis (Hα), since T1 is reduced to the unique tree t with only one vertex labelled 1, and in this case
Gα(t, x1) = 1 by definition. Assume now that the result holds true for any k ≤ n− 1, and consider
x1, . . . , xn, z ∈ V . Following the same argument (and notation) as in the proof of Theorem 1.2, one
has

P(x1, . . . , xn ∈ C(z),M(z;x1, . . . , xn) ∈ {x1, . . . , xn}) ≤ C
n∑

i=1

gα(xi, z) · P(xj ∈ C(xi), ∀j ̸= i).

Then the induction hypothesis yields

P(x1, . . . , xn ∈ C(z),M(z;x1, . . . , xn) ∈ {x1, . . . , xn})

≤ Cn
n∑

i=1

gα(xi, z)
∑

t∈Tn−1

Gα(t, (xj)j ̸=i) · gα(xt, xi).

Now as we already saw, given t ∈ Tn−1, and i ∈ {1, . . . , n}, one can define a new tree t′ ∈ T•n,
by considering a root with label i and a unique child to which we attach the tree t (with labels
larger than or equal to i increased by one unit). Note that this induces a bijection between
{1, . . . , n}×Tn−1 and T•n. Bounding also the term gα(xt, xi) by g2α−d(xt, xi), and remembering the
inductive definition of Gα, we readily get

(7.2) P(x1, . . . , xn ∈ C(z),M(z;x1, . . . , xn) ∈ {x1, . . . , xn}) ≤ Cn
∑
t∈T•

n

Gα(t, x) · gα(xt, z).

On the other hand, using again the induction hypothesis, we get

P(x1, . . . , xn ∈ C(z),M(z;x1, . . . , xn) /∈ {x1, . . . , xn})

≤ C
n∑

L=2

∑
y∈V

∑
I1,...,IL

gα(z, y)
L∏

ℓ=1

P
(
(xi)i∈Iℓ ∈ C(y)

)
≤ Cn

n∑
L=2

∑
y∈V

∑
I1,...,IL

∑
t1,...,tℓ

gα(z, y)

L∏
ℓ=1

Gα(tℓ, (xi)i∈Iℓ) · gα(xtℓ , y),

where the sum over I1, . . . , IL, is over partitions of {1, . . . , n}, and the last sum is over trees tℓ ∈ T|Iℓ|,
for 1 ≤ ℓ ≤ L. Then applying Lemma 2.2 gives

P(x1, . . . , xn ∈ C(z),M(z;x1, . . . , xn) /∈ {x1, . . . , xn})

≤ Cn
n∑

L=2

∑
I1,...,IL

∑
t1,...,tℓ

∑
σ∈SL

gα(z, xtσ(1)
) ·
( L−1∏

ℓ=1

g2α−d(xtσ(ℓ)
, xtσ(ℓ+1)

)
)
·

L∏
ℓ=1

Gα(tℓ, (xi)i∈Iℓ).

Now observe that given any L ≥ 2, any partition I1, . . . , IL of {1, . . . , n}, any trees t1 ∈ T|I1|, . . . , tL ∈
T|IL|, and any σ ∈ SL, one can construct a tree t ∈ T◦n, by considering an unmarked root with L
children, and then for each 1 ≤ ℓ ≤ L, attach to the ℓ-th child the tree tσ(ℓ) (where for each k ≤ |Iℓ|,
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we replace the label k by the k-th smallest integer from Iℓ). Note that this construction induces a
bijection between T◦n and the set of elements (L, I1, . . . , IL, t1, . . . , tL, σ) as before. Remembering
also the inductive definition of Gα, this readily proves that

(7.3) P(x1, . . . , xn ∈ C(z),M(z;x1, . . . , xn) /∈ {x1, . . . , xn}) ≤ Cn
∑
t∈T◦

n

Gα(t, x) · gα(xt, z).

Combining (7.2) and (7.3) concludes the proof of the induction step, hence of the proposition. □

We shall also need the following lemma.

Lemma 7.2. There exists a constant C > 0, such that for any n ≥ 1, |Un| ≤ Cn, and |Tn| ≤ Cn n!.

Proof. Recall that Tn is in bijection with Un ×Sn, thus we just need to prove the result for Un.

Let us prove by induction on n ≥ 1, that |Un| ≤ Cn−1

n2 , for some constant C > 0. The result for
n = 1 is immediate, since U1 is reduced to a unique tree, with only one root. Assume now that it
holds true for all k ≤ n, and let us prove it for n + 1. Let U•n be the set of trees in Un where the
root is a marked vertex, and U◦n = Un \U•n. Recall that U•n+1 is in bijection with Un. On the other
hand, one has using the induction hypothesis and (4.5),

|U◦n+1| =
∑
L≥2

∑
n1+···+nL=n+1

ni≥1∀i

|Un1 | × · · · × |UnL | ≤ C
n+1−L

∑
L≥2

∑
n1+···+nL=n+1

ni≥1 ∀i

L∏
i=1

1

n2i

≤ cCn−1

n2

∑
L≥2

(c/C)L−2 ≤ c′Cn−1

n2
,

for some constants c and c′, which we can always assume to be smaller than C/2. Combining the
last inequality with the previous bound on |U•n| concludes the proof of the induction step, hence of
the lemma. □

We can now prove the following generalization of Theorem 1.2.

Theorem 7.3. Assume that G satisfies BK inequality and (Hα), for some α ∈ (d/2, d). Let k ≥ 1,
and (Ci0)1≤i≤k, be independent copies of C0. There exists κ > 0, such that for any φ : Zd → [0,∞),
satisfying ∥gk(2α−d) ∗ φ∥∞ ≤ 1,

E

exp(κ ∑
x∈C10∩···∩Ck0

φ(x)
)1/k ≤ 2.

Proof. Using Proposition 7.1, we get for some constant C > 0, and for any n ≥ 1,

E
[( ∑

x∈C10∩···∩Ck0

φ(x)
)n]

=
∑

x1,...,xn

( n∏
i=1

φ(xi)
)
· P(x1, . . . , xn ∈ C0)k

≤ (Ck)n
∑

x1,...,xn

( n∏
i=1

φ(xi)
)
·
(∑

t∈Tn

Gα(t, x) · gα(xt, 0)
)k

≤ (Ck)n|Tn|k−1
∑

x1,...,xn

( n∏
i=1

φ(xi)
)
·
∑
t∈Tn

Gα(t, x)
k

≤ (C2k)n(n!)k−1
∑

x1,...,xn

( n∏
i=1

φ(xi)
)
·
∑
t∈Tn

∏
{i,j}∈E(π(t))

gk(2α−d)(xi, xj),
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using the definition (7.1) of Gα at the last line. Finally using the hypothesis ∥gk(2α−d) ∗ φ∥ ≤ 1
repeatedly for each edge of the tree π(t), we deduce that

E
[( ∑

x∈C10∩···∩Ck0

φ(x)
)n]
≤ (C2k+1)n (n!)k,

and the desired result follows. □

We then conclude the proof of our main result here.

Proof of Theorem 1.6. Assume first that α ∈ ( (k+1)d
2k , kd

2(k−1)), for some k ≥ 2. In this case, we can

follow a similar argument as in the proof of Theorem 1.1, and we keep the same notation. Recall in

particular that Rt = exp(t
2α
d
−1), and Ct(0) = C0 ∩B(0, Rt). In order to apply Theorem 7.3, we fix

Ct(0) and consider φ(x) = 1{x ∈ Ct(0)}/ supz∈V g(k−1)(2α−d)(z, Ct(0)). One then has for any t > 0,

P(|C10 ∩ · · · ∩ Ck−1
0 ∩ Ct(0)| > t) ≤ 2E

[
exp

(
− κ t

1
k−1

supz∈V g(k−1)(2α−d)(z, Ct(0))
1

k−1

)]
.

Recall now the definition of the set E from (5.4). It can readily be seen, following the same steps

as in the proof of Theorem 1.1, that on the event E , when α ∈ ( (k+1)d
2k , kd

2(k−1)), one has

sup
z∈V

g(k−1)(2α−d)(z, Ct(0)) ≤ Ct1−(k−1)(
2α
d
−1),

and when α = kd
2(k−1) , for some k ≥ 3, then

sup
z∈V

g(k−1)(2α−d)(z, Ct(0)) ≤ C log t,

which altogether conclude the proof of Theorem 1.6. □

8. Proofs of Theorems 1.8, 1.9 and 1.11

We start with the proof of Theorem 1.9. There are two parts, one about the upper bounds,
which follows similar arguments as for Theorem 1.6 (at least concerning the critical BRWs, some
additional care is needed to handle the case of walks indexed by T∞), and one about the lower
bounds, which requires some new argument, based on the notion of waves introduced in [9]. We
then conclude this section with a few words explaining the minor changes needed for the proofs of
Theorems 1.8 and 1.11.

8.1. Proof of Theorem 1.9: upper bounds. Let us start with the proof in dimension d ≥ 9,
for which it suffices to treat the case of two walks indexed by T∞. All one needs here is an analogue
of Theorem 1.2 for R∞, which is precisely given in [10]. Then the rest of the proof is exactly the
same as for Theorem 1.1.

Concerning the fact that the tail distribution for the intersection of critical BRWs is bounded
by the tail distribution for the intersection of walks indexed by T∞, this follows from the fact that
Rc and R∞ can be coupled in such a way that Rc ⊂ R∞. This is immediate when T∞ is the
invariant infinite tree, since in this case by definition a copy of Tc is attached to the root, and in
case of Kesten’s tree, one can notice that all vertices on the spine produce offspring according to
the size biased distribution, which stochastically dominates µ, while the offspring distribution of
other vertices is µ, therefore T∞ stochastically dominates Tc in this case as well.

We now move to the lower dimensions, where one needs to consider the intersection of more than
two ranges. For this one needs the following result about local times of BRWs, which might be of
independent interest. Recall (1.7) and the notation introduced in Section 7. We denote by Pz the
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law of a BRW starting from z, i.e. taking value z at the root, and let Ez denote the corresponding

expectation. Given t ∈ Tn, x = (x1, . . . , xn) ∈ (Zd)n, and z ∈ Zd, we define G̃(t, x, z), as follows. If
t ∈ T•n, and the root of t has L ≥ 2 children, to which emanate some trees t1, . . . , tL, with labels in
I1, . . . , IL, then we let

G̃(t, x, z) = fL+1(xt1 , . . . , xtL , z) ·
L∏

ℓ=1

Gd−2(tℓ, (xi)i∈Iℓ),

where fL+1 is the function introduced before Proposition 2.4. If on the other hand t ∈ T◦n, meaning
that the root has only one child to which is attached a tree t′ ∈ Tn−1, and the root has some label
i ∈ {1, . . . , n}, then we let

G̃(t, x, z) = gd−4(z, xi) ·Gd−2(t
′, (xj)j ̸=i).

Proposition 8.1. There exists C > 0, such that for any n ≥ 1, and any x1, . . . , xn, z ∈ Zd (possibly
with repetition), with d ≥ 5,

(8.1) Ez

[ n∏
i=1

ℓc(xi)
]
≤ Cn

∑
t∈Tn

Gd−2(t, x) · gd−2(xt, z),

and

(8.2) Ez

[ n∏
i=1

ℓ∞(xi)
]
≤ Cn

∑
t∈Tn

G̃(t, x, z).

Proof. We first prove the result for critical BRWs. For this we use a similar induction argument as
in the proof of Proposition 7.1, so let us just mention the minor changes needed here. The result
for n = 1 is immediate. Assuming it is true for k ≤ n − 1, let now x1, . . . , xn be given. Define
MRCA(v1, . . . , vn) as the most recent common ancestor of v1, . . . , vn ∈ Tc. We write

Ez

[ n∏
i=1

ℓ∞(xi)
]
= E

[ ∑
v1,...,vn∈Tc

1{Sv1 = x1, . . . , Svn = xn}
]

= Ez

[ ∑
v1,...,vn∈Tc

∑
v0∈Tc

1{Sv1 = x1, . . . , Svn = xn, v0 = MRCA(v1, . . . , vn), v0 ∈ {v1, . . . , vn}
]

+ Ez

[ ∑
v1,...,vn∈Tc

∑
v0∈Tc

1{Sv1 = x1, . . . , Svn = xn, v0 = MRCA(v1, . . . , vn), v0 /∈ {v1, . . . , vn}
]
.(8.3)

Using the induction hypothesis, one can bound the first term on the right-hand side of (8.3) by

C
n∑

i=1

gd−2(xi, z) · Exi

[∏
j ̸=i

ℓc(xj)
]
≤ Cn

n∑
i=1

g(xi, z)
∑

t∈Tn−1

Gd−2(t, (xj)j ̸=i) · gd−2(xt, xi)

≤ Cn
∑
t∈T•

n

Gd−2(t, x) · gd−2(xt, z).

Concerning the second term in (8.3), it is equal to∑
j≥2

µ(j)

j∧n∑
L=2

(
j

L

) ∑
I1,...,IL

∑
y∈Zd

g(y − z)
L∏

ℓ=1

Eνy

[∏
i∈Iℓ

ℓc(xi)
]
,

where the third sum is over partitions I1, . . . , IL of {1, . . . , n}, with Iℓ nonempty for all ℓ, and νy
is the uniform measure on the neighbors of y. Using then that µ has a finite exponential moment
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by hypothesis, we get that
∑

j≥L µ(j)
(
j
L

)
≤ cL, for some c > 0. Then exactly as in the proof of

Proposition 7.1 we deduce that the last sum is bounded by

Cn
∑
t∈T◦

n

Gd−2(t, x) · gd−2(xt, z),

which altogether proves (8.1).
Now following a similar argument as in Section 4.2 of [10], taking advantage of the fact that T∞

is made of a spine to which are attached critical BGW trees (actually adjoint BGW trees, but this
is a minor point), one can deduce from (8.1) that for any x1, . . . , xn, z ∈ Zd,

Ez

[ n∏
i=1

ℓ∞(xi)
]
≤ Cn

n∑
L=1

∑
(I1,...,IL)

∑
(t1,...,tL)

∑
y1,...,yL

gd−2(z, y1)

×
( L−1∏

ℓ=1

gd−2(yℓ, yℓ+1)
)
·
( L∏

ℓ=1

gd−2(xtℓ , yℓ)
)
·
( L∏

ℓ=1

Gd−2(tℓ, (xi)i∈Iℓ)
)
,(8.4)

where the second sum is now over ordered partitions (I1, . . . , IL) of {1, . . . , n}, with Iℓ nonempty
for all ℓ, and the third sum is over ordered families of trees (t1 ∈ T|I1|, . . . , tL ∈ T|IL|). Then the
result follows from Proposition 2.4. □

Now that we have Proposition 8.1 at hand, the proofs of the upper bounds in Theorem 1.9 are
exactly the same as for Theorem 1.6.

8.2. Proof of Theorem 1.9: lower bounds. We now move to the lower bounds for the inter-
section of independent critical BRWs. For this we need some new notation. Given two vertices
u, v ∈ Tc, we write v ≤ u when v is on the geodesic from u to the root, denoted by ∅, and write
v < u when in addition v is different from u. In this case, we set [v, u) = {w ∈ Tc : v ≤ w < u}.
Also for a set Λ ⊂ Zd, we let ∂Λ the exterior boundary of Λ, i.e. the set of vertices not in Λ which
have at least one neighbor in Λ. The lower bounds are immediate consequences of the following
proposition.

Proposition 8.2. Let ρ ∈ (0, 1). There exists c > 0, such that for any r ≥ 1, and any subset
A ⊂ B(0, r), with |A| ≥ ρ|B(0, r)|, one has

P(|Rc ∩A| > |A|/2) ≥ exp(−c rd−4).

Proof. Fix ρ ∈ (0, 1), and let r ≥ 1 and A ⊂ B(0, r), such that |A| ≥ ρ|B(0, r)|. Define then
inductively four sequences of vertices of Tc, denoted (ηn)n≥0, (ηn)n≥0, (η̃n)n≥0 and (νn)n≥0 as
follows. First, η0 = η0 = {∅}. Secondly, for any n ≥ 0, ηn and η̃n are subsets of ηn, such that
η̃n = ηn \ ηn. In short, η̃n is a set of saved particles, which will be used for covering purposes,
whereas ηn is used to create the next wave. To be more concrete, let η̃n a set of ⌊min(r2, |ηn|/2)⌋
particles of ηn chosen uniformly at random. Finally, for any n ≥ 0,

νn = {u ∈ Tc : Su ∈ ∂B(0, 2r), and ∃v ∈ ηn satisfying v < u and Sw ∈ B(0, 2r) ∀w ∈ [v, u)},
and

ηn+1 = {u ∈ Tc : Su ∈ B(0, r), and ∃v ∈ νn satisfying v < u and Sw ∈ Zd \B(0, r) ∀w ∈ [v, u)}.
Note that since Tc is finite almost surely, all these sets are empty for n large enough. For n ≥ 0,
we define Tn as the subtree of Tc, whose vertices are those for which there are no vertices in ηn on
the geodesic between them and the root, except possibly themselves. In other words, identifying
Tn with its set of vertices by a slight abuse of notation, one has

Tn = {u ∈ Tc : [∅, u) ∩ ηn = ∅}.
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We next define the filtration (Fn)n≥0, by letting for each n ≥ 0,

Fn = σ
(
Tn, η̃1, . . . , η̃n, {(u, Su) : u ∈ Tn}

)
.

Also, for u ∈ Tc, let
R(u) = {Sv : u ≤ v}.

Then for n ≥ 0, let

R(η̃n) =
⋃
u∈η̃n

R(u), R̃n =
n⋃

k=0

R(η̃k).

Define furthermore,

τ = inf
{
n ≥ 0 : |R̃n ∩A| >

|A|
2

}
.

Let now ν ∈ (0, 1) and κ > 0 be some constants to be fixed later, and consider for each n ≥ 1, with

∆n =
∣∣R̃c

n−1 ∩A ∩R(η̃n)
∣∣,
An =

{
|η̃n| ≥ ν r2

}
, Bn =

{
∆n > κr4

}
.

We note that for any n ≥ 1, almost surely on the event An ∩ {τ > n}, one has with g(r) = r2−d,
and for some constant c1 > 0,

E [∆n | Fn] =
∑

x∈R̃c
n−1∩A

P(x ∈ R(η̃n) | Fn)

≥ |A|
2
·
(
1− (1− c1g(r))ν r2

)
,

using that uniformly over x, z ∈ B(0, r), the probability that a BRW starting from z hits x is
at least c1 g(r), for some constant c1 > 0 (this can be seen using an elementary second moment
method, see also [54] for a finer result). It follows that for some constant c2 > 0, one has almost
surely on An ∩ {τ > n},

(8.5) E [∆n | Fn] ≥ c2ν r4.
Therefore, taking κ = c2ν

2 , we get that almost surely on An ∩ {τ > n},

(8.6) P(Bn | Fn) ≥ P
(
∆n ≥

1

2
E[∆n | Fn]

∣∣∣ Fn

)
≥ 1

4
· E[∆n | Fn]

2

E[∆2
n | Fn]

,

using Paley-Zygmund’s inequality at the end. Observe next that uniformly over u ∈ ηn, one has
for some constant C > 0,

E
[
|R(u) ∩B(0, r)|

]
≤ C

∑
x∈B(0,2r)

g(∥x∥) ≤ C r2,

and using the many-to-two formula,

E
[
|R(u) ∩B(0, r)|2

]
≤ C

∑
x∈Zd

∑
y,z∈B(0,2r)

g(∥x∥)g(∥x− y∥)g(∥z − x∥) ≤ C r6.

It follows that for some constant c3 > 0, almost surely

(8.7) E[∆2
n | Fn] ≤ |η̃n|2 · sup

u∈η̃n
E
[
|R(u) ∩B(0, r)|

]2
+ |η̃n| · sup

u∈η̃n
E
[
|R(u) ∩B(0, r)|2

]
≤ c3 r8.

Combining (8.5), (8.6) and (8.7) we get that almost surely on An ∩ {τ > n}, for some constant
c4 > 0 (depending on ρ),

P(Bn | Fn) ≥ c4.
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On the other hand, if ν is sufficiently small, then Paley-Zygmund inequality again yields the exis-
tence of a constant c5 > 0 (depending on ν), such that for n ≥ 1, almost surely on An,

P(An+1 | Fn) ≥ c5,
and also

P(A1) ≥
c5
r2
,

see e.g. [9, Lemma 10.1] for a more detailed proof. To conclude we note that for any n ≥ 1,
conditionally on Fn, the events An+1 and Bn are independent, and therefore, for any N ≥ 1, by
induction,

P
(N∧τ⋂

n=1

An ∩Bn

)
≥ (c4c5)

N

r2
.

Let now C > 0 be such that κCrd > |A|. Taking then N = ⌊Crd−4⌋, we obtain that for some
constant c > 0,

P(|Rc ∩A| ≥ |A|/2) ≥ exp(−c rd−4),
as needed. □

Applying now the result repeatedly, first with A = B(0, r), and then with A = R1
c ∩ · · · ∩ R

j
c ∩

B(0, r), for j ≤ i− 1, we obtain that

P
(
|R1

c ∩ · · · ∩ Ri
c ∩B(0, r)| ≥ ρ rd

)
≥ exp(−c rd−4),

for some (possibly different and depending on i) constants ρ, c > 0. Finally taking r = (t/ρ)1/d,
concludes the proof of the lower bounds in Theorem 1.9. □

8.3. Proofs of Theorems 1.8 and 1.11. Concerning the lower bounds, one can use an analogue
of Proposition 8.2 for simple random walks. We claim that for any fixed ρ ∈ (0, 1), there exists
c > 0, such that for any r ≥ 1, any set A ⊂ B(0, r), with |A| ≥ ρ|B(0, r)|, and any t ∈ (r2, |A|/2),
one has

(8.8) P(|R∞ ∩A| > t) ≥ exp(−c t/r2).
A proof of this statement can be done following exactly the same lines as for Proposition 8.2, using
excursions of a SRW between B(0, r) and ∂B(0, 2r), instead of waves.

Applying the result repeatedly with r = Ct1/d, with C some large enough constant, we get that
for any k ≥ 2 and in any dimension d ≥ 5,

P(|R1
∞ ∩ · · · ∩Rk

∞ ∩B(0, Ct1/d)| > t) ≥ exp(−c t1−
2
d ),

for some constant c > 0, which already gives the lower bounds in Theorem 1.8. Applying addition-
ally Proposition 8.2, we get as well the lower bound in Theorem 1.11 (i).

Now applying Proposition 8.2 and (8.8) with r = Ct
1

d−2 , and A = R1
c ∩ · · · ∩ Rk

c ∩ B(0, r), we
obtain that for some constant c > 0, and for any t > 1, in dimension d > 5,

P(|R∞ ∩R1
c ∩ · · · ∩ Rk

c | > t) ≥ exp(−c t1−
2

d−2 ),

proving the lower bound in Theorem 1.11 (ii).

Let us consider the upper bounds now. Concerning Theorem 1.8, one can notice that by the
Markov property, one has for any d ≥ 3, and any x1, . . . , xn ∈ Zd,

P(x1, . . . , xn ∈ R∞) ≤ Cn
∑
σ∈Sn

gd−2(0, xσ(1))
n−1∏
i=1

gd−2(xσ(i), xσ(i+1)).
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Since |Sn| = n!, we can then follow exactly the same argument as in the critical cases in the proof
of Theorem 1.6. Next, concerning Theorem 1.11, Part (i) follows from the upper bound for two
SRWs ranges, and for Part (ii) it suffices to do it for the intersection of one SRW and one BRW
ranges. For this one can use the same argument as for (1.6), see in particular Remark 5.6. We
leave the details to the reader.

9. Intersection of critical BRWs in low dimension: Proof of Theorem 1.10

In this Section, we provide upper and lower tail estimates for the distribution of the intersection
of two BRW ranges in dimensions d ≤ 8. We start with a short heuristic discussion and then divide
this section into three parts. In the first part, we give lower bounds in dimensions d ≤ 7, where the
tail distribution has polynomial decay. In the second part, we establish the upper bounds, still in
dimensions d ≤ 7, and finally in the third part, we discuss the critical case of dimension eight for
which the decay is stretched exponential.

To understand the tail estimates, recall that the range Rc is a four dimensionsal random set, so
that conditioned on reaching the boundary of a ball B(0, R), it typically fills a positive fraction of it
in dimension d ∈ {1, 2, 3}, fills a small fraction of order 1/ log(R) of it in dimension four, and covers
a small density ρd = R4−d, in higher dimension. Thus, in dimension d ∈ {1, 2, 3}, it is enough that
both BRWs reach the boundary of a ball of volume of order t to produce the desired intersection;
in dimension d ∈ {5, 6, 7}, the desired radius satisfies ρ2d · Rd = t, which gives R8−d = t; and in

dimension four, we need R4 of order t · log2(t). Finally, the probability of reaching the boundary of
a ball B(0, R) being of order R−2 for each BRW, this yields the tail estimates from Theorem 1.10.
Now, in dimension eight, which is critical for the intersection of two BRWs, the failure of R8−d = t,
makes the strategy for the two BRWs unclear. They might either travel a very large distance
(stretched exponential in t) to allow enough space for realizing the desired intersection, or produce
a stretched exponential number of waves in a smaller ball, or use a mixture of these two strategies.

9.1. Lower bounds in dimensions d ≤ 7. We use a conditional version of the second moment
method. To be more precise, we use that for any nonnegative random variable X, and any event
A, one has

(9.1) P
(
X ≥ 1

2
E[X | A]

∣∣∣ A) ≥ 1

4
· E[X | A]

2

E[X2 | A]
.

Assume first that d ∈ {5, 6, 7}, fix a constant C > 0 to be specified later, let rt = Ct
1

8−d and
consider the event

(9.2) A = {Rc ∩B(0, rt)
c ̸= ∅, R̃c ∩B(0, rt)

c ̸= ∅},

that the two BRWs exit B(0, rt). Let also

X = |Rc ∩ R̃c ∩ (B(0, 2rt) \B(0, rt))|.

It is well-known (see e.g. [9]) that P(A) ≍ r−4t . Hence, noting also that X = 0 on Ac, one obtains
that for some constant c1 > 0,

E[X | A] = E[X]

P(A)
≥ c1r4t

∑
x∈B(0,2rt)\B(0,rt)

gd−2(0, x)
2 ≥ c1 · r8−dt .

In particular one can fix C large enough, so that E[X | A] ≥ 2t. We aim at applying (9.1) now, but
for this it remains to bound the second moment of X. Given x ∈ Zd, we let ℓc(x) =

∑
u∈Tc 1{Su =

x}, the local time at x for the critical BRW. Decomposing the event {Su = x, Sv = y} according
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to all possible positions of the walk at the youngest common ancestor of u and v, say z ∈ Zd, we
get for some constant c2 > 0 (that might change from line to line),

E[X2] ≤
∑

x,y∈B(0,2rt)\B(0,rt)

P(x, y ∈ Rc)
2 ≤

∑
x,y∈B(0,2rt)\B(0,rt)

E[ℓc(x)ℓc(y)]

≤ c2
∑

x,y∈B(0,2rt)\B(0,rt)

( ∑
z∈Zd

gd−2(0, z)gd−2(z, x)gd−2(z, y)
)2

≤ c2r−2(d−2)t

∑
x,y∈B(0,2rt)

gd−4(x, y)
2 ≤ c2 · r12−2dt .(9.3)

Then (9.1) gives us that for some c3 > 0,

P(X > t) ≥ P(X > t | A) · P(A) ≥ c3 · r−4t ,

which is the desired result.
The proof when d ∈ {1, 2, 3} is similar. Let this time rt = Ct1/d, with C > 0 to be fixed, and

define A and X as before. We shall use now that P(x ∈ Rc) ≍ ∥x∥−2, see [48] for an even stronger
result. Hence the same computation as before shows that E[X | A] ≥ 2t, if C is chosen large
enough. Concerning the second moment of X, simply notice that X ≤ |B(0, 2rt)| · 1{A}, whence
by an application of (9.1), we get for some constant c > 0,

P(X ≥ t) ≥ c · P(A) ≥ c · t−4/d,

as wanted.
Let us finally consider the case of dimension four. Let rt = Ct1/4

√
log t, with C > 0 some

constant to be fixed. Define also again X and A as before. We use that in dimension four,
P(x ∈ Rc) ≍ 1

∥x∥2 log ∥x∥ , as shown by Zhu [55], see also [56] for a finer result. This implies that for

some constant c > 0,

E[X | A] ≥ c r4t
(log rt)2

,

which is larger than 2t if C is chosen large enough. Regarding now the second moment of X, one
has for any x, y ∈ B(0, 2rr) \B(0, rt), denoting by u ∧ v the youngest common ancestor of vertices
u and v in Tc, and using the convention 1

0 = 1,

P(x, y ∈ Rc) ≤
∑
z∈Z4

P(∃u, v ∈ Tc : Su = x, Sv = y, Su∧v = z)

≤ C
∑
z∈Z4

1

∥z∥2
· 1

∥x− z∥2 log ∥x− z∥
· 1

∥y − z∥2 log ∥y − z∥

≤ C

rt∥x− y∥ · (log ∥x− y∥)2
,

with C > 0 some constant. Taking the square, and summing over x, y ∈ B(0, 2rt) \B(0, rt), we get

E[X2] ≤ C r4t
(log rt)4

.

Altogether, this gives that for some constant c > 0,

P(X > t) ≥ c · P(A) ≥ c

r4t
,

which is the desired result.
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9.2. Upper bounds in dimensions d ≤ 7. When d ∈ {1, 2, 3}, the upper bound follows from

a simple application of Markov’s inequality. Indeed, let rt = ct1/d, with c small enough so that
|B(0, rt)| ≤ t/2. Then we just write, with the same notation as in (9.2) for the event A,

P(|Rc ∩ R̃c| ≥ t) ≤ P(A) ≤ Cr−4t ,

for some constant C > 0, which is the desired result.

For d ∈ {5, 6, 7}, set rt = t
1

8−d . One has for some constant C > 0, using Markov’s inequality,

(9.4) P(|Rc ∩ R̃c ∩B(0, rt)
c| ≥ t/2) ≤ 2

t

∑
x∈B(0,rt)c

P(x ∈ Rc)
2 ≤ C

t
r4−dt ≤ Ct−

4
8−d .

On the other hand, if d = 5, then the second moment computation from (9.3), and Markov’s
inequality, give with Si = B(0, 2−irt) \B(0, 2−i−1rt),

P(|Rc ∩ R̃c ∩B(0, rt)| ≥ t/2) ≤
∑
i≥0

P(|Rc ∩ R̃c ∩ Si| ≥
√
2
−(i+8)

t)

≤ C

t2

∑
i≥0

2i · E
[
|Rc ∩ R̃c ∩ Si|2

]
≤ C

t2

∑
i≥0

2−ir2t ≤
C

t2
· r2t ≤ Ct−4/3,

recalling that in dimension five rt = t1/3, for the last inequality. Together with (9.4), this concludes
the proof of the upper bound in dimension five. If d = 6, one needs a third moment bound (as the
second moment of X is not a growing function of rt). For this one can use (8.1), and the facts that
if d = 6,

sup
x∈Z6

∑
z∈B(0,2r)

g2(d−4)(x, z) ≤ Cr2, and
∑

z∈B(0,2r)\B(0,r)

g2(d−2)(0, z) ≤ Cr−2,

which altogether show that for some constant C > 0, for any r ≥ 1,

E
[
|Rc ∩ R̃c ∩ (B(0, 2r) \B(0, r))|3

]
≤ Cr2.

Hence, as before, since now rt =
√
t, (using the same notation for Si as above),

P(|Rc ∩ R̃c ∩B(0, rt)| ≥ t/2) ≤
∑
i≥0

P(|Rc ∩ R̃c ∩ Si| ≥
√
2
−(i+8)

t)

≤ C

t3
· r2t ≤ Ct−2.

The argument in dimension seven is similar, except that one needs now to use a fifth moment (as
lower moments of X are not growing functions of rt). Namely, we first note that when d = 7,

sup
x∈Z7

∑
z∈B(0,2r)

g2(d−4)(x, z) ≤ Cr, and
∑

z∈B(0,2r)\B(0,r)

g2(d−2)(0, z) ≤ Cr−3.

Then a similar argument as above gives for r ≥ 1,

E
[
|Rc ∩ R̃c ∩ (B(0, 2r) \B(0, r))|5

]
≤ Cr,

whence we deduce, with rt = t,

P(|Rc ∩ R̃c ∩B(0, rt)| ≥ t/2) ≤
Crt
t5
≤ Ct−4.
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Finally, if d = 4, we write with rt = t1/4
√
log t,

P(|Rc ∩ R̃c ∩B(0, rt)
c| ≥ 1) ≤ P(A) ≤ Cr−4t ,

and by the computation from the previous section,

P(|Rc ∩ R̃c ∩B(0, rt)| ≥ t) ≤
∑
i≥0

P(|Rc ∩ R̃c ∩ Si| ≥ 2−i−1t) ≤ C · r4t
(log rt)4

,

which altogether proves the desired upper bound.

9.3. The dimension eight. For the lower bound we apply Proposition 8.2 twice with r = Ct1/8,
and C some constant to be fixed. Indeed, applying it first with A = B(0, r) for the first range
Rc, and then with A = B(0, r) ∩Rc, we deduce the desired lower bound provided C is taken large
enough.

As for the upper bound, we present two proofs. The first one is based on our new bounds on the
moments of local times. More precisely, let R = exp(t1/3). Using the Markov’s inequality, we get

P(|Rc ∩ R̃c ∩B(0, R)c| ≥ 1) ≤ E[|Rc ∩ R̃c ∩B(0, R)c|] =
∑

x∈B(0,R)c

P(x ∈ Rc)
2 ≤ CR−4.

Hence, it just remains to bound the probability that the intersection of the two clusters inside the
ball B(0, R) exceeds t. Let n ≥ 1, and note that Proposition 8.1 and Cauchy–Schwarz inequality
yield for some constant C > 0,

E
[
|Rc ∩ R̃c ∩B(0, R)|n

]
=

∑
x1...,xn∈B(0,R)

P(x1, . . . , xn ∈ Rc)
2

≤ Cnn!
∑
t∈Tn

∑
x1...,xn∈B(0,R)

G2(d−2)(t, x),

with the notation from Proposition 8.1. Moreover, for some (possibly larger) constant C > 0,

sup
z∈Z8

∑
x∈B(0,R)

g2(d−4)(z, x) ≤ C logR.

As a consequence, one gets for any n ≥ 1, and some constant C > 0,

E
[
|Rc ∩ R̃c ∩B(0, R)|n

]
≤ Cn(n!)2(logR)n,

and thus for some positive constant κ,

E
[
exp

(
κ

√
|Rc ∩ R̃c ∩B(0, R)|

logR

)]
<∞,

which concludes the proof, using Chebyshev’s exponential inequality and the fact that
√
t/ logR

is of order t1/3.
Our second proof follows the argument given in Section 5.2. For i ≥ 0, let ρi = 2−i, and let ri

be such that ρir
4
i = C0t

1/3, with C0 as in (5.1). Then define the sets (Λi)i≥0, as in (5.3), and let

E = {|Λi| ≤ ρ−1i t2/3, for all i ≥ 0}. Note that the number of relevant indices i is of order logR.

Hence following the proof from Section 5.2, we deduce that on one hand P(Ec) ≤ exp(−κt1/3), for
some κ > 0, and that on E , for some C > 0,

sup
x∈Z8

gd−4(x,Rc ∩B(0, R)) ≤ C(t2/3 + t1/3 logR) ≤ Ct2/3,

implying the desired upper bound.
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10. Proof of Theorem 1.12

The proof mostly relies on the following result which provides a control on the size of the sets
Rt(r, ρ), defined in (1.9). It can be proved exactly as Corollary 5.4 or [6, Theorem 1.6], using the
results of [10], in particular Theorem 1.5 and its Corollary 1.6 there, so we omit the proof.

Theorem 10.1. There exist positive constants c and C, such that for any r, ρ and t, satisfying

ρrd−4 ≥ C · t
d−4
d−2 ,

one has for any L ≥ 1

P(|Rt(r, ρ)| ≥ L) ≤ C exp(−c · ρ4/d · L1− 4
d ).

An immediate consequence of this result, together with the lower bound in Theorem 1.11 (ii), is
that for any given ρ > 0, one can find β and b large enough, so that

lim
t→∞

P(|Rβt(βt
1

d−2 , ρ)| > bt
d

d−2 | |R∞ ∩R∞| > t) = 0.

The second fact we should use is an analogue of Corollary 1.4 for the SRW, which says that for any
finite set Λ ⊂ Zd, with d ≥ 3, one has

P(|R∞ ∩ Λ| > t) ≤ exp
(
− c · t

supz∈Zd gd−2(z,Λ)

)
,

for some constant c > 0, independent of Λ, see e.g. Lemma 2.1 in [7]. Note also that a simple first
moment bound entails, for β large enough,

lim
t→∞

P
(
R∞ ∩R∞ ∩B

(
0, exp((βt)

d−4
d−2 )

)c ̸= ∅ | |R∞ ∩R∞| > t
)
= 0.

Then by decomposing the range R∞ into sets (Λi)i≥0, defined as in (5.3), one may infer the second
part of Theorem 1.12, by showing that for any ε > 0, one may find I > 0, such that asking R∞ to
intersect (∪i≤IΛi)

c in more than εt points is too costly; see also [7] for a similar argument. Finally,

note that by definition, as soon asRβt(βt
1

d−2 , ρ) is nonempty, then the volume ofR2βt(2βt
1

d−2 , ρ/2d),

must be of order at least td/(d−2), which induces the lower bound in the first part of the theorem.

Appendix

In this section we provide proofs of some of the results presented in the introduction and in
Section 3 about β-capacities. We start with the proof of a result quoted in the introduction.

Proof of (1.4). A proof of this equivalence can for instance be found in the unpublished lecture
notes [45]. For the reader’s convenience, we reproduce the short argument here. Let ν0 be a
probability measure realizing the infimum in the definition of Capβ(A). Fix η ∈ (0, 1), and let

Aη =
{
x ∈ A : gβ ∗ ν0(x) <

1− η
Capβ(A)

}
.

Suppose that ν0(Aη) > 0. Then consider the probability measure on Aη:

νη(·) =
ν0(· ∩Aη)

ν0(Aη)
.

For ε ∈ (0, 1), define
µε = (1− ε)ν0 + ενη.

Define also the bilinear map on RA:

(φ,ψ) 7→ ⟨φ,ψ⟩β =
∑
x,y∈A

gβ(x, y)φ(x)ψ(y).
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Writing µε = ν0 − ε(ν0 − νη), one has by bilinearity,

⟨µε, µε⟩β = ⟨ν0, ν0⟩β − 2ε⟨ν0, ν0 − νη⟩β + ε2⟨ν0 − νη, ν0 − νη⟩β.

Since by definition of ν0, one has ⟨µε, µε⟩β ≥ ⟨ν0, ν0⟩β, we deduce 2⟨ν0, ν0−νη⟩β ≤ ε⟨ν0−νη, ν0−νη⟩β.
Letting ε go to 0, we get that

⟨ν0, ν0⟩β ≤ ⟨νη, ν0⟩β.
But by definition of Aη, the right-hand side is no more than (1−η)⟨ν0, ν0⟩β, yielding a contradiction.
In conclusion, ν0(Aη) = 0, for any η > 0. It then not difficult to show that gβ ∗ ν0(x) = 1

Capβ(A) ,

for all x ∈ A. Consequently, if φ(x) = Capβ(A) · ν0(x), one has ∥gβ ∗ φ∥∞ ≤ C, for some constant
C > 0, independent of A, from which we infer

C̃apβ(A) ≥
1

C
· Cap(A).

The inequality in the other direction is easier. Let φ be a function realizing the maximum in the

definition of C̃apβ(A). Using that ∥gβ ∗ φ∥ ≤ 1, we deduce that ⟨φ,φ⟩β ≤ C̃apβ(A), and thus for
all finite A,

C̃apβ(A) ≤ Capβ(A),

concluding the proof of (1.4). □

Proof of Lemma 3.4. The proof is similar to the proof of Theorem 1.1 in [8]. The idea is to show,
according to the probabilistic method, that a certain random set U satisfies the desired properties

with positive probability. Let φ be a maximizing function in the definition of C̃apβ
(
∪x∈AB(x, r)

)
.

For x ∈ A, define φx, by

φx =
c

rβ

∑
z∈B(x,r)

φ(z),

with c > 0, chosen such that φx ≤ 1, for all x ∈ A. This is possible since by definition, for each
x ∈ A, one has by Lemma 3.2 and (1.4),∑

y∈B(x,r)

φ(y) ≤ C̃apβ(B(x, r)) ≤ Crβ.

Consider now a sequence (ξx)x∈A of independent Bernoulli random variables with respective pa-
rameters (φx)x∈A, and define U = {x ∈ A : ξx = 1}. One has

E[|B(U , r)|] ≥ c′ · rd−β · Capβ(B(A, r)).

and

Var
(
|B(U , r)|

)
≤ E

[
|B(U , r)|

]
.

Hence by Chebyshev’s inequality, one has for r large enough,

(10.1) P
(
|B(U , r)| ≥ c′

2
· rd−β · Capβ(B(A, r))

)
≥ 3

4
.

It remains to show that with sufficiently high probability

Capβ
(
B(U , r)

)
≥ c · rβ−d · |B(U , r)|.

To see this, consider ν the uniform probability measure on B(U , r). By definition of β-capacity,
one has

(10.2) Capβ
(
B(U , r)

)
≥ |B(U , r)|2∑

y,z∈B(U ,r) gβ(y, z)
.
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Now, taking expectation of the denominator gives

E
[ ∑
y,z∈B(U ,r)

gβ(y, z)
]
=
∑

x,x′∈A
φxφx′

∑
y∈B(x,r)

∑
z∈B(x′,r)

gβ(y, z)

≤ C ·
∑
x∈A

rd · φx ·
(
rd−β · gβ ∗ φ(x) + rd−β · φx

)
≤ C · r2(d−β) ·

∑
z∈B(A,r)

φ(z)

≤ C · r2(d−β) · Capβ
(
B(A, r)

)
.

Therefore, Markov’s inequality gives us that

P
( ∑

y,z∈B(U ,r)

gβ(y, z) ≤ 4Cr2(d−β) · Capβ
(
B(A, r)

))
≥ 3

4
.

Together with (10.1) and (10.2), we get that

P
(
Capβ

(
B(U , r)

)
≥ (c′)2

16C
· Capβ(B(A, r))

)
≥ 1

2
,

and combining this with (10.1) again concludes the proof of the corollary. □
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