
HAL Id: hal-04807626
https://hal.science/hal-04807626v1

Preprint submitted on 27 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MMM: Clustering Multivariate Longitudinal
Mixed-type Data

Francesco Amato, Julien Jacques

To cite this version:
Francesco Amato, Julien Jacques. MMM: Clustering Multivariate Longitudinal Mixed-type Data.
2024. �hal-04807626�

https://hal.science/hal-04807626v1
https://hal.archives-ouvertes.fr


MMM: Clustering Multivariate Longitudinal
Mixed-type Data

Francesco Amato 1, Julien Jacques 1

1 Univ Lyon, Univ Lyon 2, ERIC, Lyon.
{francesco.amato, julien.jacques}@univ-lyon2.fr

Abstract. Multivariate longitudinal data of mixed-type are increasingly collected in
many science domains. However, algorithms to cluster this kind of data remain scarce, due
to the challenge to simultaneously model the within- and between-time dependence struc-
tures for multivariate data of mixed kind. We introduce the Mixture of Mixed-Matrices
(MMM) model: reorganizing the data in a three-way structure and assuming that the
non-continuous variables are observations of underlying latent continuous variables, the
model relies on a mixture of matrix-variate normal distributions to perform clustering
in the latent dimension. The MMM model is thus able to handle continuous, ordinal,
binary, nominal and count data and to concurrently model the heterogeneity, the associa-
tion among the responses and the temporal dependence structure in a parsimonious way
and without assuming conditional independence. The inference is carried out through an
MCMC-EM algorithm, which is detailed. An evaluation of the model through synthetic
data shows its inference abilities. A real-world application on financial data is presented.

Keywords. Model-based clustering. Mixed-type multivariate longitudinal data.
Three-way data. Mixture models. Matrix-variate Gaussians.

1 Context
Multivariate longitudinal data of mixed-type are increasingly collected in many science
domains. For example, in social sciences studies are often based on questionnaires encom-
passing different type of answers completed by participants multiple times. In physical
sciences, phenomena are often measured repeatedly with different types of measurements.
However, the statistical analysis of these data is far from simple, for several reasons.
First, the collected data are often of different typology, ranging from continuous to count
data. The analysis of such mixed-type data is a current research problem in the fields
of statistics and machine learning (Ahmad et al., 2019). The second scientific obstacle is
the modeling of the temporal trajectory. Currently, frequently the analyses are done in-
dependently at each temporal phase, then researchers try a posteriori to find links among
times, by seeking from one phase to the other to find similar typical behavior. An ex-
ample is Selosse, Jacques, Biernacki, and Cousson-Glie, 2019 in the case of clustering of
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longitudinal ordinal data for an application in psychology.

In this work we aim at providing a tool to perform clustering on multivariate longitu-
dinal mixed-type data. Probabilistic (or model-based) clustering offers the advantage of
clearly stating the assumptions behind the clustering algorithm, and allows cluster analy-
sis to benefit from the inferential framework of statistics to address some of the practical
questions arising when performing clustering (Bouveyron et al., 2019).

1.1 Related work
While several approaches exist for the clustering longitudinal and mixed-type data sep-
arately, literature is rather poor when they are to be dealt with simultaneously. In the
following, we will present a brief overlook to the main methods to cluster mixed data,
longitudinal data and mixed longitudinal data.

Although many data sets contain mixed-type data, few mixture models can manage
these data (Hunt et al., 2011) due to the shortage of multivariate distributions able to
handle them. Clustering with mixed-type data have received a large attention in the last
decade from the researcher in statistics and machine learning. The latent class model
(Everitt, 1984) is frequently used, and it assumes that the variables are conditionally
independent upon the cluster membership. Consequently, the joint probability distribu-
tion function (pdf) of the features of different types is obtained by the product of the
pdfs of each individual feature. However, when the variables are inherently correlated
in a cluster, this model is not suitable. To overcome this issue, the authors of Marbac
et al., 2017 wanted to conserve standard marginal distributions but also try to loosen the
conditional independence on the variables. For this purpose, they use a copula, which
allow definition of both the dependence model and the type of marginal distributions.
The proposed model relies on the main assumption that each cluster follows a Gaussian
copula. However, the authors note that model complexity increases promptly with the
number of variables, which is not suitable in a big-data context. Moreover, it is not
easily interpretable by non-statistician practitioners. More recently, Hermes et al., 2024
proposed a similar approach by using copulas in the context of graphical models, which
were already extended for use for mixed-type data by Cheng et al., 2017. In Selosse,
Jacques, and Biernacki, 2020, another model-based approach for ordinal, nominal, inte-
ger and continuous data is proposed, on the basis of conditional independence assumption
and with the particularity of creating clusters of features as well as clusters of individuals
(co-clustering).
Another way to address the issues of mixed-type data is to see some variables as the
manifestation of latent variables. For example, in McParland et al., 2016, the clustMD
model considers continuous and categorical data (nominal and ordinal) and assumes that
a categorical variable is the representation of an underlying latent continuous variable.
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Then, it is assumed that the continuous variables (observed and unobserved) follow a
multivariate Gaussian mixture model. This model is further developed to address spar-
sity by Choi et al., 2023.

Modeling longitudinal data poses a different kind of challenge than mixed-type data, as
the grouping has to account for the similarity of individual trajectories which disrupt the
independence assumption among observations. Additionally, this kind of data introduces
the issue of dealing with time, often with sparse observations that makes unsuitable the
use of models coming from the domains such as functional data, time series and Gaussian
processes. In order to bypass these problems, some authors preferred to focus on geomet-
ric non-parametric clustering algorithms, as done by Bruckers et al., 2016 with an idea
based on k-means clustering and by Zhou et al., 2023 with hierarchical clustering, among
others. For parametric methods, a well established manner to model longitudinal data
is through mixed-effects models. This research domain is well-established and vast. We
refer to Gad et al., 2012 for an overview and to the related work section of Hui et al.,
2024 for the most recent advancements. The main issues with this kind of models are the
over-parametrization and the computational burden that often arises with it.

Another approach to clustering longitudinal data that gained traction in the last
decade consists in arranging the data in a three-way format and modeling them through
a matrix-variate mixture model. This approach offers the advantage of accounting for the
overall time-behavior, grouping together the units that have a similar pattern across and
within time. While not being new (Basford et al., 1985), matrix-variate distributions have
recently gained attention, and mixtures of matrix-normals (MMN) have been developed
and applied both in a frequentist framework in Viroli, 2011a and within a Bayesian one
by Viroli, 2011b. These models represent a natural extension of the multivariate normal
mixtures to account for temporal (or even spatial) dependencies, and have the advan-
tage of being also relatively easy to estimate by means of EM algorithm (a nice short
description of the EM application to MNN is provided in §2.1 of Wang et al., 2020). In
addition, in the context of linear mixed models with discrete individual random intercepts
to analyze longitudinal continuous data, Anderlucci et al., 2015 proposed Covariance Pat-
tern Mixture Model (CPMM) which, by leveraging three-way data structures, does not
require the usual local independence assumption. This model can be seen as an extension
of the proposal of McNicholas et al., 2010 in the multivariate context. More recently,
in Gallaugher et al., 2018 and Melnykov et al., 2018, 2019 extensions for non-normal
skewed cases have been proposed and applied. However, matrix-variate models suffer
from over-parametrization that leads to estimation issues. To overcome this issue a more
parsimonious model (Sarkar et al., 2020) and a new R package (Zhu et al., 2022) has
been proposed. In addition, Cappozzo et al., 2023 proposed a lasso-type penalization to
account for sparsity. Despite their efficacy, up to now these methods have generally only
been applied to continuous data.
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More recently, Amato et al., 2024 proposed a method to cluster longitudinal ordinal data
by assuming an underlying mixture of matrix-variate distributions.

Finally, looking at mixed-type longitudinal data, one main methodology to deal with
such data lies in the framework of discrete (time-constant or varying) random intercepts
for modeling heterogeneity, that includes mixture random effect models for longitudinal
data extended to deal with multivariate and mixed outcomes by Proust-Lima et al., 2013
and growth mixture models (Ram et al., 2009), where individuals are grouped in classes
having a specific growth structure variability. These approaches are similar in that they
model the change over time at both the population level and the individual level us-
ing random effects (or latent variables). In Komarek et al., 2013 the authors rely on a
multivariate extension of the classical generalized linear mixed model where a mixture dis-
tribution is additionally assumed for random effects. Vávra et al., 2021 extend this model
presenting a statistical model for joint modeling of mixed-type longitudinal data, while
performing unsupervised clustering with respect to different covariate patterns. However,
nominal (polytomous) variables are not taken into account in neither of the papers and
time-dependent information is neglected. This work is expanded and improved in Vvra
et al., 2024. In Cagnone et al., 2018 the authors extended the latent class model to take
into account time evolution by means of latent Markov variable (Bartolucci et al., 2019)
to model longitudinal binary and ordinal data on alcohol use disorder.
In a model-based clustering perspective, De la Cruz-Mesia et al., 2008 proposed a mix-
ture of hierarchical nonlinear models for describing nonlinear relationships across time.
Manrique-Vallier, 2014 introduced a clustering strategy based on a mixed membership
framework for analyzing discrete multivariate longitudinal data.

1.2 Preliminaries
Let Z ∼ MN (J×T )(M,Φ,Σ), that is a matrix-variate normal distribution where M ∈
RJ×T is the matrix of means, Φ ∈ RT×T is a covariance matrix containing the variances
and covariances between the T occasions or times and Σ ∈ RJ×J is the covariance matrix
containing the variances and covariances of the J variables. The matrix-normal probabil-
ity density function is given by

f(Z|M,Φ,Σ) = (2π)−
TJ
2 |Φ|−

J
2 |Σ|−

T
2 exp

{
−1

2
tr[Σ−1(Z −M)Φ−1(Z −M)ᵀ]

}
. (1)

The matrix-normal distribution represents a natural extension of the multivariate normal
distribution, since if Z ∼ MN (J×T )(M,Φ,Σ), then vec(Z) ∼ MVN JT (vec(M),Φ ⊗ Σ),
where vec(.) is the vectorization operator, that is the function mapping from a J × T
matrix to a JT -dimensional vector, and ⊗ denotes the Kronecker product. The property
of rewriting the general covariance matrix Ψ ∈ RJT×TJ as Ψ = Φ⊗Σ is called separability
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condition. Then, the mean and the variance of the matrix-normal distribution are:

E(vec(Z)|M,Φ,Σ) = vec(M) and V(vec(Z)|M,Φ,Σ) = Ψ. (2)

Being a special case of the multivariate normal distribution, the matrix-normal distribu-
tion shares the same properties, like, for instance, closure under marginalization, condi-
tioning and linear transformations (Gupta et al., 2000). The separability condition of
the covariance matrix has two advantages. First, it allows the modeling of the temporal
pattern of interest directly on the covariance matrix Φ. Second, it represents a more
parsimonious solution than that of the unrestricted Ψ.

Introduced by Viroli, 2011a, the pdf of the finite Mixture of Matrix-Normals (MMN)
model is given by

f(Z|π,Θ) =
K∑
k=1

πkMN (J×T )(Z|Mk,Φk,Σk),

where K is the number of mixture components, π = {πk}Kk=1 is the vector of mixing
proportions, subject to constraint

∑K
k=1 πk = 1 and Θ = {Θk}Kk=1 is the set of component-

specific parameters with Θk = {Mk,Φk,Σk}.

1.3 Our idea
As we aims at develop a model easily understandable and interpretable by practitioners
with non-statistical background, we found matrix-variate distributions particularly fit, as
shown in Alaimo et al., 2023. Moreover, as noticed in Anderlucci et al., 2015, the use
of matrix-variate distributions allow to drop the conditional independence assumption,
frequently implied in longitudinal latent variable models. Despite the efficacy of matrix-
variate distributions, up to now these methods have only been applied to continuous data.
We introduce a Mixture for Mixed Matrices (MMM) model, aiming at expanding the use
to matrix-variate mixtures to ordinal data in an unsupervised learning context.
Our model expands the use of matrix-variate mixtures to mixed-type data, by building
on the framework proposed by McParland et al., 2016 and Choi et al., 2023 in the cross-
sectional context.

In the following, in Sections 2 and 3 we will detail our model and the MCMC-EM
algorithm to perform inference, respectively. In Section 4 some results on synthetic data
are presented to assess the performance of the model. Finally, in Section 5 an real-
world application concerning stock exchange data during the Covid-19 pandemic period
is outlined.
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2 The MMM model
Let denote by yijt the observation of the j-th (j = 1, .., J) variable for the i-th (i =
1, . . . , N) unit at time t (t = 1, . . . , T ), that is: imagine to observe N units and measuring
J different mixed variables T times throughout the course of the study. We can divide
the J mixed variables into C continuous variables, O ordinal, binary and nominal ones
and G as count variables, such that C +O+G = J . We are going to put ordinal, binary
and nominal variables together as we will treat them in the same way.
Let us reorganize this data in a random-matrix form such that we denote the observed
record of the i-th subject as Yi ∈ RJ×T . Y = {Yi}Ni=1 is a sample of J × T -variate matrix
observations Yi ∈ [RC×T ,NO×T ,NG×T

0 ]ᵀ, J = C+O+G. The ordinal, binary and nominal
classes are arbitrarily coded by non-negative integers such that each variable O has levels
{1, 2, . . . , Co} ∈ N 1.
Then, we assume that each variable yijt is the manifestation of an underlying latent
continuous variable zijt.

2.1 Modeling continuous variables
Let c indicate the generic c-th continuous variable. We assume that the observed contin-
uous variables yict matches exactly the latent variable:

yict = zict

2.2 Modeling categorical ordinal variables
To map ordinal data, we follow Amato et al., 2024. Let the generic ordinal o-th have
Co levels. Let γo denote a Co + 1 -dimensional vector of thresholds that partition the
real line for the corresponding o-th underlying continuous variable, and let the threshold
parameters be constrained such that −∞ = γo,0 ≤ γo,1 ≤ . . . ≤ γo,Co = ∞. If the latent
ziot is such that γo,c−1 < ziot < γo,c then the observed ordinal response, yiot = c.

Moreover, let define OO×T the set of ordinal matrices of size J × T whose elements
takes values in {1, . . . , Co}. Each element of OO×T is called a response pattern. Let R
be the cardinality of OO×T . Each response pattern Yr ∈ OO×T is generated by a portion
Ωr of the latent space RO×T according to thresholds γ := {γo}Oo=1. Let the binary vector
Ỹi = (Ỹi1, . . . , ỸiR) be one-hot encoding of Yi such that if the r-th pattern is observed then
Ỹir = 1 and any other entry in the vector equals zero.

A key point is of course the choice of the thresholds γ = {γj}Oo=1. to avoid identifi-
ability and computational complexity issues, thresholds are fixed and not considered as

1In this work, we will consider zero not included in the set of natural numbers. We will use the
notation N0 to indicate N ∪ {0}
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parameters. There are different ways to do it. We decide to follow Corneli et al., 2020,
where the thresholds are chosen as γo = (−∞, 1.5, 2.5, . . . , Co − 0.5,∞).

2.3 Modeling categorical nominal variables
For categorical nominal data with P levels we can consider a one-hot encoding for P − 1
levels and treat them as binary variables. Binary variables can be considered as a special
case of ordinal variables where the number of classes Co = 2. The threshold cutting the
underlying continuous variable is set to 0.

2.4 Modelling count variables
For count data we consider a Matrix variate Poisson-log normal distribution (Silva et al.,
2023). Let g be the generic g-th count variable, then we assume that yigt follows a Poisson
distribution with parameter exp(zigt), where zigt is a term of the G× T underlying latent
matrix following a matrix normal distribution.

2.5 Joint model
So, we can think of Yi as a block matrix, and conveniently split it between the first C
rows, representing the observed continuous variables, followed by O rows representing the
categorical variables and the remaining J − C − O = G rows, representing the count
variables. Notice that the slicing happens just over rows but not over columns. Then, we
can write Yi = [Y α

i , Y β
i , Y

γ
i ]

ᵀ, where Y α
i ∈ RC×T is the block containing the continuous

variables and Y β
i ∈ NO×T gathers the categorical ones (that we coded via integers) and

the binary ones, and Y γ
i ∈ NG×T

0 is the block containing the count variables.

At this point, we can assume that each observed block of the matrix Yi is indeed the
manifestation of the corresponding block of the latent random matrix Zi = [Zα

i , Z
β
i , Z

γ
i ]

ᵀ,
and that this underlying random matrix is linked through different relations to the ob-
served matrix Yi, depending on the type of variable each element yijt, as described previ-
ously.
Then, we assume a mixture of matrix-normal distributions on the latent space. We can
consequently writeZα

i

Zβ
i

Zγ
i

 ∼
K∑
k=1

πk MN (J×T )

Mα
k

Mβ
k

Mγ
k

 ,Φk,

Σαα
k Σαβ

k Σαγ
k

Σβα
k Σββ

k Σβγ
k

Σγα
k Σγβ

k Σγγ
k

 . (3)

From here, we can derive the joint model. To keep notation coherent, let define with
Ỹ β
i the one-hot encoding of the categorical part of Yi as described in Section 2.2. In

addition to Zi, we introduce a latent binary K-dimensional allocation vector that indicate
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whether the unit i belongs to the k-th cluster, `i = (`i1, . . . , `iK), such that `ik = 1 if the
i-th unit belongs to the k-th cluster.
Recalling the links each kind of observed variables has with the latent ones, we can express
our model through the following distributional assumptions:

`i ∼ M(1,π), π := (π1, . . . , πK)

Zα
i |`ik = 1 ∼ MN (C×T )(Z

α
i |Θα

k ), Θ
α
k := {Mα

k ,Φk,Σ
α
k},

Zβ
i |Zα

i , `ik = 1 ∼ MN (O×T )(Z
β
i |Θ

β|α
k ), Θβ

k := {Mβ|α
k ,Φk,Σ

β|α
k },

Zγ
i |, Zα

i , Z
β
i , `ik = 1 ∼ MN (G×T )(Z

γ
i |Θ

γ|α,β
k ), Θγ

k := {Mγ|α,β
k ,Φk,Σ

γ|α,β
k };

Ỹ β
i |Z

β
i , `ik = 1 ∼ M(1, ξi), ξi := (1Ω1(Z

β
i ), ...,1ΩR

(Zβ
i )),

Y γ
igt|Z

γ
igt ∼ P(exp(Zγ

igt)),

where M indicates the multinomial distribution and 1Ωr(Z
β
i ) is the indicator func-

tion that equals 1 when the elements in Zβ
i have values that determine the r-th pattern.

Hence, when Ỹ β
ir = 1, the vector ξi is a vector whose r-th element equals 1 and all the

others equal 0.
Further, to avoid assuming the independence between the different blocks, to link the
matrix latent distributions we resort to condition on one block to another by using the
properties of matrix-variate normal distribution (Gupta et al., 2000). Thus, Θ

γ|α,β
k :=

{Mγ|α,β
k ,Φk,Σ

γ|α,β
k }, more precisely M

γ|α,β
k = Mγ

k + Σγ·
k Σ

−1,··
k (Zα,β

i − Mα,β
k ) and Σ

γ|α,β
k =

Σγγ
k − Σγ·

k Σ
−1,··
k Σ·γ

k , and where Θ
β|α
k := {Mβ|α

k ,Φk,Σ
β|α
k }, more precisely M

β|α
k = Mβ

k +

Σβα
k Σ−1,αα

k (Y α
i −Mα

k ) and Σ
β|α
k = Σββ

k − Σβα
k Σ−1,αα

k Σαβ
k .

Lastly, Assuming that the observed value pattern of Ỹ β
i is r for sake of notation, we

can compose the distribution of each observed mixed matrix as

Yi ∼
K∑
k=1

πk MN (C×T )(Z
α
i |Θα

k ) ·
∫
Ωr

MN (O×T )(Z
β
i |Θ

β|α
k )dZβ

i

·
∫
R

T∏
t

G∏
g

P(yγigt| exp(z
γ
igt)) · MN (G×T )(Z

γ
i |Θ

γ|α,β
k )dZγ

i . (4)

2.6 Likelihood
In the following, Z := {Zi}Ni=1 , ` := {`i}Ni=1 will indicate the ensembles of Zi and `i
respectively, and Y := {Yi}Ni=1 be the collection of the observed matrices Yi. Finally, the
set of unknown parameters to be estimated is Θ := {πk,Mk,Φk,Σk}Kk=1 .
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The joint density of Y γ
i , Z

γ
i , Ỹ

β
i , Z

β
i , Z

α
i , `i is:

f(Y γ
i , Z

γ
i , Ỹ

β
i , Z

β
i , Z

α
i , `i) =f(Y γ

i |Z
γ
i , Ỹ

β
i , Z

β
i , Z

α
i , `i) · f(Z

γ
i |Ỹ

β
i , Z

β
i , Z

α
i , `i)·

f(Ỹ β
i |Z

β
i , Z

α
i , `i) · f(Z

β
i |Zα

i , `i) · f(`i).

We can therefore write the complete log-likelihood as:

LC(Θ;Y,Z, `) =
N∏
i=1

K∏
k=1

[
πk ·

( T∏
t

G∏
g

P(yγigt| exp(z
γ
igt))

)
· MN (G×T )(Z

γ
i |Θ

γ|α,β
k )·

MN (O×T )(Z
β
i |Θ

β|α
k ) · MN (C×T )(Z

α
i |Θα

k ) ·
R∏

r=1

1Ωr(Z
β
i )

Ỹ β
ir

]`ik
. (5)

We acknowledge the identity Y α
i = Zα

i and the fact that the last term is non-stochastic
since conditioning on Z implies that the value of Zβ

i is known and we can discard it.
Therefore, by using the notation of Equation 3, we can rewrite this equation compactly
as the complete log-likelihood can be written as:

logLC(Θ;Y,Z, `) =
N∑
i=1

K∑
k=1

`ik

[
C + log(πk)−

J

2
log(|Φk|)−

T

2
log(|Σk|)−

1

2
tr[Σ−1

k (Zi −Mk)Φ
−1
k (Zi −Mk)

ᵀ]

]
. (6)

where C is a constant with respect to the set of parameters Θ.

On the other hand, we can define the observed likelihood as LO(Θ;Y ), that is:

LO(Θ;Y ) :=
N∏
i=1

{ K∑
k=1

πk MN (C×T )(Z
α
i |Θα

k ) ·
∫
Ωr

MN (O×T )(Z
β
i |Θ

β|α
k )dZβ

i

·
∫
R

T∏
t

G∏
g

P(yγigt| exp(z
γ
igt))×MN (G×T )(Z

γ
i |Θ

γ|α,β
k )dZγ

i

}
. (7)

3 Inference
In our model, we are assuming two different latent (unobserved) variables. Therefore, we
will use the Expectation-Maximization (EM) algorithm (Dempster et al., 1977) to infer
the MMM model’s parameters. The EM algorithm is well-suited for situations involving
latent variables or unobserved data, as it allows for the estimation of model parameters
despite the incompleteness.
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3.1 EM-algorithm
The EM algorithm is an iterative algorithm that alternates two steps: the expectation
step (E-step) and the maximization step (M-step). It start from an initialization Θ̂

(0)
of

the parameters. Then, let denote with the superscript (s+ 1) the parameters estimated
in the current step and with (s) the ones computed in the previous step.
For the MMM model, the E-step consists of evaluating Q(Θ, Θ̂

(s)
) := E(logLC(Θ;Y,Z, `)|Θ̂

(s)
,Y),

that is the expectation of the complete log-likelihood conditioned on the parameters com-
puted in the previous step and on the observed data. In the M-step the parameters
are updated by maximizing the expected log-likelihood found on the E step, that is
Θ̂

(s+1)
:= argmax

Θ
Q(Θ, Θ̂

(s)
). The iteration process is repeated until convergence on the

log-likelihood is met.

3.2 Initialization
To find the initial values of Θ̂

(0)
mentioned in Section 3.1, our proposal is the following.

Identity matrices are chosen for the initialization of the covariance matrices Φk and Σk.
For the initialization of Mk and πk, two solutions are proposed and tested in Section 4.3.
The first is a Kmeans++ (Arthur et al., 2007) initialization, that is performed on the
vectorized data. The second is a multiple random initialization: the mean matrices Mk

are chosen by uniform sampling K matrices among the N observed data matrices. Since
the EM algorithm is not guaranteed to converge toward a global optimum, the algorithm
is applied multiple times and the results with the highest log-likelihood is selected. For
simulations in Section 4.3, 5 random initializations proved to be enough, but a higher
number might be needed for more complex settings.
Both the initialization techniques are applied on the latent space, meaning that for count
data they are applied on the logarithm of the observed data.

3.3 E-step

As previously stated, the E-step consists of evaluating Q(Θ, Θ̂
(s)
) := E(logLC(Θ;Y,Z, `)|Θ̂

(s)
,Y),

that is the expectation of the complete log-likelihood conditioned on the parameters com-
puted in the previous step and on the observed data.

We can expand Equation 6 as:
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logLC(Θ;Y,Z, `) =
N∑
i=1

K∑
k=1

`ik

[
C + log(πk)−

J

2
log(|Φk|)−

T

2
log(|Σk|)−

1

2
tr[Σ−1

k ZiΦ
−1
k Zᵀ

i − Σ−1
k ZiΦ

−1
k Mᵀ

k − Σ−1
k MkΦ

−1
k Zᵀ

i + Σ−1
k MkΦ

−1
k Mᵀ

k ]

]
. (8)

Then, from Equation 8, it is easy to see that the expected values to be computed are
E(`ik|Θ̂

(s)
,Y), E(`ikZi|Θ̂

(s)
,Y) and E(`ikZiΦ

−1(s)
k Zᵀ

i |Θ̂
(s)
,Y) or E(`ikZᵀ

i Σ
−1(s)
k Zi|Θ̂

(s)
,Y)

by the cyclic property of the trace. As we will see in Section 3.4, we will need both.

We will proceed with their computation one by one. First, E(`ik|Θ̂
(s)
,Y) can be

computed according to the Bayes’ rule as

E(`ik|Θ̂
(s)
,Y) =

qik∑K
h=1 qih

=: τ̂
(s+1)
ik (9)

where

qik =πk MN (C×T )(Z
α
i |Θ

(s),α
k ) ·

∫
Ωr

MN (O×T )(Z
β
i |Θ

(s),β|α
k )dZβ

i

·
∫
R

T∏
t

G∏
g

P(yγigt| exp(z
γ
igt)) · MN (G×T )(Z

γ
i |Θ

γ|α,β
k )dZγ

i

where the first integral can be approximated through a Monte-Carlo approach applied
on the vectorized reparametrization of the matrix-variate distribution and the second one
can be approximated by using the estimated value for Zγ

i presented in the following.

For E(`ikZi|Θ̂
(s)
,Y), recalling the block structure of Zi, we can write

E(`ikZi|Θ̂
(s)
,Y) = P(`ik = 1|Θ̂

(s)
,Y) · E

Zα
i

Zβ
i

Zγ
i

∣∣∣∣∣∣`ik = 1, Θ̂
(s)
,Y

 =

= P(`ik = 1|Θ̂
(s)
,Y) ·

 Y α
i

E(Zβ
i |M

β|α,(s)
k ,Φ

(s)
k ,Σ

β|α,(s)
k )

E(Zγ
i |M

γ|α,β,(s)
k ,Φ

(s)
k ,Σ

γ|α,β,(s)
k )

 := τ̂
(s+1)
ik ·

 Y α
i

M̂
β,(s+1)
ik

M̂
γ,(s+1)
ik

 , (10)

where the matrix-variate expectation related to count data can be computed by
defining zγi ∈ RGT×1 as the vectorized version of Zγ

i and computing its expectation
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m̂
γ,(s+1)
ik := E(zγi |`ik = 1,Y, Θ̂

(s)
) by means of the sampler implemented in the R package

Rstan, that is the R interface to the Stan software (Stan Development Team, 2024).
The matrix-variate expectation related to categorical data can be computed by defining
zβi ∈ ROT×1 as the vectorized version of Zβ

i and computing its expectation m̂
β,(s+1)
ik :=

E(zβi |`ik = 1,Y, Θ̂
(s)
) through the use of a Gibbs sampler to sample from a truncated

multivariate normal distribution.

Finally, for E(`ikZiΦ
−1
k Zᵀ

i |Θ̂
(s)
,Y) we have:

E(`ikZiΦ
−1
k Zᵀ

i |Θ̂
(s)
,Y) = P(`ik = 1|Θ̂

(s)
,Y) · E(ZiΦ

−1
k Zᵀ

i |`ik = 1, Θ̂
(s)
,Y) =

= τ̂
(s+1)
ik ·

 Y α
i Φ̂

−1(s)
k Y αᵀ

i Y α
i Φ̂

−1(s)
k M̂

β,ᵀ(s+1)
ik Y α

i Φ̂
−1(s)
k M̂

γ,ᵀ(s+1)
ik

M̂
β,(s+1)
ik Φ̂

−1(s)
k Y αᵀ

i D̂
(s+1)
ik M̂

β,(s+1)
ik Φ̂

−1(s)
k M̂

γ,ᵀ(s+1)
ik

M̂
γ,(s+1)
ik Φ̂

−1(s)
k Y αᵀ

i M̂
γ,(s+1)
ik Φ̂

−1(s)
k M̂

β,ᵀ(s+1)
ik B̂

(s+1)
ik

 ,

(11)

where D̂
(s+1)
ik := E(Zβ

i Φ
−1
k Zβᵀ

i |`ik = 1, Θ̂
(s)
,Y) and B

(s+1)
ik := E(Zγ

i Φ
−1
k Zγᵀ

i |`ik =

1, Θ̂
(s)
,Y)).

To compute D
(s+1)
ik we make use of the the elements of Ŝ

β,(s+1)
ik := E(zβi z

βᵀ
i |`ik =

1,Y, Θ̂
(s)
). The samples generated to calculate the first moment m̂

β,(s+1)
ik can be reused

to compute the matrix Ŝ
(s+1)
ik by calculating the mean of the inner product between them.

Similarly, for B̂
(s+1)
ik , we make use of the the elements of Ŝ

γ,(s+1)
ik := E(zγi z

γᵀ
i |`ik =

1,Y, Θ̂
(s)
). As before, the samples generated to calculate the first moment m̂

γ,(s+1)
ik can

be reused to compute the matrix Ŝ
γ,(s+1)
ik .

On the other hand, to compute E(`ikZᵀ
i Σ

−1
k Zi|Θ̂

(s)
,Y):

E(`ikZᵀ
i Σ

−1
k Zi|Θ̂

(s)
,Y) = P(`ik = 1|Θ̂

(s)
,Y) · E(Zᵀ

i Σ
−1
k Zi|`ik = 1, Θ̂

(s)
,Y) =

= τ̂
(s+1)
ik ·

(
Y αᵀ
i Σ̂−1,αα

k Y α
i + Y αᵀΣ̂−1,αβ

k M̂
β,(s+1)
ik + Y αᵀΣ̂−1,αγ

k M̂
γ,(s+1)
ik +

M̂
β,(s+1)ᵀ
ik Σ̂−1,βα

k Y α
i + Ĉ

(s+1)
ik + M̂

β,(s+1)ᵀ
ik Σ̂−1,βγ

k M̂
γ,(s+1)
ik +

M̂
γ,(s+1)ᵀ
ik Σ̂−1,γα

k Y α
i + M̂

γ,(s+1)ᵀ
ik Σ̂−1,γβ

k M̂
β,(s+1)
ik + Â

(s+1)
ik

)
, (12)

where Ĉ
(s+1)
ik := E(Zβᵀ

i Σββ
k Zβ

i |`ik = 1, Θ̂
(s)
,Y), Â(s+1)

ik := E(Zγᵀ
i Σγγ

k Zγ
i |`ik = 1, Θ̂

(s)
,Y)

and Σ̂−1,∗∗
k indicated the corresponding block of the inverted matrix Σ̂−1

k with respect to
the notation in Equation 3. Again, to compute Ĉ

(s)
ik we will make use of the elements of
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Ŝ
β,(s+1)
ik , while for Â

(s)
ik we will use the elements of Ŝγ,(s+1)

ik .

Summing up, this means that computing E(logLC(Θ;Y,Z, `)|Θ̂
(s)
,Y) requires to

compute:

• E(`ik|Y, Θ̂
(s)
) =: τ̂

(s+1)
ik ,

• E(zβi |`ik = 1,Y, Θ̂
(s)
) =: m̂

β,(s+1)
ik ,

• E(zβi z
βᵀ
i |`ik,Y, Θ̂

(s)
) =: Ŝ

β,(s+1)
ik , whose elements are required for the computation

of D̂(s+1)
ik and Ĉ

(s+1)
ik ,

• E(zγi |`ik = 1,Y, Θ̂
(s)
) =: m̂

γ,(s+1)
ik ,

• E(zγi z
γᵀ
i |`ik,Y, Θ̂

(s)
) =: Ŝ

γ,(s+1)
ik , whose elements are required for the computation

of B̂(s+1)
ik and Â

(s+1)
ik .

3.4 M-step
The updated for the parameters at step (s+ 1) are given by

π̂
(s+1)
k =

∑N
i=1 τ̂

(s+1)
ik

N
, M̂

(s+1)
k =

1∑N
i=1 τ̂

(s+1)
ik

N∑
i=1

τ̂
(s+1)
ik

 Y α
i

M̂
β,(s+1)
ik

M̂
γ,(s+1)
ik

 , (13)

Σ̂
(s+1)
k =

1

T
∑N

i=1 τ̂
(s+1)
ik

N∑
i=1

τ̂
(s+1)
ik ×

( Y α
i Φ̂

−1(s)
k Y αᵀ

i Y α
i Φ̂

−1(s)
k M̂

β,ᵀ(s+1)
ik Y α

i Φ
−1(s)
k M̂

γ,ᵀ(s+1)
ik

M̂
β,(s+1)
ik Φ̂

−1(s)
k Y αᵀ

i D̂
(s+1)
ik M̂

β,(s+1)
ik Φ̂

−1(s)
k M̂

γ,ᵀ(s+1)
ik

M̂
γ,(s+1)
ik Φ̂

−1(s)
k Y αᵀ

i M̂
γ,(s+1)
ik Φ̂

−1(s)
k M̂

β,ᵀ(s+1)
ik B̂

(s+1)
ik

−

M̂
(s+1)
k Φ̂

−1(s)
k

 Y α
i

M̂
β,(s+1)
ik

M̂
γ,(s+1)
ik

ᵀ

−

 Y α
i

M̂
β,(s+1)
ik

M̂
γ,(s+1)
ik

 Φ̂
−1(s)
k M̂

ᵀ(s+1)
k + M̂

(s+1)
k Φ̂

−1(s)
k M̂

ᵀ(s+1)
k

)
(14)

The update formulas of the two covariance matrices are interconnected:
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Φ̂
(s+1)
k =

1

J
∑N

i=1 τ̂
(s+1)
ik

N∑
i=1

τ̂
(s+1)
ik

(
Y αᵀ
i Σ̂−1,αα

k Y α
i + Y αᵀΣ̂−1,αβ

k M̂
β,(s+1)
ik + Y αᵀΣ̂−1,αγ

k M̂
γ,(s+1)
ik +

M̂
β,(s+1)ᵀ
ik Σ̂−1,βα

k Y α
i + Ĉ

(s+1)
ik + M̂

β,(s+1)ᵀ
ik Σ̂−1,βγ

k M̂
γ,(s+1)
ik +

M̂
γ,(s+1)ᵀ
ik Σ̂−1,γα

k Y α
i + M̂

γ,(s+1)ᵀ
ik Σ̂−1,γβ

k M̂
β,(s+1)
ik + Â

(s+1)
ik −

M̂
ᵀ(s+1)
k Σ̂

−1(s+1)
k

 Y α
i

M̂
β,(s+1)
ik

M̂
γ,(s+1)
ik

−

 Y α
i

M̂
β,(s+1)
ik

M̂
γ,(s+1)
ik

ᵀ

Σ̂
−1(s+1)
k M̂

(s+1)
k +

M̂
ᵀ(s+1)
k Σ̂

−1(s+1)
k M̂

(s+1)
k

)
(15)

3.5 Convergence
Because of the MCMC use during the E-step, the property of monotone increase of the
observed log-likelihood does not hold for our model (McLachlan et al., 2008, Ruth, 2024).
Therefore, to asses convergence we use moving average estimation on the observed log-
likelihood.

Let lso the observed log-likelihood at step s, then our convergence criterion is∣∣∣∣∣∣
(

1
w1

∑s
i=s−w1+1 l

i
o

)
−
(

1
w2

∑s−w1

i=s−w1−w2+1 l
i
o

)
1
w2

∑s−w1

i=s−w1−w2+1 l
i
o

∣∣∣∣∣∣ < ε.

In the following, ε = 1 · 10−3 is chosen.

3.6 Selection of the number of cluster K

The number of cluster K is selected by minimizing the BIC (Schwarz, 1978) criterion.
The BIC for a number of cluster k is defined as

BICk := −2 logLO(Θ;Y ) + νk log(N),

where νk is the total number of model parameters:

νk := k[1 + JT + J(J + 1)/2 + T (T + 1)/2]− 1,

and LO(Θ;Y ) is the observed likelihood defined in Equation 7.
To select the model with the optimal K, the algorithm needs to be executed for every
k = 1, ..., K and the model with with the lowest BICk is chosen.
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4 Simulation study
This section presents numerical experiments on simulated data in order to illustrate the
behavior of the proposed model. First, we aim at studying the influence of the initializa-
tion procedure and sample size in estimating the partition and the parameters. Secondly,
the robustness to different noise ratio in the data concerning the clustering, the param-
eters estimation and the model selection. Finally, we compare the MMM model to a its
continuous counterpart (MMN) when used on mixed data treated like continuous data.

4.1 Simulation Setup
20 different samples have been simulated for increasing number of units N ∈ {100, 500, 1000},
with number of clusters K = 2, number of variables J = 4, number of times T = 3 and
cluster proportions π = (0.6, 0.4). The J variables are of mixed type, with the first vari-
able being continuous, the second being ordinal, the third being binary and the fourth
being a counting variable. The ordinal variable has 5 levels. Each sample has been drawn
from a matrix-variate Gaussian and then transformed according to the model described
in Section 2. The distributions parameters were chosen as following: identity matrices
for the covariance matrices Φk and Σk for each cluster, while mean matrices Mk chosen
such that the estimated the optimal Adjusted Rand Index (ARI) (Rand, 1971), computed
by performing one step of the clustering algorithm using the true parameters, would be
around 0.85. This setting led to the choice of two mean matrices as described in Table C1.

Moreover, three scenarios are derived from this setting by adding some noise by adding
to the underlying continuous latent matrix of a percentage τ of units a reasonable level
of noise, generated according to a centered Gaussian with variance equal to 0.5, allocated
to the two clusters proportionally to the clusters’ size: 0% (scenario 1), 10% (scenario
2), 20% (scenario 3). The two different kinds of initialization described in Section 3.2
have been tested. Regarding the algorithm setup, we set to 100 iterations as the burn-in
period of Gibbs sampler in the E-step, and a thinning equal to 2 to prevent too correlated
samples. The number of simulated samples is set to 100. Concerning the simulation done
via stan, we set the chain iterations to 500, of which half as burn-in, for 3 different chains.

4.2 Computational time
Computation time for one iteration on 2.40 GHz 11th Gen Intel Core i5-1135G7 with 16
Go RAM for one step of the algorithm with Kmeans++ initialization for K = 1 is about
5 seconds for N = 100 and about 30 seconds second for N = 1000.
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4.3 Influence of initialization & sample size
We first aim at studying the ability of the algorithm to recover the simulated model
depending on the type of initialization of the EM algorithm and on the size of the sample.
Figure 1 shows the quality of estimated partitions assessed by means of ARI. We recall
that an ARI of 1 indicates that the partition provided by the algorithm is perfectly aligned
with the simulated one. Conversely, an ARI of 0 indicates that the two partitions could
as well be some random matches. On the graph, the optimal ARI (≈ 0.85) according to
the simulation scheme is represented by a horizontal line. The boxplots show some small
differences in the median values of the ARI measurements between the two initialization
methods, with the random multistart initialization performing moderately better than
its Kmeans++ counterpart, both in terms of median and of lower variability. When the
sample size is sufficiently large, the result that stems from the multistart initialization
almost attains the optimal ARI.
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Figure 1: Influence of initialization and sample size. The horizontal line represents the
estimated Bayesian error.

However, while the random multistart initialization seems to perform marginally bet-
ter than the Kmeans++ from a partitioning point of view, it is noteworthy to consider
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the computational and temporal burden of the former compared to the latter. One might
consider whether the tade-off is worthy on a case-by-case base.

In addition, we measure their performance also by computing the Mean Absolute Per-
centage Error (MAPE) on their estimation of the distribution parameters. We recall that
the MAPE calculates the average percentage difference between the actual and predicted
values of a variable, therefore providing a relative measure of error. For a sample of N
units, for a generic parameter θ it is expressed through the formula:

MAPE =
100

N

N∑
i=1

∣∣∣∣∣θi − θ̂i
θi

∣∣∣∣∣ ,
where θ̂i is the estimated parameter and θi is the true parameter. MAPE has some

limitations, such as the fact that it cannot be used when actual values are zero or close to
zero. This is why for the covariance matrices only the diagonal elements are considered.
Results are shown in Figure 2.
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(a) Kmeans++ init
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(b) Random init.

Figure 2: MAPE for increasing sample size

Regarding the parameters estimates with respect to the different initialization strate-
gies, there is no clear difference in terms of MAPE, with the Kmeans having thinly better
rendering.

Concerning overall the influence of the sample size, the model behaves as expected:
as the sample size increases, the partitioning capabilities improve and tend towards the
optimal error. The same happens when we observe the errors concerning the parameter
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estimations for both the initialization procedures, and the median MAPE values appear to
reach a stable value already for N = 500, while the values improve further for N = 1000,
especially in terms of lower variability.

Overall, while the random multistart seems to provide a better partitioning, the dif-
ference is so tiny that for the rest of our experiments we will use just the Kmeans++
initialization strategy, which is less time consuming.
Last, while the general magnitude of the MAPE can seem important, it is important to
recall that we use a convergence tolerance of ε = 1 ·10−3, as per Section 3.5. Better results
can be found by reducing the ε, while making the execution more time-consuming.

4.4 Robustness to noise
As written in Section 4.1, we also simulated some noisy data to study the robustness of
the model in presence of some noise. ARI for different noise proportions were measured
and the results are visible in Figure 3. We decided to measure two quantities: the overall
ARI for all the units and the ARI just for the non-noisy ones.

As we would expect, the overall quality of partitioning estimates slightly decreases as
the level of noise increases, indicating that the model is actually disturbed by the noise.
Interestingly but somehow to be expected, when N increases the model is more disturbed
by the noise, as there are more units affected by it. Moreover, the noise affects the
allocation estimation of non-noisy units as well, and again this estimation seems to be
more disturbed for a larger N.

4.5 Model selection
Following the setup described in Section 4.1, by varying N ∈ {100, 500, 1000} and adding
increasing noise ratios τ ∈ {0, 0.1, 0.2}, 9 different scenarios have derived for testing the
model selection capabilities. We recall that for each scenario and each N , 20 data sets have
been drawn. Model selection has been performed through BIC, as described in Section
3.6. The results are shown in Table 1.

When the sample size increases, the model converges toward the true model. However,
as clearly visible in the table, the model tend to underestimate the true number of clusters
when the sample size is not sufficiently large, probably due to the insufficient number of
units to estimate the parameters from. Interestingly, some noise actually helps the model
to recover the true model.
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Figure 3: ARI for increasing noise proportions and increasing N.
In red the ARI for non-noisy units, in black for all of them.

4.6 Comparison with continuous conterpart
Finally, we compared the MMM model to the classical Mixture of Matrix-Normals (MMN)
model, mentioned in Section 1.1, in a version implemented by us following Viroli, 2011a.
Essentially, this means treating all the different data-type equally as continuous, as it
is often done by practitioners, but keeping the advantages of the matrix-variate struc-
ture. The results of the partitioning is presented in Figure 4. The hyper-parameters of
the competitors have been set to be similar to the one of the MMM in terms of initial-
ization, convergence and covariance matrix parametrization. The MMM model clearly
outperforms the MMN model, independently from the sample size.

In Figure 5, we compared the MAPE values for the parameters estimation between
MMM and MMN models. The difference between the two is severe, especially for the ma-
trix of means M and the covariance matrix Σ, while moderate for Φ, due to the constraint
on its determinant.The important difference of the results of the MMN model against the
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N/K Scenario τ = 0 Scenario τ = 0.1 Scenario τ = 0.2
1 2 3 4 1 2 3 4 1 2 3 4

100 14 6 0 0 13 7 0 0 12 8 0 0
500 0 19 1 0 0 20 0 0 0 20 0 0

1000 0 17 3 0 0 17 2 1 0 18 2 0

Table 1: Frequency of selection of each model K by the model through BIC among
the 20 simulated data sets, for increasing N. The actual value for K is 2. Kmeans++
initialization. In bold the true value for K and the most frequent K detected for each
noise ratio and sample size.
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Figure 4: Comparison between the MMM and MOM models.

MMM one with respect to M and Σ is probably due to the count data-type variable.
Indeed, without assuming the latent log-normal distribution, the values likely become too
out of scale compared to the others.

Globally, the experiments described above proved that the MMM model is able to
retrieve the true partitioning and to infer the true parameters, even in presence of mod-

20



0
1

2
3

4

N

M
A
P
E

100 500 1000

MMM

MMN

(a) MAPE for M
0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N

M
A
P
E

100 500 1000

MMM

MMN

(b) MAPE for Φ

0
50

10
0

15
0

N

M
A
P
E

100 500 1000

MMM

MMN

(c) MAPE for Σ

Figure 5: MAPE results for parameter matrices. MMM vs MMN. Kmeans++ init.
Note the difference in the scales.

erate noise. It is also able select the appropriate number of clusters through BIC when
presented with enough sample units. We proved that our model outperforms its contin-
uous matrix-variate counterpart when the latter is used to model mixed-type data, as
often done by practitioners. We are now confident enough to apply the MMM model on
real-world data.
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5 Real-world application

5.1 Data description
The S&P500 index is a stock exchange index tracking the stock performances of 500 of
the largest companies listed on stock exchange market in the United States, where each
company is weighted by its market capitalization. It is one of the most commonly fol-
lowed equity indices and the companies included in the index represent 80% of the total
market capitalization of U.S. public companies. While investors are commonly interested
in the index in its entirety, it is often the case for them to be interested in the composing
companies, reputed as the best ones to invest in, in order to create specific portfolios to
be used for long-term investments and wealth management.

We collected data concerning companies composing the S&P500 stock market index.
Specifically, we focused on the time period going to the beginning of 2019 to the end of
2023, hence encompassing the period immediately prior and the one immediately succeed-
ing to the COVID-19 pandemic, which went from the 30th of January 2020 to the 5th of
May 2023 according to the World Health Organization (WHO) (Sarker et al., 2023). The
objective of our study is to cluster companies according to their stock behavior during the
pandemic period, in order to discover similar patterns during a shock period and possibly
adjust our stock portfolio accordingly.

For our analysis, we collected for each year and for each listed company the following
variables:

• LogReturns: continuous variable. The logarithm of the yearly return of the stock.
The return is computed as the relative percentage change in the stock adjusted
closing price between the first trading day versus the last trading day of the year.
In financial analysis, log-returns are often employed instead of the simple returns as
log returns have an infinite support (compared to simple returns which are lower-
bounded by −100) and as they take into account the compounding effect, making
them more suitable for long-term analysis.

• Grades: ordinal variable. The investment grade of the stock expressed by institu-
tional investment banks. Specifically, for this study we considered the grades given
by “Bank of America”, since it is the institution that releases them for most of the
companies of the S&P500. The grades have three levels: “Underperform”, “Neu-
tral” and “Buy”. Grades are given multiple times in a year and not all at the same
time, so we considered their mode for each fiscal year.

• Dividends: binary variable. Whether the stock gave right to a dividend during
the fiscal year or not, regardless of the amount .
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• Volume: count variable. The total volume of stocks exchanged during the year.
Because of the high amount of stocks that are traded during a year, we decided to
count per millions of stocks exchanged. Therefore, each counted units will represent
a million stocks traded. Generally, securities with higher volume are more liquid.

The data were collected making use of the Python package pyfinance, which down-
loads the data from the website “yahoo!finance”.
However, grades were not released by Bank of America for all the S&P500 companies for
the entirety of the time window of our study, but just on 330 of them. We decided to
reduce our survey to them. So, overall our dataset is composed of four mixed variables
(continuous, ordinal, binary and count) collected for 330 observations over 5 time points
(years from 2019 to 2023 included). We reorganized these data into a list of matrices.

5.2 Results
After performing our clustering algorithm with a number of clusters K ranging from 1 to
8 using Kmeans++ initialization, the model with the lowest BIC is the one with K = 4
(Fig. D2). The number of units in each cluster is respectively of 94, 50, 154 and 32.
The estimated parameters are reported in Table D1 for the mean M , Table D2 for the
time covariances Φ and in Table D3 for the variable covariances Σ. In addition, the cor-
relation matrices are represented by correlation plots in Figs. 8 and 9, respectively. The
tickers of the companies allocated to each cluster is reported at Table D4.
In Figure 7 the evolution for the observed outcomes for each cluster is showed.
Moreover, by using the “Global Industry Classification Standard” (GICS) industrial tax-
onomy developed by “Standard & Poor’s” (S&P), we represented the sector composition
of each cluster in Figure D1.

By performing a PCA the latent continuous embedding computed by the MMM model,
we can represents the 330 units as in Figure 6a. A 3D representation is provided. For
this representation, the temporal structure has been discarded and we have transformed
our latent embedding for the units from 4 × 5-dimensional matrices to 20-dimensional
vectors. On the other hand, Figure 6b represents cluster means at each of the 5 years.
Such plot allows to visualize the time evolution of each cluster.

5.3 Interpretation
First, we can get a preliminary idea by looking at Figure 6a. As we can see, of the 4
clusters, units belonging to Cluster 1 and Cluster 3 are more concentrated and closer
to each other in the latent space, while the ones belonging to Cluster 2 and 4 are more
spread out. This is confirmed by looking at Figure 6b, where the clusters of Cluster 1
and Cluster 3 means occupy adjacent space regions.
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(a) Units. (b) Cluster means.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Figure 6: Units and cluster means represented through PCA.

In the following, we give a summary description for Cluster 4, which we deemed be
the most interesting. Interpretations for the other clusters can be found in Appendix B.

• Cluster 4: 32 units.

– Means: the cluster is qualified by generally constant strong values for LogRe-
turn, with the exepction of 2022, where the cluster has the lowest negative
value. The cluster also has the second highest values for Grade and the high-
est values for Volume. The values for Dividend are small and fluctuate around
zero in time suggesting heterogeneity in the cluster regarding this variable.

– Correlation in time: the cluster is characterized the second strongest corre-
lations overall.

– Correlation among variables: the main feature of the cluster concerning
variables correlation is the absence of a negative correlation between volume
and LogReturn, while a weak negative correlation between Dividend and Lo-
gReturn is estimated.

Cluster 4 is defined by its high value of the variable Volume compared to the oth-
ers. The values of LogReturn are more stable in time, except for 2022. The value
of Dividens float around zero, and Figure 7 shows us that the dividend distribution
is almost evenly split for most of the years.
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It is also the only cluster to have a negative correlation between Dividend and
LogReturn, implying that stocks with higher returns are also the ones with no divi-
dends. This paradox can be explained by looking at the sector distribution in Figure
7 : a majority of the companies whose stocks are allocated to Cluster 4 belong to
sectors such as “Technology” and “Consumer Cyclical”, and when we look at Table
D4 we realize it includes companies like Amazon, Tesla, Netflix, Nvidia, AMD and
Moderna, that do not allocate dividends but prefer to reinvest their profit in R&D.
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Figure 7: Observed variables values for each cluster. Note that for graphical reason
in plots (a) and (b) the company NVIDIA has been removed from the set, due to its
out-of-scale values compared to the others companies.
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Figure 8: Clusters’ corr-plots among years.

6 Conclusions
In this work we have presented a novel approach for modeling longitudinal mixed-type
data with unobserved heterogeneity. The model presented does not require the conditional
independence assumption. The matrix-variate structure allows for a more parsimonious
modeling of multivariate longitudinal data than other models in the literature. Also, it
can explicitly model the temporal structure and the association among the responses,
that can vary among clusters. An MCMC-EM algorithm to perform inference has been
proposed and described. The efficacy of the algorithm has been tested on synthetic data
under different sample sizes and different noise ratios. We proved the goodness of this
framework to cluster longitudinal mixed-type data and to get clusters that are easy to
interpret and to work with even by non-statisticians in a real-world example.
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Figure 9: Clusters’ corr-plots among variables.

However, the proposed model has some limitations. In this paper we focused only on
the simplest structure of matrix-normal distribution. While considerably more parsimo-
nious than a mixture of multivariate normal distributions, the model seems sensitive to
small sample sizes, since, as the number of clusters increases, the number of parameters
to estimate can still became troublesome. To improve this aspect, the covariance matrices
can be further decomposed to obtain more flexible and parsimonious models, as done for
example in Anderlucci et al., 2015 and in Sarkar et al., 2020. Another solution to this
problem can be the one proposed by Cappozzo et al., 2023.
Similarly, the matrix-variate structure is not just inherent to multivariate longitudinal
data, but can actually be found in many other applications. The MMM model can be
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employed in such cases as well, with minimal adjustments required.
Moreover, EM algorithm can be leveraged to extend the model to deal with incomplete
data under the missing at random (MAR).

Finally, one could as well think of employing, with proper adjustments, different un-
derlying continuous distributions, such as heavy-tailed (Tomarchio et al., 2020), skewed
(Gallaugher et al., 2018, Melnykov et al., 2018) or t-student (Doğru et al., 2016) distri-
butions to endow the clustering model with different desired properties.
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Appendices
A E-step computations
Here we will expand the computations presented in Section 3.1.

For Equation 10, the matrix-variate expectation related to count data can be computed
by defining zγi ∈ RGT×1 as the vectorized version of Zγ

i and computing

m̂
γ,(s+1)
ik : = E(zγi |`ik = 1,Y, Θ̂

(s)
) = (16)

=

∫
R
zγi ·

∏T
t

∏G
g P(yγigt| exp(z

γ
igt)) · MNGT (z

γ
i |vec(M (s),γ|α,β

k ),Σ
(s),γ|α,β
k ⊗ Φ

(s)
k )∫

R
∏T

t

∏G
g P(yγigt| exp(z

γ
igt)) · MNGT (z

γ
i |vec(M (s),γ|α,β

k ),Σ
(s),γ|α,β
k ⊗ Φ

(s)
k )dzγi

dzγi .

This integral does not have any close form solution, so we resort to numerically compute
it through the No-U-Turn sampler implemented in the R package Rstan.

Then, M̂
γ,(s+1)
ik := vec−1

G×T (m̂
γ,(s+1)
ik ), vec−1

G×T being the inverse of the vectorization
function, i.e. the function mapping from a GT -dimensional vector to a O × T matrix.

The matrix-variate expectation related to categorical data can be computed by defin-
ing zβi ∈ ROT×1 as the vectorized version of Zβ

i and computing

m̂
β,(s+1)
ik := E(zβi |`ik = 1,Y, Θ̂

(s)
) =

∫
Ωr

zβi MNOT (z
β
i |vec(M (s),β|α

k ),Σ
(s),β|α
k ⊗ Φ

(s)
k )dzβi

(17)
through the use of a Gibbs sampler to sample from a truncated multivariate normal dis-
tribution.

Then, as we did for count data; we map the estimated values back to a matrix form
as M̂

β,(s+1)
ik := vec−1

O×T (m̂
β,(s+1)
ik ).

For Equation 11, to compute D
(s)
ik , we start by defining ϕ̂

(s)
k,gd as the (g, d)th element

of Φ̂−1(s)
k . Then, the (h, t)th element of Zβ

i Φ
−1
k Zβᵀ

i would be
∑T

d=1

∑T
g=1 z

β
i,hgϕ̂

(s)
k,gdz

β
i,td and

we would get

D̂
(s)
ik := E(Zβ

i Φ
−1
k Zβᵀ

i |`ik = 1, Θ̂
(s)
,Y)) =

=

(
T∑

d=1

T∑
g=1

Ŝ
β,(s+1)
ik,[(g−1)O+h,(d−1)O+t]ϕ̂

(s)
k,gd

)
h,t

, (18)
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where we make use of the the elements of

Ŝ
β,(s+1)
ik := E(zβi z

βᵀ
i |`ik = 1,Y, Θ̂

(s)
) =

∫
Ωr

zβi z
βᵀ
i MNOT (z

β
i |vec(M (s),β|α

k ),Σ
(s),β|α
k ⊗Φ

(s)
k )dzβi .

(19)
The samples generated to calculate the first moment m

β,(s+1)
ik can be reused to com-

pute the matrix Ŝ
(s+1)
ik , that can be approximated by calculating the inner product of the

vectors used to compute mβ,(s+1)
ik then calculating the sample mean of these inner products.

Similarly, for B̂(s)
ik the (h, t)th element of Zγ

i Φ
−1
k Zγᵀ

i would be
∑T

d=1

∑T
g=1 z

γ
i,hgϕk,gdz

γ
i,td

and we would get

B̂
(s)
ik := E(Zγ

i Φ
−1
k Zγᵀ

i |`ik = 1, Θ̂
(s)
,Y)) =

=

(
T∑

d=1

T∑
g=1

Ŝ
γ,(s+1)
ik,[(g−1)G+h,(d−1)G+t]ϕ̂

(s)
k,gd

)
h,t

, (20)

where we make use of the the elements of

Ŝ
γ,(s+1)
ik : = E(zγi z

γᵀ
i |`ik = 1,Y, Θ̂

(s)
) = (21)

=

∫
R
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g P(yγigt| exp(z

γ
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γ
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(s),γ|α,β
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γ
igt)) · MNGT (z

γ
i |vec(M (s),γ|α,β

k ),Σ
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(s)
k )dzγi

dzγi .

As before, the samples generated to calculate the first moment m̂γ,(s+1)
ik can be reused

to compute the matrix Ŝ
γ,(s+1)
ik by calculating the mean of the inner product between them.

Finally, for Equation 12, let us define by σ̂
(s),ββ
k,gd the (g, d)th element of the block

Σ̂
−1(s),ββ
k . Then, the (h, t)th element of Zβᵀ

i Σββ
k Zβ

i is
∑O

d=1

∑O
g=1 zi,ghσ̂

(s),ββ
k,gd zi,dt, and we

get
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For Â(s)
ik , let indicate by σ̂

(s),γγ
k,gd the (g, d)th element of block Σ̂

−1(s),γγ
k . Then, the (h, t)th

element of Zγᵀ
i Σγγ

k Zγ
i is

∑O
d=1

∑O
g=1 zi,ghσ̂

(s),γγ
k,gd zi,dt, and we get
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ik := E(Zγᵀ

i Σγγ
k Zγ
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. (23)

B Cluster interpretation
In this section interpretations for other clusters referred in Section 5.3 are given.

• Cluster 1: 94 units.

– Means: the cluster means show the highest values for Dividend and Grade,
and the second highest for Volume. The results for LogReturn are more shaded:
the cluster has the lowest mean for 2019, 2020 (the only one negative for that
year) and 2023. At the same time, it is the only cluster to have non-negative
LogReturns for 2022.

– Correlation in time: the cluster is characterized by a fading and weaker
correlations among times than other clusters, especially regarding 2022 to the
previous years.

– Correlation among variables: the cluster is characterized by feeble correla-
tions among Returns, Grade and Dividend, yet these correlations are stronger
than in other clusters. Some soft negative correlations are estimated between
Volume, Grade and Return.

We can describe Cluster 1 as the cluster of more “traditional” stocks. Stocks be-
longing to this cluster have good grades, usually grant dividends and are among the
most exchanged, ensuring good liquidity.
By looking at Figure D1a, we can notice that the cluster is the ones with more
variety of composing sectors. This might explain why it is the only cluster that
experienced a fall in LogReturns in 2020, at the height of the COVID-19 pandemic
and of the consequent lock-downs, which had a major impact on more traditional
sectors. Figure 7 suggests that indeed the stocks gave right to dividends even for
the entirety of them in 2019 and 2020. We can also point out to the fact that during
2020 and 2021 the percentage of stocks marked as “Buy” for this cluster increased,
probably in view of the end of toughest pandemic period and in light of the lower
prices of the stocks. The grades distribution changes during 2022 and 2023 mostly
in favor of “Neutral”. The correlations among times suggest that the behaviour is
less constant in time with respect of the other clusters. Moreover, the negative cor-
relations between Volume, LogReturns and Grade may indicate that the increase in
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volume exchange is generally related to selling, as the volume increase when grades
and returns decreases.

• Cluster 2: 50 units.

– Means: the cluster has the highest means regarding LogReturns for the first
two years and the second most important negative value for 2022. It is the
only cluster with relatively strong negative values for Dividend. It has also the
lowest values for Volume.

– Correlation in time: it is the cluster with the strongest positive correlation
in time.

– Correlation variables: the cluster is characterized by the presence of weak
correlation between LogReturn, Grade ans Dividend, and of a weak negative
correlation between Volume and LogReturn.

Cluster 2 has the main characteristics to be the only cluster with negative values for
Dividend. A look at Figure 7 shows us that indeed that almost none of the stocks
allocated to the cluster gave right to a dividend, a situation that slightly improves
in 2023. The low values for Volume compared to the other clusters indicate that
the stocks in this cluster are among the less exchanged. The grades distribution
show that there is a high percentage of stocks marked as “Buy” until 2021, but it
decreases and in 2023 the cluster has the highest percentage of stocks marked as
“Underperform”. 2022 appears to be a bad year for the stocks belonging to the
cluster, but with the expect of this year the cluster has the most stable values for
LogReturn. The sector composition of the cluster shows a dominance of the sectors
“Healthcare” and “Technology”, which might explain the good performance during
the pandemic, as these sectors were among the ones to actually profit during the
pandemic. The same reason might explain the 2022 performance, where staff lay-
offs and decrease in investments due to over-investments during the pandemics hit
particularly the IT sector.

• Cluster 3: 154 units.

– Means: the cluster has the second highest means for LogReturns for 2019 and
2021, and the lowest negative value for 2022. It has the second highest values
for Dividend and the second smallest values for Volume.

– Correlation in time: the cluster has the overall strong positive correlations
in time.

– Correlation among variables: the cluster is mainly characterized by the
weak negative correlation between Volume and LogReturn, and the absence of
other meaningful correlations.
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Cluster 3 can be seen as cluster between Cluster 1 and Cluster 2: both Volume
and Grade have values in between the two, and the same can be almost be said for
LogReturn. The main exception to this description is Dividend, since for Cluster 3
the values are high, and if we look at Figure 7 almost 100% of the stocks gave right
to a dividend. Besides, the percentage of stocks releasing dividends is surprisingly
stable over time.
Moreover, concerning the variables Grade, the cluster is the one with the smallest
percentage of stocks classified as “Buy”, while it has the highest percentage of stocks
marked as “Neutral” among all the clusters.
Its main sector is “Industrials”, but we can see from Figure D1 that its composition
is diversified, more like Cluster 1 than Cluster 2.

C Simulations

Table C1: Means matrices for simulation

Cluster 1 T1 T2 T3
V1 1.75 1.75 1.75
V2 1.75 1.75 1.75
V3 -0.25 -0.25 -0.25
V4 1 1 1

Cluster 2 T1 T2 T3
V1 2.75 2.75 2.75
V2 2.75 2.75 2.75
V3 0.25 0.25 0.25
V4 2.5 2.5 2.5

D Real data

Table D1: Clusters’ means over time. The estimated parameter π̂ = (0.287, 0.156, 0.460,
0.096)

Cluster 1 2019 2020 2021 2022 2023
Return 19.77 -3.34 28.72 0.03 5.07
Grade 3.93 4.16 4.07 4.07 3.71

Dividend 4.07 4.04 3.44 3.51 3.58
Volume 7.35 7.59 7.38 7.44 7.33

Cluster 2 2019 2020 2021 2022 2023

37



Return 34.69 31.77 26.73 -27.7 22.21
Grade 3.00 3.24 3.20 3.04 2.69

Dividend -1.57 -1.92 -2.05 -2.00 -1.68
Volume 5.72 5.82 5.52 5.70 5.66

Cluster 3 2019 2020 2021 2022 2023
Return 27.92 9.54 28.06 -10.87 12.34
Grade 3.09 3.19 3.44 3.23 3.08

Dividend 3.34 3.65 3.58 3.81 4.01
Volume 6.02 6.15 5.91 6.00 5.98

Cluster 4 2019 2020 2021 2022 2023
Return 21.29 22.72 24.87 -43.95 36.45
Grade 4.52 3.71 3.71 3.52 3.46

Dividend 0.50 0.38 -0.88 -0.54 -0.13
Volume 8.04 8.84 8.44 8.52 8.33

Table D2: Clusters’ time covariances

Cluster 1 2019 2020 2021 2022 2023
2019 1.36 0.94 0.75 0.61 0.66
2020 0.94 1.64 0.81 0.61 0.67
2021 0.75 0.81 1.51 0.99 0.77
2022 0.61 0.61 0.99 1.68 0.83
2023 0.66 0.67 0.77 0.83 1.3

Cluster 2 2019 2020 2021 2022 2023
2019 2.25 1.97 1.81 1.69 1.79
2020 1.97 2.42 1.94 1.78 1.92
2021 1.81 1.94 2.54 2.02 2.07
2022 1.69 1.78 2.02 2.69 2.2
2023 1.79 1.92 2.07 2.2 2.73

Cluster 3 2019 2020 2021 2022 2023
2019 1.63 1.28 1.2 1.06 1.06
2020 1.28 1.81 1.3 1.09 1.09
2021 1.2 1.3 1.93 1.29 1.27
2022 1.06 1.09 1.29 1.95 1.29
2023 1.06 1.09 1.27 1.29 1.9

Cluster 4 2019 2020 2021 2022 2023
22019 2.61 1.57 1.59 1.5 1.61
2020 1.57 2.06 1.42 1.16 1.27
2021 1.59 1.42 1.95 1.48 1.48
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2022 1.5 1.16 1.48 1.92 1.52
2023 1.61 1.27 1.48 1.52 1.97

Table D3: Clusters’ variables covariances

Cluster 1 Return Grade Dividend Volume
Return 589.69 6.4 6.22 -0.87
Grade 6.4 3.36 0.92 -0.06

Dividend 6.22 0.92 3.74 -0.03
Volume -0.87 -0.06 -0.03 0.1

Cluster 2 Return Grade Dividend Volume
Return 976.02 5.09 3.85 -1.82
Grade 5.09 2.02 0.54 0

Dividend 3.85 0.54 1.98 -0.01
Volume -1.82 0 -0.01 0.15

Cluster 3 Return Grade Dividend Volume
Return 521.79 1.15 1.89 -0.91
Grade 1.15 3.6 0.97 -0.01

Dividend 1.89 0.97 3.89 -0.01
Volume -0.91 -0.01 -0.01 0.07

Cluster 4 Return Grade Dividend Volume
Return 2378.8 4.74 -8.1 1.2
Grade 4.74 2.64 0.61 -0.05

Dividend -8.1 0.61 2.31 0.04
Volume 1.2 -0.05 0.04 0.32

Table D4: Stocks’ tickers in each cluster

Cluster 1 Cluster 2 Cluster 3 Cluster 4
ABBV, AES, AIG ADBE, ADSK, ANET A, ACGL, ACN AAL, AAPL, AMD
AMAT, BK, BKR APTV, AZO, BKNG ADI, ADP, AEE AMZN, AVGO, BA
BMY, BX, CFG BSX, CBRE, CDNS ALB, ALL, AME CMG, CRWD, CZR
CL, CMCSA, CNP CNC, CRL, CSGP APD, AVB, AVY DAL, DIS, EXPE
COP, CSCO, CSX CTLT, DECK, DLTR AWK, AXP, BALL F, FCX, GM
CVS, CVX, D DVA, DXCM, EPAM BAX, BBY, BEN GOOGL, INTC, MRNA
DD, DOW, DVN EW, FFIV, FSLR BWA, BXP, CAT MSFT, NCLH, NFLX
EBAY, EOG, EXC FTNT, GNRC, HOLX CBOE, CDW, CE NVDA, PCG, PFE
FANG, FE, FIS HSIC, IDXX, IQV CF, CHD, CHRW PYPL, RCL, SPG
FITB, FOXA, GILD ISRG, IT, KMX CLX, CME, CMI T, TSLA, UAL
GLW, HAL, HBAN LH, LULU, MHK CMS, COST, CPB UBER, WDC
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Cluster 1 Cluster 2 Cluster 3 Cluster 4
HD, HPE, HPQ MOH, MTCH, MTD CPT, CTAS, CTSH
IBM, IVZ, JPM NOW, NVR, ORLY DE, DFS, DGX
KDP, KHC, KIM PANW, PAYC, PTC DHI, DOV, DPZ
KMI, KR, LLY QRVO, TDG, TMUS DRI, DTE, DUK
LOW, LUV, LVS TTWO, URI, VRTX EA, ED, EFX
MCHP, MDLZ, MDT WAT, WST EIX, EL, ELV
MET, MGM, MO EMN, EMR, EQR
MOS, MPC, MRK ES, ESS, ETN
MRO, NEE, NEM ETR, EVRG, EXR
NI, NKE, O FDS, FDX, FMC
OKE, ORCL, OXY FTV, GD, GPC
PEP, PG, PM GS, HCA, HES
PPL, QCOM, RF HII, HON, HRL
SBUX, SCHW, SLB HSY, HUM, ICE
SO, SYF, TGT INTU, IP, IRM
TJX, TPR, TXN ITW, JBHT, JBL
UNH, USB, V JNPR, K, KKR
VICI, VLO, VST KLAC, KMB, LEN
VZ, WBA, WFC LMT, LNT, LRCX
WMB, WY, WYNN LW, LYB, MA
XOM MAS, MCD, MCK

MLM, MMC, MMM
NDAQ, NRG, NSC
NTAP, NTRS, NUE
NXPI, ODFL, PAYX
PCAR, PEG, PH
PHM, PKG, PLD
PNC, PNW, PPG
PSA, RL, ROK
RSG, SBAC, SHW
SNA, SRE, STLD
STT, STZ, SWK
SWKS, SYY, TAP
TER, TMO, TRGP
TROW, TRV, TSCO
TSN, TXT, UDR
UHS, UNP, UPS
VMC, VRSK, VTR
WAB, WEC, WELL
WM, WRB, XEL
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Figure D1: Clusters’ sectors composition
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